Molecular detection of SARS-COV-2 in exhaled breath at the point-of-need

The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings r...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 217; p. 114663
Main Authors Stakenborg, Tim, Raymenants, Joren, Taher, Ahmed, Marchal, Elisabeth, Verbruggen, Bert, Roth, Sophie, Jones, Ben, Yurt, Abdul, Duthoo, Wout, Bombeke, Klaas, Fauvart, Maarten, Verplanken, Julien, Wiederkehr, Rodrigo S., Humbert, Aurelie, Dang, Chi, Vlassaks, Evi, Jáuregui Uribe, Alejandra L., Luo, Zhenxiang, Liu, Chengxun, Zinoviev, Kirill, Labie, Riet, Frederiks, Aduen Darriba, Saldien, Jelle, Covens, Kris, Berden, Pieter, Schreurs, Bert, Van Duppen, Joost, Hanifa, Rabea, Beuscart, Megane, Pham, Van, Emmen, Erik, Dewagtere, Annelien, Lin, Ziduo, Peca, Marco, El Jerrari, Youssef, Nawghane, Chinmay, Arnett, Chad, Lambrechts, Andy, Deshpande, Paru, Lagrou, Katrien, De Munter, Paul, André, Emmanuel, Van den Wijngaert, Nik, Peumans, Peter
Format Journal Article
LanguageEnglish
Published England The Authors. Published by Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text
ISSN0956-5663
1873-4235
1873-4235
DOI10.1016/j.bios.2022.114663

Cover

Loading…
Abstract The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.
AbstractList The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.
The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects’ breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.
The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects’ breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.
ArticleNumber 114663
Author Stakenborg, Tim
Luo, Zhenxiang
Schreurs, Bert
Raymenants, Joren
Dewagtere, Annelien
Roth, Sophie
Peumans, Peter
Beuscart, Megane
André, Emmanuel
Covens, Kris
Verplanken, Julien
Berden, Pieter
Duthoo, Wout
Dang, Chi
Deshpande, Paru
Verbruggen, Bert
Zinoviev, Kirill
Labie, Riet
Marchal, Elisabeth
Vlassaks, Evi
Van Duppen, Joost
El Jerrari, Youssef
Pham, Van
Liu, Chengxun
Lambrechts, Andy
Yurt, Abdul
Fauvart, Maarten
Hanifa, Rabea
Saldien, Jelle
Arnett, Chad
Lagrou, Katrien
Peca, Marco
Frederiks, Aduen Darriba
Nawghane, Chinmay
Taher, Ahmed
Jones, Ben
Wiederkehr, Rodrigo S.
Bombeke, Klaas
Lin, Ziduo
Jáuregui Uribe, Alejandra L.
Emmen, Erik
De Munter, Paul
Van den Wijngaert, Nik
Humbert, Aurelie
Author_xml – sequence: 1
  givenname: Tim
  surname: Stakenborg
  fullname: Stakenborg, Tim
– sequence: 2
  givenname: Joren
  surname: Raymenants
  fullname: Raymenants, Joren
– sequence: 3
  givenname: Ahmed
  surname: Taher
  fullname: Taher, Ahmed
– sequence: 4
  givenname: Elisabeth
  surname: Marchal
  fullname: Marchal, Elisabeth
– sequence: 5
  givenname: Bert
  surname: Verbruggen
  fullname: Verbruggen, Bert
– sequence: 6
  givenname: Sophie
  surname: Roth
  fullname: Roth, Sophie
– sequence: 7
  givenname: Ben
  surname: Jones
  fullname: Jones, Ben
– sequence: 8
  givenname: Abdul
  surname: Yurt
  fullname: Yurt, Abdul
– sequence: 9
  givenname: Wout
  surname: Duthoo
  fullname: Duthoo, Wout
– sequence: 10
  givenname: Klaas
  surname: Bombeke
  fullname: Bombeke, Klaas
– sequence: 11
  givenname: Maarten
  surname: Fauvart
  fullname: Fauvart, Maarten
– sequence: 12
  givenname: Julien
  surname: Verplanken
  fullname: Verplanken, Julien
– sequence: 13
  givenname: Rodrigo S.
  surname: Wiederkehr
  fullname: Wiederkehr, Rodrigo S.
– sequence: 14
  givenname: Aurelie
  surname: Humbert
  fullname: Humbert, Aurelie
– sequence: 15
  givenname: Chi
  surname: Dang
  fullname: Dang, Chi
– sequence: 16
  givenname: Evi
  surname: Vlassaks
  fullname: Vlassaks, Evi
– sequence: 17
  givenname: Alejandra L.
  surname: Jáuregui Uribe
  fullname: Jáuregui Uribe, Alejandra L.
– sequence: 18
  givenname: Zhenxiang
  surname: Luo
  fullname: Luo, Zhenxiang
– sequence: 19
  givenname: Chengxun
  surname: Liu
  fullname: Liu, Chengxun
– sequence: 20
  givenname: Kirill
  surname: Zinoviev
  fullname: Zinoviev, Kirill
– sequence: 21
  givenname: Riet
  surname: Labie
  fullname: Labie, Riet
– sequence: 22
  givenname: Aduen Darriba
  surname: Frederiks
  fullname: Frederiks, Aduen Darriba
– sequence: 23
  givenname: Jelle
  surname: Saldien
  fullname: Saldien, Jelle
– sequence: 24
  givenname: Kris
  surname: Covens
  fullname: Covens, Kris
– sequence: 25
  givenname: Pieter
  surname: Berden
  fullname: Berden, Pieter
– sequence: 26
  givenname: Bert
  surname: Schreurs
  fullname: Schreurs, Bert
– sequence: 27
  givenname: Joost
  surname: Van Duppen
  fullname: Van Duppen, Joost
– sequence: 28
  givenname: Rabea
  surname: Hanifa
  fullname: Hanifa, Rabea
– sequence: 29
  givenname: Megane
  surname: Beuscart
  fullname: Beuscart, Megane
– sequence: 30
  givenname: Van
  surname: Pham
  fullname: Pham, Van
– sequence: 31
  givenname: Erik
  surname: Emmen
  fullname: Emmen, Erik
– sequence: 32
  givenname: Annelien
  surname: Dewagtere
  fullname: Dewagtere, Annelien
– sequence: 33
  givenname: Ziduo
  surname: Lin
  fullname: Lin, Ziduo
– sequence: 34
  givenname: Marco
  surname: Peca
  fullname: Peca, Marco
– sequence: 35
  givenname: Youssef
  surname: El Jerrari
  fullname: El Jerrari, Youssef
– sequence: 36
  givenname: Chinmay
  surname: Nawghane
  fullname: Nawghane, Chinmay
– sequence: 37
  givenname: Chad
  surname: Arnett
  fullname: Arnett, Chad
– sequence: 38
  givenname: Andy
  surname: Lambrechts
  fullname: Lambrechts, Andy
– sequence: 39
  givenname: Paru
  surname: Deshpande
  fullname: Deshpande, Paru
– sequence: 40
  givenname: Katrien
  surname: Lagrou
  fullname: Lagrou, Katrien
– sequence: 41
  givenname: Paul
  surname: De Munter
  fullname: De Munter, Paul
– sequence: 42
  givenname: Emmanuel
  surname: André
  fullname: André, Emmanuel
– sequence: 43
  givenname: Nik
  orcidid: 0000-0003-0225-1631
  surname: Van den Wijngaert
  fullname: Van den Wijngaert, Nik
– sequence: 44
  givenname: Peter
  surname: Peumans
  fullname: Peumans, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36150327$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rVDEYhYNU7LT6B1xIlm4y5uPm426EMtRWqBSsug35eK-T4U4y3mRE_33vMK2oC3EVeHPO4XCeM3SSSwaEXjK6ZJSpN5ulT6UuOeV8yVinlHiCFsxoQTou5Ala0F4qIuf7KTqrdUMp1aynz9CpUExSwfUCXX8oI4T96CYcoUFoqWRcBnx38fGOrG6_EI5TxvBj7UaI2E_g2hq7htsa8K6k3EgZSAaIz9HTwY0VXjy85-jzu8tPq2tyc3v1fnVxQ0InZCPgdRSOa-k65cEYBl4oAz52HbjotTdBweCkYTpwEYH2JkpD1aAliF5IcY7eHnN3e7-FGCC3yY12N6Wtm37a4pL98yentf1avtu-4x3jfA54_RAwlW97qM1uUw0wji5D2VfLNTPC0HnP_5Fq1c8s6Cx99XutX30el54F5igIU6l1gsGG1Nxh7rllGi2j9gDVbuwBqj1AtUeos5X_ZX1M_4fpHvJGpY0
CitedBy_id crossref_primary_10_1007_s00216_022_04433_5
crossref_primary_10_1007_s15010_023_02135_3
crossref_primary_10_1016_j_mne_2023_100228
crossref_primary_10_1016_j_aca_2023_340860
crossref_primary_10_1016_j_aca_2023_341283
crossref_primary_10_1021_acsaelm_4c00260
crossref_primary_10_1039_D3CS00417A
crossref_primary_10_1089_jamp_2023_0010
crossref_primary_10_1021_acssensors_3c00512
crossref_primary_10_1016_j_cclet_2023_108378
crossref_primary_10_4103_jpdtsm_jpdtsm_84_22
Cites_doi 10.1080/02786826.2021.1883544
10.1038/s41591-020-0843-2
10.1088/1752-7163/ac59c7
10.7554/eLife.70458
10.1093/cid/ciaa638
10.1128/MMBR.00002-08
10.1016/j.bios.2021.113486
10.1016/j.buildenv.2021.107788
10.1063/1.5066875
10.1183/23120541.00139-2021
10.3201/eid2611.203219
10.1016/j.ijid.2021.07.012
10.1016/S0140-6736(21)00869-2
10.1175/1520-0450(1969)008<0999:OTAPSC>2.0.CO;2
10.1038/s41598-021-90026-8
10.1038/s41563-020-00906-z
10.1016/j.ijid.2020.09.025
10.1016/j.ijid.2020.05.102
10.1038/s41598-021-92665-3
10.1136/bmjopen-2020-045886
10.1021/acssensors.1c00312
10.15585/mmwr.mm6919e6
10.1038/s41598-019-38808-z
10.1001/jamainternmed.2020.2020
10.1093/cid/ciab691
10.1073/pnas.1716561115
10.7554/eLife.65774
10.1038/s41586-020-2196-x
10.1016/j.ssci.2020.104866
10.1126/science.abe3261
10.1038/s41467-022-32531-6
10.1136/thoraxjnl-2020-215705
ContentType Journal Article
Copyright Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Authors 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bios.2022.114663
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 114663
ExternalDocumentID PMC9424122
36150327
10_1016_j_bios_2022_114663
Genre Journal Article
GroupedDBID ---
--K
--M
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJQLL
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SST
SSU
SSZ
T5K
TN5
WUQ
XPP
Y6R
YK3
ZMT
~G-
~KM
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c435t-eb7d3a275a46be881eb368ebd44eadb7b8c6efa5817c23de098d5806f75e39353
ISSN 0956-5663
1873-4235
IngestDate Thu Aug 21 18:31:59 EDT 2025
Thu Jul 10 23:58:14 EDT 2025
Tue Aug 05 10:55:11 EDT 2025
Wed Feb 19 02:25:51 EST 2025
Tue Jul 01 01:43:04 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aerosols
Impactor
Lab-on-a-chip
SARS-CoV-2
Diagnostics
Breath
Language English
License Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-eb7d3a275a46be881eb368ebd44eadb7b8c6efa5817c23de098d5806f75e39353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0225-1631
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9424122
PMID 36150327
PQID 2717691010
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9424122
proquest_miscellaneous_2718380146
proquest_miscellaneous_2717691010
pubmed_primary_36150327
crossref_citationtrail_10_1016_j_bios_2022_114663
crossref_primary_10_1016_j_bios_2022_114663
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2022
Publisher The Authors. Published by Elsevier B.V
Publisher_xml – name: The Authors. Published by Elsevier B.V
References Hu (10.1016/j.bios.2022.114663_bib18) 2021
Cai (10.1016/j.bios.2022.114663_bib3) 2019
Lednicky (10.1016/j.bios.2022.114663_bib22) 2020; 100
Chen (10.1016/j.bios.2022.114663_bib5) 2021; 10
Leung (10.1016/j.bios.2022.114663_bib24) 2020; 26
Yan (10.1016/j.bios.2022.114663_bib39) 2018; 115
Chen (10.1016/j.bios.2022.114663_bib4) 2021; 15
Kenyon (10.1016/j.bios.2022.114663_bib20) 2020; 97
Hamner (10.1016/j.bios.2022.114663_bib16) 2020; 69
Gussman (10.1016/j.bios.2022.114663_bib15) 1969; 8
Edwards (10.1016/j.bios.2022.114663_bib11) 2021
Smolinska (10.1016/j.bios.2022.114663_bib32) 2021; 11
Lemieux (10.1016/j.bios.2022.114663_bib23) 2021; 371
Perera (10.1016/j.bios.2022.114663_bib28) 2020; 26
Coleman (10.1016/j.bios.2022.114663_bib8) 2021; 74
Zahari (10.1016/j.bios.2022.114663_bib40) 2018; 2030
Giovannini (10.1016/j.bios.2022.114663_bib12) 2021; 6
Ryan (10.1016/j.bios.2022.114663_bib31) 2021; 76
Tang (10.1016/j.bios.2022.114663_bib34) 2021; 373
Kevadiya (10.1016/j.bios.2022.114663_bib21) 2021; 20
Cheng (10.1016/j.bios.2022.114663_bib7) 2020; 180
Daniels (10.1016/j.bios.2022.114663_bib9) 2021; 192
Bullard (10.1016/j.bios.2022.114663_bib2) 2020; 71
Gregson (10.1016/j.bios.2022.114663_bib14) 2021; 55
Takeuchi (10.1016/j.bios.2022.114663_bib33) 2021; 11
Vuorinen (10.1016/j.bios.2022.114663_bib37) 2020; 130
Raymenants (10.1016/j.bios.2022.114663_bib30)
Greenhalgh (10.1016/j.bios.2022.114663_bib13) 2021; 397
Dinnes (10.1016/j.bios.2022.114663_bib10) 2020; 8
Ibrahim (10.1016/j.bios.2022.114663_bib19) 2021; 7
Mancuso (10.1016/j.bios.2022.114663_bib26) 2020; 10
Malik (10.1016/j.bios.2022.114663_bib25) 2021; 110
Chen (10.1016/j.bios.2022.114663_bib6) 2021; 10
Nwanochie (10.1016/j.bios.2022.114663_bib27) 2022; 16
Asadi (10.1016/j.bios.2022.114663_bib1) 2019; 9
Li (10.1016/j.bios.2022.114663_bib41) 2021; 196
Hu (10.1016/j.bios.2022.114663_bib17) 2021; 12
Raymenants (10.1016/j.bios.2022.114663_bib29) 2022; 13
Wölfel (10.1016/j.bios.2022.114663_bib38) 2020; 581
Verreault (10.1016/j.bios.2022.114663_bib36) 2008; 72
References_xml – volume: 55
  start-page: 681
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib14
  article-title: Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2021.1883544
– volume: 26
  start-page: 676
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib24
  article-title: Respiratory virus shedding in exhaled breath and efficacy of face masks
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0843-2
– volume: 16
  year: 2022
  ident: 10.1016/j.bios.2022.114663_bib27
  article-title: Review of non-invasive detection of SARS-CoV-2 and other respiratory pathogens in exhaled breath condensate
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7163/ac59c7
– volume: 10
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib6
  article-title: SARS-CoV-2 shedding dynamics across the respiratory tract, sex, and disease severity for adult and pediatric COVID-19
  publication-title: eLife
  doi: 10.7554/eLife.70458
– volume: 71
  start-page: 2663
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib2
  article-title: Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa638
– volume: 72
  start-page: 413
  year: 2008
  ident: 10.1016/j.bios.2022.114663_bib36
  article-title: Methods for sampling of airborne viruses
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00002-08
– volume: 192
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib9
  article-title: A mask-based diagnostic platform for point-of-care screening of Covid-19
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113486
– volume: 12
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib17
  article-title: Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China
  publication-title: Nat. Commun.
– volume: 196
  start-page: 107788
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib41
  article-title: Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107788
– volume: 2030
  start-page: 020234
  year: 2018
  ident: 10.1016/j.bios.2022.114663_bib40
  article-title: Introduction of discrete phase model (DPM) in fluid flow: a review
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5066875
– volume: 7
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib19
  article-title: Diagnosis of covid-19 by exhaled breath analysis using gas chromatography–mass spectrometry
  publication-title: ERJ Open Res
  doi: 10.1183/23120541.00139-2021
– start-page: 192
  year: 2019
  ident: 10.1016/j.bios.2022.114663_bib3
  article-title: Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples
  publication-title: Talanta
– ident: 10.1016/j.bios.2022.114663_bib30
– volume: 26
  start-page: 2701
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib28
  article-title: SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2611.203219
– start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib11
– volume: 110
  start-page: 105
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib25
  article-title: SARS-CoV-2: viral loads of exhaled breath and oronasopharyngeal specimens in hospitalized patients with COVID-19
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.07.012
– volume: 397
  start-page: 1603
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib13
  article-title: Ten scientific reasons in support of airborne transmission of SARS-CoV-2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00869-2
– volume: 8
  start-page: 999
  year: 1969
  ident: 10.1016/j.bios.2022.114663_bib15
  article-title: On the aerosol particle slip correction factor
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(1969)008<0999:OTAPSC>2.0.CO;2
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib33
  article-title: Diagnostic performance and characteristics of anterior nasal collection for the SARS-CoV-2 antigen test: a prospective study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90026-8
– volume: 20
  start-page: 593
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib21
  article-title: Diagnostics for SARS-CoV-2 infections
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00906-z
– volume: 373
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib34
  article-title: Covid-19 has redefined airborne transmission
  publication-title: BMJ
– volume: 100
  start-page: 476
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib22
  article-title: Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.09.025
– volume: 97
  start-page: 21
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib20
  article-title: The prominence of asymptomatic superspreaders in transmission mean universal face masking should be part of COVID-19 de-escalation strategies
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.05.102
– volume: 11
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib32
  article-title: The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92665-3
– year: 2021
  ident: 10.1016/j.bios.2022.114663_bib18
  article-title: Role of efficient testing and contact tracing in mitigating the COVID-19 pandemic : a network modelling study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-045886
– volume: 6
  start-page: 1408
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib12
  article-title: Detecting COVID-19 from breath: a game changer for a big challenge
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00312
– volume: 69
  start-page: 606
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib16
  article-title: High SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm6919e6
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.bios.2022.114663_bib1
  article-title: Aerosol emission and superemission during human speech increase with voice loudness
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38808-z
– volume: 180
  start-page: 1156
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib7
  article-title: Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2020.2020
– volume: 74
  start-page: 1722
  issue: 10
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib8
  article-title: Viral load of SARS-CoV-2 in respiratory aerosols emitted by COVID-19 patients while breathing, talking, and singing
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab691
– volume: 8
  start-page: CD013705
  issue: 8
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib10
  article-title: Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection
  publication-title: Cochrane Database Syst. Rev.
– volume: 115
  start-page: 1081
  year: 2018
  ident: 10.1016/j.bios.2022.114663_bib39
  article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1716561115
– volume: 10
  start-page: 1
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib5
  article-title: Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols
  publication-title: eLife
  doi: 10.7554/eLife.65774
– volume: 581
  start-page: 465
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib38
  article-title: Virological assessment of hospitalized patients with COVID-2019
  publication-title: Nature
  doi: 10.1038/s41586-020-2196-x
– volume: 130
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib37
  article-title: Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2020.104866
– volume: 371
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib23
  article-title: Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events
  publication-title: Science
  doi: 10.1126/science.abe3261
– volume: 13
  start-page: 4750
  issue: 1
  year: 2022
  ident: 10.1016/j.bios.2022.114663_bib29
  article-title: Empirical evidence on the efficiency of backward contact tracing in COVID-19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32531-6
– volume: 76
  start-page: 86
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib31
  article-title: Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19)
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2020-215705
– volume: 15
  start-page: 047104
  issue: 4
  year: 2021
  ident: 10.1016/j.bios.2022.114663_bib4
  article-title: COVID-19 screening using breath-borne volatile organic compounds
  publication-title: J. Breath Res.
– volume: 10
  year: 2020
  ident: 10.1016/j.bios.2022.114663_bib26
  article-title: Temporal profile and determinants of viral shedding and of viral clearance confirmation on nasopharyngeal swabs from SARS-CoV-2-positive subjects: a population-based prospective cohort study in Reggio Emilia
  publication-title: Italy. BMJ Open
SSID ssj0007190
Score 2.4583025
Snippet The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 114663
SubjectTerms antigens
Biosensing Techniques
biosensors
COVID-19 - diagnosis
Humans
Longitudinal Studies
pandemic
Respiratory Aerosols and Droplets
RNA
RNA, Viral - analysis
saliva
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Silicon
temporal variation
viral load
Title Molecular detection of SARS-COV-2 in exhaled breath at the point-of-need
URI https://www.ncbi.nlm.nih.gov/pubmed/36150327
https://www.proquest.com/docview/2717691010
https://www.proquest.com/docview/2718380146
https://pubmed.ncbi.nlm.nih.gov/PMC9424122
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCDQeEIxbuclIvFWuGseJnccygSokQGId2lvkW9YOmlQskxgP_HaO41xbmICXqErcRPX35fRzcs53EHplJNcqUBkxImSEhTwgQtKYyMSVLRqeTHWVIPshnh-zdyfRSVeuWFWXlGqif_y2ruR_UIV9gKurkv0HZNuTwg74DPjCFhCG7V9h_L7pbTs2trS6EX9Hs09H5PDjZ0IrQ5DvS_gTAJ3p5OGyLl4cb4pVXpIiI7kd9up8vSrOYWnrevA4VqhV0XXKafU3SNQvNgf6nNZ4d6-LLte2yq3xj-Z7lWYLWdNjtlzXl_Q2BnpZNR1wGWbnTYZZ-ySC0l5Wh_XRU_CQgD6L-uGV-trMOkC6Imgf0XZit3-McDaBH-Z81Cmd7A6G-d-sKzRD52Qfel-BLcfs5tB1dIPC4sGF68nPLvGHgwaqy6d8pt_2BffRreYUQ7WyswTZzqTtSZPFXXSnXlPgmSfIPXTN5gfopu8yenmAbvc8J--jeUsa3JIGFxnuSINXOa5Jgz1psCwxkAYPSPMAHb99szick7qdBtGgiUtiFTehpDySLFZWiMCqMBZWGcYgnCiuhI5tJiMRcE1DY6eJMJGYxhmPrCvgDh-ivbzI7WOENecxi4zNYGnGmBRCw30tA5MlzCRCyxEKmmlLde0171qefE2bpMKz1M166mY99bM-QuP2OxvvtHLl6JcNGikERPeWS-a2uIBBPOAxiOBgeuUYEVa-SSP0yCPYXrOBfoT4ANt2gDNkHx7JV8vKmD1hoIcpffLHcz5F-92N8wztld8u7HMQtaV6UXH0F2KCoA0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+detection+of+SARS-COV-2+in+exhaled+breath+at+the+point-of-need&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Stakenborg%2C+Tim&rft.au=Raymenants%2C+Joren&rft.au=Taher%2C+Ahmed&rft.au=Marchal%2C+Elisabeth&rft.date=2022-12-01&rft.eissn=1873-4235&rft.volume=217&rft.spage=114663&rft_id=info:doi/10.1016%2Fj.bios.2022.114663&rft_id=info%3Apmid%2F36150327&rft.externalDocID=36150327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon