Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites

The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state chemistry Vol. 191; pp. 33 - 39
Main Authors Natali Sora, Isabella, Caronna, Tullio, Fontana, Francesca, de Julián Fernández, César, Caneschi, Andrea, Green, Mark
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05–0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)–O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are μx=2.66(3)μB and 2.43(3)μB for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. Hysteresis loops measured at room temperature of the sample with x=0.05. [Display omitted] ► Iron based perovskites with the largest coercive fields. ► Sr and Cu lanthanum ferrites as magnetic materials. ► Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. ► Sr and Cu lanthanum ferrites show distorted perovkite structure.
AbstractList The crystal and magnetic structures of La0.8Sr0.2Fe1axCuxO3aw compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05a0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)-O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are mu x=2.66(3) mu B and 2.43(3) mu B for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples.
The crystal and magnetic structures of La{sub 0.8}Sr{sub 0.2}Fe{sub 1-x}Cu{sub x}O{sub 3-w} compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05-0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO{sub 3}, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O{sub 6} octahedron. The average bond distance (Fe/Cu)-O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are {mu}{sub x}=2.66(3){mu}{sub B} and 2.43(3){mu}{sub B} for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. - Graphical abstract: Hysteresis loops measured at room temperature of the sample with x=0.05. Highlights: Black-Right-Pointing-Pointer Iron based perovskites with the largest coercive fields. Black-Right-Pointing-Pointer Sr and Cu lanthanum ferrites as magnetic materials. Black-Right-Pointing-Pointer Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. Black-Right-Pointing-Pointer Sr and Cu lanthanum ferrites show distorted perovkite structure.
The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05–0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)–O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are μx=2.66(3)μB and 2.43(3)μB for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. Hysteresis loops measured at room temperature of the sample with x=0.05. [Display omitted] ► Iron based perovskites with the largest coercive fields. ► Sr and Cu lanthanum ferrites as magnetic materials. ► Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. ► Sr and Cu lanthanum ferrites show distorted perovkite structure.
Author Natali Sora, Isabella
Fontana, Francesca
de Julián Fernández, César
Caronna, Tullio
Caneschi, Andrea
Green, Mark
Author_xml – sequence: 1
  givenname: Isabella
  surname: Natali Sora
  fullname: Natali Sora, Isabella
  email: isabella.natali-sora@unibg.it
  organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy
– sequence: 2
  givenname: Tullio
  surname: Caronna
  fullname: Caronna, Tullio
  organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy
– sequence: 3
  givenname: Francesca
  surname: Fontana
  fullname: Fontana, Francesca
  organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy
– sequence: 4
  givenname: César
  surname: de Julián Fernández
  fullname: de Julián Fernández, César
  organization: INSTM R.U. Firenze and Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino, Italy
– sequence: 5
  givenname: Andrea
  surname: Caneschi
  fullname: Caneschi, Andrea
  organization: INSTM R.U. Firenze and Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino, Italy
– sequence: 6
  givenname: Mark
  surname: Green
  fullname: Green, Mark
  organization: Center for Neutron Research, NIST, Gaithersburg, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26113143$$DView record in Pascal Francis
https://www.osti.gov/biblio/22012168$$D View this record in Osti.gov
BookMark eNp9kU9rGzEQxUVJoI7TL9DTQinkso7-7MpayCWYNC0Eemkg0IOQpdlGZi25Gm0g375SHHLoITAg0Pye9ObNGTkJMQAhnxldMcrk5W61Q7QrThlf0Vr0A1kwOvTtmsuHE7KglPO26wf5kZwh7ihlrFfdgvzepGfMZmowp9nmOQE2Jrhmb_4EyN42hxQPkLIv93GsVAzZz_sXyMZD6TWuEK6ZTMiPJpTWCCn5DHhOTkczIXx6PZfk_tvNr8339u7n7Y_N9V1rO9Hn1vViq0zHO2U5G-WgnAHpzNYO0rlRik4IJZ1iZisk72FNGfD1VlEj-mFQw1osyZfjuxGz12jL3_bRxhDAZs1rJkyqQl0cqTLR3xkw671HC1PxDXFGzahQXDLR84J-fUUNWjONyQTrUR-S35v0rAvFBCu2loQfOZsiYoLxDWFU173ona570dWDprVoEan_RMWwyb7kmoyf3pdeHaVQ0nzykOqwECw4n-qsLvr35P8A2_-rUw
CODEN JSSCBI
CitedBy_id crossref_primary_10_1016_j_matpr_2020_08_409
crossref_primary_10_3390_catal8120630
crossref_primary_10_1007_s10948_016_3465_7
crossref_primary_10_3390_chemosensors11090507
crossref_primary_10_1016_j_jallcom_2022_165499
crossref_primary_10_1016_j_jmmm_2022_170208
crossref_primary_10_1007_s10971_022_05951_5
crossref_primary_10_1016_j_jssc_2020_121237
crossref_primary_10_1007_s10948_018_4879_1
crossref_primary_10_1007_s12649_024_02521_4
crossref_primary_10_1016_j_ceramint_2017_12_045
crossref_primary_10_1016_j_memsci_2014_06_030
crossref_primary_10_1016_j_jallcom_2017_08_074
crossref_primary_10_1016_j_electacta_2013_07_132
crossref_primary_10_1016_j_actamat_2016_04_015
crossref_primary_10_1016_j_apt_2020_04_013
crossref_primary_10_1016_j_jpowsour_2014_07_183
crossref_primary_10_1016_j_jallcom_2016_05_017
crossref_primary_10_1039_C8TA10645B
crossref_primary_10_1007_s10948_019_5138_9
crossref_primary_10_1515_ijmr_2020_8162
crossref_primary_10_1016_j_snb_2020_128879
crossref_primary_10_1016_j_jallcom_2017_09_212
crossref_primary_10_1007_s10751_021_01787_7
crossref_primary_10_1007_s10854_023_11151_w
crossref_primary_10_1016_j_jeurceramsoc_2018_02_029
crossref_primary_10_1016_j_ceramint_2020_03_215
crossref_primary_10_1016_j_jallcom_2023_169161
crossref_primary_10_1016_j_materresbull_2015_03_008
crossref_primary_10_1016_j_ceramint_2016_10_185
crossref_primary_10_1021_acs_chemmater_7b01993
crossref_primary_10_1039_D2RA01137A
crossref_primary_10_1002_jccs_202200010
crossref_primary_10_1016_j_jallcom_2017_03_041
crossref_primary_10_1016_j_jallcom_2015_06_005
crossref_primary_10_1039_C5RA22592B
crossref_primary_10_1002_anse_202400086
crossref_primary_10_1088_1674_1056_22_10_107806
crossref_primary_10_1016_j_ceramint_2023_11_087
crossref_primary_10_1002_chin_201235009
crossref_primary_10_1016_j_ceramint_2012_11_086
crossref_primary_10_1016_j_jssc_2014_03_006
crossref_primary_10_1007_s10832_023_00310_4
crossref_primary_10_1016_j_jallcom_2023_171334
crossref_primary_10_1016_j_ceramint_2015_02_114
crossref_primary_10_1007_s10948_023_06595_4
crossref_primary_10_1016_j_jelechem_2019_113523
crossref_primary_10_1038_s41598_024_65757_z
crossref_primary_10_1016_j_mseb_2020_114810
crossref_primary_10_1016_j_mtla_2019_100460
Cites_doi 10.1016/j.jmmm.2006.11.208
10.1103/PhysRevLett.103.147201
10.1107/S0567740872007976
10.1140/epjb/e2007-00253-9
10.1038/nature05023
10.1016/j.matlet.2011.01.049
10.1063/1.2432869
10.1149/1.2100742
10.1016/j.matlet.2009.11.037
10.1006/jssc.1997.7636
10.1103/PhysRevB.48.224
10.1126/science.287.5455.1014
10.1016/j.ssi.2005.03.009
10.1103/PhysRevB.55.8060
10.1088/0953-8984/15/29/321
10.1016/j.jmmm.2010.12.007
10.1103/PhysRevLett.79.297
10.1088/0953-8984/20/44/445209
10.1006/jssc.1994.1083
10.1088/0953-8984/23/7/073201
10.1016/j.solidstatesciences.2007.05.004
10.1063/1.1714088
10.1016/S1002-0721(08)60318-X
10.1088/0022-3727/43/24/245002
10.1007/s10800-009-9790-9
10.1016/j.jallcom.2010.12.162
10.1016/S0921-4526(97)00042-2
10.1016/j.ssi.2004.09.015
10.1016/j.jeurceramsoc.2005.03.107
10.1016/j.matchemphys.2009.05.020
10.1351/pac200880112543
10.1016/j.ssi.2004.09.017
10.1063/1.2768895
10.1002/pssa.200824266
10.1103/PhysRevB.49.3465
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7U5
8FD
L7M
OTOTI
DOI 10.1016/j.jssc.2012.02.020
DatabaseName CrossRef
Pascal-Francis
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1095-726X
EndPage 39
ExternalDocumentID 22012168
26113143
10_1016_j_jssc_2012_02_020
S0022459612001119
GroupedDBID --K
--M
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMH
HMV
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LZ6
M24
M37
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SIC
SMS
SPC
SPCBC
SPG
SSK
SSM
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
ZU3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7U5
8FD
L7M
AALMO
ABPIF
ABPTK
EFJIC
OTOTI
ID FETCH-LOGICAL-c435t-d53b8a4248c21f698dae6dabc96ddf6343386d81ab3625e701e27b80a35998973
IEDL.DBID .~1
ISSN 0022-4596
IngestDate Fri May 19 00:37:28 EDT 2023
Tue Aug 05 10:36:59 EDT 2025
Mon Jul 21 09:16:09 EDT 2025
Tue Jul 01 01:55:27 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Fri Feb 23 02:25:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Perovskite oxides
Lanthanum ferrites
Neutron powder diffraction
Weak ferromagnetic interactions
Antiferromagnetism
Rietveld method
Cubic lattices
Space groups
Iron oxide
Neutron diffraction
Doping
Distortion
Iron
Symmetry groups
Bond lengths
Structural models
Lanthanum oxide
Unit cell
Trigonal lattices
Coercive force
Crystallographic site
Iron Strontium Oxides Mixed
Magnetic structure
Copper
Phase space
Iron Lanthanum Oxides Mixed
Magnetic properties
Crystal structure
Temperature dependence
Phase transformations
Magnetic model
Magnetic ordering
Perovskites
Hexagonal lattices
Powder pattern
Valence
Transition elements
Orthorhombic lattices
Exchange interactions
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-d53b8a4248c21f698dae6dabc96ddf6343386d81ab3625e701e27b80a35998973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.sciencedirect.com/science/journal/00224596
PQID 1038261352
PQPubID 23500
PageCount 7
ParticipantIDs osti_scitechconnect_22012168
proquest_miscellaneous_1038261352
pascalfrancis_primary_26113143
crossref_primary_10_1016_j_jssc_2012_02_020
crossref_citationtrail_10_1016_j_jssc_2012_02_020
elsevier_sciencedirect_doi_10_1016_j_jssc_2012_02_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of solid state chemistry
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mai, Haanappel, Uhlenbruck, Tietz, Stover (bib1) 2005; 176
Rearick, Gary, James (bib12) 1993; 48
Wattiaux, Grenier, Pouchard, Hagenmuller (bib11) 1987; 134
Patra, De, Majumdar, Giri (bib32) 2007; 58
Natali Sora, Huang, Lynn, Rosov, Karen, Kjekshus, Karen, Mighell, Santoro (bib19) 1994; 49
Montero, Fischer, Tietz, Stover, Cassir, Villareal (bib9) 2009; 180
Vogt, Sfeir, Richter, Holtappels (bib8) 2008; 80
Solovyev (bib15) 1997; 55
Coffey, Hardy, Marina, Pederson, Rieke, Thomsen (bib4) 2004; 175
Pelosato, Natali Sora, Dotelli, Ruffo, Mari (bib3) 2005; 25
Giri, Patra, Majumdar (bib33) 2011; 23
Glazer (bib25) 1972; 28
Dann, Currie, Weller (bib6) 1994; 109
A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS) program, Los Alamos National Labo-ratory Report LA-UR-86-748, 2000.
Pelosato, Natali Sora, Ferrari, Dotelli, Mari (bib2) 2004; 175
Wattiaux, Grenier, Pouchard, Hagenmuller (bib23) 1987; 134
Ahmadvand, Salatati, Kameli, Poddar, Acet, Zakeri (bib34) 2010; 43
Acharya, Deb, Das, Chakrabarti (bib37) 2011; 65
Karen, Kjekshus., Huang, Lynn, Rosov, Natali Sora, Karen, Mighell, Santoro (bib20) 1998; 136
Wackerl, Koppitz, Peck, Woo, Markus (bib5) 2009; 39
Yang, Zhou, Chu, Hikal, Cai, Ho, Kundaliya, Yelon, James, Anderson, Hamdeh, Malik (bib18) 2003; 15
Li, Matsui, Park, Tokura (bib17) 1997; 79
Solovyev, Hamada, Terakura (bib14) 1997; 237-238
Ferriera, Cruz, Ramos, Sá, Carval-ho, Godinho (bib29) 2007; 313
Belakii, Manivannan, McCurdy, Kohli (bib31) 2009; 27
Zahid, Arul Raj, Tietz, Stöver (bib7) 2007; 9
Acharya, Mondal, Ghosh, Roy, Chakra-barti (bib27) 2010; 64
Scholl, Stöhr, Luning, Seo, Fompeyrine, Siegwart, Locquet, Nolting, Anders, Fuller-ton, Scheinfein, Padmore (bib13) 2000; 287
Dong, Yamauchi, Yunoki, Yu, Liang, Moreo, Liu, Picozzi, Dagotto (bib35) 2009; 103
Das, Choudhary, Bhattacharya, Ka-tiyar, Das, Choudhary, Bhattacharya, Katiyar (bib36) 2007; 101
Popa, Calderon Moreno (bib26) 2011; 509
Eerenstein, Mathur, Scott (bib38) 2006; 442
J. Rodriguez-Carvajal, PROGRAM FullProf.2k (Version 4.80 – Jan 2010-ILL JRC).
Huang, Zhang, Du, Yan, Tang, Sun, Cheng (bib30) 2008; 20
Gao, Li, Weng, Dong, Wang, Lv, Wang, Liu (bib16) 2007; 91
Caronna, Fontana, Natali Sora, Pelosato (bib24) 2009; 116
Treves (bib10) 1965; 36
Shen, Cheng, Wu, Xu, Zhao (bib28) 2009; 206
Barik, Krishnamoorthi, Mahendiran (bib39) 2011; 323
Pelosato (10.1016/j.jssc.2012.02.020_bib2) 2004; 175
Natali Sora (10.1016/j.jssc.2012.02.020_bib19) 1994; 49
Wattiaux (10.1016/j.jssc.2012.02.020_bib23) 1987; 134
Vogt (10.1016/j.jssc.2012.02.020_bib8) 2008; 80
Glazer (10.1016/j.jssc.2012.02.020_bib25) 1972; 28
Popa (10.1016/j.jssc.2012.02.020_bib26) 2011; 509
Wattiaux (10.1016/j.jssc.2012.02.020_bib11) 1987; 134
Rearick (10.1016/j.jssc.2012.02.020_bib12) 1993; 48
Mai (10.1016/j.jssc.2012.02.020_bib1) 2005; 176
Dann (10.1016/j.jssc.2012.02.020_bib6) 1994; 109
Shen (10.1016/j.jssc.2012.02.020_bib28) 2009; 206
Acharya (10.1016/j.jssc.2012.02.020_bib37) 2011; 65
Coffey (10.1016/j.jssc.2012.02.020_bib4) 2004; 175
Huang (10.1016/j.jssc.2012.02.020_bib30) 2008; 20
Pelosato (10.1016/j.jssc.2012.02.020_bib3) 2005; 25
Dong (10.1016/j.jssc.2012.02.020_bib35) 2009; 103
Ahmadvand (10.1016/j.jssc.2012.02.020_bib34) 2010; 43
Montero (10.1016/j.jssc.2012.02.020_bib9) 2009; 180
Treves (10.1016/j.jssc.2012.02.020_bib10) 1965; 36
Solovyev (10.1016/j.jssc.2012.02.020_bib14) 1997; 237-238
Yang (10.1016/j.jssc.2012.02.020_bib18) 2003; 15
Eerenstein (10.1016/j.jssc.2012.02.020_bib38) 2006; 442
Ferriera (10.1016/j.jssc.2012.02.020_bib29) 2007; 313
Karen (10.1016/j.jssc.2012.02.020_bib20) 1998; 136
Solovyev (10.1016/j.jssc.2012.02.020_bib15) 1997; 55
Gao (10.1016/j.jssc.2012.02.020_bib16) 2007; 91
Acharya (10.1016/j.jssc.2012.02.020_bib27) 2010; 64
Giri (10.1016/j.jssc.2012.02.020_bib33) 2011; 23
Caronna (10.1016/j.jssc.2012.02.020_bib24) 2009; 116
10.1016/j.jssc.2012.02.020_bib22
Barik (10.1016/j.jssc.2012.02.020_bib39) 2011; 323
Das (10.1016/j.jssc.2012.02.020_bib36) 2007; 101
Wackerl (10.1016/j.jssc.2012.02.020_bib5) 2009; 39
Zahid (10.1016/j.jssc.2012.02.020_bib7) 2007; 9
10.1016/j.jssc.2012.02.020_bib21
Patra (10.1016/j.jssc.2012.02.020_bib32) 2007; 58
Li (10.1016/j.jssc.2012.02.020_bib17) 1997; 79
Belakii (10.1016/j.jssc.2012.02.020_bib31) 2009; 27
Scholl (10.1016/j.jssc.2012.02.020_bib13) 2000; 287
References_xml – volume: 65
  start-page: 1280
  year: 2011
  ident: bib37
  publication-title: Mater. Lett.
– volume: 109
  start-page: 134
  year: 1994
  ident: bib6
  publication-title: Solid State Chem.
– volume: 509
  start-page: 4108
  year: 2011
  ident: bib26
  publication-title: Alloys. Comp.
– volume: 25
  start-page: 2587
  year: 2005
  ident: bib3
  publication-title: J. Eur. Ceram. Soc.
– volume: 36
  start-page: 1033
  year: 1965
  ident: bib10
  publication-title: Appl. Phys.
– volume: 116
  start-page: 645
  year: 2009
  ident: bib24
  publication-title: Mater. Chem. Phys.
– volume: 28
  start-page: 3384
  year: 1972
  ident: bib25
  publication-title: Acta Cryst. B
– volume: 313
  start-page: 8
  year: 2007
  ident: bib29
  publication-title: Magn. Mater.
– volume: 23
  start-page: 073201
  year: 2011
  ident: bib33
  publication-title: Phys. Condens. Matter.
– volume: 136
  start-page: 21
  year: 1998
  ident: bib20
  publication-title: J. Solid State Chem.
– reference: J. Rodriguez-Carvajal, PROGRAM FullProf.2k (Version 4.80 – Jan 2010-ILL JRC).
– volume: 175
  start-page: 87
  year: 2004
  ident: bib2
  publication-title: Solid State Ionics
– volume: 39
  start-page: 1243
  year: 2009
  ident: bib5
  publication-title: Appl. Electrochem.
– volume: 20
  start-page: 445209
  year: 2008
  ident: bib30
  publication-title: Phys. Condens. Matter.
– volume: 287
  start-page: 1014
  year: 2000
  ident: bib13
  publication-title: Science
– volume: 180
  start-page: 731
  year: 2009
  ident: bib9
  publication-title: Solid State Sci.
– reference: A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS) program, Los Alamos National Labo-ratory Report LA-UR-86-748, 2000.
– volume: 176
  start-page: 1341
  year: 2005
  ident: bib1
  publication-title: Solid State Ionics
– volume: 80
  start-page: 2543
  year: 2008
  ident: bib8
  publication-title: Pure Appl. Chem.
– volume: 15
  start-page: 5093
  year: 2003
  ident: bib18
  publication-title: Phys.: Condens. Matter.
– volume: 79
  start-page: 297
  year: 1997
  ident: bib17
  publication-title: Phys. Rev. Lett.
– volume: 237-238
  start-page: 44
  year: 1997
  ident: bib14
  publication-title: Physica B
– volume: 323
  start-page: 1015
  year: 2011
  ident: bib39
  publication-title: Magn. Magn. Mater.
– volume: 206
  start-page: 1420
  year: 2009
  ident: bib28
  publication-title: Phys. Status Solidi A
– volume: 134
  start-page: 1718
  year: 1987
  ident: bib11
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 3465
  year: 1994
  ident: bib19
  publication-title: Phys. Rev. B
– volume: 103
  start-page: 147201
  year: 2009
  ident: bib35
  publication-title: Phys. Rev. Lett.
– volume: 134
  start-page: 1718
  year: 1987
  ident: bib23
  publication-title: Electrochem. Soc.
– volume: 27
  start-page: 691
  year: 2009
  ident: bib31
  publication-title: Rare Earths
– volume: 101
  start-page: 034104
  year: 2007
  ident: bib36
  publication-title: Appl. Phys.
– volume: 9
  start-page: 706
  year: 2007
  ident: bib7
  publication-title: Solid State Sci.
– volume: 55
  start-page: 8060
  year: 1997
  ident: bib15
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 224
  year: 1993
  ident: bib12
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 367
  year: 2007
  ident: bib32
  publication-title: Eur. Phys. J. B
– volume: 43
  start-page: 245002
  year: 2010
  ident: bib34
  publication-title: Phys. D: Appl. Phys.
– volume: 175
  start-page: 73
  year: 2004
  ident: bib4
  publication-title: Solid State Ionics
– volume: 91
  start-page: 072504
  year: 2007
  ident: bib16
  publication-title: Appl. Phys. Lett.
– volume: 64
  start-page: 415
  year: 2010
  ident: bib27
  publication-title: Mater. Lett.
– volume: 442
  start-page: 759
  year: 2006
  ident: bib38
  publication-title: Nature
– volume: 313
  start-page: 8
  year: 2007
  ident: 10.1016/j.jssc.2012.02.020_bib29
  publication-title: Magn. Mater.
  doi: 10.1016/j.jmmm.2006.11.208
– volume: 103
  start-page: 147201
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.147201
– volume: 28
  start-page: 3384
  year: 1972
  ident: 10.1016/j.jssc.2012.02.020_bib25
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740872007976
– volume: 58
  start-page: 367
  year: 2007
  ident: 10.1016/j.jssc.2012.02.020_bib32
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2007-00253-9
– volume: 442
  start-page: 759
  year: 2006
  ident: 10.1016/j.jssc.2012.02.020_bib38
  publication-title: Nature
  doi: 10.1038/nature05023
– volume: 65
  start-page: 1280
  year: 2011
  ident: 10.1016/j.jssc.2012.02.020_bib37
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.01.049
– volume: 101
  start-page: 034104
  year: 2007
  ident: 10.1016/j.jssc.2012.02.020_bib36
  publication-title: Appl. Phys.
  doi: 10.1063/1.2432869
– volume: 134
  start-page: 1718
  issue: 7
  year: 1987
  ident: 10.1016/j.jssc.2012.02.020_bib11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100742
– ident: 10.1016/j.jssc.2012.02.020_bib22
– volume: 64
  start-page: 415
  year: 2010
  ident: 10.1016/j.jssc.2012.02.020_bib27
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.11.037
– volume: 136
  start-page: 21
  year: 1998
  ident: 10.1016/j.jssc.2012.02.020_bib20
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1997.7636
– volume: 48
  start-page: 224
  year: 1993
  ident: 10.1016/j.jssc.2012.02.020_bib12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.224
– volume: 287
  start-page: 1014
  year: 2000
  ident: 10.1016/j.jssc.2012.02.020_bib13
  publication-title: Science
  doi: 10.1126/science.287.5455.1014
– volume: 176
  start-page: 1341
  year: 2005
  ident: 10.1016/j.jssc.2012.02.020_bib1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2005.03.009
– volume: 55
  start-page: 8060
  year: 1997
  ident: 10.1016/j.jssc.2012.02.020_bib15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.8060
– volume: 134
  start-page: 1718
  year: 1987
  ident: 10.1016/j.jssc.2012.02.020_bib23
  publication-title: Electrochem. Soc.
  doi: 10.1149/1.2100742
– volume: 15
  start-page: 5093
  year: 2003
  ident: 10.1016/j.jssc.2012.02.020_bib18
  publication-title: Phys.: Condens. Matter.
  doi: 10.1088/0953-8984/15/29/321
– volume: 323
  start-page: 1015
  year: 2011
  ident: 10.1016/j.jssc.2012.02.020_bib39
  publication-title: Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.12.007
– volume: 79
  start-page: 297
  year: 1997
  ident: 10.1016/j.jssc.2012.02.020_bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.297
– volume: 20
  start-page: 445209
  year: 2008
  ident: 10.1016/j.jssc.2012.02.020_bib30
  publication-title: Phys. Condens. Matter.
  doi: 10.1088/0953-8984/20/44/445209
– volume: 109
  start-page: 134
  year: 1994
  ident: 10.1016/j.jssc.2012.02.020_bib6
  publication-title: Solid State Chem.
  doi: 10.1006/jssc.1994.1083
– volume: 23
  start-page: 073201
  year: 2011
  ident: 10.1016/j.jssc.2012.02.020_bib33
  publication-title: Phys. Condens. Matter.
  doi: 10.1088/0953-8984/23/7/073201
– volume: 9
  start-page: 706
  year: 2007
  ident: 10.1016/j.jssc.2012.02.020_bib7
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.05.004
– volume: 36
  start-page: 1033
  year: 1965
  ident: 10.1016/j.jssc.2012.02.020_bib10
  publication-title: Appl. Phys.
  doi: 10.1063/1.1714088
– volume: 27
  start-page: 691
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib31
  publication-title: Rare Earths
  doi: 10.1016/S1002-0721(08)60318-X
– volume: 43
  start-page: 245002
  year: 2010
  ident: 10.1016/j.jssc.2012.02.020_bib34
  publication-title: Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/24/245002
– volume: 39
  start-page: 1243
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib5
  publication-title: Appl. Electrochem.
  doi: 10.1007/s10800-009-9790-9
– ident: 10.1016/j.jssc.2012.02.020_bib21
– volume: 509
  start-page: 4108
  year: 2011
  ident: 10.1016/j.jssc.2012.02.020_bib26
  publication-title: Alloys. Comp.
  doi: 10.1016/j.jallcom.2010.12.162
– volume: 237-238
  start-page: 44
  year: 1997
  ident: 10.1016/j.jssc.2012.02.020_bib14
  publication-title: Physica B
  doi: 10.1016/S0921-4526(97)00042-2
– volume: 175
  start-page: 73
  year: 2004
  ident: 10.1016/j.jssc.2012.02.020_bib4
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.09.015
– volume: 25
  start-page: 2587
  year: 2005
  ident: 10.1016/j.jssc.2012.02.020_bib3
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2005.03.107
– volume: 116
  start-page: 645
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib24
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2009.05.020
– volume: 80
  start-page: 2543
  issue: 11
  year: 2008
  ident: 10.1016/j.jssc.2012.02.020_bib8
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200880112543
– volume: 175
  start-page: 87
  year: 2004
  ident: 10.1016/j.jssc.2012.02.020_bib2
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.09.017
– volume: 91
  start-page: 072504
  year: 2007
  ident: 10.1016/j.jssc.2012.02.020_bib16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2768895
– volume: 206
  start-page: 1420
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib28
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200824266
– volume: 180
  start-page: 731
  year: 2009
  ident: 10.1016/j.jssc.2012.02.020_bib9
  publication-title: Solid State Sci.
– volume: 49
  start-page: 3465
  year: 1994
  ident: 10.1016/j.jssc.2012.02.020_bib19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.3465
SSID ssj0011584
Score 2.2878654
Snippet The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based...
The crystal and magnetic structures of La0.8Sr0.2Fe1axCuxO3aw compounds, which exhibit coercive fields larger than any others reported for iron-based...
The crystal and magnetic structures of La{sub 0.8}Sr{sub 0.2}Fe{sub 1-x}Cu{sub x}O{sub 3-w} compounds, which exhibit coercive fields larger than any others...
SourceID osti
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms ANTIFERROMAGNETISM
Cations
Condensed matter: structure, mechanical and thermal properties
Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder
COPPER
Cross-disciplinary physics: materials science; rheology
Crystal structure
Crystalline state (including molecular motions in solids)
CRYSTALS
DOPED MATERIALS
Exact sciences and technology
FERRITE
FERRITES
INTERACTIONS
IRON
LANTHANUM
Lanthanum ferrites
Magnetic moment
MAGNETIC MOMENTS
MAGNETIC PROPERTIES
Magnetic structure
MATERIALS SCIENCE
NEUTRON DIFFRACTION
Neutron diffraction and scattering
Neutron powder diffraction
ORTHORHOMBIC LATTICES
PEROVSKITE
Perovskite oxides
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
PHASE SPACE
Physics
Single-crystal and powder diffraction
SPACE GROUPS
STRONTIUM
Structure of solids and liquids; crystallography
Structure of specific crystalline solids
TEMPERATURE RANGE 0273-0400 K
Theory of crystal structure, crystal symmetry; calculations and modeling
TRIGONAL LATTICES
Weak ferromagnetic interactions
Title Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites
URI https://dx.doi.org/10.1016/j.jssc.2012.02.020
https://www.proquest.com/docview/1038261352
https://www.osti.gov/biblio/22012168
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5kQ1APIdlEXDVLB3ILE-fR8-ijLJFViacIgoemn7qyzizO7sGLv92qeSyKxIPQl5mugqarpquqp-orgJ-594WPExP4yGcYoHgRCJerwDihDTdpaA3dQ_49z6YX_PQyvdyASV8LQ2mV3dnfnunNad29Oex283Axm1GNL5qfVKCJbhqmUxEf5zlp-e_HdZoHOjwF7xHDibornGlzvG7rmmAM6T6QRvg_4zSo8HujtElV4875tuXFq9O7MUnHn-FT50uyo3a5X2DDlUPYnPQt3Iaw_QxtcAgfm2xPU3-Fq8n9A3qFc9aix64w5GaqtOxOXZdU1MgWdEV_T1irrPJEVZXL2equITLVAueYRQrL5iiYG1XilCeIR_Rbv8HF8Z9_k2nQdVkIDLpKy8CmiS4Uj3lhYpSXKKxymVXaiMxanyUcg9jMFpHSaOtSl4eRi3NdhCpJMVQTebIDg7Iq3S4wkWuvXeYxqtacGl9F1iC3FkpYo1Q8gqjfXmk6CHLqhDGXfa7ZrSSRSBKJDGmEI_i15lm0ABxvUqe91OQLNZJoId7kOyAREw9h5xpKMkKmmEiirBjB-IXo1yvB-DNK0OUcwY9eFyTKmH66qNJVq1oSAD1SoZ-798617cMWPbU5wgcwQM1w39ETWupxo-pj-HB0cjY9fwIFvQj8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7MSjA5BLNGXGO0A97C4Lx6ZvooS2SNuicFwUPTT11ZZxZn95B_b9U8lkiIh0Cfpqug6arpququ-grgOPe-8HFiAh_5DAMULwLhchUYJ7RJDQ-toXvIq2k2uUl_3fLbDRj3tTCUVtmd_e2Z3pzW3ZeTbjdPFrMZ1fii-eECTXTTMF28g01Cp-ID2Dw9v5hM148JES_SHjScGLramTbN67GuCcmQrgRphP-yT4MKfznKnFQ1bp5vu178dYA3VulsGz517iQ7bVf8GTZcOYStcd_FbQgf_wAcHML7JuHT1DtwN37-jY7hnLUAsiuMupkqLXtS9yXVNbIF3dI_E9wqqzxRVeVytnpqiEy1wDlmkcKyOcrmQZU45QnlEV3XL3Bz9vN6PAm6RguBQW9pGVie6EKlcVqYGEUmCqtcZpU2IrPWZ0mKcWxmi0hpNHfc5WHk4lwXoUo4RmsiT3ZhUFal2wMmcu21yzwG1jql3leRNcithRLWKBWPIOq3V5oOhZyaYcxln272KEkkkkQiQxrhCH6seRYtBseb1LyXmnylSRKNxJt8ByRi4iH4XEN5RsgUE0mUFSM4fCX69UowBI0S9DpH8L3XBYkypncXVbpqVUvCoEcqdHX3_3NtR7A1ub66lJfn04uv8IFm2pThAxiglrhv6Bgt9WGn-C8RFwut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structures+and+magnetic+properties+of+strontium+and+copper+doped+lanthanum+ferrites&rft.jtitle=Journal+of+solid+state+chemistry&rft.au=Natali+Sora%2C+Isabella&rft.au=Caronna%2C+Tullio&rft.au=Fontana%2C+Francesca&rft.au=de+Juli%C3%A1n+Fern%C3%A1ndez%2C+C%C3%A9sar&rft.date=2012-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-4596&rft.eissn=1095-726X&rft.volume=191&rft.spage=33&rft.epage=39&rft_id=info:doi/10.1016%2Fj.jssc.2012.02.020&rft.externalDocID=S0022459612001119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4596&client=summon