Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites
The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in...
Saved in:
Published in | Journal of solid state chemistry Vol. 191; pp. 33 - 39 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.07.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05–0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)–O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are μx=2.66(3)μB and 2.43(3)μB for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples.
Hysteresis loops measured at room temperature of the sample with x=0.05. [Display omitted]
► Iron based perovskites with the largest coercive fields. ► Sr and Cu lanthanum ferrites as magnetic materials. ► Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. ► Sr and Cu lanthanum ferrites show distorted perovkite structure. |
---|---|
AbstractList | The crystal and magnetic structures of La0.8Sr0.2Fe1axCuxO3aw compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05a0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)-O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are mu x=2.66(3) mu B and 2.43(3) mu B for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. The crystal and magnetic structures of La{sub 0.8}Sr{sub 0.2}Fe{sub 1-x}Cu{sub x}O{sub 3-w} compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05-0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO{sub 3}, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O{sub 6} octahedron. The average bond distance (Fe/Cu)-O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are {mu}{sub x}=2.66(3){mu}{sub B} and 2.43(3){mu}{sub B} for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. - Graphical abstract: Hysteresis loops measured at room temperature of the sample with x=0.05. Highlights: Black-Right-Pointing-Pointer Iron based perovskites with the largest coercive fields. Black-Right-Pointing-Pointer Sr and Cu lanthanum ferrites as magnetic materials. Black-Right-Pointing-Pointer Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. Black-Right-Pointing-Pointer Sr and Cu lanthanum ferrites show distorted perovkite structure. The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based perovskites, have been analyzed at room temperature with the neutron powder diffraction technique and the Rietveld method of profile fitting. For x in the range 0.05–0.10 the material is monophasic with orthorhombic symmetry (space group Pnma), and crystallizes in the perovskite-like cell of LaFeO3, Fe/Cu cations occupy octahedral sites, La/Sr cations are twelve-fold coordinated. For x=0.20 the material is biphasic, with a main orthorhombic phase (space group Pnma) and a secondary rhombohedral phase with space group R-3c (hexagonal setting). The structural transition from the orthorhombic to the rhombohedral phase reduces the structural distortion of the (Fe/Cu)O6 octahedron. The average bond distance (Fe/Cu)–O and the pseudo-cubic unit cell volume decrease with increasing Cu content in accordance with the presence of higher valence states of the transition metals. The magnetic structure was modeled for the monophasic samples (x=0.05 and 0.10) assuming an antiferromagnetic interaction between Fe/Cu neighboring cations (G-type): the magnetic moments order antiferromagnetically along the b-axis, with the spin direction along a-axis. The magnetic moments of the Fe/Cu atoms are μx=2.66(3)μB and 2.43(3)μB for the compositions x=0.05 and 0.10, respectively. By measuring the first magnetization curve and the hysteresis loops, coexisting antiferromagnetic and weak ferromagnetic interactions were observed for all samples. Hysteresis loops measured at room temperature of the sample with x=0.05. [Display omitted] ► Iron based perovskites with the largest coercive fields. ► Sr and Cu lanthanum ferrites as magnetic materials. ► Doped lanthanum ferrites show antiferromagnetic and weak ferromagnetic interactions. ► Sr and Cu lanthanum ferrites show distorted perovkite structure. |
Author | Natali Sora, Isabella Fontana, Francesca de Julián Fernández, César Caronna, Tullio Caneschi, Andrea Green, Mark |
Author_xml | – sequence: 1 givenname: Isabella surname: Natali Sora fullname: Natali Sora, Isabella email: isabella.natali-sora@unibg.it organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy – sequence: 2 givenname: Tullio surname: Caronna fullname: Caronna, Tullio organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy – sequence: 3 givenname: Francesca surname: Fontana fullname: Fontana, Francesca organization: INSTM R.U. and Department of Industrial Engineering, University of Bergamo, Dalmine, BG, I-24044 Italy – sequence: 4 givenname: César surname: de Julián Fernández fullname: de Julián Fernández, César organization: INSTM R.U. Firenze and Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino, Italy – sequence: 5 givenname: Andrea surname: Caneschi fullname: Caneschi, Andrea organization: INSTM R.U. Firenze and Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino, Italy – sequence: 6 givenname: Mark surname: Green fullname: Green, Mark organization: Center for Neutron Research, NIST, Gaithersburg, MD, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26113143$$DView record in Pascal Francis https://www.osti.gov/biblio/22012168$$D View this record in Osti.gov |
BookMark | eNp9kU9rGzEQxUVJoI7TL9DTQinkso7-7MpayCWYNC0Eemkg0IOQpdlGZi25Gm0g375SHHLoITAg0Pye9ObNGTkJMQAhnxldMcrk5W61Q7QrThlf0Vr0A1kwOvTtmsuHE7KglPO26wf5kZwh7ihlrFfdgvzepGfMZmowp9nmOQE2Jrhmb_4EyN42hxQPkLIv93GsVAzZz_sXyMZD6TWuEK6ZTMiPJpTWCCn5DHhOTkczIXx6PZfk_tvNr8339u7n7Y_N9V1rO9Hn1vViq0zHO2U5G-WgnAHpzNYO0rlRik4IJZ1iZisk72FNGfD1VlEj-mFQw1osyZfjuxGz12jL3_bRxhDAZs1rJkyqQl0cqTLR3xkw671HC1PxDXFGzahQXDLR84J-fUUNWjONyQTrUR-S35v0rAvFBCu2loQfOZsiYoLxDWFU173ona570dWDprVoEan_RMWwyb7kmoyf3pdeHaVQ0nzykOqwECw4n-qsLvr35P8A2_-rUw |
CODEN | JSSCBI |
CitedBy_id | crossref_primary_10_1016_j_matpr_2020_08_409 crossref_primary_10_3390_catal8120630 crossref_primary_10_1007_s10948_016_3465_7 crossref_primary_10_3390_chemosensors11090507 crossref_primary_10_1016_j_jallcom_2022_165499 crossref_primary_10_1016_j_jmmm_2022_170208 crossref_primary_10_1007_s10971_022_05951_5 crossref_primary_10_1016_j_jssc_2020_121237 crossref_primary_10_1007_s10948_018_4879_1 crossref_primary_10_1007_s12649_024_02521_4 crossref_primary_10_1016_j_ceramint_2017_12_045 crossref_primary_10_1016_j_memsci_2014_06_030 crossref_primary_10_1016_j_jallcom_2017_08_074 crossref_primary_10_1016_j_electacta_2013_07_132 crossref_primary_10_1016_j_actamat_2016_04_015 crossref_primary_10_1016_j_apt_2020_04_013 crossref_primary_10_1016_j_jpowsour_2014_07_183 crossref_primary_10_1016_j_jallcom_2016_05_017 crossref_primary_10_1039_C8TA10645B crossref_primary_10_1007_s10948_019_5138_9 crossref_primary_10_1515_ijmr_2020_8162 crossref_primary_10_1016_j_snb_2020_128879 crossref_primary_10_1016_j_jallcom_2017_09_212 crossref_primary_10_1007_s10751_021_01787_7 crossref_primary_10_1007_s10854_023_11151_w crossref_primary_10_1016_j_jeurceramsoc_2018_02_029 crossref_primary_10_1016_j_ceramint_2020_03_215 crossref_primary_10_1016_j_jallcom_2023_169161 crossref_primary_10_1016_j_materresbull_2015_03_008 crossref_primary_10_1016_j_ceramint_2016_10_185 crossref_primary_10_1021_acs_chemmater_7b01993 crossref_primary_10_1039_D2RA01137A crossref_primary_10_1002_jccs_202200010 crossref_primary_10_1016_j_jallcom_2017_03_041 crossref_primary_10_1016_j_jallcom_2015_06_005 crossref_primary_10_1039_C5RA22592B crossref_primary_10_1002_anse_202400086 crossref_primary_10_1088_1674_1056_22_10_107806 crossref_primary_10_1016_j_ceramint_2023_11_087 crossref_primary_10_1002_chin_201235009 crossref_primary_10_1016_j_ceramint_2012_11_086 crossref_primary_10_1016_j_jssc_2014_03_006 crossref_primary_10_1007_s10832_023_00310_4 crossref_primary_10_1016_j_jallcom_2023_171334 crossref_primary_10_1016_j_ceramint_2015_02_114 crossref_primary_10_1007_s10948_023_06595_4 crossref_primary_10_1016_j_jelechem_2019_113523 crossref_primary_10_1038_s41598_024_65757_z crossref_primary_10_1016_j_mseb_2020_114810 crossref_primary_10_1016_j_mtla_2019_100460 |
Cites_doi | 10.1016/j.jmmm.2006.11.208 10.1103/PhysRevLett.103.147201 10.1107/S0567740872007976 10.1140/epjb/e2007-00253-9 10.1038/nature05023 10.1016/j.matlet.2011.01.049 10.1063/1.2432869 10.1149/1.2100742 10.1016/j.matlet.2009.11.037 10.1006/jssc.1997.7636 10.1103/PhysRevB.48.224 10.1126/science.287.5455.1014 10.1016/j.ssi.2005.03.009 10.1103/PhysRevB.55.8060 10.1088/0953-8984/15/29/321 10.1016/j.jmmm.2010.12.007 10.1103/PhysRevLett.79.297 10.1088/0953-8984/20/44/445209 10.1006/jssc.1994.1083 10.1088/0953-8984/23/7/073201 10.1016/j.solidstatesciences.2007.05.004 10.1063/1.1714088 10.1016/S1002-0721(08)60318-X 10.1088/0022-3727/43/24/245002 10.1007/s10800-009-9790-9 10.1016/j.jallcom.2010.12.162 10.1016/S0921-4526(97)00042-2 10.1016/j.ssi.2004.09.015 10.1016/j.jeurceramsoc.2005.03.107 10.1016/j.matchemphys.2009.05.020 10.1351/pac200880112543 10.1016/j.ssi.2004.09.017 10.1063/1.2768895 10.1002/pssa.200824266 10.1103/PhysRevB.49.3465 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7U5 8FD L7M OTOTI |
DOI | 10.1016/j.jssc.2012.02.020 |
DatabaseName | CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1095-726X |
EndPage | 39 |
ExternalDocumentID | 22012168 26113143 10_1016_j_jssc_2012_02_020 S0022459612001119 |
GroupedDBID | --K --M -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HMH HMV HVGLF HZ~ H~9 IHE J1W KOM LG5 LZ6 M24 M37 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SIC SMS SPC SPCBC SPG SSK SSM SSZ T5K TN5 WUQ XPP YQT ZMT ZU3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7U5 8FD L7M AALMO ABPIF ABPTK EFJIC OTOTI |
ID | FETCH-LOGICAL-c435t-d53b8a4248c21f698dae6dabc96ddf6343386d81ab3625e701e27b80a35998973 |
IEDL.DBID | .~1 |
ISSN | 0022-4596 |
IngestDate | Fri May 19 00:37:28 EDT 2023 Tue Aug 05 10:36:59 EDT 2025 Mon Jul 21 09:16:09 EDT 2025 Tue Jul 01 01:55:27 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Fri Feb 23 02:25:30 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Perovskite oxides Lanthanum ferrites Neutron powder diffraction Weak ferromagnetic interactions Antiferromagnetism Rietveld method Cubic lattices Space groups Iron oxide Neutron diffraction Doping Distortion Iron Symmetry groups Bond lengths Structural models Lanthanum oxide Unit cell Trigonal lattices Coercive force Crystallographic site Iron Strontium Oxides Mixed Magnetic structure Copper Phase space Iron Lanthanum Oxides Mixed Magnetic properties Crystal structure Temperature dependence Phase transformations Magnetic model Magnetic ordering Perovskites Hexagonal lattices Powder pattern Valence Transition elements Orthorhombic lattices Exchange interactions |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-d53b8a4248c21f698dae6dabc96ddf6343386d81ab3625e701e27b80a35998973 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://www.sciencedirect.com/science/journal/00224596 |
PQID | 1038261352 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_22012168 proquest_miscellaneous_1038261352 pascalfrancis_primary_26113143 crossref_primary_10_1016_j_jssc_2012_02_020 crossref_citationtrail_10_1016_j_jssc_2012_02_020 elsevier_sciencedirect_doi_10_1016_j_jssc_2012_02_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of solid state chemistry |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Mai, Haanappel, Uhlenbruck, Tietz, Stover (bib1) 2005; 176 Rearick, Gary, James (bib12) 1993; 48 Wattiaux, Grenier, Pouchard, Hagenmuller (bib11) 1987; 134 Patra, De, Majumdar, Giri (bib32) 2007; 58 Natali Sora, Huang, Lynn, Rosov, Karen, Kjekshus, Karen, Mighell, Santoro (bib19) 1994; 49 Montero, Fischer, Tietz, Stover, Cassir, Villareal (bib9) 2009; 180 Vogt, Sfeir, Richter, Holtappels (bib8) 2008; 80 Solovyev (bib15) 1997; 55 Coffey, Hardy, Marina, Pederson, Rieke, Thomsen (bib4) 2004; 175 Pelosato, Natali Sora, Dotelli, Ruffo, Mari (bib3) 2005; 25 Giri, Patra, Majumdar (bib33) 2011; 23 Glazer (bib25) 1972; 28 Dann, Currie, Weller (bib6) 1994; 109 A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS) program, Los Alamos National Labo-ratory Report LA-UR-86-748, 2000. Pelosato, Natali Sora, Ferrari, Dotelli, Mari (bib2) 2004; 175 Wattiaux, Grenier, Pouchard, Hagenmuller (bib23) 1987; 134 Ahmadvand, Salatati, Kameli, Poddar, Acet, Zakeri (bib34) 2010; 43 Acharya, Deb, Das, Chakrabarti (bib37) 2011; 65 Karen, Kjekshus., Huang, Lynn, Rosov, Natali Sora, Karen, Mighell, Santoro (bib20) 1998; 136 Wackerl, Koppitz, Peck, Woo, Markus (bib5) 2009; 39 Yang, Zhou, Chu, Hikal, Cai, Ho, Kundaliya, Yelon, James, Anderson, Hamdeh, Malik (bib18) 2003; 15 Li, Matsui, Park, Tokura (bib17) 1997; 79 Solovyev, Hamada, Terakura (bib14) 1997; 237-238 Ferriera, Cruz, Ramos, Sá, Carval-ho, Godinho (bib29) 2007; 313 Belakii, Manivannan, McCurdy, Kohli (bib31) 2009; 27 Zahid, Arul Raj, Tietz, Stöver (bib7) 2007; 9 Acharya, Mondal, Ghosh, Roy, Chakra-barti (bib27) 2010; 64 Scholl, Stöhr, Luning, Seo, Fompeyrine, Siegwart, Locquet, Nolting, Anders, Fuller-ton, Scheinfein, Padmore (bib13) 2000; 287 Dong, Yamauchi, Yunoki, Yu, Liang, Moreo, Liu, Picozzi, Dagotto (bib35) 2009; 103 Das, Choudhary, Bhattacharya, Ka-tiyar, Das, Choudhary, Bhattacharya, Katiyar (bib36) 2007; 101 Popa, Calderon Moreno (bib26) 2011; 509 Eerenstein, Mathur, Scott (bib38) 2006; 442 J. Rodriguez-Carvajal, PROGRAM FullProf.2k (Version 4.80 – Jan 2010-ILL JRC). Huang, Zhang, Du, Yan, Tang, Sun, Cheng (bib30) 2008; 20 Gao, Li, Weng, Dong, Wang, Lv, Wang, Liu (bib16) 2007; 91 Caronna, Fontana, Natali Sora, Pelosato (bib24) 2009; 116 Treves (bib10) 1965; 36 Shen, Cheng, Wu, Xu, Zhao (bib28) 2009; 206 Barik, Krishnamoorthi, Mahendiran (bib39) 2011; 323 Pelosato (10.1016/j.jssc.2012.02.020_bib2) 2004; 175 Natali Sora (10.1016/j.jssc.2012.02.020_bib19) 1994; 49 Wattiaux (10.1016/j.jssc.2012.02.020_bib23) 1987; 134 Vogt (10.1016/j.jssc.2012.02.020_bib8) 2008; 80 Glazer (10.1016/j.jssc.2012.02.020_bib25) 1972; 28 Popa (10.1016/j.jssc.2012.02.020_bib26) 2011; 509 Wattiaux (10.1016/j.jssc.2012.02.020_bib11) 1987; 134 Rearick (10.1016/j.jssc.2012.02.020_bib12) 1993; 48 Mai (10.1016/j.jssc.2012.02.020_bib1) 2005; 176 Dann (10.1016/j.jssc.2012.02.020_bib6) 1994; 109 Shen (10.1016/j.jssc.2012.02.020_bib28) 2009; 206 Acharya (10.1016/j.jssc.2012.02.020_bib37) 2011; 65 Coffey (10.1016/j.jssc.2012.02.020_bib4) 2004; 175 Huang (10.1016/j.jssc.2012.02.020_bib30) 2008; 20 Pelosato (10.1016/j.jssc.2012.02.020_bib3) 2005; 25 Dong (10.1016/j.jssc.2012.02.020_bib35) 2009; 103 Ahmadvand (10.1016/j.jssc.2012.02.020_bib34) 2010; 43 Montero (10.1016/j.jssc.2012.02.020_bib9) 2009; 180 Treves (10.1016/j.jssc.2012.02.020_bib10) 1965; 36 Solovyev (10.1016/j.jssc.2012.02.020_bib14) 1997; 237-238 Yang (10.1016/j.jssc.2012.02.020_bib18) 2003; 15 Eerenstein (10.1016/j.jssc.2012.02.020_bib38) 2006; 442 Ferriera (10.1016/j.jssc.2012.02.020_bib29) 2007; 313 Karen (10.1016/j.jssc.2012.02.020_bib20) 1998; 136 Solovyev (10.1016/j.jssc.2012.02.020_bib15) 1997; 55 Gao (10.1016/j.jssc.2012.02.020_bib16) 2007; 91 Acharya (10.1016/j.jssc.2012.02.020_bib27) 2010; 64 Giri (10.1016/j.jssc.2012.02.020_bib33) 2011; 23 Caronna (10.1016/j.jssc.2012.02.020_bib24) 2009; 116 10.1016/j.jssc.2012.02.020_bib22 Barik (10.1016/j.jssc.2012.02.020_bib39) 2011; 323 Das (10.1016/j.jssc.2012.02.020_bib36) 2007; 101 Wackerl (10.1016/j.jssc.2012.02.020_bib5) 2009; 39 Zahid (10.1016/j.jssc.2012.02.020_bib7) 2007; 9 10.1016/j.jssc.2012.02.020_bib21 Patra (10.1016/j.jssc.2012.02.020_bib32) 2007; 58 Li (10.1016/j.jssc.2012.02.020_bib17) 1997; 79 Belakii (10.1016/j.jssc.2012.02.020_bib31) 2009; 27 Scholl (10.1016/j.jssc.2012.02.020_bib13) 2000; 287 |
References_xml | – volume: 65 start-page: 1280 year: 2011 ident: bib37 publication-title: Mater. Lett. – volume: 109 start-page: 134 year: 1994 ident: bib6 publication-title: Solid State Chem. – volume: 509 start-page: 4108 year: 2011 ident: bib26 publication-title: Alloys. Comp. – volume: 25 start-page: 2587 year: 2005 ident: bib3 publication-title: J. Eur. Ceram. Soc. – volume: 36 start-page: 1033 year: 1965 ident: bib10 publication-title: Appl. Phys. – volume: 116 start-page: 645 year: 2009 ident: bib24 publication-title: Mater. Chem. Phys. – volume: 28 start-page: 3384 year: 1972 ident: bib25 publication-title: Acta Cryst. B – volume: 313 start-page: 8 year: 2007 ident: bib29 publication-title: Magn. Mater. – volume: 23 start-page: 073201 year: 2011 ident: bib33 publication-title: Phys. Condens. Matter. – volume: 136 start-page: 21 year: 1998 ident: bib20 publication-title: J. Solid State Chem. – reference: J. Rodriguez-Carvajal, PROGRAM FullProf.2k (Version 4.80 – Jan 2010-ILL JRC). – volume: 175 start-page: 87 year: 2004 ident: bib2 publication-title: Solid State Ionics – volume: 39 start-page: 1243 year: 2009 ident: bib5 publication-title: Appl. Electrochem. – volume: 20 start-page: 445209 year: 2008 ident: bib30 publication-title: Phys. Condens. Matter. – volume: 287 start-page: 1014 year: 2000 ident: bib13 publication-title: Science – volume: 180 start-page: 731 year: 2009 ident: bib9 publication-title: Solid State Sci. – reference: A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS) program, Los Alamos National Labo-ratory Report LA-UR-86-748, 2000. – volume: 176 start-page: 1341 year: 2005 ident: bib1 publication-title: Solid State Ionics – volume: 80 start-page: 2543 year: 2008 ident: bib8 publication-title: Pure Appl. Chem. – volume: 15 start-page: 5093 year: 2003 ident: bib18 publication-title: Phys.: Condens. Matter. – volume: 79 start-page: 297 year: 1997 ident: bib17 publication-title: Phys. Rev. Lett. – volume: 237-238 start-page: 44 year: 1997 ident: bib14 publication-title: Physica B – volume: 323 start-page: 1015 year: 2011 ident: bib39 publication-title: Magn. Magn. Mater. – volume: 206 start-page: 1420 year: 2009 ident: bib28 publication-title: Phys. Status Solidi A – volume: 134 start-page: 1718 year: 1987 ident: bib11 publication-title: J. Electrochem. Soc. – volume: 49 start-page: 3465 year: 1994 ident: bib19 publication-title: Phys. Rev. B – volume: 103 start-page: 147201 year: 2009 ident: bib35 publication-title: Phys. Rev. Lett. – volume: 134 start-page: 1718 year: 1987 ident: bib23 publication-title: Electrochem. Soc. – volume: 27 start-page: 691 year: 2009 ident: bib31 publication-title: Rare Earths – volume: 101 start-page: 034104 year: 2007 ident: bib36 publication-title: Appl. Phys. – volume: 9 start-page: 706 year: 2007 ident: bib7 publication-title: Solid State Sci. – volume: 55 start-page: 8060 year: 1997 ident: bib15 publication-title: Phys. Rev. B – volume: 48 start-page: 224 year: 1993 ident: bib12 publication-title: Phys. Rev. B – volume: 58 start-page: 367 year: 2007 ident: bib32 publication-title: Eur. Phys. J. B – volume: 43 start-page: 245002 year: 2010 ident: bib34 publication-title: Phys. D: Appl. Phys. – volume: 175 start-page: 73 year: 2004 ident: bib4 publication-title: Solid State Ionics – volume: 91 start-page: 072504 year: 2007 ident: bib16 publication-title: Appl. Phys. Lett. – volume: 64 start-page: 415 year: 2010 ident: bib27 publication-title: Mater. Lett. – volume: 442 start-page: 759 year: 2006 ident: bib38 publication-title: Nature – volume: 313 start-page: 8 year: 2007 ident: 10.1016/j.jssc.2012.02.020_bib29 publication-title: Magn. Mater. doi: 10.1016/j.jmmm.2006.11.208 – volume: 103 start-page: 147201 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.147201 – volume: 28 start-page: 3384 year: 1972 ident: 10.1016/j.jssc.2012.02.020_bib25 publication-title: Acta Cryst. B doi: 10.1107/S0567740872007976 – volume: 58 start-page: 367 year: 2007 ident: 10.1016/j.jssc.2012.02.020_bib32 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2007-00253-9 – volume: 442 start-page: 759 year: 2006 ident: 10.1016/j.jssc.2012.02.020_bib38 publication-title: Nature doi: 10.1038/nature05023 – volume: 65 start-page: 1280 year: 2011 ident: 10.1016/j.jssc.2012.02.020_bib37 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.01.049 – volume: 101 start-page: 034104 year: 2007 ident: 10.1016/j.jssc.2012.02.020_bib36 publication-title: Appl. Phys. doi: 10.1063/1.2432869 – volume: 134 start-page: 1718 issue: 7 year: 1987 ident: 10.1016/j.jssc.2012.02.020_bib11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100742 – ident: 10.1016/j.jssc.2012.02.020_bib22 – volume: 64 start-page: 415 year: 2010 ident: 10.1016/j.jssc.2012.02.020_bib27 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.11.037 – volume: 136 start-page: 21 year: 1998 ident: 10.1016/j.jssc.2012.02.020_bib20 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1997.7636 – volume: 48 start-page: 224 year: 1993 ident: 10.1016/j.jssc.2012.02.020_bib12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.224 – volume: 287 start-page: 1014 year: 2000 ident: 10.1016/j.jssc.2012.02.020_bib13 publication-title: Science doi: 10.1126/science.287.5455.1014 – volume: 176 start-page: 1341 year: 2005 ident: 10.1016/j.jssc.2012.02.020_bib1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2005.03.009 – volume: 55 start-page: 8060 year: 1997 ident: 10.1016/j.jssc.2012.02.020_bib15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.8060 – volume: 134 start-page: 1718 year: 1987 ident: 10.1016/j.jssc.2012.02.020_bib23 publication-title: Electrochem. Soc. doi: 10.1149/1.2100742 – volume: 15 start-page: 5093 year: 2003 ident: 10.1016/j.jssc.2012.02.020_bib18 publication-title: Phys.: Condens. Matter. doi: 10.1088/0953-8984/15/29/321 – volume: 323 start-page: 1015 year: 2011 ident: 10.1016/j.jssc.2012.02.020_bib39 publication-title: Magn. Magn. Mater. doi: 10.1016/j.jmmm.2010.12.007 – volume: 79 start-page: 297 year: 1997 ident: 10.1016/j.jssc.2012.02.020_bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.297 – volume: 20 start-page: 445209 year: 2008 ident: 10.1016/j.jssc.2012.02.020_bib30 publication-title: Phys. Condens. Matter. doi: 10.1088/0953-8984/20/44/445209 – volume: 109 start-page: 134 year: 1994 ident: 10.1016/j.jssc.2012.02.020_bib6 publication-title: Solid State Chem. doi: 10.1006/jssc.1994.1083 – volume: 23 start-page: 073201 year: 2011 ident: 10.1016/j.jssc.2012.02.020_bib33 publication-title: Phys. Condens. Matter. doi: 10.1088/0953-8984/23/7/073201 – volume: 9 start-page: 706 year: 2007 ident: 10.1016/j.jssc.2012.02.020_bib7 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2007.05.004 – volume: 36 start-page: 1033 year: 1965 ident: 10.1016/j.jssc.2012.02.020_bib10 publication-title: Appl. Phys. doi: 10.1063/1.1714088 – volume: 27 start-page: 691 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib31 publication-title: Rare Earths doi: 10.1016/S1002-0721(08)60318-X – volume: 43 start-page: 245002 year: 2010 ident: 10.1016/j.jssc.2012.02.020_bib34 publication-title: Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/24/245002 – volume: 39 start-page: 1243 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib5 publication-title: Appl. Electrochem. doi: 10.1007/s10800-009-9790-9 – ident: 10.1016/j.jssc.2012.02.020_bib21 – volume: 509 start-page: 4108 year: 2011 ident: 10.1016/j.jssc.2012.02.020_bib26 publication-title: Alloys. Comp. doi: 10.1016/j.jallcom.2010.12.162 – volume: 237-238 start-page: 44 year: 1997 ident: 10.1016/j.jssc.2012.02.020_bib14 publication-title: Physica B doi: 10.1016/S0921-4526(97)00042-2 – volume: 175 start-page: 73 year: 2004 ident: 10.1016/j.jssc.2012.02.020_bib4 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.09.015 – volume: 25 start-page: 2587 year: 2005 ident: 10.1016/j.jssc.2012.02.020_bib3 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2005.03.107 – volume: 116 start-page: 645 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib24 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.05.020 – volume: 80 start-page: 2543 issue: 11 year: 2008 ident: 10.1016/j.jssc.2012.02.020_bib8 publication-title: Pure Appl. Chem. doi: 10.1351/pac200880112543 – volume: 175 start-page: 87 year: 2004 ident: 10.1016/j.jssc.2012.02.020_bib2 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.09.017 – volume: 91 start-page: 072504 year: 2007 ident: 10.1016/j.jssc.2012.02.020_bib16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2768895 – volume: 206 start-page: 1420 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib28 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200824266 – volume: 180 start-page: 731 year: 2009 ident: 10.1016/j.jssc.2012.02.020_bib9 publication-title: Solid State Sci. – volume: 49 start-page: 3465 year: 1994 ident: 10.1016/j.jssc.2012.02.020_bib19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.3465 |
SSID | ssj0011584 |
Score | 2.2878654 |
Snippet | The crystal and magnetic structures of La0.8Sr0.2Fe1−xCuxO3−w compounds, which exhibit coercive fields larger than any others reported for iron-based... The crystal and magnetic structures of La0.8Sr0.2Fe1axCuxO3aw compounds, which exhibit coercive fields larger than any others reported for iron-based... The crystal and magnetic structures of La{sub 0.8}Sr{sub 0.2}Fe{sub 1-x}Cu{sub x}O{sub 3-w} compounds, which exhibit coercive fields larger than any others... |
SourceID | osti proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 33 |
SubjectTerms | ANTIFERROMAGNETISM Cations Condensed matter: structure, mechanical and thermal properties Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder COPPER Cross-disciplinary physics: materials science; rheology Crystal structure Crystalline state (including molecular motions in solids) CRYSTALS DOPED MATERIALS Exact sciences and technology FERRITE FERRITES INTERACTIONS IRON LANTHANUM Lanthanum ferrites Magnetic moment MAGNETIC MOMENTS MAGNETIC PROPERTIES Magnetic structure MATERIALS SCIENCE NEUTRON DIFFRACTION Neutron diffraction and scattering Neutron powder diffraction ORTHORHOMBIC LATTICES PEROVSKITE Perovskite oxides Phase diagrams and microstructures developed by solidification and solid-solid phase transformations PHASE SPACE Physics Single-crystal and powder diffraction SPACE GROUPS STRONTIUM Structure of solids and liquids; crystallography Structure of specific crystalline solids TEMPERATURE RANGE 0273-0400 K Theory of crystal structure, crystal symmetry; calculations and modeling TRIGONAL LATTICES Weak ferromagnetic interactions |
Title | Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites |
URI | https://dx.doi.org/10.1016/j.jssc.2012.02.020 https://www.proquest.com/docview/1038261352 https://www.osti.gov/biblio/22012168 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5kQ1APIdlEXDVLB3ILE-fR8-ijLJFViacIgoemn7qyzizO7sGLv92qeSyKxIPQl5mugqarpquqp-orgJ-594WPExP4yGcYoHgRCJerwDihDTdpaA3dQ_49z6YX_PQyvdyASV8LQ2mV3dnfnunNad29Oex283Axm1GNL5qfVKCJbhqmUxEf5zlp-e_HdZoHOjwF7xHDibornGlzvG7rmmAM6T6QRvg_4zSo8HujtElV4875tuXFq9O7MUnHn-FT50uyo3a5X2DDlUPYnPQt3Iaw_QxtcAgfm2xPU3-Fq8n9A3qFc9aix64w5GaqtOxOXZdU1MgWdEV_T1irrPJEVZXL2equITLVAueYRQrL5iiYG1XilCeIR_Rbv8HF8Z9_k2nQdVkIDLpKy8CmiS4Uj3lhYpSXKKxymVXaiMxanyUcg9jMFpHSaOtSl4eRi3NdhCpJMVQTebIDg7Iq3S4wkWuvXeYxqtacGl9F1iC3FkpYo1Q8gqjfXmk6CHLqhDGXfa7ZrSSRSBKJDGmEI_i15lm0ABxvUqe91OQLNZJoId7kOyAREw9h5xpKMkKmmEiirBjB-IXo1yvB-DNK0OUcwY9eFyTKmH66qNJVq1oSAD1SoZ-798617cMWPbU5wgcwQM1w39ETWupxo-pj-HB0cjY9fwIFvQj8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7MSjA5BLNGXGO0A97C4Lx6ZvooS2SNuicFwUPTT11ZZxZn95B_b9U8lkiIh0Cfpqug6arpququ-grgOPe-8HFiAh_5DAMULwLhchUYJ7RJDQ-toXvIq2k2uUl_3fLbDRj3tTCUVtmd_e2Z3pzW3ZeTbjdPFrMZ1fii-eECTXTTMF28g01Cp-ID2Dw9v5hM148JES_SHjScGLramTbN67GuCcmQrgRphP-yT4MKfznKnFQ1bp5vu178dYA3VulsGz517iQ7bVf8GTZcOYStcd_FbQgf_wAcHML7JuHT1DtwN37-jY7hnLUAsiuMupkqLXtS9yXVNbIF3dI_E9wqqzxRVeVytnpqiEy1wDlmkcKyOcrmQZU45QnlEV3XL3Bz9vN6PAm6RguBQW9pGVie6EKlcVqYGEUmCqtcZpU2IrPWZ0mKcWxmi0hpNHfc5WHk4lwXoUo4RmsiT3ZhUFal2wMmcu21yzwG1jql3leRNcithRLWKBWPIOq3V5oOhZyaYcxln272KEkkkkQiQxrhCH6seRYtBseb1LyXmnylSRKNxJt8ByRi4iH4XEN5RsgUE0mUFSM4fCX69UowBI0S9DpH8L3XBYkypncXVbpqVUvCoEcqdHX3_3NtR7A1ub66lJfn04uv8IFm2pThAxiglrhv6Bgt9WGn-C8RFwut |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structures+and+magnetic+properties+of+strontium+and+copper+doped+lanthanum+ferrites&rft.jtitle=Journal+of+solid+state+chemistry&rft.au=Natali+Sora%2C+Isabella&rft.au=Caronna%2C+Tullio&rft.au=Fontana%2C+Francesca&rft.au=de+Juli%C3%A1n+Fern%C3%A1ndez%2C+C%C3%A9sar&rft.date=2012-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-4596&rft.eissn=1095-726X&rft.volume=191&rft.spage=33&rft.epage=39&rft_id=info:doi/10.1016%2Fj.jssc.2012.02.020&rft.externalDocID=S0022459612001119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4596&client=summon |