Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 48; no. 11; pp. 4122 - 4132
Main Authors Tarabalka, Yuliya, Benediktsson, Jón Atli, Chanussot, Jocelyn, Tilton, James C
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques.
AbstractList A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques.
Author Chanussot, Jocelyn
Tilton, James C
Benediktsson, Jón Atli
Tarabalka, Yuliya
Author_xml – sequence: 1
  givenname: Yuliya
  surname: Tarabalka
  fullname: Tarabalka, Yuliya
  email: yuliya.tarabalka@hyperinet.eu
  organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
– sequence: 2
  givenname: Jón Atli
  surname: Benediktsson
  fullname: Benediktsson, Jón Atli
  email: benedikt@hi.is
  organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
– sequence: 3
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr
  organization: Grenoble Images Speech Signals & Automatics Lab. (GIPSA-Lab.), Grenoble Inst. of Technol. (INPG), St. Martin d'Hères, France
– sequence: 4
  givenname: James C
  surname: Tilton
  fullname: Tilton, James C
  email: james.c.tilton@nasa.gov
  organization: NASA Goddard Space Flight Center, Greenbelt, MD, USA
BackLink https://hal.science/hal-00578869$$DView record in HAL
BookMark eNp9kUFr3DAQhUVIoZu0P6D0Yuih7cHJSJYs6bhsk2xhSyGbnoWsjIiCYruSN5B_Hzm77SGHnIYZvjfMvHdCjvuhR0I-UTijFPT5zdX19oxBaRm0TLD2iCyoEKqGlvNjsgCq25opzd6Tk5zvASgXVC7I-tcuTmGMWG1HdFOysd6Odgo2Vqtocw4-uNIOfbUcxzRYd1f5IVXrpxFTPiiqH3ayH8g7b2PGj4d6Sv5cXtys1vXm99XP1XJTO96IqXbaK49OWd05LnTDNaOIlPtOo-qssF524D02HLi2or11jHvmmHRdixJcc0q-7_fe2WjGFB5sejKDDWa93Jh5BiCkUq1-pIX9umfL5X93mCfzELLDGG2Pwy4b1VAqqRYz-e1NkkoJ5STRzuiXV-j9sEt9-dlQaGZfQfJCyT3l0pBzQm9cmF6MLI6FWFAz52bm3MycmznkVpT0lfLfl29pPu81ARH_80JI0Eo0z1n1pFY
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2012_2198654
crossref_primary_10_1109_JSTARS_2013_2282161
crossref_primary_10_1109_TGRS_2014_2306692
crossref_primary_10_1109_TCYB_2018_2883472
crossref_primary_10_1109_TGRS_2019_2907924
crossref_primary_10_1080_10942912_2020_1778724
crossref_primary_10_1109_TGRS_2014_2319373
crossref_primary_10_1109_TGRS_2015_2503886
crossref_primary_10_1117_1_JEI_26_4_043010
crossref_primary_10_29252_jgit_3_1_45
crossref_primary_10_1109_JSTARS_2018_2860989
crossref_primary_10_1117_1_JRS_13_038505
crossref_primary_10_1109_TGRS_2014_2361618
crossref_primary_10_1109_JSTARS_2011_2173466
crossref_primary_10_1109_TGRS_2019_2955557
crossref_primary_10_1109_TGRS_2016_2562018
crossref_primary_10_1109_TGRS_2019_2952319
crossref_primary_10_1109_TGRS_2011_2176341
crossref_primary_10_1109_JSTARS_2017_2706190
crossref_primary_10_3390_rs13183592
crossref_primary_10_1109_JSTARS_2012_2194696
crossref_primary_10_1109_TGRS_2012_2201730
crossref_primary_10_1109_LGRS_2013_2254108
crossref_primary_10_1109_TNNLS_2015_2461451
crossref_primary_10_1109_TGRS_2013_2263282
crossref_primary_10_4236_jgis_2020_123014
crossref_primary_10_1109_TGRS_2018_2849085
crossref_primary_10_1109_TGRS_2020_2999558
crossref_primary_10_1109_ACCESS_2020_3027776
crossref_primary_10_1109_TIP_2012_2231687
crossref_primary_10_1109_JSTARS_2013_2279693
crossref_primary_10_1117_1_JRS_14_032604
crossref_primary_10_1109_TGRS_2014_2299540
crossref_primary_10_15446_dyna_v84n200_50678
crossref_primary_10_1109_JSTARS_2013_2251969
crossref_primary_10_1109_JSTARS_2013_2290296
crossref_primary_10_1109_TGRS_2016_2514481
crossref_primary_10_1109_JSTARS_2015_2423278
crossref_primary_10_1109_TGRS_2014_2344442
crossref_primary_10_1109_ACCESS_2018_2827403
crossref_primary_10_1109_JSTARS_2016_2536761
crossref_primary_10_1109_TGRS_2014_2318332
crossref_primary_10_1109_TGRS_2012_2197860
crossref_primary_10_1109_TGRS_2013_2264508
crossref_primary_10_1109_TGRS_2022_3144658
crossref_primary_10_1109_JPROC_2012_2197589
crossref_primary_10_1109_JSTARS_2016_2522182
crossref_primary_10_1109_TGRS_2015_2465899
crossref_primary_10_1109_JSTARS_2012_2196978
crossref_primary_10_1109_TGRS_2018_2872875
crossref_primary_10_1109_TGRS_2014_2321405
crossref_primary_10_1109_TGRS_2021_3132013
crossref_primary_10_1109_JSTARS_2011_2170289
crossref_primary_10_1109_LGRS_2014_2380313
crossref_primary_10_1109_LGRS_2012_2191761
crossref_primary_10_1109_JSTARS_2016_2524517
crossref_primary_10_1080_2150704X_2016_1151568
crossref_primary_10_1109_MGRS_2018_2854840
crossref_primary_10_1109_TGRS_2012_2202912
crossref_primary_10_1109_TGRS_2017_2765364
crossref_primary_10_1109_TGRS_2012_2217501
crossref_primary_10_1109_TGRS_2020_3018449
crossref_primary_10_1109_JSTARS_2013_2259470
crossref_primary_10_1109_LGRS_2018_2868862
crossref_primary_10_1109_TGRS_2017_2782005
crossref_primary_10_1109_TGRS_2014_2380475
crossref_primary_10_1109_TGRS_2016_2603190
crossref_primary_10_1109_JSTARS_2016_2634863
crossref_primary_10_1109_JSTARS_2013_2257696
crossref_primary_10_1109_TGRS_2012_2205002
crossref_primary_10_1109_JSTARS_2017_2658948
crossref_primary_10_1109_JSTARS_2020_3006772
crossref_primary_10_1109_TGRS_2011_2157166
crossref_primary_10_1186_s13640_017_0219_9
crossref_primary_10_1109_TGRS_2014_2360672
crossref_primary_10_1109_TGRS_2019_2947200
crossref_primary_10_1109_TGRS_2012_2209656
crossref_primary_10_1109_TGRS_2012_2209657
crossref_primary_10_1109_TGRS_2011_2129595
crossref_primary_10_1109_JSTARS_2016_2588530
crossref_primary_10_1038_s41598_017_07337_y
crossref_primary_10_1109_TGRS_2013_2275613
crossref_primary_10_1109_JSTARS_2015_2493887
crossref_primary_10_1109_JSTARS_2022_3173893
crossref_primary_10_1109_JBHI_2021_3065050
crossref_primary_10_1109_JSTARS_2013_2292032
crossref_primary_10_1117_1_JEI_27_6_063032
crossref_primary_10_1007_s12517_020_06289_4
crossref_primary_10_1109_TGRS_2015_2432856
crossref_primary_10_1109_TGRS_2012_2190079
crossref_primary_10_1109_TGRS_2013_2244604
crossref_primary_10_1109_TGRS_2010_2085313
crossref_primary_10_1109_TGRS_2016_2580643
crossref_primary_10_1109_TNNLS_2013_2293061
crossref_primary_10_1109_JSTARS_2014_2328601
crossref_primary_10_1109_TGRS_2019_2908679
crossref_primary_10_1109_TGRS_2013_2274875
Cites_doi 10.1002/0471723800
10.1109/36.225529
10.1109/TGRS.2008.922034
10.1002/0470124628
10.1109/36.774728
10.1109/IGARSS.2008.4779661
10.1109/TGRS.2009.2016214
10.1109/TGRS.2005.846154
10.1109/TPAMI.2005.109
10.1007/978-3-662-03978-6
10.1109/34.87344
10.1002/j.1538-7305.1957.tb01515.x
10.1109/21.155943
10.1109/TGRS.2005.849059
10.1109/TGRS.2009.2029340
10.1109/TIP.2005.864164
10.1109/IGARSS.2005.1526784
10.1016/S0168-1699(03)00020-6
10.1109/PDCAT.2006.93
10.1109/TGRS.2002.802476
10.1109/TGRS.2009.2031812
10.5566/ias.v26.p101-109
10.1109/34.667881
10.1109/5.54807
10.1109/TSMCB.2009.2037132
10.1007/3-540-60298-4_230
10.1017/CBO9780511801389
10.14358/PERS.70.5.627
10.1109/LGRS.2007.896331
10.1109/IGARSS.2008.4779432
10.1109/WARSD.2003.1295173
10.1016/S0034-4257(98)00064-9
10.1109/TGE.1976.294460
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
VOOES
DOI 10.1109/TGRS.2010.2062526
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

Aerospace Database
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-0644
EndPage 4132
ExternalDocumentID oai_HAL_hal_00578869v1
2724077241
10_1109_TGRS_2010_2062526
5570985
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
VOOES
ID FETCH-LOGICAL-c435t-c9f8fec8a9bc45934921ee14fb9e8ba5af7b0ffe34049a56dc24f2c27cb6e70c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 06:20:54 EDT 2025
Fri Jul 11 11:24:13 EDT 2025
Thu Jul 10 20:38:34 EDT 2025
Mon Jun 30 08:36:28 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Tue Jul 01 04:30:27 EDT 2025
Tue Aug 26 17:00:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords segmentation
hyperspectral images
minimum spanning forest (MSF)
Classification
multiple classifiers (MCs)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-c9f8fec8a9bc45934921ee14fb9e8ba5af7b0ffe34049a56dc24f2c27cb6e70c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0003-4817-2875
OpenAccessLink https://hal.science/hal-00578869
PQID 1030145074
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2010_2062526
ieee_primary_5570985
hal_primary_oai_HAL_hal_00578869v1
proquest_miscellaneous_1770340561
proquest_miscellaneous_831171951
proquest_journals_1030145074
crossref_primary_10_1109_TGRS_2010_2062526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
ref15
ref36
ref14
ref31
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref19
ref18
soille (ref16) 2003
stawiaski (ref38) 2008
shapiro (ref30) 2002
ref45
ref23
beucher (ref24) 1979
ref26
ref25
ref20
ref42
tarabalka (ref12) 2009
ref41
ref22
ref21
ref43
gonzalez (ref13) 2002
ref28
ref27
ref29
fauvel (ref9) 2007
ref8
ref7
tilton (ref32) 2008
ref4
ref3
tarabalka (ref34) 2009
ref6
ref5
vapnik (ref37) 1998
cormen (ref40) 2001
keshava (ref44) 2003; 14
References_xml – ident: ref3
  doi: 10.1002/0471723800
– ident: ref29
  doi: 10.1109/36.225529
– ident: ref10
  doi: 10.1109/TGRS.2008.922034
– year: 2002
  ident: ref30
  publication-title: Computer Vision
– ident: ref1
  doi: 10.1002/0470124628
– ident: ref18
  doi: 10.1109/36.774728
– ident: ref11
  doi: 10.1109/IGARSS.2008.4779661
– year: 1998
  ident: ref37
  publication-title: Statistical Learning Theory
– ident: ref14
  doi: 10.1109/TGRS.2009.2016214
– ident: ref5
  doi: 10.1109/TGRS.2005.846154
– ident: ref22
  doi: 10.1109/TPAMI.2005.109
– year: 2009
  ident: ref12
  article-title: Classification of hyperspectral data using support vector machines and adaptive neighborhoods
  publication-title: Proc 6th EARSeL SIG IS Workshop
– year: 2002
  ident: ref13
  publication-title: Digital Image Processing
– ident: ref41
  doi: 10.1007/978-3-662-03978-6
– ident: ref27
  doi: 10.1109/34.87344
– ident: ref39
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– ident: ref19
  doi: 10.1109/21.155943
– ident: ref8
  doi: 10.1109/TGRS.2005.849059
– year: 2007
  ident: ref9
  publication-title: Spectral and spatial methods for the classification of urban remote sensing data
– ident: ref36
  doi: 10.1109/TGRS.2009.2029340
– ident: ref26
  doi: 10.1109/TIP.2005.864164
– ident: ref35
  doi: 10.1109/IGARSS.2005.1526784
– volume: 14
  start-page: 55
  year: 2003
  ident: ref44
  article-title: A survey of spectral unmixing algorithms
  publication-title: Lincoln Lab J
– ident: ref4
  doi: 10.1016/S0168-1699(03)00020-6
– year: 2003
  ident: ref16
  publication-title: Morphological Image Analysis
– year: 1979
  ident: ref24
  article-title: Use of watersheds in contour detection
  publication-title: Proc Int Workshop Image Process Real-Time Edge Motion Detection/Estimation
– ident: ref23
  doi: 10.1109/PDCAT.2006.93
– ident: ref21
  doi: 10.1109/TGRS.2002.802476
– ident: ref6
  doi: 10.1109/TGRS.2009.2031812
– start-page: 341
  year: 2009
  ident: ref34
  publication-title: Multivariate Image Processing
– ident: ref25
  doi: 10.5566/ias.v26.p101-109
– ident: ref20
  doi: 10.1109/34.667881
– year: 2001
  ident: ref40
  publication-title: Introduction to Algorithms
– ident: ref28
  doi: 10.1109/5.54807
– ident: ref17
  doi: 10.1109/TSMCB.2009.2037132
– ident: ref45
  doi: 10.1007/3-540-60298-4_230
– ident: ref43
  doi: 10.1017/CBO9780511801389
– year: 2008
  ident: ref32
  publication-title: HSEG/RHSEG HSEGViewer and HSEGReader User's Manual (Version 1 40)
– ident: ref42
  doi: 10.14358/PERS.70.5.627
– ident: ref31
  doi: 10.1109/LGRS.2007.896331
– ident: ref15
  doi: 10.1109/IGARSS.2008.4779432
– year: 2008
  ident: ref38
  publication-title: Mathematical morphology and graphs Application to interactive medical image segmentation
– ident: ref33
  doi: 10.1109/WARSD.2003.1295173
– ident: ref2
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref7
  doi: 10.1109/TGE.1976.294460
SSID ssj0014517
Score 2.4595351
Snippet A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4122
SubjectTerms Classification
Classifiers
Clustering algorithms
Computer Science
Forests
hyperspectral images
Hyperspectral imaging
Image Processing
Image segmentation
Markers
minimum spanning forest (MSF)
multiple classifiers (MCs)
Partitioning algorithms
Pixel
Pixels
Seeds
Segmentation
Spectra
Support vector machines
Title Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
URI https://ieeexplore.ieee.org/document/5570985
https://www.proquest.com/docview/1030145074
https://www.proquest.com/docview/1770340561
https://www.proquest.com/docview/831171951
https://hal.science/hal-00578869
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51KyHBoUALIqUgg3pCZGsndmIfV0CJENtDH1JvUey1hQTardpsD_31zDjeqOIlblEySax8Y3smM_MNwKGovXIl97lVNuSoITLvAk73gtpdobsRuKQC5_lJ1VzIL5fqcgvej7Uw3vuYfOandBhj-YuVW9OvsiOiizJaTWCCjttQqzVGDKQSqTS6ytGJKFIEU3BzdP759GxI4io4mvvEo3BvD5p8owzI2Frlt_U4bjLHj2G-Gd6QW_J9uu7t1N39wtz4v-N_AjvJ2mSzQT2ewpZf7sKjexyEu_Ag5oC6mz1o5im5kFFTevoDklPDYlRQFltnUlJRxJHNEhE5Q4uXNejJDgWbeAf72PXdM7g4_nT-oclTo4XcobXU584EHbzTnbFOKkOEhcJ7IYM1XttOdaG2PARfSvQnOlUtXCFD4Yra2crX3JXPYXu5WvoXwKxQoZB2IYPT0litLT7W8rJUFEHkIgO--fStSyzk1AzjRxu9EW5aQqsltNqEVgbvxluuBgqOfwm_RTxHOSLPbmZfWzpHdbdaV-YWB7FH4IxSCZcMDjbwt2km37QiOp1oNcsM3oyXcQ5SYKVb-tUaZWpcNyX5Yhmwv8joUqDyoz27_-eXv4SHMTEhljkewHZ_vfav0N7p7euo6D8B8ez6jw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RQg48GiLCBQwiBMiWzuxE_u4AkqA3R5gK_UWxV5bSKBdRLMc-PXMON6o4iVuUTJJnHzjeCYz8w3AM1F75Uruc6tsyFFDZN4FnO4FtbtCdyNwSQXO89OqOZPvztX5DrwYa2G89zH5zE9oM8byl2u3oV9lx0QXZbTahSu47isxVGuNMQOpRCqOrnJ0I4oUwxTcHC_efPg4pHEVHA1-YlK4tArtfqIcyNhc5bcvclxmTm7BfDvAIbvk82TT24n78Qt34_8-wW24mexNNh0U5A7s-NU-3LjEQrgPV2MWqLs4gGae0gsZtaWnfyA5tSxGFWWxeSalFUUk2TRRkTO0eVmDvuxQsolnsFdd3x3C2cnrxcsmT60Wcof2Up87E3TwTnfGOqkMURYK74UM1nhtO9WF2vIQfCnRo-hUtXSFDIUramcrX3NX3oW91Xrl7wGzQoVC2qUMTktjtbZ4WcvLUlEMkYsM-PbVty7xkFM7jC9t9Ee4aQmtltBqE1oZPB9P-TqQcPxL-CniOcoRfXYznbW0jypvta7MdxzEAYEzSiVcMjjawt-muXzRiuh2ot0sM3gyHsZZSKGVbuXXG5Sp8cspyRvLgP1FRpcC1R8t2vt_vvljuNYs5rN29vb0_QO4HtMUYtHjEez13zb-IVo_vX0Ulf4nJtv92A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Spectral-Spatial+Classification+Approach+for+Hyperspectral+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Tarabalka%2C+Yuliya&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Chanussot%2C+Jocelyn&rft.au=Tilton%2C+James+C&rft.date=2010-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=48&rft.issue=11&rft.spage=4122&rft.epage=4132&rft_id=info:doi/10.1109%2FTGRS.2010.2062526&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon