Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 48; no. 11; pp. 4122 - 4132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques. |
---|---|
AbstractList | A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques. |
Author | Chanussot, Jocelyn Tilton, James C Benediktsson, Jón Atli Tarabalka, Yuliya |
Author_xml | – sequence: 1 givenname: Yuliya surname: Tarabalka fullname: Tarabalka, Yuliya email: yuliya.tarabalka@hyperinet.eu organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland – sequence: 2 givenname: Jón Atli surname: Benediktsson fullname: Benediktsson, Jón Atli email: benedikt@hi.is organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland – sequence: 3 givenname: Jocelyn surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr organization: Grenoble Images Speech Signals & Automatics Lab. (GIPSA-Lab.), Grenoble Inst. of Technol. (INPG), St. Martin d'Hères, France – sequence: 4 givenname: James C surname: Tilton fullname: Tilton, James C email: james.c.tilton@nasa.gov organization: NASA Goddard Space Flight Center, Greenbelt, MD, USA |
BackLink | https://hal.science/hal-00578869$$DView record in HAL |
BookMark | eNp9kUFr3DAQhUVIoZu0P6D0Yuih7cHJSJYs6bhsk2xhSyGbnoWsjIiCYruSN5B_Hzm77SGHnIYZvjfMvHdCjvuhR0I-UTijFPT5zdX19oxBaRm0TLD2iCyoEKqGlvNjsgCq25opzd6Tk5zvASgXVC7I-tcuTmGMWG1HdFOysd6Odgo2Vqtocw4-uNIOfbUcxzRYd1f5IVXrpxFTPiiqH3ayH8g7b2PGj4d6Sv5cXtys1vXm99XP1XJTO96IqXbaK49OWd05LnTDNaOIlPtOo-qssF524D02HLi2or11jHvmmHRdixJcc0q-7_fe2WjGFB5sejKDDWa93Jh5BiCkUq1-pIX9umfL5X93mCfzELLDGG2Pwy4b1VAqqRYz-e1NkkoJ5STRzuiXV-j9sEt9-dlQaGZfQfJCyT3l0pBzQm9cmF6MLI6FWFAz52bm3MycmznkVpT0lfLfl29pPu81ARH_80JI0Eo0z1n1pFY |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2012_2198654 crossref_primary_10_1109_JSTARS_2013_2282161 crossref_primary_10_1109_TGRS_2014_2306692 crossref_primary_10_1109_TCYB_2018_2883472 crossref_primary_10_1109_TGRS_2019_2907924 crossref_primary_10_1080_10942912_2020_1778724 crossref_primary_10_1109_TGRS_2014_2319373 crossref_primary_10_1109_TGRS_2015_2503886 crossref_primary_10_1117_1_JEI_26_4_043010 crossref_primary_10_29252_jgit_3_1_45 crossref_primary_10_1109_JSTARS_2018_2860989 crossref_primary_10_1117_1_JRS_13_038505 crossref_primary_10_1109_TGRS_2014_2361618 crossref_primary_10_1109_JSTARS_2011_2173466 crossref_primary_10_1109_TGRS_2019_2955557 crossref_primary_10_1109_TGRS_2016_2562018 crossref_primary_10_1109_TGRS_2019_2952319 crossref_primary_10_1109_TGRS_2011_2176341 crossref_primary_10_1109_JSTARS_2017_2706190 crossref_primary_10_3390_rs13183592 crossref_primary_10_1109_JSTARS_2012_2194696 crossref_primary_10_1109_TGRS_2012_2201730 crossref_primary_10_1109_LGRS_2013_2254108 crossref_primary_10_1109_TNNLS_2015_2461451 crossref_primary_10_1109_TGRS_2013_2263282 crossref_primary_10_4236_jgis_2020_123014 crossref_primary_10_1109_TGRS_2018_2849085 crossref_primary_10_1109_TGRS_2020_2999558 crossref_primary_10_1109_ACCESS_2020_3027776 crossref_primary_10_1109_TIP_2012_2231687 crossref_primary_10_1109_JSTARS_2013_2279693 crossref_primary_10_1117_1_JRS_14_032604 crossref_primary_10_1109_TGRS_2014_2299540 crossref_primary_10_15446_dyna_v84n200_50678 crossref_primary_10_1109_JSTARS_2013_2251969 crossref_primary_10_1109_JSTARS_2013_2290296 crossref_primary_10_1109_TGRS_2016_2514481 crossref_primary_10_1109_JSTARS_2015_2423278 crossref_primary_10_1109_TGRS_2014_2344442 crossref_primary_10_1109_ACCESS_2018_2827403 crossref_primary_10_1109_JSTARS_2016_2536761 crossref_primary_10_1109_TGRS_2014_2318332 crossref_primary_10_1109_TGRS_2012_2197860 crossref_primary_10_1109_TGRS_2013_2264508 crossref_primary_10_1109_TGRS_2022_3144658 crossref_primary_10_1109_JPROC_2012_2197589 crossref_primary_10_1109_JSTARS_2016_2522182 crossref_primary_10_1109_TGRS_2015_2465899 crossref_primary_10_1109_JSTARS_2012_2196978 crossref_primary_10_1109_TGRS_2018_2872875 crossref_primary_10_1109_TGRS_2014_2321405 crossref_primary_10_1109_TGRS_2021_3132013 crossref_primary_10_1109_JSTARS_2011_2170289 crossref_primary_10_1109_LGRS_2014_2380313 crossref_primary_10_1109_LGRS_2012_2191761 crossref_primary_10_1109_JSTARS_2016_2524517 crossref_primary_10_1080_2150704X_2016_1151568 crossref_primary_10_1109_MGRS_2018_2854840 crossref_primary_10_1109_TGRS_2012_2202912 crossref_primary_10_1109_TGRS_2017_2765364 crossref_primary_10_1109_TGRS_2012_2217501 crossref_primary_10_1109_TGRS_2020_3018449 crossref_primary_10_1109_JSTARS_2013_2259470 crossref_primary_10_1109_LGRS_2018_2868862 crossref_primary_10_1109_TGRS_2017_2782005 crossref_primary_10_1109_TGRS_2014_2380475 crossref_primary_10_1109_TGRS_2016_2603190 crossref_primary_10_1109_JSTARS_2016_2634863 crossref_primary_10_1109_JSTARS_2013_2257696 crossref_primary_10_1109_TGRS_2012_2205002 crossref_primary_10_1109_JSTARS_2017_2658948 crossref_primary_10_1109_JSTARS_2020_3006772 crossref_primary_10_1109_TGRS_2011_2157166 crossref_primary_10_1186_s13640_017_0219_9 crossref_primary_10_1109_TGRS_2014_2360672 crossref_primary_10_1109_TGRS_2019_2947200 crossref_primary_10_1109_TGRS_2012_2209656 crossref_primary_10_1109_TGRS_2012_2209657 crossref_primary_10_1109_TGRS_2011_2129595 crossref_primary_10_1109_JSTARS_2016_2588530 crossref_primary_10_1038_s41598_017_07337_y crossref_primary_10_1109_TGRS_2013_2275613 crossref_primary_10_1109_JSTARS_2015_2493887 crossref_primary_10_1109_JSTARS_2022_3173893 crossref_primary_10_1109_JBHI_2021_3065050 crossref_primary_10_1109_JSTARS_2013_2292032 crossref_primary_10_1117_1_JEI_27_6_063032 crossref_primary_10_1007_s12517_020_06289_4 crossref_primary_10_1109_TGRS_2015_2432856 crossref_primary_10_1109_TGRS_2012_2190079 crossref_primary_10_1109_TGRS_2013_2244604 crossref_primary_10_1109_TGRS_2010_2085313 crossref_primary_10_1109_TGRS_2016_2580643 crossref_primary_10_1109_TNNLS_2013_2293061 crossref_primary_10_1109_JSTARS_2014_2328601 crossref_primary_10_1109_TGRS_2019_2908679 crossref_primary_10_1109_TGRS_2013_2274875 |
Cites_doi | 10.1002/0471723800 10.1109/36.225529 10.1109/TGRS.2008.922034 10.1002/0470124628 10.1109/36.774728 10.1109/IGARSS.2008.4779661 10.1109/TGRS.2009.2016214 10.1109/TGRS.2005.846154 10.1109/TPAMI.2005.109 10.1007/978-3-662-03978-6 10.1109/34.87344 10.1002/j.1538-7305.1957.tb01515.x 10.1109/21.155943 10.1109/TGRS.2005.849059 10.1109/TGRS.2009.2029340 10.1109/TIP.2005.864164 10.1109/IGARSS.2005.1526784 10.1016/S0168-1699(03)00020-6 10.1109/PDCAT.2006.93 10.1109/TGRS.2002.802476 10.1109/TGRS.2009.2031812 10.5566/ias.v26.p101-109 10.1109/34.667881 10.1109/5.54807 10.1109/TSMCB.2009.2037132 10.1007/3-540-60298-4_230 10.1017/CBO9780511801389 10.14358/PERS.70.5.627 10.1109/LGRS.2007.896331 10.1109/IGARSS.2008.4779432 10.1109/WARSD.2003.1295173 10.1016/S0034-4257(98)00064-9 10.1109/TGE.1976.294460 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 1XC VOOES |
DOI | 10.1109/TGRS.2010.2062526 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Computer Science |
EISSN | 1558-0644 |
EndPage | 4132 |
ExternalDocumentID | oai_HAL_hal_00578869v1 2724077241 10_1109_TGRS_2010_2062526 5570985 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 1XC VOOES |
ID | FETCH-LOGICAL-c435t-c9f8fec8a9bc45934921ee14fb9e8ba5af7b0ffe34049a56dc24f2c27cb6e70c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 06:20:54 EDT 2025 Fri Jul 11 11:24:13 EDT 2025 Thu Jul 10 20:38:34 EDT 2025 Mon Jun 30 08:36:28 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Tue Jul 01 04:30:27 EDT 2025 Tue Aug 26 17:00:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | segmentation hyperspectral images minimum spanning forest (MSF) Classification multiple classifiers (MCs) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-c9f8fec8a9bc45934921ee14fb9e8ba5af7b0ffe34049a56dc24f2c27cb6e70c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0003-4817-2875 |
OpenAccessLink | https://hal.science/hal-00578869 |
PQID | 1030145074 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2010_2062526 ieee_primary_5570985 hal_primary_oai_HAL_hal_00578869v1 proquest_miscellaneous_1770340561 proquest_miscellaneous_831171951 proquest_journals_1030145074 crossref_primary_10_1109_TGRS_2010_2062526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2010 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref35 ref15 ref36 ref14 ref31 ref33 ref11 ref10 ref2 ref1 ref39 ref17 ref19 ref18 soille (ref16) 2003 stawiaski (ref38) 2008 shapiro (ref30) 2002 ref45 ref23 beucher (ref24) 1979 ref26 ref25 ref20 ref42 tarabalka (ref12) 2009 ref41 ref22 ref21 ref43 gonzalez (ref13) 2002 ref28 ref27 ref29 fauvel (ref9) 2007 ref8 ref7 tilton (ref32) 2008 ref4 ref3 tarabalka (ref34) 2009 ref6 ref5 vapnik (ref37) 1998 cormen (ref40) 2001 keshava (ref44) 2003; 14 |
References_xml | – ident: ref3 doi: 10.1002/0471723800 – ident: ref29 doi: 10.1109/36.225529 – ident: ref10 doi: 10.1109/TGRS.2008.922034 – year: 2002 ident: ref30 publication-title: Computer Vision – ident: ref1 doi: 10.1002/0470124628 – ident: ref18 doi: 10.1109/36.774728 – ident: ref11 doi: 10.1109/IGARSS.2008.4779661 – year: 1998 ident: ref37 publication-title: Statistical Learning Theory – ident: ref14 doi: 10.1109/TGRS.2009.2016214 – ident: ref5 doi: 10.1109/TGRS.2005.846154 – ident: ref22 doi: 10.1109/TPAMI.2005.109 – year: 2009 ident: ref12 article-title: Classification of hyperspectral data using support vector machines and adaptive neighborhoods publication-title: Proc 6th EARSeL SIG IS Workshop – year: 2002 ident: ref13 publication-title: Digital Image Processing – ident: ref41 doi: 10.1007/978-3-662-03978-6 – ident: ref27 doi: 10.1109/34.87344 – ident: ref39 doi: 10.1002/j.1538-7305.1957.tb01515.x – ident: ref19 doi: 10.1109/21.155943 – ident: ref8 doi: 10.1109/TGRS.2005.849059 – year: 2007 ident: ref9 publication-title: Spectral and spatial methods for the classification of urban remote sensing data – ident: ref36 doi: 10.1109/TGRS.2009.2029340 – ident: ref26 doi: 10.1109/TIP.2005.864164 – ident: ref35 doi: 10.1109/IGARSS.2005.1526784 – volume: 14 start-page: 55 year: 2003 ident: ref44 article-title: A survey of spectral unmixing algorithms publication-title: Lincoln Lab J – ident: ref4 doi: 10.1016/S0168-1699(03)00020-6 – year: 2003 ident: ref16 publication-title: Morphological Image Analysis – year: 1979 ident: ref24 article-title: Use of watersheds in contour detection publication-title: Proc Int Workshop Image Process Real-Time Edge Motion Detection/Estimation – ident: ref23 doi: 10.1109/PDCAT.2006.93 – ident: ref21 doi: 10.1109/TGRS.2002.802476 – ident: ref6 doi: 10.1109/TGRS.2009.2031812 – start-page: 341 year: 2009 ident: ref34 publication-title: Multivariate Image Processing – ident: ref25 doi: 10.5566/ias.v26.p101-109 – ident: ref20 doi: 10.1109/34.667881 – year: 2001 ident: ref40 publication-title: Introduction to Algorithms – ident: ref28 doi: 10.1109/5.54807 – ident: ref17 doi: 10.1109/TSMCB.2009.2037132 – ident: ref45 doi: 10.1007/3-540-60298-4_230 – ident: ref43 doi: 10.1017/CBO9780511801389 – year: 2008 ident: ref32 publication-title: HSEG/RHSEG HSEGViewer and HSEGReader User's Manual (Version 1 40) – ident: ref42 doi: 10.14358/PERS.70.5.627 – ident: ref31 doi: 10.1109/LGRS.2007.896331 – ident: ref15 doi: 10.1109/IGARSS.2008.4779432 – year: 2008 ident: ref38 publication-title: Mathematical morphology and graphs Application to interactive medical image segmentation – ident: ref33 doi: 10.1109/WARSD.2003.1295173 – ident: ref2 doi: 10.1016/S0034-4257(98)00064-9 – ident: ref7 doi: 10.1109/TGE.1976.294460 |
SSID | ssj0014517 |
Score | 2.4595351 |
Snippet | A new multiple-classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4122 |
SubjectTerms | Classification Classifiers Clustering algorithms Computer Science Forests hyperspectral images Hyperspectral imaging Image Processing Image segmentation Markers minimum spanning forest (MSF) multiple classifiers (MCs) Partitioning algorithms Pixel Pixels Seeds Segmentation Spectra Support vector machines |
Title | Multiple Spectral-Spatial Classification Approach for Hyperspectral Data |
URI | https://ieeexplore.ieee.org/document/5570985 https://www.proquest.com/docview/1030145074 https://www.proquest.com/docview/1770340561 https://www.proquest.com/docview/831171951 https://hal.science/hal-00578869 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51KyHBoUALIqUgg3pCZGsndmIfV0CJENtDH1JvUey1hQTardpsD_31zDjeqOIlblEySax8Y3smM_MNwKGovXIl97lVNuSoITLvAk73gtpdobsRuKQC5_lJ1VzIL5fqcgvej7Uw3vuYfOandBhj-YuVW9OvsiOiizJaTWCCjttQqzVGDKQSqTS6ytGJKFIEU3BzdP759GxI4io4mvvEo3BvD5p8owzI2Frlt_U4bjLHj2G-Gd6QW_J9uu7t1N39wtz4v-N_AjvJ2mSzQT2ewpZf7sKjexyEu_Ag5oC6mz1o5im5kFFTevoDklPDYlRQFltnUlJRxJHNEhE5Q4uXNejJDgWbeAf72PXdM7g4_nT-oclTo4XcobXU584EHbzTnbFOKkOEhcJ7IYM1XttOdaG2PARfSvQnOlUtXCFD4Yra2crX3JXPYXu5WvoXwKxQoZB2IYPT0litLT7W8rJUFEHkIgO--fStSyzk1AzjRxu9EW5aQqsltNqEVgbvxluuBgqOfwm_RTxHOSLPbmZfWzpHdbdaV-YWB7FH4IxSCZcMDjbwt2km37QiOp1oNcsM3oyXcQ5SYKVb-tUaZWpcNyX5Yhmwv8joUqDyoz27_-eXv4SHMTEhljkewHZ_vfav0N7p7euo6D8B8ez6jw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RQg48GiLCBQwiBMiWzuxE_u4AkqA3R5gK_UWxV5bSKBdRLMc-PXMON6o4iVuUTJJnHzjeCYz8w3AM1F75Uruc6tsyFFDZN4FnO4FtbtCdyNwSQXO89OqOZPvztX5DrwYa2G89zH5zE9oM8byl2u3oV9lx0QXZbTahSu47isxVGuNMQOpRCqOrnJ0I4oUwxTcHC_efPg4pHEVHA1-YlK4tArtfqIcyNhc5bcvclxmTm7BfDvAIbvk82TT24n78Qt34_8-wW24mexNNh0U5A7s-NU-3LjEQrgPV2MWqLs4gGae0gsZtaWnfyA5tSxGFWWxeSalFUUk2TRRkTO0eVmDvuxQsolnsFdd3x3C2cnrxcsmT60Wcof2Up87E3TwTnfGOqkMURYK74UM1nhtO9WF2vIQfCnRo-hUtXSFDIUramcrX3NX3oW91Xrl7wGzQoVC2qUMTktjtbZ4WcvLUlEMkYsM-PbVty7xkFM7jC9t9Ee4aQmtltBqE1oZPB9P-TqQcPxL-CniOcoRfXYznbW0jypvta7MdxzEAYEzSiVcMjjawt-muXzRiuh2ot0sM3gyHsZZSKGVbuXXG5Sp8cspyRvLgP1FRpcC1R8t2vt_vvljuNYs5rN29vb0_QO4HtMUYtHjEez13zb-IVo_vX0Ulf4nJtv92A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Spectral-Spatial+Classification+Approach+for+Hyperspectral+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Tarabalka%2C+Yuliya&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Chanussot%2C+Jocelyn&rft.au=Tilton%2C+James+C&rft.date=2010-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=48&rft.issue=11&rft.spage=4122&rft.epage=4132&rft_id=info:doi/10.1109%2FTGRS.2010.2062526&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |