Molecularly Imprinted Titanium Dioxide: Synthesis Strategies and Applications in Photocatalytic Degradation of Antibiotics from Marine Wastewater: A Review
Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its speci...
Saved in:
Published in | Materials Vol. 18; no. 9; p. 2161 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO2) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO2 (MI-TiO2) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO2 significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO2 in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. |
---|---|
AbstractList | Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO2) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO2 (MI-TiO2) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO2 significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO2 in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO ) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO (MI-TiO ) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO 2 ) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO 2 (MI-TiO 2 ) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO 2 significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO 2 in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO[sub.2]) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO[sub.2] (MI-TiO[sub.2]) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO[sub.2] significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO[sub.2] in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO2) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO2 (MI-TiO2) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO2 significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO2 in complex marine pollution systems and looks forward to its future development in the field of environmental remediation.Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and selective pollution control technologies. Molecular imprinting technology (MIT) provides a new idea for antibiotic pollution control with its specific recognition and targeted removal ability. However, traditional titanium dioxide (TiO2) photocatalysts have limited degradation efficiency and lack of selectivity for low concentrations of antibiotics. This paper reviews the preparation strategy and modification means of molecularly imprinted TiO2 (MI-TiO2) and its composites and systematically explores its application mechanism and performance advantages in marine antibiotic wastewater treatment. It was shown that MI-TiO2 significantly enhanced the selective degradation efficiency of antibiotics such as tetracyclines and sulfonamides through the enrichment of target pollutants by specifically imprinted cavities, combined with the efficient generation of photocatalytic reactive oxygen species (ROS). In addition, emerging technologies such as magnetic/electric field-assisted catalysis and photothermal synergistic effect further optimized the recoverability and stability of the catalysts. This paper provides theoretical support for the practical application of MI-TiO2 in complex marine pollution systems and looks forward to its future development in the field of environmental remediation. |
Audience | Academic |
Author | Liu, Rui Jin, Yu Song, Xiaoxiao Zhao, Luyang Zhang, Yuying Han, Xue Ren, Binqiao |
AuthorAffiliation | 1 Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150009, China; hxyep883@163.com (X.H.); jinyu36@126.com (Y.J.); zly516678@163.com (L.Z.); 18847008955@163.com (Y.Z.) 2 Heilongjiang Institute of Environmental and Sciences, Harbin 150056, China 3 Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China |
AuthorAffiliation_xml | – name: 1 Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150009, China; hxyep883@163.com (X.H.); jinyu36@126.com (Y.J.); zly516678@163.com (L.Z.); 18847008955@163.com (Y.Z.) – name: 3 Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China – name: 2 Heilongjiang Institute of Environmental and Sciences, Harbin 150056, China |
Author_xml | – sequence: 1 givenname: Xue orcidid: 0009-0009-4827-7678 surname: Han fullname: Han, Xue – sequence: 2 givenname: Yu surname: Jin fullname: Jin, Yu – sequence: 3 givenname: Luyang surname: Zhao fullname: Zhao, Luyang – sequence: 4 givenname: Yuying orcidid: 0009-0002-0423-2485 surname: Zhang fullname: Zhang, Yuying – sequence: 5 givenname: Binqiao orcidid: 0000-0002-1158-6495 surname: Ren fullname: Ren, Binqiao – sequence: 6 givenname: Xiaoxiao orcidid: 0009-0007-1407-9062 surname: Song fullname: Song, Xiaoxiao – sequence: 7 givenname: Rui orcidid: 0000-0002-8206-2883 surname: Liu fullname: Liu, Rui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363665$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltrFDEYhoNUbK298QdIwBsRtuYwm5n0pgyth0KLYitehkzyzW7KTLImmdb9Lf5Z04NrKyYXOXxP3o83vM_Rlg8eEHpJyT7nkrwbNW2IZFTQJ2iHSilmVFbV1oP9NtpL6ZKUwTltmHyGtivCBRdivoN-nYUBzDToOKzxybiKzmew-MJl7d004mMXfjoLB_h87fMSkkv4PEedYeEgYe0tblerwRmdXfAJO4-_LEMO5ayHdXYGH8MiantbxqHHrc-uc6FUEu5jGPGZLi0Bf9cpw3XRjQe4xV_hysH1C_S010OCvft1F3378P7i6NPs9PPHk6P2dGYqPs8zIzsmrKwZ54IaCTU0mhrTzRmra6ltI7u-ZsRCxXTTALHUiJoVzlImDO34Ljq8011N3QjWgC8OB1X-YtRxrYJ26nHFu6VahCtFGak5aeqi8OZeIYYfE6SsRpcMDIP2EKakOCNcMl4184K-_ge9DFP0xd8txYpcMbKhFnoA5XwfSmNzI6rahkvJKylIofb_Q5VpYXSm5KR35f7Rg1cPnW4s_slDAd7eASaGlCL0G4QSdZM39Tdv_DfoLciU |
Cites_doi | 10.1021/acssensors.2c02562 10.1016/j.optmat.2025.116720 10.1016/j.jenvman.2022.115030 10.1016/j.matchemphys.2024.129203 10.1021/acssensors.2c00093 10.3390/polym16101368 10.1080/14787210.2020.1754797 10.1016/j.jwpe.2025.106960 10.1016/j.jhazmat.2019.121211 10.1016/j.jwpe.2025.106966 10.1007/s43630-023-00363-y 10.1016/j.ceramint.2020.07.216 10.1016/j.seppur.2024.130203 10.1039/D4NJ03014A 10.1007/s00604-019-3548-9 10.1016/j.jmst.2024.12.081 10.1016/j.chemosphere.2024.143728 10.1016/j.marpolbul.2022.114215 10.3390/polym15030629 10.1080/10584587.2016.1159942 10.1016/j.mtchem.2023.101603 10.1016/j.ecolind.2007.06.002 10.1016/j.apsusc.2020.146844 10.1016/j.scitotenv.2018.10.021 10.1016/j.foodchem.2024.142194 10.1016/j.seppur.2025.131771 10.3103/S1063455X23040021 10.1007/s11144-024-02779-8 10.1016/j.matlet.2023.134460 10.1021/acsinfecdis.0c00913 10.1007/s11368-009-0091-z 10.1016/j.bios.2023.115914 10.1016/j.mtchem.2018.11.010 10.1016/j.envres.2023.118005 10.1039/D3AN00865G 10.1007/s11356-015-5060-z 10.1016/j.optmat.2025.116652 10.1016/j.mtchem.2022.100836 10.1021/acssusresmgt.4c00512 10.1016/j.jallcom.2020.155428 10.1016/j.apcatb.2023.122923 10.1080/10643389.2020.1859289 10.1016/j.jelechem.2020.114394 10.1007/s11270-020-04980-6 10.3390/ma12152434 10.2174/0115734110319990240904105834 10.1016/j.jwpe.2025.107098 10.1039/D4RA03095H 10.1016/j.jclepro.2022.130457 10.1021/es060737+ 10.1021/acs.langmuir.4c02463 10.3390/nano13061068 10.1155/2023/8676430 10.1016/j.jwpe.2024.106909 10.1016/j.cej.2025.160109 10.1016/j.microc.2022.107443 10.1016/j.scitotenv.2023.167005 10.1007/s10971-023-06203-w 10.1007/s10854-025-14540-5 10.1016/j.cej.2024.148906 10.1016/j.jmst.2023.11.065 10.1002/advs.202410990 10.1016/j.infrared.2025.105719 10.3390/ma12060873 10.1016/j.watres.2023.120488 10.1016/j.jsamd.2025.100851 10.1016/j.matlet.2024.136243 10.1016/j.ultsonch.2020.105062 10.1016/j.scitotenv.2015.09.145 10.1016/j.jclepro.2022.135470 10.1016/j.matlet.2024.137767 10.1016/j.jhazmat.2024.136701 10.1016/j.inoche.2024.113294 10.1088/2631-8695/ada553 10.1016/j.jece.2023.110660 10.1016/j.molliq.2025.127368 10.1093/chemle/upae171 10.1016/j.scitotenv.2022.159092 10.1016/j.jcis.2023.07.014 10.1016/j.envres.2023.117295 10.1016/j.scitotenv.2019.134732 10.1016/j.heliyon.2023.e18172 10.1016/j.watres.2025.123206 10.1007/s10853-021-05790-9 10.1016/j.ceramint.2025.01.340 10.1016/j.ese.2023.100308 10.1016/j.chemosphere.2017.02.095 10.1016/j.inoche.2024.113327 10.1016/j.chemosphere.2025.144122 10.1016/j.jhazmat.2024.134637 10.1016/j.cej.2021.131830 10.1016/j.envpol.2023.122425 10.1016/j.molstruc.2024.140077 10.1016/j.cclet.2017.09.007 10.1016/j.scitotenv.2017.08.279 10.1016/j.jhazmat.2023.132031 10.1016/j.marpolbul.2019.110677 10.1007/s10854-025-14259-3 10.1016/j.jwpe.2025.107007 10.3390/membranes13020174 10.1039/D3QI00823A 10.1016/j.envint.2021.106978 10.1016/j.aca.2017.01.003 10.1080/19443994.2015.1027279 10.1016/S1872-2067(19)63452-2 10.1007/s11581-025-06097-4 10.1016/j.jhazmat.2021.126634 10.1016/j.matchemphys.2025.130573 10.1016/j.cherd.2025.02.006 10.1016/j.jenvman.2024.121728 10.1016/j.colsurfa.2024.133575 10.1016/j.chemosphere.2022.136977 10.1016/S1872-2040(19)61200-4 10.1016/j.jece.2024.113827 10.1016/j.scitotenv.2020.141882 10.1016/j.jece.2023.111339 10.1002/slct.202405403 10.1016/j.jallcom.2024.177752 10.1515/ntrev-2020-0045 10.1016/j.marpolbul.2023.114645 10.3390/molecules27238510 10.1039/D3NJ01201H 10.1016/j.cclet.2025.110996 10.1016/j.marenvres.2012.03.007 10.1016/j.apsusc.2020.145607 10.1002/smll.202302274 10.1016/j.chemosphere.2017.10.092 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma18092161 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC12073087 A839934960 40363665 10_3390_ma18092161 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the Key Research and Development Plan of Heilongjiang Province grantid: No. 2024ZXDXA49 – fundername: National Natural Science Foundation of China grantid: No. 42207266 – fundername: the Postdoctoral Funding Project of Heilongjiang Province grantid: No. LBH-Z23261 – fundername: Postdoctoral Funding Project of Heilongjiang Province grantid: LBH-Z23261 – fundername: Key Research and Development Plan of Heilongjiang Province grantid: 2024ZXDXA49 – fundername: Natural Science Foundation of China grantid: 42207266 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PMFND 7SR 8FD ABUWG AZQEC COVID DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c435t-c9b26d9723361c9e7e8a1ccb522779ad89bf720de42a88e0d1c6729e7d126c1b3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:30:36 EDT 2025 Fri Jul 11 17:55:39 EDT 2025 Sun Jul 13 05:16:50 EDT 2025 Thu May 22 02:25:58 EDT 2025 Tue Jun 10 20:57:03 EDT 2025 Sun May 18 01:30:26 EDT 2025 Tue Jul 01 04:57:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | photocatalysis antibiotics molecularly imprinted TiO2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-c9b26d9723361c9e7e8a1ccb522779ad89bf720de42a88e0d1c6729e7d126c1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1158-6495 0009-0002-0423-2485 0009-0009-4827-7678 0009-0007-1407-9062 0000-0002-8206-2883 |
OpenAccessLink | https://www.proquest.com/docview/3203208723?pq-origsite=%requestingapplication% |
PMID | 40363665 |
PQID | 3203208723 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12073087 proquest_miscellaneous_3203923485 proquest_journals_3203208723 gale_infotracmisc_A839934960 gale_infotracacademiconefile_A839934960 pubmed_primary_40363665 crossref_primary_10_3390_ma18092161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-07 |
PublicationDateYYYYMMDD | 2025-05-07 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gu (ref_100) 2024; 12 Chau (ref_31) 2018; 25 Sun (ref_16) 2022; 337 Wang (ref_127) 2024; 473 Anwar (ref_3) 2020; 18 Ma (ref_45) 2022; 158 Sajini (ref_48) 2019; 11 Chhabria (ref_104) 2025; 426 Verma (ref_71) 2023; 11 Xiong (ref_56) 2020; 873 Yang (ref_85) 2025; 159 Lin (ref_103) 2025; 70 Nugraha (ref_22) 2025; 70 Nguyen (ref_43) 2023; 905 Li (ref_57) 2018; 29 Qin (ref_75) 2020; 836 ref_126 He (ref_40) 2018; 650 ref_125 Peiravi (ref_21) 2025; 70 Li (ref_113) 2023; 47 Yuan (ref_44) 2023; 856 Huang (ref_24) 2025; 362 Li (ref_123) 2016; 57 Li (ref_81) 2025; 51 Akhani (ref_69) 2024; 170 Li (ref_95) 2022; 427 Ali (ref_38) 2017; 175 Wang (ref_118) 2024; 482 Kaltoum (ref_83) 2025; 70 Yang (ref_96) 2024; 189 Liu (ref_7) 2024; 40 Xu (ref_107) 2025; 215 Li (ref_117) 2023; 383 Kong (ref_25) 2024; 244 Xie (ref_124) 2023; 336 Tavasol (ref_46) 2020; 65 Fu (ref_102) 2025; 232 Elisabetta (ref_15) 2023; 19 Yu (ref_55) 2019; 47 Burgos (ref_23) 2025; 70 Li (ref_5) 2025; 358 Zhang (ref_29) 2021; 752 Kavi (ref_70) 2025; 381 Lu (ref_6) 2022; 24 Su (ref_97) 2023; 650 Wu (ref_93) 2021; 56 Li (ref_51) 2025; 467 Rahman (ref_66) 2025; 36 Adenike (ref_26) 2023; 188 Li (ref_42) 2023; 311 Jiang (ref_35) 2023; 239 Chen (ref_41) 2022; 52 Kim (ref_37) 2007; 41 Liu (ref_87) 2025; 17 Guo (ref_116) 2016; 168 Qin (ref_18) 2019; 186 Wang (ref_129) 2022; 421 Deng (ref_72) 2024; 53 Qi (ref_61) 2020; 511 Lou (ref_110) 2023; 336 Fu (ref_115) 2021; 232 Su (ref_13) 2023; 459 Huang (ref_53) 2024; 20 Li (ref_49) 2023; 10 Zhao (ref_19) 2025; 483 Ye (ref_74) 2020; 9 Sharafudheen (ref_90) 2024; 366 He (ref_80) 2025; 138 Zhu (ref_64) 2020; 703 Kemper (ref_33) 2008; 8 Wang (ref_4) 2025; 275 ref_54 Zheng (ref_122) 2024; 48 Prabhakaran (ref_77) 2025; 7 Riaz (ref_32) 2018; 191 Li (ref_20) 2025; 12 Yadav (ref_68) 2020; 46 Hosseini (ref_105) 2025; 10 Mehralipour (ref_128) 2023; 9 Uthiravel (ref_59) 2024; 170 Zhang (ref_52) 2025; 145 Dong (ref_82) 2025; 10 ref_60 Li (ref_120) 2020; 383 Chen (ref_27) 2021; 7 Alygizakis (ref_39) 2016; 541 Rana (ref_47) 2023; 30 ref_67 Balagoutham (ref_78) 2025; 36 Tang (ref_98) 2025; 1010 Wang (ref_109) 2023; 344 Ye (ref_9) 2022; 7 Rescigno (ref_63) 2023; 22 Meirelles (ref_84) 2025; 2 Appu (ref_88) 2025; 337 Kamel (ref_12) 2024; 14 Xu (ref_28) 2023; 244 Alimard (ref_76) 2024; 368 Almutairi (ref_86) 2025; 31 Louros (ref_17) 2022; 313 Ananya (ref_11) 2022; 179 (ref_36) 2018; 612 Shen (ref_108) 2024; 363 Grzegorska (ref_99) 2023; 11 Zheng (ref_30) 2012; 78 Chen (ref_111) 2023; 8 Wu (ref_89) 2020; 527 ref_112 Wang (ref_94) 2020; 41 Xu (ref_34) 2009; 9 Fu (ref_58) 2025; 1321 Arora (ref_79) 2025; 373 Liu (ref_91) 2025; 160 Vo (ref_65) 2023; 108 Lin (ref_73) 2023; 2023 Zhang (ref_119) 2024; 17 Campuzano (ref_10) 2017; 960 ref_106 Asadbeigi (ref_62) 2023; 45 Riedel (ref_101) 2025; 506 He (ref_50) 2022; 184 Solmaz (ref_14) 2023; 148 Qin (ref_121) 2020; 150 ref_1 Mendonca (ref_92) 2024; 318 ref_2 Fu (ref_114) 2024; 687 ref_8 |
References_xml | – volume: 8 start-page: 858 year: 2023 ident: ref_111 article-title: Highly Specific Antibiotic Detection on Water-Stable Black Phosphorus Field-Effect Transistors publication-title: Acs Sens. doi: 10.1021/acssensors.2c02562 – volume: 160 start-page: 116720 year: 2025 ident: ref_91 article-title: Photocatalytic degradation performance of Ag-modified flexible TiO2 nanofiber film publication-title: Opt. Mater. doi: 10.1016/j.optmat.2025.116720 – volume: 313 start-page: 115030 year: 2022 ident: ref_17 article-title: Sulfadiazine’s photodegradation using a novel magnetic and reusable carbon based photocatalyst: Photocatalytic efficiency and toxic impacts to marine bivalves publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115030 – volume: 318 start-page: 129203 year: 2024 ident: ref_92 article-title: Ethylenediamine-modified activated carbon photocatalyst with the highest TiO2 attachment/dispersion for improved photodegradation of sulfamethazine publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2024.129203 – volume: 7 start-page: 1819 year: 2022 ident: ref_9 article-title: Fully Inkjet-Printed Chemiresistive Sensor Array Based on Molecularly Imprinted Sol-Gel Active Materials publication-title: ACS Sens. doi: 10.1021/acssensors.2c00093 – ident: ref_126 doi: 10.3390/polym16101368 – volume: 18 start-page: 697 year: 2020 ident: ref_3 article-title: Improper disposal of unused antibiotics: An often overlooked driver of antimicrobial resistance publication-title: Expert. Rev. Anti-Infect. Ther. doi: 10.1080/14787210.2020.1754797 – volume: 70 start-page: 106960 year: 2025 ident: ref_22 article-title: A review of the recent advancements in adsorption technology for removing antibiotics from hospital wastewater publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2025.106960 – volume: 383 start-page: 121211 year: 2020 ident: ref_120 article-title: Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121211 – volume: 70 start-page: 106966 year: 2025 ident: ref_23 article-title: Effects of combined antibiotics on the biomass stability and the occurrence of antibiotic-resistant bacteria in activated sludge used for domestic wastewater treatment publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2025.106966 – volume: 22 start-page: 1223 year: 2023 ident: ref_63 article-title: Photocatalytic activity of P-doped TiO2 photocatalyst publication-title: Photochem. Photobiol. Sci. doi: 10.1007/s43630-023-00363-y – volume: 46 start-page: 27308 year: 2020 ident: ref_68 article-title: How different dopants leads to difference in photocatalytic activity in doped TiO2? publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.216 – volume: 358 start-page: 130203 year: 2025 ident: ref_5 article-title: Molecularly imprinted composite membranes with the dual imprinted network for highly selective separation of acteoside publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.130203 – volume: 48 start-page: 15567 year: 2024 ident: ref_122 article-title: Selective adsorption and photodegradation of residual norfloxacin in water using a mTiO2 based inorganic molecularly imprinted magnetic photocatalyst publication-title: New J. Chem. doi: 10.1039/D4NJ03014A – volume: 186 start-page: 428 year: 2019 ident: ref_18 article-title: Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles publication-title: Microchim. Acta doi: 10.1007/s00604-019-3548-9 – volume: 232 start-page: 181 year: 2025 ident: ref_102 article-title: 2D/2D F-doped TiO2/CdS S-scheme heterojunction photocatalyst for enhanced photocatalytic H2 generation publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2024.12.081 – volume: 368 start-page: 143728 year: 2024 ident: ref_76 article-title: Achieving high photocatalytic NOx removal activity using a Bi/BiOBr/TiO2 composite photocatalyst publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.143728 – volume: 184 start-page: 114215 year: 2022 ident: ref_50 article-title: Selective capture and determination of doxycycline in marine sediments by using magnetic imprinting dispersive solid-phase extraction coupled with high performance liquid chromatography publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.114215 – ident: ref_8 doi: 10.3390/polym15030629 – volume: 168 start-page: 170 year: 2016 ident: ref_116 article-title: Preparation of Si doped molecularly imprinted TiO2 photocatalyst and its degradation to antibiotic wastewater publication-title: Integr. Ferroelectr. doi: 10.1080/10584587.2016.1159942 – volume: 30 start-page: 101603 year: 2023 ident: ref_47 article-title: Recent advances in photocatalytic removal of sulfonamide pollutants from waste water by semiconductor heterojunctions: A review publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101603 – volume: 8 start-page: 1 year: 2008 ident: ref_33 article-title: Veterinary antibiotics in the aquatic and terrestrial environment publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2007.06.002 – volume: 527 start-page: 146844 year: 2020 ident: ref_89 article-title: Improved photocatalytic efficacy of TiO2 open nanotube arrays: A view by XAS publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146844 – volume: 650 start-page: 3101 year: 2018 ident: ref_40 article-title: Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.021 – volume: 467 start-page: 142194 year: 2025 ident: ref_51 article-title: Selective adsorption-photocatalytic synergistic breakdown of sulfamethazine in milk using loaded molecularly imprinted Ag3PO4/TiO2 films publication-title: Food Chem. doi: 10.1016/j.foodchem.2024.142194 – volume: 362 start-page: 131771 year: 2025 ident: ref_24 article-title: A photocatalytic system for the Alleviation of ocean acidification and antibiotic pollution publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2025.131771 – volume: 45 start-page: 303 year: 2023 ident: ref_62 article-title: Synthesis, Characterization and Optimization of Highly Selective Molecularly Imprinted Ni and F Co-Doped TiO2 Photocatalyst for Effective Removal and Photocatalytic Decomposition of Paracetamol publication-title: J. Water Chem. Technol. doi: 10.3103/S1063455X23040021 – volume: 138 start-page: 1153 year: 2025 ident: ref_80 article-title: Enhanced photocatalytic treatment of oilfield wastewater using TiO2/MoS2 nanocomposites prepared via sol-gel and hydrothermal methods publication-title: React. Kinet. Mech. Catal. doi: 10.1007/s11144-024-02779-8 – volume: 344 start-page: 134460 year: 2023 ident: ref_109 article-title: MnFe2O4/zeolite composite catalyst for activating peroxymonosulfate to efficiently degrade antibiotic publication-title: Mater. Lett. doi: 10.1016/j.matlet.2023.134460 – volume: 7 start-page: 884 year: 2021 ident: ref_27 article-title: A Marine Antibiotic Kills Multidrug-Resistant Bacteria without Detectable High-Level Resistance publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.0c00913 – volume: 9 start-page: 364 year: 2009 ident: ref_34 article-title: Transport and adsorption of antibiotics by marine sediments in a dynamic environment publication-title: J. Soils Sediment. doi: 10.1007/s11368-009-0091-z – ident: ref_60 doi: 10.1016/j.bios.2023.115914 – volume: 11 start-page: 283 year: 2019 ident: ref_48 article-title: A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.11.010 – volume: 244 start-page: 118005 year: 2024 ident: ref_25 article-title: Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments publication-title: Environ. Res. doi: 10.1016/j.envres.2023.118005 – volume: 148 start-page: 3379 year: 2023 ident: ref_14 article-title: Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: A biosensor for visual anthrax monitoring publication-title: Analyst doi: 10.1039/D3AN00865G – volume: 25 start-page: 7147 year: 2018 ident: ref_31 article-title: Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5060-z – volume: 159 start-page: 116652 year: 2025 ident: ref_85 article-title: Constructing Ag-TiO2-g-C3N4 S-scheme heterojunctions for photocatalytic degradation of malachite green publication-title: Opt. Mater. doi: 10.1016/j.optmat.2025.116652 – volume: 24 start-page: 100836 year: 2022 ident: ref_6 article-title: Bio-synthesis of molecularly imprinted membrane with photo-regeneration availability for selective separation applications publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.100836 – volume: 2 start-page: 524 year: 2025 ident: ref_84 article-title: Valorization of Lignocellulosic Biomass for Photocatalytic Applications: Development of Activated Carbon-TiO2 Composites publication-title: ACS Sustain. Resour. Manag. doi: 10.1021/acssusresmgt.4c00512 – volume: 836 start-page: 155428 year: 2020 ident: ref_75 article-title: TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155428 – volume: 336 start-page: 122923 year: 2023 ident: ref_110 article-title: Oxygen vacancy engineered molecular imprinted TiO2 for preferential florfenicol remediation by electro-reductive approach: Enhanced dehalogenation performance and elimination of antibiotic resistance genes publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2023.122923 – volume: 52 start-page: 1401 year: 2022 ident: ref_41 article-title: Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process publication-title: Crit. Rev. Env. Sci. Technol. doi: 10.1080/10643389.2020.1859289 – volume: 873 start-page: 114394 year: 2020 ident: ref_56 article-title: In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114394 – volume: 232 start-page: 12 year: 2021 ident: ref_115 article-title: Study on the Degradation of Chlortetracycline Hydrochloride in Mariculture Wastewater by Zn0.75Mn0.75Fe1.5O4/ZnFe2O4/ZnO Photocatalyst publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04980-6 – ident: ref_112 doi: 10.3390/ma12152434 – volume: 20 start-page: e15734110319990 year: 2024 ident: ref_53 article-title: Study on the Degradation Performance of Novel Molecularly Imprinted Nd-TiO2 for Oxytetracycline Hydrochloride publication-title: Curr. Anal. Chem. doi: 10.2174/0115734110319990240904105834 – volume: 70 start-page: 107098 year: 2025 ident: ref_83 article-title: Novel sol-gel synthesis of TiO2/BiPO4 composite for enhanced photocatalytic degradation of carbamazepine under UV and visible light: Kinetic, identification of photoproducts and mechanistic insights publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2025.107098 – volume: 14 start-page: 20163 year: 2024 ident: ref_12 article-title: Molecularly imprinted polymer-based electrochemical sensors for monitoring the persistent organic pollutants chlorophenols publication-title: RSC Adv. doi: 10.1039/D4RA03095H – volume: 337 start-page: 130457 year: 2022 ident: ref_16 article-title: Hybrid amino-functionalized TiO2/sodium lignosulfonate surface molecularly imprinted polymer for effective scavenging of methylene blue from wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130457 – volume: 41 start-page: 50 year: 2007 ident: ref_37 article-title: Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices publication-title: Environ. Sci. Technol. doi: 10.1021/es060737+ – volume: 40 start-page: 19260 year: 2024 ident: ref_7 article-title: Incorporation of Hydroquinone in the Synthesis of Bi2Ti2O7-TiO2 Contributes to Higher Efficiency of Hydroquinone Degradation: Preparation, Characterization, and Photocatalytic Mechanism publication-title: Langmuir doi: 10.1021/acs.langmuir.4c02463 – ident: ref_67 doi: 10.3390/nano13061068 – volume: 2023 start-page: 8676430 year: 2023 ident: ref_73 article-title: Preparation of TiO2 Grafted on Graphene and Study on their Photocatalytic Properties publication-title: Int. J. Photoenergy doi: 10.1155/2023/8676430 – volume: 70 start-page: 106909 year: 2025 ident: ref_103 article-title: Developments and challenges on crystal forms and morphologies of nano-TiO2 photocatalysts in air and wastewater treatment publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2024.106909 – volume: 506 start-page: 160109 year: 2025 ident: ref_101 article-title: Improving the photocatalytic degradation of EDTMP: Effect of doped NPs (Na, Y, and K) into the lattice of modified Au/TiO2 nano-catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.160109 – volume: 179 start-page: 107443 year: 2022 ident: ref_11 article-title: A magnetic molecularly imprinted polymer hierarchical composite adsorbent embedded with a zinc oxide carbon foam nanocomposite for the extraction of sulfonamides publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107443 – volume: 905 start-page: 167005 year: 2023 ident: ref_43 article-title: Sorption of oxytetracycline to microsized colloids under concentrated salt solution: A perspective on terrestrial-to-ocean transfer of antibiotics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.167005 – volume: 108 start-page: 423 year: 2023 ident: ref_65 article-title: Enhanced photocatalytic degradation of organic dyes using Ce-doped TiO2 thin films publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-023-06203-w – volume: 36 start-page: 472 year: 2025 ident: ref_78 article-title: Synergistic photocatalytic activity of LaFeO3/TiO2 nanocomposites for methylene blue degradation under UV Light publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-025-14540-5 – volume: 482 start-page: 148906 year: 2024 ident: ref_118 article-title: Single-atom iron cocatalyst for highly enhancing TiO2 photocatalytic degradation of antibiotics and antibiotic-resistant genes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.148906 – volume: 189 start-page: 86 year: 2024 ident: ref_96 article-title: In situ irradiated XPS investigation on S-scheme TiO2/Bi2S3 photocatalyst with high interfacial charge separation for highly efficient photothermal catalytic CO2 reduction publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.11.065 – volume: 12 start-page: 2410990 year: 2025 ident: ref_20 article-title: Plant Diversity Reduces the Risk of Antibiotic Resistance Genes in Agroecosystems publication-title: Adv. Sci. doi: 10.1002/advs.202410990 – volume: 145 start-page: 105719 year: 2025 ident: ref_52 article-title: The optical and electrical properties of V2O5-TiO2/PI Nanocomposite film prepared by the Sol-Gel method publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2025.105719 – ident: ref_125 doi: 10.3390/ma12060873 – volume: 244 start-page: 120488 year: 2023 ident: ref_28 article-title: A global atlas of marine antibiotic resistance genes and their expression publication-title: Water Res. doi: 10.1016/j.watres.2023.120488 – volume: 10 start-page: 100851 year: 2025 ident: ref_105 article-title: Synergistic photothermal conversion and visible-light photodegradation of antibiotic in S-type TiO2 derived Ti3C2-MXene loaded on NaYF4: Tm3+, Er3+, Yb3+ @BiOI publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2025.100851 – volume: 363 start-page: 136243 year: 2024 ident: ref_108 article-title: Dye-encapsulated metal-organic frameworks as highly sensitive fluorescent sensors for tetracycline antibiotics in water publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.136243 – volume: 65 start-page: 105062 year: 2020 ident: ref_46 article-title: Design a new photocatalyst of sea sediment/titanate to remove cephalexin antibiotic from aqueous media in the presence of sonication/ultraviolet/hydrogen peroxide: Pathway and mechanism for degradation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105062 – volume: 541 start-page: 1097 year: 2016 ident: ref_39 article-title: Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.145 – volume: 383 start-page: 135470 year: 2023 ident: ref_117 article-title: Selective photocatalytic removal of sulfonamide antibiotics: The performance differences in molecularly imprinted TiO2 synthesized using four template molecules publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135470 – volume: 381 start-page: 137767 year: 2025 ident: ref_70 article-title: Combined influence of vanadium doping and rGO composite partnering on the photocatalytic ability of TiO2 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.137767 – volume: 483 start-page: 136701 year: 2025 ident: ref_19 article-title: Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.136701 – volume: 170 start-page: 113294 year: 2024 ident: ref_69 article-title: Photoluminescence and photocatalytic activity of sol gel synthesized Mg doped TiO2 nanoparticles publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2024.113294 – volume: 7 start-page: 015002 year: 2025 ident: ref_77 article-title: Development of Eco-friendly CQDs/TiO2 nanocomposite for enhanced photocatalytic degradation of methyl orange dye publication-title: Eng. Res. Express doi: 10.1088/2631-8695/ada553 – volume: 11 start-page: 110660 year: 2023 ident: ref_99 article-title: Magnetically recyclable TiO2/MXene/MnFe2O4 photocatalyst for enhanced peroxymonosulphate-assisted photocatalytic degradation of carbamazepine and ibuprofen under simulated solar light publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.110660 – volume: 426 start-page: 127368 year: 2025 ident: ref_104 article-title: Unveiling the biomedical and photocatalytic properties of copper(II) imidazole complex-functionalized TiO2 nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2025.127368 – volume: 53 start-page: upae171 year: 2024 ident: ref_72 article-title: Morphological effect of TiO2 nanoparticles in TiO2/g-C3N4 heterojunctions on photocatalytic dye degradation publication-title: Chem. Lett. doi: 10.1093/chemle/upae171 – volume: 856 start-page: 159092 year: 2023 ident: ref_44 article-title: Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159092 – volume: 650 start-page: 613 year: 2023 ident: ref_97 article-title: Simultaneous photothermal and photocatalytic MOF- derived C/TiO2 composites for high-efficiency solar driven purification of sewage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.07.014 – volume: 239 start-page: 117295 year: 2023 ident: ref_35 article-title: Antibiotics and antibiotic resistance genes in the water sources of the Wuhan stretch of the Yangtze River: Occurrence, distribution, and ecological risks publication-title: Environ. Res. doi: 10.1016/j.envres.2023.117295 – volume: 703 start-page: 134732 year: 2020 ident: ref_64 article-title: Evaluation of photocatalytic selectivity of Ag/Zn modified molecularly imprinted TiO2 by multiwavelength measurement publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134732 – volume: 9 start-page: e18172 year: 2023 ident: ref_128 article-title: Synthesis and characterization of rGO/Fe0/Fe3O4/TiO2 nanocomposite and application of photocatalytic process in the decomposition of penicillin G from aqueous publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e18172 – volume: 17 start-page: 19453 year: 2025 ident: ref_87 article-title: A Novel In Situ Biosynthesized Bacterial Cellulose/MoS2/TiO2 Composite Film for Efficient Removal of Dyes and Pathogenic Bacteria from Industrial Wastewater under Sunlight Illumination publication-title: ACS Appl. Mater. Interfaces – volume: 275 start-page: 123206 year: 2025 ident: ref_4 article-title: Synergistic effects of quaternary ammonium compounds and antibiotics on the evolution of antibiotic resistance publication-title: Water Res. doi: 10.1016/j.watres.2025.123206 – volume: 56 start-page: 7936 year: 2021 ident: ref_93 article-title: Synthesis of functional conjugated microporous polymer/TiO2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-05790-9 – volume: 51 start-page: 14966 year: 2025 ident: ref_81 article-title: Powering efficient dye degradation based on nanostructured FeOOH/TiO2 composite with hydrophilic surfaces and unparalleled photocatalytic performance publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2025.01.340 – volume: 17 start-page: 100308 year: 2024 ident: ref_119 article-title: Selective removal of sulfamethoxazole by a novel double Z-scheme photocatalyst: Preferential recognition and degradation mechanism publication-title: Environ. Sci. Ecotechnol. doi: 10.1016/j.ese.2023.100308 – volume: 175 start-page: 505 year: 2017 ident: ref_38 article-title: Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.095 – volume: 170 start-page: 113327 year: 2024 ident: ref_59 article-title: Green synthesis and characterization of TiO2 and Ag-doped TiO2 nanoparticles for photocatalytic and antimicrobial applications publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2024.113327 – volume: 373 start-page: 144122 year: 2025 ident: ref_79 article-title: Effect of doping in TiO2/chitosan composite on adsorptive-photocatalytic removal of gallic acid from water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2025.144122 – volume: 473 start-page: 134637 year: 2024 ident: ref_127 article-title: Carbonized polymer dots-based molecular imprinting: An adsorbent with enhanced selectivity for highly efficient recognition and removal of ceftiofur sodium from complex samples publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.134637 – volume: 427 start-page: 131830 year: 2022 ident: ref_95 article-title: Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131830 – volume: 336 start-page: 122425 year: 2023 ident: ref_124 article-title: The erythromycin sorption removal at environmentally relevant concentration based on molecular imprinted polymer: Performance and mechanism publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2023.122425 – volume: 1321 start-page: 140077 year: 2025 ident: ref_58 article-title: Fabrication of the mesoporous TiO2 modified Eu-CN system for the adsorption of tetracycline antibiotics publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2024.140077 – volume: 29 start-page: 527 year: 2018 ident: ref_57 article-title: Fe-doped TiO2/SiO2 nanofibrous membranes with surface molecular imprinted modification for selective photodegradation of 4-nitrophenol publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.09.007 – volume: 612 start-page: 649 year: 2018 ident: ref_36 article-title: Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.279 – volume: 459 start-page: 132031 year: 2023 ident: ref_13 article-title: Surface imprinted-covalent organic frameworks for efficient solid-phase extraction of fluoroquinolones in food samples publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132031 – volume: 150 start-page: 110677 year: 2020 ident: ref_121 article-title: Selective extraction and detection of norfloxacin from marine sediment and seawater samples using molecularly imprinted silica sorbents coupled with HPLC publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.110677 – volume: 36 start-page: 236 year: 2025 ident: ref_66 article-title: Enhanced photocatalytic degradation efficiency of TiO2 nanotubes by potassium doping publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-025-14259-3 – volume: 70 start-page: 107007 year: 2025 ident: ref_21 article-title: Design and fabrication of a microchannel plasma reactor for pharmaceutical wastewater treatment publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2025.107007 – ident: ref_106 doi: 10.3390/membranes13020174 – volume: 10 start-page: 4456 year: 2023 ident: ref_49 article-title: Preparation of inorganic-framework molecularly imprinted TiO2/SiO2 nanofibers by one-step electrospinning and their highly selective photodegradation publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00823A – volume: 158 start-page: 106978 year: 2022 ident: ref_45 article-title: Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106978 – volume: 960 start-page: 1 year: 2017 ident: ref_10 article-title: Electrochemical sensors based on magnetic molecularly imprinted polymers: A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.01.003 – volume: 57 start-page: 408 year: 2016 ident: ref_123 article-title: Enhanced adsorption of norfloxacin on modified TiO2 particles prepared via surface molecular imprinting technique publication-title: Desalination Water Treat. doi: 10.1080/19443994.2015.1027279 – volume: 41 start-page: 95 year: 2020 ident: ref_94 article-title: Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63452-2 – volume: 31 start-page: 2789 year: 2025 ident: ref_86 article-title: Enhanced photocatalytic degradation of methylene blue using a ZnO-TiO2/rGO nanocomposite under UV irradiation publication-title: Ionics doi: 10.1007/s11581-025-06097-4 – volume: 421 start-page: 126634 year: 2022 ident: ref_129 article-title: Sheet-on-sheet TiO2/Bi2MoO6 heterostructure for enhanced photocatalytic amoxicillin degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126634 – volume: 337 start-page: 130573 year: 2025 ident: ref_88 article-title: Type-1 heterojunction TiO2 Nanotubes/Ag2CrO4 nanoparticles: Advanced photocatalytic and electrochemical applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2025.130573 – volume: 215 start-page: 386 year: 2025 ident: ref_107 article-title: Study on the matching of adsorption rate and photocatalytic rate under electric field synergy to enhance the degradation performance of cyclohexane publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2025.02.006 – volume: 366 start-page: 121728 year: 2024 ident: ref_90 article-title: Biogenically synthesized porous TiO2 nanostructures for advanced anti-bacterial, electrochemical, and photocatalytic applications publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.121728 – volume: 687 start-page: 133575 year: 2024 ident: ref_114 article-title: Preparation of surface molecular-imprinted MOFs for selective degradation of tetracycline antibiotics in wastewater publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2024.133575 – volume: 311 start-page: 136977 year: 2023 ident: ref_42 article-title: Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136977 – volume: 47 start-page: 1776 year: 2019 ident: ref_55 article-title: Preparation of Molecularly Imprinted Carbon Microspheres by One-Pot Hydrothermal Method and Their Adsorption Properties to Perfluorooctane Sulfonate publication-title: Chin. J. Anal. Chem. doi: 10.1016/S1872-2040(19)61200-4 – volume: 12 start-page: 113827 year: 2024 ident: ref_100 article-title: Synthesis of Z-scheme amorphous WO3-loaded TiO2 photocatalyst for enhanced photocatalytic degradation of dichloromethane: Internal electric field and mechanism exploration publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113827 – ident: ref_2 – volume: 752 start-page: 141882 year: 2021 ident: ref_29 article-title: Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: Storm caused the increase of antibiotics usage publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141882 – volume: 11 start-page: 111339 year: 2023 ident: ref_71 article-title: Augmentation of photocatalytic degradation of methylene blue dye using lanthanum and iodine Co-doped TiO2 nanoparticles, their regeneration and reuse; and preliminary phytotoxicity studies for potential use of treated water publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.111339 – volume: 10 start-page: e202405403 year: 2025 ident: ref_82 article-title: Bi2O3-Modified Rice-Like Brookite TiO2 for Enhancing the Photocatalytic Activity under Visible-Light Irradiation publication-title: ChemistrySelect doi: 10.1002/slct.202405403 – volume: 1010 start-page: 177752 year: 2025 ident: ref_98 article-title: Ag2S/TiO2 Z-scheme heterojunction under magnetic field: Enhanced photocatalytic degradation of tetracycline publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2024.177752 – volume: 9 start-page: 558 year: 2020 ident: ref_74 article-title: Effect of ball milling process on the photocatalytic performance of CdS/TiO2 composite publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2020-0045 – volume: 188 start-page: 114645 year: 2023 ident: ref_26 article-title: Usage of antibiotics in aquaculture and the impact on coastal waters publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2023.114645 – ident: ref_54 doi: 10.3390/molecules27238510 – volume: 47 start-page: 13106 year: 2023 ident: ref_113 article-title: Efficient identification and degradation of tetracycline hydrochloride from water by molecularly imprinted core-shell structured SiO2@TiO2 publication-title: New J. Chem. doi: 10.1039/D3NJ01201H – ident: ref_1 doi: 10.1016/j.cclet.2025.110996 – volume: 78 start-page: 26 year: 2012 ident: ref_30 article-title: Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2012.03.007 – volume: 511 start-page: 145607 year: 2020 ident: ref_61 article-title: Facile synthesis of Pr-doped molecularly imprinted TiO2 mesocrystals with high preferential photocatalytic degradation performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145607 – volume: 19 start-page: 2302274 year: 2023 ident: ref_15 article-title: Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature publication-title: Small doi: 10.1002/smll.202302274 – volume: 191 start-page: 704 year: 2018 ident: ref_32 article-title: Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.092 |
SSID | ssj0000331829 |
Score | 2.4073098 |
SecondaryResourceType | review_article |
Snippet | Antibiotic residues in the marine environment pose a serious threat to ecosystems and human health, and there is an urgent need to develop efficient and... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2161 |
SubjectTerms | Adsorption Antibiotics Aquaculture Biodegradation Catalysis Control systems Drug resistance Ecosystems Efficiency Electric fields Energy consumption Environmental protection Low concentrations Marine environment Methylene blue Microorganisms Molecular imprinting Oxidation Oxytetracycline Pharmaceutical industry Photocatalysis Photodegradation Pollutants Pollution Pollution control Recoverability Review Salinity Selectivity Sulfonamides Synergistic effect Tetracyclines Titanium Titanium dioxide Wastewater Wastewater treatment |
Title | Molecularly Imprinted Titanium Dioxide: Synthesis Strategies and Applications in Photocatalytic Degradation of Antibiotics from Marine Wastewater: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40363665 https://www.proquest.com/docview/3203208723 https://www.proquest.com/docview/3203923485 https://pubmed.ncbi.nlm.nih.gov/PMC12073087 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9gIHxJuUUhmBxClq7CS20wsKtNsKaasKWrG3KH5EjUSd0uxK7G_hzzKzSbYbDlwiRXZkKzMefzP2fEPIBwubRAU4IUwlAweltCbMdOrgESWaRZWwApOTZ-fi7Cr5Ok_nfcCt7a9VDjZxbahtYzBGfhivS30ryeNPt79CrBqFp6t9CY0dsgsmWKkJ2f18cn7xbRNliWLQWZ51vKQx-PeHNyUyVnEm2Ggn-tceb21I48uSW7vP9Al53MNGmndyfkoeOP-MPNoiE3xO_syGSrc_VxRjBcgEYeklOP--Xt7Q47r5XVt3RL-vPKC-tm7pQE3rWlp6S_Otw2xae3px3SyadXxnBcPSY-SV6Eow0aaiucd0kwZpnikmqdBZiZmE9EfZYkAO5HVEc9qdPbwgV9OTyy9nYV96ITSAnxahyTQXFiuSxYKZzEmnSmaMBrQmZVZalelK8si6hJdKucgyIwCmO2kZF4bp-CWZ-Ma714RGacVjaWSkXZwYF-sI-Y-jVGeuYtokAXk_iKG47Rg2CvBMUFjFvbAC8hElVOCyg39jyj57AMZAAqsiV4i0EvDHArI_6gnLxYybBxkX_XJti3vlCsi7TTN-iVfQvGuWXR9Aw4lKA_KqU4nNfBM8DhcCWtRIWTYdkMR73OLr6zWZN-NoZJXc-_-83pCHHCsP41VLuU8mi7ulewtwaKEPyI6anh70mg9vp3P2FyZaELM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASNAnKLaTmInlRCKWJYt7VZIbEVvIX5EjUSTQnYF-1v4D_xGZpLNdsOBWy-5jPNQZjzzeez5hpCXFoJEATjBjxSHBUpujZ_oyMGFhZqzQlqJxcnTIzk5Dj-eRCdb5E9fC4PHKnuf2DpqWxvMke8GbavvWIng7fl3H7tG4e5q30KjM4sDt_wJS7bmzf4I9PtKiPH72buJv-oq4BuABnPfJFpIi822AslN4pSLc26MBiCiVJLbONGFEsy6UORx7JjlRgICdcpyIQ3XATz3CrkaBhDJsTJ9_GGd02EBzBCRdCyoIGe7ZznyYwku-SDu_ev9N8Lf8GjmRqwb3yI3VyCVpp1V3SZbrrpDbmxQF94lv6d9X91vS4qZCeSdsHRWAtgsF2d0VNa_Suv26OdlBRizKRvaE-G6huaVpenG1jktK_rptJ7XbTZpCa-lI2Sx6Bo-0bqgaYXFLTWSSlMsiaHTHOsW6Ze8wfQfWMceTWm303GPHF-KSu6T7aqu3ENCWVSIQBnFtAtC4wLNkG2ZRTpxBdcm9MiLXg3ZecfnkcE6CJWVXSjLI69RQxlOcvg3Jl_VKsA7kC4rS2PEdSGs_jyyMxgJk9MMxb2Os5VzaLILU_bI87UY78QDb5WrF90YwN5hHHnkQWcS6-8NcfNdSpDEA2NZD0DK8KGkKk9b6nAu0KXH6tH_v-sZuTaZTQ-zw_2jg8fkusCex3jIU-2Q7fmPhXsCQGyun7bWT8nXy55ufwHJUEo- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwJFFgEiJMV7_qxdiWEAmnUUhJF0Kq9Ge_DqiVqF5wI8lv4J_w6ZmI7jTlw6yWX3cRWZmbnm9mZbwBeGXQSGeIEJ5AcA5TUaCdWgcUP11fczUITUnPyZBruH_sfT4PTLfjT9sJQWWV7Jq4OalNqypEPvNWo70gKb5A1ZRGz0fjdxXeHJkjRTWs7TqNWkUO7_InhW_X2YISyfi3EeO_ow77TTBhwNMKEuaNjJUJDg7e8kOvYShulXGuFoETKODVRrDIpXGN9kUaRdQ3XIaJRKw0XoebKw9-9BtuSoqIebL_fm84-rzM8rof2IuKaE9XzYndwnhJbluAh73jBf33BhjPsFmpueL7xbbjVQFY2rHXsDmzZ4i7c3CAyvAe_J-2U3W9LRnkKYqEw7ChH6JkvztkoL3_lxu6yL8sCEWeVV6ylxbUVSwvDhhsX6Swv2OysnJer3NISH8tGxGlRj39iZcaGBbW6lEQxzahBhk1S6mJkJ2lFyUDUlV02ZPW9x304vhKhPIBeURb2ETA3yIQntXSV9XxtPeUS97IbqNhmXGm_Dy9bMSQXNbtHglERCSu5FFYf3pCEEjJ5_G902nQu4DOIPCsZRoTyfIwF-7DT2YmmqrvLrYyT5qiokkvF7sOL9TJ9k8rfClsu6j2IxP0o6MPDWiXW7-vTVXwY4krUUZb1BiIQ764U-dmKSJwLOuAj-fj_7_UcrqOpJZ8OpodP4IagAchU8Sl3oDf_sbBPEZXN1bNG_Rl8vWqL-wtbDk_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly+Imprinted+Titanium+Dioxide%3A+Synthesis+Strategies+and+Applications+in+Photocatalytic+Degradation+of+Antibiotics+from+Marine+Wastewater%3A+A+Review&rft.jtitle=Materials&rft.au=Han%2C+Xue&rft.au=Jin%2C+Yu&rft.au=Zhao%2C+Luyang&rft.au=Zhang%2C+Yuying&rft.date=2025-05-07&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=9&rft_id=info:doi/10.3390%2Fma18092161&rft_id=info%3Apmid%2F40363665&rft.externalDocID=40363665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |