Arsenic and cadmium accumulation in rice and mitigation strategies
Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for...
Saved in:
Published in | Plant and soil Vol. 446; no. 1-2; pp. 1 - 21 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health.
Scope
We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified.
Conclusions
The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge. |
---|---|
AbstractList | Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health. Scope We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified. Conclusions The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge. BackgroundArsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health.ScopeWe review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified.ConclusionsThe concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge. Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health. Scope We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified. Conclusions The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge. |
Audience | Academic |
Author | Wang, Peng Zhao, Fang-Jie |
Author_xml | – sequence: 1 givenname: Fang-Jie orcidid: 0000-0002-0164-169X surname: Zhao fullname: Zhao, Fang-Jie email: Fangjie.Zhao@njau.edu.cn organization: College of Resources and Environmental Sciences, Nanjing Agricultural University – sequence: 2 givenname: Peng surname: Wang fullname: Wang, Peng organization: College of Resources and Environmental Sciences, Nanjing Agricultural University |
BookMark | eNp9kU1r3DAQhkVJoLtJ_kBOhl5y8Xb0ZVnHbWiTQqCXBnITsjReFGw5lexD_n2VdaGwh0UHoeF5xMy8W3IRp4iE3FLYUQD1NVNKQdRAdQ2CK1E3n8iGSsVrCby5IBsAzmpQ-uUz2eb8Ch9v2mzIt33KGIOrbPSVs34My1hZ55ZxGewcpliFWKXg8AiMYQ6HtZznZGc8BMzX5LK3Q8abf_cVef7x_ff9Y_306-Hn_f6pdoLLue5s14FuG8VQsd61kgtpoeHKcy181yuF4DuKHjtqnedUK2F7rrll4Jlw_Ircrf--penPgnk2Y8gOh8FGnJZsmJRUg5ZKF_TLCfo6LSmW7gzjQstWKNUWardSBzugCbGfykyuHI9jcGXBfSj1fUM5UMEEFKFdBZemnBP2xoX5uI4ihsFQMB9pmDUNU9IwxzRMU1R2or6lMNr0fl7iq5QLHA-Y_o9xxvoL3hidog |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126079 crossref_primary_10_1007_s41742_024_00585_7 crossref_primary_10_1016_j_scitotenv_2022_155870 crossref_primary_10_1016_j_apsoil_2022_104710 crossref_primary_10_1016_j_chemosphere_2021_129891 crossref_primary_10_1007_s11270_024_07196_0 crossref_primary_10_1016_j_envadv_2021_100075 crossref_primary_10_3390_toxics12080532 crossref_primary_10_1016_j_ecoenv_2022_113526 crossref_primary_10_1016_j_envpol_2021_118650 crossref_primary_10_1007_s11356_021_17817_4 crossref_primary_10_1016_j_rsci_2023_11_010 crossref_primary_10_1016_j_cj_2025_01_007 crossref_primary_10_1016_j_cej_2021_133169 crossref_primary_10_1016_j_jfca_2025_107465 crossref_primary_10_1360_TB_2022_0138 crossref_primary_10_1016_j_chemosphere_2024_142903 crossref_primary_10_1007_s11356_022_22627_3 crossref_primary_10_1016_j_jes_2024_08_025 crossref_primary_10_1080_03650340_2023_2175354 crossref_primary_10_1016_j_jenvman_2023_118477 crossref_primary_10_1016_j_jhazmat_2021_125894 crossref_primary_10_1016_j_foodchem_2022_134017 crossref_primary_10_1016_j_jbiotec_2020_11_008 crossref_primary_10_1093_plphys_kiab086 crossref_primary_10_1016_j_fcr_2023_109071 crossref_primary_10_3389_fpls_2023_1261518 crossref_primary_10_3390_su142114355 crossref_primary_10_1093_jxb_erad495 crossref_primary_10_1016_j_envpol_2022_118940 crossref_primary_10_1021_acsnano_3c03066 crossref_primary_10_1079_cabireviews_2023_0008 crossref_primary_10_1016_j_jhazmat_2023_132770 crossref_primary_10_1016_j_chemosphere_2023_140559 crossref_primary_10_1016_j_plantsci_2022_111205 crossref_primary_10_2139_ssrn_4010742 crossref_primary_10_1016_j_jia_2024_07_022 crossref_primary_10_1016_j_scitotenv_2023_162443 crossref_primary_10_1038_s41598_024_77066_6 crossref_primary_10_1007_s11104_022_05802_w crossref_primary_10_1007_s10725_023_01105_x crossref_primary_10_1002_cche_10580 crossref_primary_10_1016_j_jclepro_2023_138981 crossref_primary_10_1016_j_scitotenv_2024_171543 crossref_primary_10_2139_ssrn_3995303 crossref_primary_10_1016_j_jhazmat_2021_127703 crossref_primary_10_1111_pbi_14414 crossref_primary_10_1007_s12403_020_00349_6 crossref_primary_10_1021_acs_est_2c01206 crossref_primary_10_1016_j_ecoenv_2024_116810 crossref_primary_10_1016_j_envint_2024_109000 crossref_primary_10_1016_j_jhazmat_2020_124751 crossref_primary_10_1016_j_scitotenv_2024_173169 crossref_primary_10_1007_s11356_023_29224_y crossref_primary_10_1016_j_jclepro_2021_127403 crossref_primary_10_1007_s11368_022_03409_3 crossref_primary_10_1021_acs_est_0c03001 crossref_primary_10_1021_acs_est_4c05795 crossref_primary_10_3390_agriculture13020471 crossref_primary_10_1016_j_scitotenv_2024_173160 crossref_primary_10_1038_s41598_024_83412_5 crossref_primary_10_1021_acs_jafc_3c04967 crossref_primary_10_1016_j_jhazmat_2023_131651 crossref_primary_10_1371_journal_pone_0283420 crossref_primary_10_1016_j_plaphy_2024_108811 crossref_primary_10_1111_ppl_13294 crossref_primary_10_1007_s00128_021_03286_5 crossref_primary_10_1016_j_envpol_2023_122928 crossref_primary_10_1016_j_scitotenv_2021_152898 crossref_primary_10_1016_j_envres_2024_120171 crossref_primary_10_3390_cells13110907 crossref_primary_10_1016_j_chemosphere_2021_131827 crossref_primary_10_1016_j_jenvman_2023_118135 crossref_primary_10_1111_nph_20168 crossref_primary_10_3390_agronomy13112693 crossref_primary_10_1016_j_jhazmat_2021_126603 crossref_primary_10_1080_10807039_2023_2192292 crossref_primary_10_1016_j_scitotenv_2024_174265 crossref_primary_10_1080_15226514_2022_2066064 crossref_primary_10_1016_j_envpol_2023_121152 crossref_primary_10_1016_j_jhazmat_2022_130391 crossref_primary_10_3389_fpls_2022_953717 crossref_primary_10_1007_s11356_021_13241_w crossref_primary_10_1016_j_envpol_2022_118923 crossref_primary_10_1016_j_scitotenv_2023_163992 crossref_primary_10_1016_j_jhazmat_2021_127373 crossref_primary_10_1007_s00128_020_03066_7 crossref_primary_10_1080_10643389_2020_1835435 crossref_primary_10_5304_jafscd_2024_132_002 crossref_primary_10_1016_j_jhazmat_2022_129297 crossref_primary_10_1016_j_plaphy_2024_108941 crossref_primary_10_29105_qh11_04_310 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_1007_s11368_022_03366_x crossref_primary_10_1016_j_envpol_2021_117918 crossref_primary_10_1007_s11104_021_04877_1 crossref_primary_10_1016_j_scitotenv_2023_162929 crossref_primary_10_1007_s00425_022_03869_4 crossref_primary_10_1007_s11104_022_05692_y crossref_primary_10_1093_jxb_erab444 crossref_primary_10_1021_acs_est_3c11043 crossref_primary_10_3390_su16020687 crossref_primary_10_1007_s11356_023_31536_y crossref_primary_10_1016_j_envpol_2025_126110 crossref_primary_10_1016_j_jes_2022_10_038 crossref_primary_10_1016_j_jhazmat_2022_130140 crossref_primary_10_1016_j_scitotenv_2023_163228 crossref_primary_10_1016_j_chemosphere_2021_129690 crossref_primary_10_1016_j_molp_2021_09_016 crossref_primary_10_1016_j_scitotenv_2022_160994 crossref_primary_10_3390_cimb46060361 crossref_primary_10_1016_j_envpol_2022_119825 crossref_primary_10_1016_j_ijheh_2024_114510 crossref_primary_10_1016_j_jgg_2022_08_003 crossref_primary_10_1016_j_envpol_2024_123636 crossref_primary_10_1016_j_envpol_2024_124725 crossref_primary_10_1016_j_pedsph_2023_12_017 crossref_primary_10_1016_j_ecoenv_2021_112474 crossref_primary_10_1021_acsomega_5c00353 crossref_primary_10_1007_s11783_024_1820_7 crossref_primary_10_1016_j_pedsph_2023_09_009 crossref_primary_10_1371_journal_pone_0312301 crossref_primary_10_2139_ssrn_3981647 crossref_primary_10_1016_j_scitotenv_2023_167383 crossref_primary_10_1016_j_scitotenv_2021_150675 crossref_primary_10_3389_fpls_2020_00909 crossref_primary_10_1016_j_ecoenv_2023_114884 crossref_primary_10_1016_j_scitotenv_2021_149202 crossref_primary_10_1039_D1EN01132D crossref_primary_10_3390_agronomy12081952 crossref_primary_10_1111_tpj_16614 crossref_primary_10_1007_s10661_024_12470_z crossref_primary_10_1016_j_scitotenv_2024_175052 crossref_primary_10_3389_fenvs_2022_979049 crossref_primary_10_1016_j_jes_2020_07_002 crossref_primary_10_1007_s10653_025_02438_4 crossref_primary_10_1016_j_envpol_2023_121968 crossref_primary_10_1016_j_envpol_2021_118681 crossref_primary_10_3390_su16229783 crossref_primary_10_2139_ssrn_4165548 crossref_primary_10_1007_s00344_024_11527_0 crossref_primary_10_3390_soilsystems6020036 crossref_primary_10_1016_j_jfca_2023_105496 crossref_primary_10_1016_j_envexpbot_2022_104783 crossref_primary_10_1093_plphys_kiac534 crossref_primary_10_1111_ppl_14214 crossref_primary_10_3390_ijerph17196991 crossref_primary_10_1016_j_envpol_2021_117355 crossref_primary_10_3390_pr12102241 crossref_primary_10_1016_j_scitotenv_2021_152603 crossref_primary_10_2139_ssrn_4149198 crossref_primary_10_1016_j_scitotenv_2024_174853 crossref_primary_10_1007_s11104_021_05004_w crossref_primary_10_1186_s40543_022_00354_1 crossref_primary_10_1007_s11104_023_06018_2 crossref_primary_10_1039_D1JA00037C crossref_primary_10_1016_j_envpol_2024_123786 crossref_primary_10_1016_j_soilbio_2022_108679 crossref_primary_10_1016_j_chemosphere_2023_140157 crossref_primary_10_3389_fmicb_2022_852697 crossref_primary_10_1016_j_jenvman_2024_122848 crossref_primary_10_1016_j_envpol_2021_118311 crossref_primary_10_3390_agronomy14092129 crossref_primary_10_3390_foods13193153 crossref_primary_10_1016_j_ecoenv_2022_113700 crossref_primary_10_32604_phyton_2023_027924 crossref_primary_10_1021_acs_est_5c00233 crossref_primary_10_1007_s40726_021_00180_w crossref_primary_10_3389_fpls_2023_1230012 crossref_primary_10_1007_s44246_023_00072_2 crossref_primary_10_1007_s00128_024_03915_9 crossref_primary_10_1007_s11104_023_06192_3 crossref_primary_10_1016_j_scitotenv_2021_147163 crossref_primary_10_1016_j_envres_2022_115098 crossref_primary_10_3389_fpls_2022_1032681 crossref_primary_10_1038_s41538_024_00293_8 crossref_primary_10_1093_jxb_erac426 crossref_primary_10_1093_jxb_erac302 crossref_primary_10_1080_00207233_2022_2154568 crossref_primary_10_1093_jxb_erad074 crossref_primary_10_3390_ijms22010041 crossref_primary_10_1007_s10653_023_01702_9 crossref_primary_10_3390_agronomy13102472 crossref_primary_10_1016_j_jenvman_2024_121190 crossref_primary_10_1016_j_chemosphere_2023_139719 crossref_primary_10_1016_j_scitotenv_2022_160421 crossref_primary_10_1016_j_chemosphere_2022_134085 crossref_primary_10_1016_j_jhazmat_2021_125390 crossref_primary_10_1016_j_jclepro_2022_133730 crossref_primary_10_1016_j_scitotenv_2023_168394 crossref_primary_10_1002_ajhb_23685 crossref_primary_10_1007_s11356_022_24875_9 crossref_primary_10_1016_j_plaphy_2024_109169 crossref_primary_10_1016_j_scitotenv_2024_177945 crossref_primary_10_1016_j_rcar_2024_03_001 crossref_primary_10_1016_j_envexpbot_2022_104867 crossref_primary_10_1007_s11104_022_05384_7 crossref_primary_10_1016_j_jhazmat_2020_123922 crossref_primary_10_3389_fenvs_2022_1082340 crossref_primary_10_3390_toxics11010053 crossref_primary_10_1016_j_scitotenv_2023_161516 crossref_primary_10_1016_j_envint_2021_106749 crossref_primary_10_1016_j_envpol_2021_118497 crossref_primary_10_1007_s11104_022_05323_6 crossref_primary_10_1289_EHP11730 crossref_primary_10_1021_acs_est_0c04713 crossref_primary_10_1016_j_psep_2022_02_069 crossref_primary_10_1016_j_envres_2022_113226 crossref_primary_10_1016_j_jenvman_2024_121661 crossref_primary_10_1007_s44246_023_00073_1 crossref_primary_10_1016_j_chemosphere_2021_131102 crossref_primary_10_1021_acs_est_5c00817 crossref_primary_10_1073_pnas_2113071118 crossref_primary_10_1016_j_jes_2023_08_027 crossref_primary_10_1016_j_watres_2022_118804 crossref_primary_10_1021_acs_est_0c06561 crossref_primary_10_1093_pcp_pcaa150 crossref_primary_10_1016_j_envpol_2020_115944 crossref_primary_10_1016_j_jhazmat_2022_128701 crossref_primary_10_1016_j_jhazmat_2021_127677 crossref_primary_10_1016_j_scitotenv_2023_168269 crossref_primary_10_1016_j_scitotenv_2024_177157 crossref_primary_10_1007_s10725_022_00897_8 crossref_primary_10_1016_j_chemosphere_2022_133924 crossref_primary_10_1016_j_jhazmat_2023_131040 crossref_primary_10_3390_plants11212813 crossref_primary_10_1016_j_envpol_2022_120188 crossref_primary_10_1016_j_rhisph_2023_100680 crossref_primary_10_1016_j_eti_2024_103596 crossref_primary_10_1016_j_envpol_2023_121644 crossref_primary_10_1016_j_chemosphere_2022_133931 crossref_primary_10_1016_j_envpol_2022_120619 crossref_primary_10_1080_10643389_2020_1795053 crossref_primary_10_1016_j_jhazmat_2021_127551 crossref_primary_10_1021_acs_est_1c00576 crossref_primary_10_2139_ssrn_4096125 crossref_primary_10_1016_j_chemosphere_2021_131695 crossref_primary_10_1016_j_jhazmat_2022_129597 crossref_primary_10_1016_j_jhazmat_2023_130755 crossref_primary_10_1016_j_jhazmat_2023_130879 crossref_primary_10_1016_j_foodchem_2025_143782 crossref_primary_10_1016_j_scitotenv_2022_156229 crossref_primary_10_1007_s11356_023_27857_7 crossref_primary_10_1007_s40710_022_00586_8 crossref_primary_10_1016_j_chemosphere_2023_140074 crossref_primary_10_1016_j_jece_2024_114136 crossref_primary_10_1007_s12403_023_00539_y crossref_primary_10_1016_j_chemosphere_2022_135080 crossref_primary_10_1016_j_ecoenv_2023_115168 crossref_primary_10_3390_su16135565 crossref_primary_10_3390_foods9121906 crossref_primary_10_3389_fenvs_2021_716770 crossref_primary_10_3390_nano11040839 crossref_primary_10_1016_j_envpol_2021_118475 crossref_primary_10_1016_j_chemosphere_2022_135641 crossref_primary_10_1016_j_ecoenv_2021_112773 crossref_primary_10_3390_agronomy13102554 crossref_primary_10_1007_s11356_023_28833_x crossref_primary_10_3390_nano12081311 crossref_primary_10_1021_acsomega_1c02741 crossref_primary_10_1016_j_jhazmat_2023_130963 crossref_primary_10_1016_j_jhazmat_2022_130203 crossref_primary_10_3390_toxics11040364 crossref_primary_10_1016_j_jhazmat_2023_131931 crossref_primary_10_3390_antiox10111812 crossref_primary_10_1016_j_chemosphere_2021_130351 crossref_primary_10_1007_s11104_022_05350_3 crossref_primary_10_1016_j_envpol_2023_123053 crossref_primary_10_1093_jxb_eraa287 crossref_primary_10_1016_j_chemosphere_2024_143515 crossref_primary_10_1080_01140671_2021_1999992 crossref_primary_10_1186_s12284_021_00530_8 crossref_primary_10_1016_j_jhazmat_2020_124368 crossref_primary_10_1111_pce_14819 crossref_primary_10_1016_j_jhazmat_2024_135244 crossref_primary_10_1016_j_scitotenv_2024_175193 crossref_primary_10_1016_j_chemosphere_2020_128893 crossref_primary_10_1111_pce_13843 crossref_primary_10_1016_j_envpol_2020_116020 crossref_primary_10_1021_acs_est_3c10763 crossref_primary_10_3390_agriculture14030407 crossref_primary_10_1007_s42729_022_00961_2 crossref_primary_10_1007_s11104_022_05566_3 crossref_primary_10_1016_j_chemosphere_2023_138543 crossref_primary_10_1080_10643389_2024_2373949 crossref_primary_10_1016_j_jhazmat_2022_128365 crossref_primary_10_1021_acs_est_2c01393 crossref_primary_10_1016_j_jhazmat_2020_124495 crossref_primary_10_1016_j_envpol_2024_124452 crossref_primary_10_1021_acs_est_4c12064 crossref_primary_10_1016_j_geoderma_2022_116278 crossref_primary_10_3389_fgene_2022_941118 crossref_primary_10_3390_toxics12010063 crossref_primary_10_1016_j_jhazmat_2024_137054 crossref_primary_10_1007_s11356_024_32839_4 crossref_primary_10_1016_j_jhazmat_2021_128170 crossref_primary_10_1007_s11356_022_23162_x crossref_primary_10_3390_ijerph18136783 crossref_primary_10_1007_s11368_024_03852_4 crossref_primary_10_1007_s42729_024_02130_z crossref_primary_10_1016_j_plantsci_2024_112169 crossref_primary_10_1007_s11356_023_27536_7 crossref_primary_10_1016_j_scitotenv_2022_158952 crossref_primary_10_1016_j_envres_2023_117989 crossref_primary_10_1016_j_plaphy_2024_108956 crossref_primary_10_3390_life12101541 crossref_primary_10_3390_nu13113928 crossref_primary_10_1016_j_jhazmat_2022_130308 crossref_primary_10_1007_s11356_022_22451_9 crossref_primary_10_1007_s11104_020_04634_w crossref_primary_10_1016_j_scitotenv_2021_150279 crossref_primary_10_1007_s00344_024_11449_x crossref_primary_10_1021_acs_est_4c00748 crossref_primary_10_1016_j_plaphy_2024_109010 crossref_primary_10_1155_2022_4195119 crossref_primary_10_1186_s40538_023_00388_6 crossref_primary_10_1007_s12011_023_03785_y crossref_primary_10_1016_j_ibiod_2024_105787 crossref_primary_10_1016_j_jfca_2021_103914 crossref_primary_10_1093_jxb_erad330 crossref_primary_10_1016_j_cej_2024_150261 crossref_primary_10_1016_j_jhazmat_2024_136758 crossref_primary_10_17221_143_2021_PSE crossref_primary_10_1007_s10725_022_00803_2 crossref_primary_10_1016_j_copbio_2024_103168 crossref_primary_10_1007_s11104_021_05067_9 crossref_primary_10_1016_j_jhazmat_2022_129431 crossref_primary_10_1080_15226514_2024_2431096 crossref_primary_10_1111_jipb_13440 crossref_primary_10_1080_15320383_2024_2306159 crossref_primary_10_1007_s11104_024_06727_2 crossref_primary_10_1016_j_eti_2024_103757 crossref_primary_10_1016_j_heliyon_2024_e40987 crossref_primary_10_1016_j_ecoenv_2023_114714 crossref_primary_10_1016_j_jes_2023_07_033 crossref_primary_10_1016_j_soilbio_2024_109600 crossref_primary_10_3390_agriculture14111933 crossref_primary_10_1016_j_jhazmat_2024_135218 crossref_primary_10_1016_S1002_0160_20_60015_7 crossref_primary_10_1111_pce_14576 crossref_primary_10_1016_j_envpol_2022_120868 crossref_primary_10_1021_acs_est_0c02877 crossref_primary_10_1016_j_envpol_2023_122569 crossref_primary_10_1016_j_scitotenv_2023_165226 crossref_primary_10_1016_j_chemosphere_2022_135208 crossref_primary_10_1186_s12870_024_05793_z crossref_primary_10_1007_s00425_024_04422_1 crossref_primary_10_1016_j_envpol_2021_117987 crossref_primary_10_3389_fpls_2022_1046685 crossref_primary_10_3389_fpls_2021_665842 crossref_primary_10_1007_s00284_023_03434_6 crossref_primary_10_1016_j_fcr_2023_109222 crossref_primary_10_1016_j_scitotenv_2022_153868 crossref_primary_10_1016_j_ecoenv_2023_115110 crossref_primary_10_1016_j_ecoenv_2023_115352 crossref_primary_10_1016_j_scitotenv_2024_170663 crossref_primary_10_1007_s11368_025_03981_4 crossref_primary_10_1016_j_jes_2022_05_036 crossref_primary_10_1016_j_chemosphere_2023_141071 crossref_primary_10_1016_j_envpol_2025_125756 crossref_primary_10_1007_s10722_024_02321_8 crossref_primary_10_1007_s42729_023_01455_5 crossref_primary_10_1016_j_scitotenv_2023_169378 crossref_primary_10_1016_j_envexpbot_2023_105627 crossref_primary_10_1016_j_jksus_2021_101722 crossref_primary_10_1021_acsestengg_4c00119 crossref_primary_10_1016_j_jhazmat_2024_136650 crossref_primary_10_1016_j_ecoenv_2021_112839 crossref_primary_10_1016_j_jhazmat_2024_135684 crossref_primary_10_2139_ssrn_4119265 crossref_primary_10_1016_j_eti_2024_103883 crossref_primary_10_22144_ctujos_2024_450 crossref_primary_10_1007_s11356_021_15570_2 crossref_primary_10_1007_s11104_022_05588_x crossref_primary_10_3390_toxics12060418 crossref_primary_10_1016_j_chemosphere_2022_134368 crossref_primary_10_1038_s43016_022_00569_w crossref_primary_10_1016_j_envpol_2022_120515 crossref_primary_10_1016_j_chemosphere_2021_131113 crossref_primary_10_1016_j_scitotenv_2023_163392 crossref_primary_10_1016_j_cotox_2021_04_004 crossref_primary_10_1016_j_hazadv_2024_100543 |
Cites_doi | 10.1073/pnas.0900238106 10.1007/s11104-008-9786-y 10.1016/j.envpol.2018.03.048 10.1105/tpc.18.00375 10.1016/j.chemosphere.2018.05.143 10.1016/j.envpol.2019.03.063 10.1073/pnas.1508987112 10.1016/j.chemosphere.2011.02.044 10.1021/es101952f 10.1105/tpc.11.6.1153 10.1021/es304977m 10.1104/pp.113.216564 10.1093/jxb/erz093 10.1093/jxb/erv164 10.1111/nph.14691 10.1016/B978-0-12-407247-3.00004-4 10.1021/es101962d 10.1093/jxb/err136 10.1111/j.1365-3040.2012.02527.x 10.1093/jxb/err158 10.1002/047086303X 10.1104/pp.16.01332 10.1021/acs.est.7b03028 10.1111/j.1365-313X.2011.04789.x 10.1021/es030309t 10.1104/pp.111.173088 10.1021/es9026248 10.1016/j.scitotenv.2010.12.028 10.1111/nph.15190 10.1016/j.jhazmat.2014.03.017 10.1111/tpj.13612 10.1111/j.1469-8137.2011.03789.x 10.1021/acs.est.6b02656 10.1016/j.envpol.2016.10.043 10.1021/es902100h 10.1021/acs.est.7b04791 10.1016/j.taap.2009.03.015 10.1111/j.1469-8137.2005.01519.x 10.1038/s41467-018-03088-0 10.1073/pnas.1414968111 10.1111/j.1365-2389.1994.tb00527.x 10.1021/es3025337 10.1021/acs.est.8b06863 10.1093/jxb/erz335 10.1016/j.bbrc.2019.03.024 10.1093/pcp/pcz054 10.1021/es802412r 10.1038/srep02195 10.1104/pp.109.140350 10.1021/acs.est.6b06255 10.1021/es401997d 10.1021/cr00094a002 10.1021/es00036a019 10.1021/acs.est.6b01974 10.1021/es702748q 10.1016/j.taap.2008.12.016 10.1021/es800324u 10.1038/s41467-019-12946-4 10.1111/j.1469-8137.2010.03192.x 10.1016/j.envpol.2019.05.086 10.1016/j.tplants.2012.08.003 10.1016/j.envint.2019.03.004 10.1021/es803643v 10.1021/es034383n 10.1111/j.1469-8137.2011.03956.x 10.1093/jxb/erw362 10.1007/s12011-008-8239-z 10.1016/j.envpol.2018.01.099 10.1021/acs.est.8b00300 10.1016/j.foodchem.2014.07.060 10.1007/s11104-009-0074-2 10.1146/annurev-arplant-042809-112152 10.1080/00380768.2018.1438811 10.1038/ncomms5617 10.1038/s41598-017-18090-7 10.1007/s40726-015-0002-4 10.1021/es0259842 10.1021/es5047099 10.1371/journal.pbio.1002009 10.1111/j.1469-8137.2010.03459.x 10.1021/es071516m 10.1016/j.pbi.2017.05.002 10.1111/pce.12747 10.1146/annurev.arplant.53.100301.135154 10.1021/es103463d 10.1093/pcp/pcr166 10.1021/acs.est.7b01487 10.1016/j.envint.2011.05.007 10.1021/es070627i 10.3389/fpls.2018.00476 10.1073/pnas.1211132109 10.1016/j.geoderma.2015.10.011 10.1186/1471-2229-11-172 10.1093/pcp/pcx114 10.1289/ehp.1307110 10.1111/j.1469-8137.2011.03983.x 10.1093/pcp/pcw163 10.1111/j.1469-8137.2007.02195.x 10.1038/s41467-019-10544-y 10.1079/BJN2000280 10.1021/es0502324 10.1038/nature05964 10.1093/jxb/eru340 10.1104/pp.16.01189 10.1186/s12284-017-0149-2 10.1007/s11032-019-0992-5 10.1093/jxb/erx364 10.1021/es400521h 10.1007/s00122-013-2207-5 10.1111/nph.12497 10.1073/pnas.0802361105 10.1126/science.1072896 10.1111/j.1747-0765.2007.00116.x 10.1021/es9018755 10.1111/nph.14572 10.1073/pnas.1116531109 10.1007/978-94-007-4470-7_10 10.1021/es060800v 10.1016/j.jhazmat.2008.04.116 10.1021/es802612a 10.1016/j.ecoleng.2013.07.031 10.1104/pp.109.146126 10.1007/978-94-007-2947-6 10.2903/j.efsa.2012.2551 10.1104/pp.109.151035 10.2135/cropsci2014.03.0249 10.3389/fpls.2017.02197 10.1104/pp.107.4.1059 10.1093/jxb/erw060 10.1093/jxb/erp119 10.1093/jxb/erx165 10.1111/pbi.12905 10.1021/es501127k 10.1016/j.envpol.2017.07.084 10.1111/j.1469-8137.2009.03071.x 10.1016/j.taap.2009.01.010 10.1021/es801238p 10.1016/j.envpol.2014.08.004 10.1016/j.envpol.2010.12.016 10.1021/es304295n 10.1071/EN06079 10.1021/es101139z 10.1080/00380768.2016.1196569 10.1007/PL00007934 10.1371/journal.pone.0177978 10.1021/es9022738 10.1021/acs.est.9b02418 10.1093/pcp/pcx029 10.1073/pnas.0506836103 10.1021/es8001103 10.1021/es103971y 10.1105/tpc.112.096925 10.1007/s11104-018-3849-5 10.1038/s41396-019-0451-7 10.1007/s11356-019-04412-x 10.1021/es702212p 10.1146/annurev-earth-060313-054942 10.1073/pnas.1005396107 10.1021/es104080s 10.1080/00380768.2013.804390 10.1021/acs.est.9b00592 10.1016/j.foodcont.2010.08.005 10.1007/s11368-013-0658-6 10.1093/jxb/eru259 10.1016/j.scitotenv.2018.05.050 10.1016/j.envpol.2017.01.072 10.1111/1462-2920.12572 10.1038/s41598-017-14832-9 10.1007/s11104-012-1376-3 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 COPYRIGHT 2020 Springer Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: COPYRIGHT 2020 Springer – notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-019-04374-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 21 |
ExternalDocumentID | A613014240 10_1007_s11104_019_04374_6 |
GeographicLocations | Bangladesh Japan China |
GeographicLocations_xml | – name: China – name: Japan – name: Bangladesh |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21661132001; 41671309 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-babb098672e72fc85345a0637d394dbf77e0db1edeb1acd31974af393a20d24c3 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 02:13:28 EDT 2025 Wed Aug 20 00:35:32 EDT 2025 Tue Jun 10 20:18:56 EDT 2025 Tue Jul 01 01:47:07 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Fri Feb 21 02:33:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Translocation Cadmium Food safety Arsenic Uptake Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-babb098672e72fc85345a0637d394dbf77e0db1edeb1acd31974af393a20d24c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0164-169X |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11104-019-04374-6.pdf |
PQID | 2349584778 |
PQPubID | 54098 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2551909579 proquest_journals_2349584778 gale_infotracacademiconefile_A613014240 crossref_citationtrail_10_1007_s11104_019_04374_6 crossref_primary_10_1007_s11104_019_04374_6 springer_journals_10_1007_s11104_019_04374_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Fujimaki, Suzui, Ishioka, Kawachi, Ito, Chino, Nakamura (CR38) 2010; 152 Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (CR149) 2009; 43 Inahara, Ogawa, Azuma (CR48) 2007; 78 de Livera, McLaughlin, Hettiarachchi, Kirby, Beak (CR30) 2011; 409 Tanaka, Fujimaki, Fujiwara, Yoneyama, Hayashi (CR131) 2007; 53 (CR49) 2004 Sui, Zhao, Zhu, Gong, Tang, Huang, Zhang, Zhao (CR124) 2019; 70 Sui, Chang, Tang, Liu, Huang, Zhao (CR123) 2018; 433 Tan, Zhu, Fan, Peng, Wang, Sun, Chen (CR130) 2019; 512 (CR26) 2006 Tang, Chen, Chen, Ji, Zhao (CR133) 2017; 58 Clemens, Aarts, Thomine, Verbruggen (CR24) 2013; 18 Shi, Wang, Chen, Tang, Wu, Salt, Chao, Zhao (CR115) 2016; 172 Fu, Lu, Zhang, Yang, Chao, Wang, Shi, Chen, Chao, Li, Ma, Xia (CR37) 2019; 70 Jin (CR52) 2008 Kuramata, Sakakibara, Kataoka, Abe, Asano, Baba, Takagi, Ishikawa (CR62) 2015; 17 CR35 Ma, Shen, Wu, Tang, Shen, Zhao (CR76) 2014; 194 Dixit, Hering (CR33) 2003; 37 Limmer, Wise, Dykes, Seyfferth (CR66) 2018; 52 Chao, Chen, Chen, Shi, Chen, Wang, Danku, Zhao, Salt (CR14) 2014; 12 Carey, Norton, Deacon, Scheckel, Lombi, Punshon, Guerinot, Lanzirotti, Newville, Choi, Price, Meharg (CR11) 2011; 192 Tseng (CR137) 2009; 235 Kirk (CR60) 2004 Li, Sun, Williams, Nunes, Zhu (CR65) 2011; 37 Honma, Ohba, Kaneko, Nakamura, Makino, Katou (CR43) 2016; 62 Åkesson, Barregard, Bergdahl, Nordberg, Nordberg, Skerfving (CR1) 2014; 122 Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (CR8) 2010; 44 Hu, Li, Yuan, Ouyang, Zhou, Huang, Huang, Luo, Christie, Wu (CR45) 2013; 13 Lv, Wang, Xu, Shuai, Luo, Zhan, Zhu, Wang, Zhu, Zhang, Huang (CR73) 2019; 26 Chen, Sun, Tang, Liu, Moore, Maathuis, Miller, McGrath, Zhao (CR18) 2017; 68 Ueno, Yamaji, Kono, Huang, Ando, Yano, Ma (CR138) 2010; 107 Ishikawa, Suzui, Ito-Tanabata, Ishii, Igura, Abe, Kuramata, Kawachi, Fujimaki (CR50) 2011; 11 Xu, Wang, Zhang, Chen, Wang, Kopittke, Kretzschmar, Zhao (CR157) 2019; 251 Yu, Wang, Li, Li, Liu, Wang, Lei (CR168) 2017; 224 Chaney, Bitton (CR12) 1980 Rinklebe, Shaheen, Yu (CR105) 2016; 270 Chaney (CR13) 2015; 1 Park, Song, Ko, Eom, Hansen, Schiller, Lee, Martinoia, Lee (CR97) 2012; 69 Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (CR75) 2008; 105 Ha, Smith, Howden, Dietrich, Bugg, O'Connell, Goldsbrough, Cobbett (CR40) 1999; 11 Zhang, Pinson, Tarpley, Huang, Lahner, Yakubova, Baxter, Guerinot, Salt (CR170) 2014; 127 Cobbett, Goldsbrough (CR25) 2002; 53 Cao, Sun, Ai, Mei, Liu, Sun, Xu, Liu, Chen, Ma (CR9) 2017; 51 Zhao, McGrath, Meharg (CR173) 2010; 61 Uraguchi, Mori, Kuramata, Kawasaki, Arao, Ishikawa (CR139) 2009; 60 Xu, McGrath, Zhao (CR153) 2007; 176 Pinson, Tarpley, Yan, Yeater, Lahner, Yakubova, Huang, Zhang, Guerinot, Salt (CR98) 2015; 55 Mitani-Ueno, Yamaji, Ma (CR86) 2016; 57 Deng, Yamaji, Ma, Lee, Jeon, Martinoia, Lee, Song (CR31) 2018; 16 Tang, Chen, Miller, Zhao (CR134) 2019; 60 Chen, Zhang, Yang, Wang, McGrath, Zhao (CR21) 2018; 207 Stroud, Norton, Islam, Dasgupta, White, Price, Meharg, McGrath, Zhao (CR121) 2011; 159 Chen, Huang, Xie, Chen, Tang, Zhao (CR17) 2017; 51 Panaullah, Alam, Hossain, Loeppert, Lauren, Meisner, Ahmed, Duxbury (CR96) 2009; 317 Song, Yamaki, Yamaji, Ko, Jung, Fujii-Kashino, An, Martinoia, Lee, Ma (CR118) 2014; 111 Uraguchi, Kamiya, Sakamoto, Kasai, Sato, Nagamura, Yoshida, Kyozuka, Ishikawa, Fujiwara (CR140) 2011; 108 Miyadate, Adachi, Hiraizumi, Tezuka, Nakazawa, Kawamoto, Katou, Kodama, Sakurai, Takahashi, Satoh-Nagasawa, Watanabe, Fujimura, Akagi (CR87) 2011; 189 Torres-Escribano, Leal, Velez, Montoro (CR136) 2008; 42 Lomax, Liu, Wu, Xue, Xiong, Zhou, McGrath, Meharg, Miller, Zhao (CR70) 2012; 193 Mitani-Ueno, Yamaji, Zhao, Ma (CR85) 2011; 62 Williams, Price, Raab, Hossain, Feldmann, Meharg (CR147) 2005; 39 Wu, Yamaji, Yamane, Kashino-Fujii, Sato, Ma (CR152) 2016; 172 Arao, Kawasaki, Baba, Mori, Matsumoto (CR2) 2009; 43 Sun, Williams, Carey, Zhu, Deacon, Raab, Feldmann, Islam, Meharg (CR125) 2008; 42 Carey, Scheckel, Lombi, Newville, Choi, Norton, Charnock, Feldmann, Price, Meharg (CR10) 2010; 152 Cullen, Reimer (CR28) 1989; 89 Meharg, Rahman (CR77) 2003; 37 Xu, Shi, Wang, Tang, Lv, Zhu, Ding, Wang, Zhao, Wu (CR155) 2017; 215 Yang, Zhang, Yuan, Duan, Jin, Zhao, Zhu (CR166) 2018; 236 Zheng, Li, Sun, Shim, Cai (CR177) 2013; 365 CR54 Moore, Schröder, Wu, Martin, Hawes, McGrath, Hawkesford, Ma, Zhao, Grovenor (CR89) 2011; 156 CR53 CR135 Kamiya, Islam, Duan, Uraguchi, Fujiwara (CR55) 2013; 59 Xu, Chen, Wang, Kretzschmar, Zhao (CR156) 2017; 231 Bian, Chen, Liu, Cui, Li, Pan, Xie, Zheng, Zhang, Zheng, Chang (CR5) 2013; 58 Mestrot, Uroic, Plantevin, Islam, Krupp, Feldmann, Meharg (CR82) 2009; 43 Seyfferth, Webb, Andrews, Fendorf (CR113) 2010; 44 Khan, Stroud, Zhu, McGrath, Zhao (CR57) 2010; 44 Sanchez-Bermejo, Castrillo, del Llano, Navarro, Zarco-Fernandez, Jorge Martinez-Herrera, Leo-del Puerto, Munoz, Camara, Paz-Ares, Alonso-Blanco, Leyva (CR107) 2014; 5 Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (CR6) 2014; 272 CR151 Liu, Li, Luo, Liu, Wang, Liu, Li (CR68) 2009; 161 Howden, Goldsbrough, Andersen, Cobbett (CR44) 1995; 107 Uraguchi, Tanaka, Hofmann, Abiko, Ohkama-Ohtsu, Weber, Kamiya, Sone, Nakamura, Takanezawa, Kiyono, Fujiwara, Clemens (CR141) 2017; 58 Seyfferth, Fendorf (CR112) 2012; 46 Yamaji, Sakurai, Mitani-Ueno, Ma (CR161) 2015; 112 Wang, Wang, Gu, Kopittke, Zhao, Wang (CR143) 2019; 53 Takahashi, Minamikawa, Hattori, Kurishima, Kihou, Yuita (CR127) 2004; 38 Kerl, Schindele, Brueggenwirth, Blanco, Rafferty, Clemens, Planer-Friedrich (CR56) 2019; 53 Qin, Rosen, Zhang, Wang, Franke, Rensing (CR101) 2006; 103 Chen, Moore, Miller, McGrath, Ma, Zhao (CR16) 2015; 66 Sasaki, Yamaji, Ma (CR109) 2014; 65 Zhou, Jiang, Ming, Wang, Tang, Sun (CR178) 2019; 39 Ma, Yamaji, Mitani, Tamai, Konishi, Fujiwara, Katsuhara, Yano (CR74) 2007; 448 Liu, Chen, Li, Peng, Zhang, Hong, Jiang, Ruan, Zhang, Yang, Gao, Qian (CR69) 2017; 7 Duan, Shao, Tang, Chen, Wang, Tang, Yang, Liu, Zhao (CR34) 2017; 10 Li, Ago, Liu, Mitani, Feldmann, McGrath, Ma, Zhao (CR63) 2009; 150 Meharg, Zhao (CR78) 2012 Luo, Huang, Zeng, Peng, Zhang, Ma, Guan, Yi, Fu, Han, Lin, Qian, Gong (CR72) 2018; 9 Salt (CR106) 2017; 215 Zhao, Ago, Mitani, Li, Su, Yamaji, McGrath, Ma (CR172) 2010; 186 (CR36) 2012; 10 Hayashi, Kuramata, Abe, Takagi, Ozawa, Ishikawa (CR42) 2017; 91 Xu, McGrath, Meharg, Zhao (CR154) 2008; 42 Zhao, Harris, Yan, Ma, Wu, Liu, McGrath, Zhou, Zhu (CR174) 2013; 47 Su, McGrath, Zhao (CR122) 2010; 328 Chen, Tang, Wang, Zhao (CR19) 2018; 238 Wang, Zhang, Mao, Xu, Zhao (CR142) 2016; 67 Takahashi, Ishimaru, Senoura, Shimo, Ishikawa, Arao, Nakanishi, Nishizawa (CR128) 2011; 62 Zhu, Chen, Xu, Zhu, Huang (CR181) 2016; 219 Zhu, Yoshinaga, Zhao, Rosen (CR180) 2014; 42 Huhmann, Harvey, Uddin, Choudhury, Ahmed, Duxbury, Bostick, van Geen (CR47) 2017; 51 Ye, Li, Xu, Zeng, Cheng, Yang, Luo, Lian (CR167) 2017; 8 Satoh-Nagasawa, Mori, Nakazawa, Kawamoto, Nagato, Sakurai, Takahashi, Watanabe, Akagi (CR111) 2012; 53 Ishikawa, Ishimaru, Igura, Kuramata, Abe, Senoura, Hase, Arao, Nishizawa, Nakanishi (CR51) 2012; 109 Qin, Lehr, Yuan, Le, McDermott, Rosen (CR102) 2009; 106 Shao, Che, Yamaji, Shen, Ma (CR114) 2017; 68 Raab, Schat, Meharg, Feldmann (CR103) 2005; 168 Chen, Parvez, Gamble, Islam, Ahmed, Argos, Graziano, Ahsan (CR15) 2009; 239 Sasaki, Yamaji, Ma (CR110) 2016; 67 Yamaji, Xia, Mitani-Ueno, Yokosho, Ma (CR160) 2013; 162 Williams, Villada, Deacon, Raab, Figuerola, Green, Feldmann, Meharg (CR148) 2007; 41 Mestrot, Feldmann, Krupp, Hossain, Roman-Ross, Meharg (CR83) 2011; 45 Huang, Chen, Zhang, Tang, Shen, Rosen, Zhao (CR46) 2016; 50 Khaokaew, Chaney, Landrot, Ginder-Vogel, Sparks (CR58) 2011; 45 Yan, Wang, Wang, Yang, Lian, Tang, Huang, Salt, Zhao (CR162) 2016; 39 Stroud, Khan, Norton, Islam, Dasgupta, Zhu, Price, Meharg, McGrath, Zhao (CR120) 2011; 45 Zavala, Gerads, Gürleyük, Duxbury (CR169) 2008; 42 Zhu, Sun, Lei, Teng, Liu, Chen, Wang, Carey, Deacon, Raab, Meharg, Williams (CR179) 2008; 42 Zhao, Ma, Zhu, Tang, McGrath (CR176) 2015; 49 Zhao, Zhu, Meharg (CR175) 2013; 47 CR84 Naito, Matsumoto, Shindoh, Nishimura (CR93) 2015; 168 Chen, Hua, Chen, Rathinasabapathi, Cao, Ma (CR23) 2019; 53 Combs (CR27) 2001; 85 Arao, Makino, Kawasaki, Akahane, Kiho (CR3) 2018; 64 Bolan, Makino, Kunhikrishnan, Kim, Ishikawa, Murakami, Naidu, Kirkham (CR7) 2013; 119 Chen, Li, Huang, Zhang, Xie, Lu, Dong, Zhao (CR22) 2019; 13 Weber, Hofacker, Voegelin, Kretzschmar (CR146) 2010; 44 Moore, Chen, van de Meene, Hughes, Liu, Geraki, Mosselmans, McGrath, Grovenor, Zhao (CR90) 2014; 201 Yang, Zhang, Zhang, Hu, Zhang, Lu, Dong, Wang, Zhao, Huang, Lian (CR164) 2014; 65 Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao, Zhang, Liu, Tian, Huang, Wang, Dong, Hu, Ming, Xing, Wang, Xiao, Salt, Lian (CR165) 2018; 30 Qian, Chen, Zhang, Li, Chen, Li (CR100) 2010; 21 Kim, Lee, Yoon, Woo (CR59) 2016; 50 Lu, Zhang, Tang, Huang, Ma, Zhao (CR71) 2019; 126 Muehe, Wang, Kerl, Planer-Friedrich, Fendorf (CR91) 2019; 10 Raab, Williams, Meharg, Feldmann (CR104) 2007; 4 Wang, Chen, Kopittke, Zhao (CR144) 2019; 249 Nordberg (CR94) 2009; 238 Meharg, Williams, Adomako, Lawgali, Deacon, Villada, Cambell, Sun, Zhu, Feldmann, Raab, Zhao, Islam, Hossain, Yanai (CR80) 2009; 43 Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Glud, Davison, Zhang (CR150) 2014; 48 Yamaguchi, Nakamura, Dong, Takahashi, Amachi, Makino (CR158) 2011; 83 Moore, Schroder, Lombi, Zhao, McGrath, Hawkesford, Shewry, Grovenor (CR88) 2010; 185 Tang, Mao, Li, Lv, Zhang, Chen, He, Wang, Zeng, Shao, Pan, Hu, Peng, Fu, Li, Xia, Zhao (CR132) 2017; 7 Naidu, Bolan, Kookana, Tiller (CR92) 1994; 45 CR99 Fulda, Voegelin, Kretzschmar (CR39) 2013; 47 Chen, Yang, Wang, Wang, Li, Zhao (CR20) 2018; 639 Dittmar, Voegelin, Maurer, Roberts, Hug, Saha, Ali, Badruzzaman, Kretzschmar (CR32) 2010; 44 Smith, Lopipero, Bates, Steinmaus (CR116) 2002; 296 Yan, Xu, Xie, Gao, Wu, Sun, Feng, Chen, Zhang, Dai, Li, Lin, Zhang, Wang, Li, Zhu, Li, Li, Chen, Ma, Zhang, He (CR163) 2019; 10 Song, Wang, Mao, Sui, Yong, Yang, Jiang, Zhang, Gong (CR119) 2017; 12 Meharg, Lombi, Williams, Scheckel, Feldmann, Raab, Zhu, Islam (CR79) 2008; T Kamiya (4374_CR55) 2013; 59 AA Meharg (4374_CR79) 2008; 42 Y Song (4374_CR119) 2017; 12 R Takahashi (4374_CR128) 2011; 62 A Sasaki (4374_CR110) 2016; 67 F-J Zhao (4374_CR176) 2015; 49 Y Cao (4374_CR9) 2017; 51 FA Weber (4374_CR146) 2010; 44 Rufus L. Chaney (4374_CR13) 2015; 1 N Yamaji (4374_CR161) 2015; 112 G Kirk (4374_CR60) 2004 JQ Zhou (4374_CR178) 2019; 39 R Takahashi (4374_CR129) 2012; 35 Z Tang (4374_CR134) 2019; 60 WR Cullen (4374_CR28) 1989; 89 A Sasaki (4374_CR108) 2012; 24 AA Meharg (4374_CR77) 2003; 37 YZ Qian (4374_CR100) 2010; 21 JF Ma (4374_CR74) 2007; 448 J Qin (4374_CR101) 2006; 103 S Uraguchi (4374_CR140) 2011; 108 Y-T Kim (4374_CR59) 2016; 50 E Kobayashi (4374_CR61) 2009; 127 R Bian (4374_CR6) 2014; 272 4374_CR84 PJ Hu (4374_CR45) 2013; 13 N Mitani-Ueno (4374_CR86) 2016; 57 NS Bolan (4374_CR7) 2013; 119 DZ Wu (4374_CR152) 2016; 172 SB Ha (4374_CR40) 1999; 11 S Dixit (4374_CR33) 2003; 37 C Liu (4374_CR69) 2017; 7 KD Daskalakis (4374_CR29) 1992; 26 E Sanchez-Bermejo (4374_CR107) 2014; 5 D Ueno (4374_CR138) 2010; 107 N Mitani-Ueno (4374_CR85) 2011; 62 A Mestrot (4374_CR83) 2011; 45 J Park (4374_CR97) 2012; 69 RJ Bian (4374_CR5) 2013; 58 RL Chaney (4374_CR12) 1980 N Yamaji (4374_CR160) 2013; 162 Chenni Lu (4374_CR71) 2019; 126 S Clemens (4374_CR24) 2013; 18 R Howden (4374_CR44) 1995; 107 W-Y Song (4374_CR118) 2014; 111 M Yang (4374_CR164) 2014; 65 M Yang (4374_CR165) 2018; 30 JF Ma (4374_CR75) 2008; 105 FJ Zhao (4374_CR175) 2013; 47 PN Williams (4374_CR149) 2009; 43 Y Chen (4374_CR15) 2009; 239 MA Khan (4374_CR57) 2010; 44 KL Moore (4374_CR90) 2014; 201 EM Muehe (4374_CR91) 2019; 10 J Dittmar (4374_CR32) 2010; 44 S Fujimaki (4374_CR38) 2010; 152 C Liu (4374_CR68) 2009; 161 GF Combs (4374_CR27) 2001; 85 Y Ye (4374_CR167) 2017; 8 Hongping Chen (4374_CR20) 2018; 639 Y Chen (4374_CR18) 2017; 68 YG Zhu (4374_CR180) 2014; 42 AL Seyfferth (4374_CR112) 2012; 46 JL Stroud (4374_CR121) 2011; 159 4374_CR54 4374_CR53 A Raab (4374_CR103) 2005; 168 GL Duan (4374_CR34) 2017; 10 Y Takahashi (4374_CR127) 2004; 38 JL Stroud (4374_CR120) 2011; 45 FQ Sui (4374_CR124) 2019; 70 H Yan (4374_CR163) 2019; 10 G Lv (4374_CR73) 2019; 26 T Borch (4374_CR8) 2010; 44 SG Jin (4374_CR52) 2008 YS Chen (4374_CR23) 2019; 53 European Food Safety Authority (4374_CR36) 2012; 10 G Li (4374_CR65) 2011; 37 BL Huhmann (4374_CR47) 2017; 51 AA Meharg (4374_CR78) 2012 M Banerjee (4374_CR4) 2013; 3 PN Williams (4374_CR148) 2007; 41 S Uraguchi (4374_CR139) 2009; 60 S Uraguchi (4374_CR141) 2017; 58 C Chen (4374_CR22) 2019; 13 MZ Zheng (4374_CR177) 2013; 365 AM Carey (4374_CR11) 2011; 192 S Khaokaew (4374_CR58) 2011; 45 S-K Sun (4374_CR126) 2018; 219 Hongping Chen (4374_CR21) 2018; 207 H Miyadate (4374_CR87) 2011; 189 cr-split#-4374_CR135.3 R Naidu (4374_CR92) 1994; 45 JL Yan (4374_CR162) 2016; 39 XY Xu (4374_CR154) 2008; 42 E Smolders (4374_CR117) 2013 FJ Zhao (4374_CR172) 2010; 186 A Raab (4374_CR104) 2007; 4 N Satoh-Nagasawa (4374_CR111) 2012; 53 cr-split#-4374_CR135.1 M Inahara (4374_CR48) 2007; 78 cr-split#-4374_CR135.2 SRM Pinson (4374_CR98) 2015; 55 PT Wang (4374_CR142) 2016; 67 AM Carey (4374_CR10) 2010; 152 MA Limmer (4374_CR66) 2018; 52 KL Moore (4374_CR89) 2011; 156 GJ Norton (4374_CR95) 2012; 193 M Kuramata (4374_CR62) 2015; 17 S Torres-Escribano (4374_CR136) 2008; 42 S Hayashi (4374_CR42) 2017; 91 GX Sun (4374_CR125) 2008; 42 HH Zhu (4374_CR181) 2016; 219 4374_CR35 DY Chao (4374_CR14) 2014; 12 JF Shao (4374_CR114) 2017; 68 J Wang (4374_CR143) 2019; 53 A Mestrot (4374_CR82) 2009; 43 PN Williams (4374_CR147) 2005; 39 T Arao (4374_CR2) 2009; 43 J Rinklebe (4374_CR105) 2016; 270 T Honma (4374_CR43) 2016; 62 AA Meharg (4374_CR80) 2009; 43 International Agency for Research on Cancer (4374_CR49) 2004 L Tang (4374_CR132) 2017; 7 XY Xu (4374_CR153) 2007; 176 B Fulda (4374_CR39) 2013; 47 S Ishikawa (4374_CR50) 2011; 11 C Cobbett (4374_CR25) 2002; 53 CH Tseng (4374_CR137) 2009; 235 C Lomax (4374_CR70) 2012; 193 T Watanabe (4374_CR145) 2000; 73 H-Y Yu (4374_CR168) 2017; 224 S Shi (4374_CR115) 2016; 172 P Wang (4374_CR144) 2019; 249 C Chen (4374_CR17) 2017; 51 F Deng (4374_CR31) 2018; 16 K Tanaka (4374_CR131) 2007; 53 GF Nordberg (4374_CR94) 2009; 238 JM Xu (4374_CR155) 2017; 215 N Yamaguchi (4374_CR158) 2011; 83 Y-P Yang (4374_CR166) 2018; 236 AL Seyfferth (4374_CR113) 2010; 44 4374_CR99 A Sasaki (4374_CR109) 2014; 65 YJ Zavala (4374_CR169) 2008; 42 A Åkesson (4374_CR1) 2014; 122 KL Moore (4374_CR88) 2010; 185 J de Livera (4374_CR30) 2011; 409 F-Q Sui (4374_CR123) 2018; 433 R Ma (4374_CR76) 2014; 194 J Qin (4374_CR102) 2009; 106 L Tan (4374_CR130) 2019; 512 PN Williams (4374_CR150) 2014; 48 Xiaowei Xu (4374_CR157) 2019; 251 FJ Zhao (4374_CR173) 2010; 61 K Huang (4374_CR46) 2016; 50 DE Salt (4374_CR106) 2017; 215 YH Su (4374_CR122) 2010; 328 S Naito (4374_CR93) 2015; 168 YG Zhu (4374_CR179) 2008; 42 J-S Luo (4374_CR72) 2018; 9 FJ Zhao (4374_CR174) 2013; 47 Xiaowei Xu (4374_CR156) 2017; 231 RY Li (4374_CR64) 2009; 43 Z Tang (4374_CR133) 2017; 58 CF Kerl (4374_CR56) 2019; 53 T Arao (4374_CR3) 2018; 64 N Yamaji (4374_CR159) 2017; 39 AH Smith (4374_CR116) 2002; 296 WJ Liu (4374_CR67) 2006; 40 Hongping Chen (4374_CR19) 2018; 238 Shan Fu (4374_CR37) 2019; 70 Codex Alimentarius Commission (4374_CR26) 2006 J Zhang (4374_CR171) 2017; 51 S Ishikawa (4374_CR51) 2012; 109 Y Chen (4374_CR16) 2015; 66 X Hao (4374_CR41) 2018; 9 AA Meharg (4374_CR81) 2013; 47 GM Panaullah (4374_CR96) 2009; 317 M Zhang (4374_CR170) 2014; 127 RY Li (4374_CR63) 2009; 150 4374_CR151 |
References_xml | – year: 2004 ident: CR60 publication-title: The biogeochemistry of submerged soils – volume: 168 start-page: 294 year: 2015 end-page: 301 ident: CR93 article-title: Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan publication-title: Food Chem – volume: 639 start-page: 271 year: 2018 end-page: 277 ident: CR20 article-title: Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China publication-title: Science of The Total Environment – year: 2004 ident: CR49 publication-title: Some drinking-water disinfectants and contaminants, including arsenic – volume: 66 start-page: 3717 year: 2015 end-page: 3724 ident: CR16 article-title: The role of nodes in arsenic storage and distribution in rice publication-title: J Exp Bot – volume: 43 start-page: 1612 year: 2009 end-page: 1617 ident: CR80 article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice publication-title: Environ Sci Technol – volume: 185 start-page: 434 year: 2010 end-page: 445 ident: CR88 article-title: NanoSIMS analysis of arsenic and selenium in cereal grain publication-title: New Phytol – volume: 8 start-page: 2197 year: 2017 ident: CR167 article-title: OsPT4 contributes to arsenate uptake and transport in rice publication-title: Front Plant Sci – volume: 122 start-page: 431 year: 2014 end-page: 438 ident: CR1 article-title: Non-renal effects and the risk assessment of environmental cadmium exposure publication-title: Environ Health Perspect – volume: 48 start-page: 8498 year: 2014 end-page: 8506 ident: CR150 article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice publication-title: Environ Sci Technol – volume: 44 start-page: 8515 year: 2010 end-page: 8521 ident: CR57 article-title: Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils publication-title: Environ Sci Technol – volume: 4 start-page: 197 year: 2007 end-page: 203 ident: CR104 article-title: Uptake and translocation of inorganic and methylated arsenic species by plants publication-title: Environ Chem – volume: 51 start-page: 4377 year: 2017 end-page: 4386 ident: CR171 article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils publication-title: Environ Sci Technol – volume: 127 start-page: 137 year: 2014 end-page: 165 ident: CR170 article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain publication-title: Theor Appl Genet – volume: 43 start-page: 9361 year: 2009 end-page: 9367 ident: CR2 article-title: Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice publication-title: Environ Sci Technol – volume: 12 start-page: e1002009 year: 2014 ident: CR14 article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants publication-title: PLoS Biol – volume: 53 start-page: 5787 year: 2019 end-page: 5796 ident: CR56 article-title: Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants publication-title: Environ Sci Technol – ident: CR135 – volume: 13 start-page: 2523 year: 2019 end-page: 2535 ident: CR22 article-title: Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils publication-title: ISME J – ident: CR54 – volume: 10 start-page: 9 year: 2017 ident: CR34 article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars publication-title: Rice – volume: 152 start-page: 1796 year: 2010 end-page: 1806 ident: CR38 article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant publication-title: Plant Physiol – volume: 62 start-page: 349 year: 2016 end-page: 356 ident: CR43 article-title: Effects of soil amendments on arsenic and cadmium uptake by rice plants ( L. cv. Koshihikari) under different water management practices publication-title: Soil Sci Plant Nutr – volume: 44 start-page: 8108 year: 2010 end-page: 8113 ident: CR113 article-title: Arsenic localization, speciation, and co-occurrence with iron on rice ( L.) roots having variable Fe coatings publication-title: Environ Sci Technol – volume: 21 start-page: 1757 year: 2010 end-page: 1763 ident: CR100 article-title: Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk publication-title: Food Control – volume: 45 start-page: 1798 year: 2011 end-page: 1804 ident: CR83 article-title: Field fluxes and speciation of arsines emanating from soils publication-title: Environ Sci Technol – year: 2012 ident: CR78 publication-title: Arsenic & Rice – volume: 47 start-page: 5613 year: 2013 end-page: 5618 ident: CR81 article-title: Variation in rice cadmium related to human exposure publication-title: Environ Sci Technol – volume: 35 start-page: 1948 year: 2012 end-page: 1957 ident: CR129 article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and cd in rice publication-title: Plant Cell Environ – volume: 231 start-page: 37 year: 2017 end-page: 47 ident: CR156 article-title: Control of arsenic mobilization in paddy soils by manganese and iron oxides publication-title: Environmental Pollution – volume: 85 start-page: 517 year: 2001 end-page: 547 ident: CR27 article-title: Selenium in global food systems publication-title: Br J Nutr – volume: 78 start-page: 149 year: 2007 end-page: 155 ident: CR48 article-title: Countermeasure by means of flooding in latter growth stage to restrain cadmium uptake by lowland rice publication-title: Jap J Soil Sci Plant Nutr – volume: 108 start-page: 20959 year: 2011 end-page: 20964 ident: CR140 article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 12131 year: 2017 end-page: 12138 ident: CR9 article-title: Knocking out gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains publication-title: Environ Sci Technol – volume: 328 start-page: 27 year: 2010 end-page: 34 ident: CR122 article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley publication-title: Plant Soil – volume: 168 start-page: 551 year: 2005 end-page: 558 ident: CR103 article-title: Uptake, translocation and transformation of arsenate and arsenite in sunflower ( ): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations publication-title: New Phytol – volume: 7 start-page: 14438 year: 2017 ident: CR132 article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low cd-accumulating indica rice without compromising yield publication-title: Sci Rep – volume: 30 start-page: 2720 year: 2018 end-page: 2740 ident: CR165 article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice publication-title: Plant Cell – volume: 409 start-page: 1489 year: 2011 end-page: 1497 ident: CR30 article-title: Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions publication-title: Sci Total Environ – volume: 41 start-page: 6854 year: 2007 end-page: 6859 ident: CR148 article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley publication-title: Environ Sci Technol – volume: 50 start-page: 6389 year: 2016 end-page: 6396 ident: CR46 article-title: Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil publication-title: Environ Sci Technol – volume: 51 start-page: 11553 year: 2017 end-page: 11560 ident: CR47 article-title: Field study of rice yield diminished by soil arsenic in Bangladesh publication-title: Environ Sci Technol – volume: 39 start-page: 84 year: 2019 ident: CR178 article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in indica rice hybrids publication-title: Mol Breed – volume: 53 start-page: 159 year: 2002 end-page: 182 ident: CR25 article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis publication-title: Annu Rev Plant Biol – volume: 270 start-page: 21 year: 2016 end-page: 32 ident: CR105 article-title: Release of as, Ba, cd, cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia publication-title: Geoderma – volume: 42 start-page: 3861 year: 2008 end-page: 3866 ident: CR169 article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health publication-title: Environ Sci Technol – volume: 238 start-page: 482 year: 2018 end-page: 490 ident: CR19 article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice publication-title: Environmental Pollution – volume: 105 start-page: 9931 year: 2008 end-page: 9935 ident: CR75 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc Natl Acad Sci U S A – volume: 53 start-page: 72 year: 2007 end-page: 77 ident: CR131 article-title: Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants ( L.) publication-title: Soil Sci Plant Nutr – volume: 47 start-page: 3957 year: 2013 end-page: 3966 ident: CR175 article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms publication-title: Environ Sci Technol – volume: 69 start-page: 278 year: 2012 end-page: 288 ident: CR97 article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury publication-title: Plant J – volume: 109 start-page: 19166 year: 2012 end-page: 19171 ident: CR51 article-title: Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice publication-title: Proc Natl Acad Sci U S A – volume: 43 start-page: 637 year: 2009 end-page: 642 ident: CR149 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan publication-title: China Environ Sci Technol – volume: 239 start-page: 184 year: 2009 end-page: 192 ident: CR15 article-title: Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh publication-title: Toxicol Appl Pharmacol – volume: 37 start-page: 229 year: 2003 end-page: 234 ident: CR77 article-title: Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption publication-title: Environ Sci Technol – volume: 9 start-page: 645 year: 2018 ident: CR72 article-title: A defensin-like protein drives cadmium efflux and allocation in rice publication-title: Nat Commun – volume: 17 start-page: 1897 year: 2015 end-page: 1909 ident: CR62 article-title: Arsenic biotransformation by sp isolated from rice rhizosphere publication-title: Environ Microbiol – volume: 44 start-page: 116 year: 2010 end-page: 122 ident: CR146 article-title: Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil publication-title: Environ Sci Technol – volume: 13 start-page: 916 year: 2013 end-page: 924 ident: CR45 article-title: Effect of water management on cadmium and arsenic accumulation by rice ( L.) with different metal accumulation capacities. J publication-title: Soil Sed – volume: 126 start-page: 619 year: 2019 end-page: 626 ident: CR71 article-title: Producing cadmium-free Indica rice by overexpressing OsHMA3 publication-title: Environment International – volume: 1 start-page: 13 issue: 1 year: 2015 end-page: 22 ident: CR13 article-title: How Does Contamination of Rice Soils with Cd and Zn Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers publication-title: Current Pollution Reports – volume: 215 start-page: 926 year: 2017 end-page: 928 ident: CR106 article-title: Would the real arsenate reductase please stand up? publication-title: New Phytol – volume: 152 start-page: 309 year: 2010 end-page: 319 ident: CR10 article-title: Grain unloading of arsenic species in rice publication-title: Plant Physiol – volume: 58 start-page: 904 year: 2017 end-page: 913 ident: CR133 article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain publication-title: Plant Cell Physiol – volume: 11 start-page: 172 year: 2011 ident: CR50 article-title: Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars ( ) using positron-emitting Cd tracer publication-title: BMC Plant Biol – volume: 70 start-page: 2857 year: 2019 end-page: 2871 ident: CR124 article-title: Map-based cloning of a new total loss-of-function allele of causes high cadmium accumulation in rice grain publication-title: J Exp Bot – start-page: 283 year: 2013 end-page: 311 ident: CR117 article-title: Chapter 10. Cadmium publication-title: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability – volume: 42 start-page: 1051 year: 2008 end-page: 1057 ident: CR79 article-title: Speciation and localization of arsenic in white and brown rice grains publication-title: Environ Sci Technol – volume: 512 start-page: 112 year: 2019 end-page: 118 ident: CR130 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/cd to grain in rice publication-title: Biochem Biophys Res Commun – volume: 64 start-page: 433 year: 2018 end-page: 437 ident: CR3 article-title: Effect of air temperature after heading of rice on the arsenic concentration of grain publication-title: Soil Sci Plant Nutr – volume: 448 start-page: 209 year: 2007 end-page: 212 ident: CR74 article-title: An efflux transporter of silicon in rice publication-title: Nature – volume: 10 start-page: 2562 year: 2019 ident: CR163 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nat Commun – volume: 224 start-page: 136 year: 2017 end-page: 147 ident: CR168 article-title: Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice publication-title: Environ Pollut – volume: 42 start-page: 443 year: 2014 end-page: 467 ident: CR180 article-title: Earth abides arsenic biotransformations publication-title: Annu Rev Earth Planet Sci – volume: 193 start-page: 665 year: 2012 end-page: 672 ident: CR70 article-title: Methylated arsenic species in plants originate from soil microorganisms publication-title: New Phytol – volume: 112 start-page: 11401 year: 2015 end-page: 11406 ident: CR161 article-title: Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice publication-title: Proc Natl Acad Sci U S A – volume: 207 start-page: 699 year: 2018 end-page: 707 ident: CR21 article-title: Effective methods to reduce cadmium accumulation in rice grain publication-title: Chemosphere – volume: 61 start-page: 535 year: 2010 end-page: 559 ident: CR173 article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu Rev Plant Biol – volume: 43 start-page: 3778 year: 2009 end-page: 3783 ident: CR64 article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization publication-title: Environ Sci Technol – volume: 43 start-page: 8270 year: 2009 end-page: 8275 ident: CR82 article-title: Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil publication-title: Environ Sci Technol – volume: 119 start-page: 183 year: 2013 end-page: 273 ident: CR7 article-title: Cadmium contamination and its risk management in rice ecosystems publication-title: Adv Agron – volume: 45 start-page: 4249 year: 2011 end-page: 4255 ident: CR58 article-title: Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions publication-title: Environ Sci Technol – volume: 59 start-page: 580 year: 2013 end-page: 590 ident: CR55 article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice publication-title: Soil Sci Plant Nutr – volume: 161 start-page: 1466 year: 2009 end-page: 1472 ident: CR68 article-title: Foliar application of two silica sols reduced cadmium accumulation in rice grains publication-title: J Hazard Mater – ident: CR151 – volume: 433 start-page: 377 year: 2018 end-page: 389 ident: CR123 article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize publication-title: Plant Soil – volume: 39 start-page: 1941 year: 2016 end-page: 1954 ident: CR162 article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars publication-title: Plant Cell Environ – year: 2008 ident: CR52 publication-title: Survey report on the nutrition and health of Chinese residents: dataset on the status of nutrition and health in 2002 – volume: 5 start-page: 4617 year: 2014 ident: CR107 article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in publication-title: Nat Commun – volume: 46 start-page: 13176 year: 2012 end-page: 13183 ident: CR112 article-title: Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( L.) publication-title: Environ Sci Technol – volume: 172 start-page: 1708 year: 2016 end-page: 1719 ident: CR115 article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation publication-title: Plant Physiol – volume: 103 start-page: 2075 year: 2006 end-page: 2080 ident: CR101 article-title: Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase publication-title: Proc Natl Acad Sci U S A – volume: 67 start-page: 6051 year: 2016 end-page: 6059 ident: CR142 article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice publication-title: J Exp Bot – volume: 38 start-page: 1038 year: 2004 end-page: 1044 ident: CR127 article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods publication-title: Environ Sci Technol – volume: 47 start-page: 12775 year: 2013 end-page: 12783 ident: CR39 article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper publication-title: Environ Sci Technol – volume: 57 start-page: 2510 year: 2016 end-page: 2518 ident: CR86 article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice publication-title: Plant Cell Physiol – volume: 62 start-page: 4843 year: 2011 end-page: 4850 ident: CR128 article-title: The OsNRAMP1 iron transporter is involved in cd accumulation in rice publication-title: J Exp Bot – volume: 42 start-page: 5008 year: 2008 end-page: 5013 ident: CR179 article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice publication-title: Environ Sci Technol – volume: 156 start-page: 913 year: 2011 end-page: 924 ident: CR89 article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots publication-title: Plant Physiol – volume: 24 start-page: 2155 year: 2012 end-page: 2167 ident: CR108 article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice publication-title: Plant Cell – volume: 89 start-page: 713 year: 1989 end-page: 764 ident: CR28 article-title: Arsenic speciation in the environment publication-title: Chem Rev – volume: 296 start-page: 2145 year: 2002 end-page: 2146 ident: CR116 article-title: Arsenic epidemiology and drinking water standards publication-title: Science – volume: 18 start-page: 92 year: 2013 end-page: 99 ident: CR24 article-title: Plant science: the key to preventing slow cadmium poisoning publication-title: Trends Plant Sci – volume: 201 start-page: 104 year: 2014 end-page: 115 ident: CR90 article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues publication-title: New Phytol – volume: 238 start-page: 192 year: 2009 end-page: 200 ident: CR94 article-title: Historical perspectives on cadmium toxicology publication-title: Toxicol Appl Pharmacol – volume: 162 start-page: 927 year: 2013 end-page: 939 ident: CR160 article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2 publication-title: Plant Physiol – volume: 68 start-page: 5641 year: 2017 end-page: 5651 ident: CR114 article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice publication-title: J Exp Bot – volume: 51 start-page: 13190 year: 2017 end-page: 13198 ident: CR17 article-title: Microbial processes mediating the evolution of methylarsine gases from dimethylarsenate in paddy soils publication-title: Environ Sci Technol – volume: 12 start-page: e0177978 year: 2017 ident: CR119 article-title: Dietary cadmium exposure assessment among the Chinese population publication-title: PLoS One – volume: 39 start-page: 18 year: 2017 end-page: 24 ident: CR159 article-title: Node-controlled allocation of mineral elements in Poaceae publication-title: Curr Opin Plant Biol – volume: 42 start-page: 3867 year: 2008 end-page: 3872 ident: CR136 article-title: Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments publication-title: Environ Sci Technol – ident: CR35 – volume: 60 start-page: 2677 year: 2009 end-page: 2688 ident: CR139 article-title: Root-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice publication-title: J Exp Bot – volume: 37 start-page: 4182 year: 2003 end-page: 4189 ident: CR33 article-title: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility publication-title: Environ Sci Technol – volume: 37 start-page: 1219 year: 2011 end-page: 1225 ident: CR65 article-title: Inorganic arsenic in Chinese food and its cancer risk publication-title: Environ Int – volume: 40 start-page: 5730 year: 2006 end-page: 5736 ident: CR67 article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants ( L.) publication-title: Environ Sci Technol – volume: 249 start-page: 1038 year: 2019 end-page: 1048 ident: CR144 article-title: Cadmium contamination in agricultural soils of China and the impact on food safety publication-title: Environ Pollut – volume: 11 start-page: 1153 year: 1999 end-page: 1163 ident: CR40 article-title: Phytochelatin synthase genes from arabidopsis and the yeast publication-title: Plant Cell – ident: CR84 – volume: 83 start-page: 925 year: 2011 end-page: 932 ident: CR158 article-title: Arsenic release from flooded paddy soils is influenced by speciation, eh, pH, and iron dissolution publication-title: Chemosphere – volume: 16 start-page: 1691 year: 2018 end-page: 1699 ident: CR31 article-title: Engineering rice with lower grain arsenic publication-title: Plant Biotechnol J – volume: 67 start-page: 3645 year: 2016 end-page: 3653 ident: CR110 article-title: Transporters involved in mineral nutrient uptake in rice publication-title: J Exp Bot – volume: 68 start-page: 3007 year: 2017 end-page: 3016 ident: CR18 article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice publication-title: J Exp Bot – volume: 45 start-page: 4262 year: 2011 end-page: 4269 ident: CR120 article-title: Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions publication-title: Environ Sci Technol – volume: 272 start-page: 121 year: 2014 end-page: 128 ident: CR6 article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment publication-title: J Hazard Mater – volume: 219 start-page: 641 year: 2018 end-page: 653 ident: CR126 article-title: Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots publication-title: New Phytol – volume: 50 start-page: 11637 year: 2016 end-page: 11645 ident: CR59 article-title: Kinetics of dimethylated thioarsenicals and the formation of highly toxic dimethylmonothioarsinic acid in environment publication-title: Environ Sci Technol – volume: 194 start-page: 217 year: 2014 end-page: 223 ident: CR76 article-title: Impact of agronomic practices on arsenic accumulation and speciation in rice grain publication-title: Environ Pollut – volume: 45 start-page: 419 year: 1994 end-page: 429 ident: CR92 article-title: Ionic strength and pH effects on the sorption of cadmium and the surface charge of soils publication-title: Eur J Soil Sci – volume: 65 start-page: 6013 year: 2014 end-page: 6021 ident: CR109 article-title: Overexpression of OsHMA3 enhances cd tolerance and expression of Zn transporter genes in rice publication-title: J Exp Bot – volume: 317 start-page: 31 year: 2009 end-page: 39 ident: CR96 article-title: Arsenic toxicity to rice ( L.) in Bangladesh publication-title: Plant Soil – volume: 55 start-page: 1 year: 2015 end-page: 18 ident: CR98 article-title: World-wide genetic diversity for mineral element concentrations in rice grain publication-title: Crop Sci – volume: 172 start-page: 1899 year: 2016 end-page: 1910 ident: CR152 article-title: The HvNramp5 tansporter mediates uptake of cadmium and manganese, but not iron publication-title: Plant Physiol – volume: 107 start-page: 1059 year: 1995 end-page: 1066 ident: CR44 article-title: Cadmium-sensitive, mutants of are phytochelatin deficient publication-title: Plant Physiol – volume: 107 start-page: 16500 year: 2010 end-page: 16505 ident: CR138 article-title: Gene limiting cadmium accumulation in rice publication-title: Proc Natl Acad Sci U S A – volume: 176 start-page: 590 year: 2007 end-page: 599 ident: CR153 article-title: Rapid reduction of arsenate in the medium mediated by plant roots publication-title: New Phytol – volume: 215 start-page: 1090 year: 2017 end-page: 1101 ident: CR155 article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice publication-title: New Phytol – volume: 60 start-page: 1525 year: 2019 end-page: 1535 ident: CR134 article-title: The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice publication-title: Plant Cell Physiol – volume: 365 start-page: 227 year: 2013 end-page: 238 ident: CR177 article-title: Differential toxicity and accumulation of inorganic and methylated arsenic in rice publication-title: Plant Soil – ident: CR99 – year: 2006 ident: CR26 publication-title: Report of the 29th session of the codex Alimentarius commission, ALINORM 06/29/41 – volume: 53 start-page: 10062 year: 2019 end-page: 10069 ident: CR23 article-title: Expressing arsenite antiporter PvACR3;1 in rice ( L.) decreases inorganic arsenic content in rice grains publication-title: Environ Sci Technol – volume: 52 start-page: 4809 year: 2018 end-page: 4816 ident: CR66 article-title: Silicon decreases dimethylarsinic acid concentration in rice grain and mitigates straighthead disorder publication-title: Environ Sci Technol – volume: 44 start-page: 8842 year: 2010 end-page: 8848 ident: CR32 article-title: Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies publication-title: Environ Sci Technol – volume: 150 start-page: 2071 year: 2009 end-page: 2080 ident: CR63 article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species publication-title: Plant Physiol – volume: 189 start-page: 190 year: 2011 end-page: 199 ident: CR87 article-title: OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytol – volume: 73 start-page: 26 year: 2000 end-page: 34 ident: CR145 article-title: Cadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981 publication-title: Int Arch Occup Environ Health – volume: 10 start-page: 4985 year: 2019 ident: CR91 article-title: Rice production threatened by coupled stresses of climate and soil arsenic publication-title: Nat Commun – volume: 236 start-page: 598 year: 2018 end-page: 608 ident: CR166 article-title: Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation publication-title: Environ Pollut – volume: 219 start-page: 99 year: 2016 end-page: 106 ident: CR181 article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China publication-title: Environ Pollut – ident: CR53 – volume: 26 start-page: 9305 year: 2019 end-page: 9313 ident: CR73 article-title: Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce cd concentration in rice grains: a field study publication-title: Environ Sci Pollut Res – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: CR176 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ Sci Technol – volume: 10 start-page: 2551 year: 2012 end-page: 2588 ident: CR36 article-title: Cadmium dietary exposure in the European population publication-title: EFSA J – volume: 62 start-page: 4391 year: 2011 end-page: 4398 ident: CR85 article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic publication-title: J Exp Bot – volume: 42 start-page: 5574 year: 2008 end-page: 5579 ident: CR154 article-title: Growing rice aerobically markedly decreases arsenic accumulation publication-title: Environ Sci Technol – volume: 58 start-page: 378 year: 2013 end-page: 383 ident: CR5 article-title: Biochar soil amendment as a solution to prevent cd-tainted rice from China: results from a cross-site field experiment publication-title: Ecol Eng – volume: 70 start-page: 5909 issue: 20 year: 2019 end-page: 5918 ident: CR37 article-title: The ABC transporter ABCG36 is required for cadmium tolerance in rice publication-title: Journal of Experimental Botany – volume: 39 start-page: 5531 year: 2005 end-page: 5540 ident: CR147 article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure publication-title: Environ Sci Technol – volume: 44 start-page: 15 year: 2010 end-page: 23 ident: CR8 article-title: Biogeochemical redox processes and their impact on contaminant dynamics publication-title: Environ Sci Technol – volume: 7 start-page: 17704 year: 2017 ident: CR69 article-title: Characterization of a major QTL for manganese accumulation in rice grain publication-title: Sci Rep – volume: 159 start-page: 947 year: 2011 end-page: 953 ident: CR121 article-title: The dynamics of arsenic in four paddy fields in the Bengal delta publication-title: Environ Pollut – volume: 3 start-page: 2195 year: 2013 ident: CR4 article-title: High arsenic in rice is associated with elevated genotoxic effects in humans publication-title: Sci Rep – volume: 53 start-page: 2500 year: 2019 end-page: 2508 ident: CR143 article-title: Iron–manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems publication-title: Environ Sci Technol – volume: 192 start-page: 87 year: 2011 end-page: 98 ident: CR11 article-title: Phloem transport of arsenic species from flag leaf to grain during grain filling publication-title: New Phytol – volume: 26 start-page: 2462 year: 1992 end-page: 2468 ident: CR29 article-title: Solubility of CdS (greennockite) in sulfidic water at 25 C publication-title: Environ Sci Technol – volume: 9 start-page: 476 year: 2018 ident: CR41 article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice publication-title: Front Plant Sci – volume: 186 start-page: 392 year: 2010 end-page: 399 ident: CR172 article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots publication-title: New Phytol – volume: 53 start-page: 213 year: 2012 end-page: 224 ident: CR111 article-title: Mutations in rice ( ) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium publication-title: Plant Cell Physiol – volume: 91 start-page: 840 year: 2017 end-page: 848 ident: CR42 article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains publication-title: Plant J – volume: 42 start-page: 7542 year: 2008 end-page: 7546 ident: CR125 article-title: Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain publication-title: Environ Sci Technol – volume: 235 start-page: 338 year: 2009 end-page: 350 ident: CR137 article-title: A review on environmental factors regulating arsenic methylation in humans publication-title: Toxicol Appl Pharmacol – volume: 127 start-page: 257 year: 2009 end-page: 268 ident: CR61 article-title: Influence of consumption of cadmium-polluted rice or jinzu river water on occurrence of renal tubular dysfunction and/or Itai-itai disease publication-title: Biol Trace Elem Res – volume: 65 start-page: 4849 year: 2014 end-page: 4861 ident: CR164 article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots publication-title: J Exp Bot – volume: 47 start-page: 7147 year: 2013 end-page: 7154 ident: CR174 article-title: Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice publication-title: Environ Sci Technol – volume: 106 start-page: 5213 year: 2009 end-page: 5217 ident: CR102 article-title: Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga publication-title: Proc Natl Acad Sci U S A – volume: 111 start-page: 15699 year: 2014 end-page: 15704 ident: CR118 article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain publication-title: Proc Natl Acad Sci U S A – volume: 58 start-page: 1730 year: 2017 end-page: 1742 ident: CR141 article-title: Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains publication-title: Plant Cell Physiol – volume: 251 start-page: 952 year: 2019 end-page: 960 ident: CR157 article-title: Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction publication-title: Environmental Pollution – volume: 193 start-page: 650 year: 2012 end-page: 664 ident: CR95 article-title: Variation in grain arsenic assessed in a diverse panel of rice ( ) grown in multiple sites publication-title: New Phytol – start-page: 59 year: 1980 end-page: 83 ident: CR12 article-title: Health risks associated with toxic metals in municipal sludge publication-title: Sludge: health risks of land applications – volume: 106 start-page: 5213 year: 2009 ident: 4374_CR102 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900238106 – volume: 317 start-page: 31 year: 2009 ident: 4374_CR96 publication-title: Plant Soil doi: 10.1007/s11104-008-9786-y – volume: 238 start-page: 482 year: 2018 ident: 4374_CR19 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2018.03.048 – volume: 30 start-page: 2720 year: 2018 ident: 4374_CR165 publication-title: Plant Cell doi: 10.1105/tpc.18.00375 – volume: 207 start-page: 699 year: 2018 ident: 4374_CR21 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.143 – volume: 249 start-page: 1038 year: 2019 ident: 4374_CR144 publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.03.063 – volume: 112 start-page: 11401 year: 2015 ident: 4374_CR161 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1508987112 – volume: 83 start-page: 925 year: 2011 ident: 4374_CR158 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.044 – volume: 44 start-page: 8515 year: 2010 ident: 4374_CR57 publication-title: Environ Sci Technol doi: 10.1021/es101952f – volume: 11 start-page: 1153 year: 1999 ident: 4374_CR40 publication-title: Plant Cell doi: 10.1105/tpc.11.6.1153 – volume: 47 start-page: 7147 year: 2013 ident: 4374_CR174 publication-title: Environ Sci Technol doi: 10.1021/es304977m – volume: 162 start-page: 927 year: 2013 ident: 4374_CR160 publication-title: Plant Physiol doi: 10.1104/pp.113.216564 – volume: 70 start-page: 2857 year: 2019 ident: 4374_CR124 publication-title: J Exp Bot doi: 10.1093/jxb/erz093 – volume: 66 start-page: 3717 year: 2015 ident: 4374_CR16 publication-title: J Exp Bot doi: 10.1093/jxb/erv164 – volume: 215 start-page: 926 year: 2017 ident: 4374_CR106 publication-title: New Phytol doi: 10.1111/nph.14691 – volume: 119 start-page: 183 year: 2013 ident: 4374_CR7 publication-title: Adv Agron doi: 10.1016/B978-0-12-407247-3.00004-4 – volume: 44 start-page: 8842 year: 2010 ident: 4374_CR32 publication-title: Environ Sci Technol doi: 10.1021/es101962d – volume: 62 start-page: 4843 year: 2011 ident: 4374_CR128 publication-title: J Exp Bot doi: 10.1093/jxb/err136 – volume: 35 start-page: 1948 year: 2012 ident: 4374_CR129 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02527.x – volume: 62 start-page: 4391 year: 2011 ident: 4374_CR85 publication-title: J Exp Bot doi: 10.1093/jxb/err158 – volume-title: The biogeochemistry of submerged soils year: 2004 ident: 4374_CR60 doi: 10.1002/047086303X – volume: 172 start-page: 1708 year: 2016 ident: 4374_CR115 publication-title: Plant Physiol doi: 10.1104/pp.16.01332 – volume: 51 start-page: 12131 year: 2017 ident: 4374_CR9 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03028 – volume: 69 start-page: 278 year: 2012 ident: 4374_CR97 publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04789.x – ident: 4374_CR151 – volume: 37 start-page: 4182 year: 2003 ident: 4374_CR33 publication-title: Environ Sci Technol doi: 10.1021/es030309t – volume: 156 start-page: 913 year: 2011 ident: 4374_CR89 publication-title: Plant Physiol doi: 10.1104/pp.111.173088 – volume: 44 start-page: 15 year: 2010 ident: 4374_CR8 publication-title: Environ Sci Technol doi: 10.1021/es9026248 – volume: 409 start-page: 1489 year: 2011 ident: 4374_CR30 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.12.028 – volume: 219 start-page: 641 year: 2018 ident: 4374_CR126 publication-title: New Phytol doi: 10.1111/nph.15190 – volume: 272 start-page: 121 year: 2014 ident: 4374_CR6 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.03.017 – volume: 91 start-page: 840 year: 2017 ident: 4374_CR42 publication-title: Plant J doi: 10.1111/tpj.13612 – volume: 192 start-page: 87 year: 2011 ident: 4374_CR11 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03789.x – volume: 50 start-page: 11637 year: 2016 ident: 4374_CR59 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b02656 – volume: 219 start-page: 99 year: 2016 ident: 4374_CR181 publication-title: Environ Pollut doi: 10.1016/j.envpol.2016.10.043 – volume: 44 start-page: 116 year: 2010 ident: 4374_CR146 publication-title: Environ Sci Technol doi: 10.1021/es902100h – volume: 51 start-page: 13190 year: 2017 ident: 4374_CR17 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b04791 – volume: 238 start-page: 192 year: 2009 ident: 4374_CR94 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2009.03.015 – volume: 168 start-page: 551 year: 2005 ident: 4374_CR103 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01519.x – volume: 9 start-page: 645 year: 2018 ident: 4374_CR72 publication-title: Nat Commun doi: 10.1038/s41467-018-03088-0 – volume: 111 start-page: 15699 year: 2014 ident: 4374_CR118 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1414968111 – volume: 45 start-page: 419 year: 1994 ident: 4374_CR92 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.1994.tb00527.x – volume: 46 start-page: 13176 year: 2012 ident: 4374_CR112 publication-title: Environ Sci Technol doi: 10.1021/es3025337 – volume: 53 start-page: 2500 year: 2019 ident: 4374_CR143 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b06863 – volume: 70 start-page: 5909 issue: 20 year: 2019 ident: 4374_CR37 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erz335 – volume: 512 start-page: 112 year: 2019 ident: 4374_CR130 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.03.024 – volume: 60 start-page: 1525 year: 2019 ident: 4374_CR134 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcz054 – volume: 43 start-page: 637 year: 2009 ident: 4374_CR149 publication-title: China Environ Sci Technol doi: 10.1021/es802412r – volume: 3 start-page: 2195 year: 2013 ident: 4374_CR4 publication-title: Sci Rep doi: 10.1038/srep02195 – volume: 150 start-page: 2071 year: 2009 ident: 4374_CR63 publication-title: Plant Physiol doi: 10.1104/pp.109.140350 – volume: 51 start-page: 4377 year: 2017 ident: 4374_CR171 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b06255 – volume: 47 start-page: 12775 year: 2013 ident: 4374_CR39 publication-title: Environ Sci Technol doi: 10.1021/es401997d – volume: 89 start-page: 713 year: 1989 ident: 4374_CR28 publication-title: Chem Rev doi: 10.1021/cr00094a002 – volume: 26 start-page: 2462 year: 1992 ident: 4374_CR29 publication-title: Environ Sci Technol doi: 10.1021/es00036a019 – volume: 50 start-page: 6389 year: 2016 ident: 4374_CR46 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b01974 – volume: 42 start-page: 3861 year: 2008 ident: 4374_CR169 publication-title: Environ Sci Technol doi: 10.1021/es702748q – volume: 235 start-page: 338 year: 2009 ident: 4374_CR137 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2008.12.016 – volume: 42 start-page: 5574 year: 2008 ident: 4374_CR154 publication-title: Environ Sci Technol doi: 10.1021/es800324u – volume: 10 start-page: 4985 year: 2019 ident: 4374_CR91 publication-title: Nat Commun doi: 10.1038/s41467-019-12946-4 – volume: 186 start-page: 392 year: 2010 ident: 4374_CR172 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03192.x – start-page: 59 volume-title: Sludge: health risks of land applications year: 1980 ident: 4374_CR12 – volume: 251 start-page: 952 year: 2019 ident: 4374_CR157 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2019.05.086 – ident: 4374_CR35 – volume: 18 start-page: 92 year: 2013 ident: 4374_CR24 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.08.003 – ident: 4374_CR54 – volume: 126 start-page: 619 year: 2019 ident: 4374_CR71 publication-title: Environment International doi: 10.1016/j.envint.2019.03.004 – volume: 43 start-page: 3778 year: 2009 ident: 4374_CR64 publication-title: Environ Sci Technol doi: 10.1021/es803643v – volume: 38 start-page: 1038 year: 2004 ident: 4374_CR127 publication-title: Environ Sci Technol doi: 10.1021/es034383n – volume: 193 start-page: 665 year: 2012 ident: 4374_CR70 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03956.x – volume: 67 start-page: 6051 year: 2016 ident: 4374_CR142 publication-title: J Exp Bot doi: 10.1093/jxb/erw362 – volume: 127 start-page: 257 year: 2009 ident: 4374_CR61 publication-title: Biol Trace Elem Res doi: 10.1007/s12011-008-8239-z – volume: 236 start-page: 598 year: 2018 ident: 4374_CR166 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.01.099 – volume: 52 start-page: 4809 year: 2018 ident: 4374_CR66 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b00300 – volume: 168 start-page: 294 year: 2015 ident: 4374_CR93 publication-title: Food Chem doi: 10.1016/j.foodchem.2014.07.060 – volume: 328 start-page: 27 year: 2010 ident: 4374_CR122 publication-title: Plant Soil doi: 10.1007/s11104-009-0074-2 – ident: #cr-split#-4374_CR135.1 – volume: 61 start-page: 535 year: 2010 ident: 4374_CR173 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042809-112152 – volume: 64 start-page: 433 year: 2018 ident: 4374_CR3 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2018.1438811 – volume: 5 start-page: 4617 year: 2014 ident: 4374_CR107 publication-title: Nat Commun doi: 10.1038/ncomms5617 – volume: 7 start-page: 17704 year: 2017 ident: 4374_CR69 publication-title: Sci Rep doi: 10.1038/s41598-017-18090-7 – volume: 1 start-page: 13 issue: 1 year: 2015 ident: 4374_CR13 publication-title: Current Pollution Reports doi: 10.1007/s40726-015-0002-4 – volume: 37 start-page: 229 year: 2003 ident: 4374_CR77 publication-title: Environ Sci Technol doi: 10.1021/es0259842 – volume: 49 start-page: 750 year: 2015 ident: 4374_CR176 publication-title: Environ Sci Technol doi: 10.1021/es5047099 – volume: 12 start-page: e1002009 year: 2014 ident: 4374_CR14 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002009 – volume: 189 start-page: 190 year: 2011 ident: 4374_CR87 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03459.x – ident: 4374_CR99 – volume: 42 start-page: 3867 year: 2008 ident: 4374_CR136 publication-title: Environ Sci Technol doi: 10.1021/es071516m – volume: 39 start-page: 18 year: 2017 ident: 4374_CR159 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.05.002 – volume: 39 start-page: 1941 year: 2016 ident: 4374_CR162 publication-title: Plant Cell Environ doi: 10.1111/pce.12747 – volume: 53 start-page: 159 year: 2002 ident: 4374_CR25 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.100301.135154 – volume: 45 start-page: 1798 year: 2011 ident: 4374_CR83 publication-title: Environ Sci Technol doi: 10.1021/es103463d – volume: 53 start-page: 213 year: 2012 ident: 4374_CR111 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr166 – volume: 51 start-page: 11553 year: 2017 ident: 4374_CR47 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b01487 – volume: 37 start-page: 1219 year: 2011 ident: 4374_CR65 publication-title: Environ Int doi: 10.1016/j.envint.2011.05.007 – volume: 41 start-page: 6854 year: 2007 ident: 4374_CR148 publication-title: Environ Sci Technol doi: 10.1021/es070627i – ident: 4374_CR84 – volume: 9 start-page: 476 year: 2018 ident: 4374_CR41 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00476 – volume: 109 start-page: 19166 year: 2012 ident: 4374_CR51 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1211132109 – volume: 270 start-page: 21 year: 2016 ident: 4374_CR105 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.10.011 – volume: 11 start-page: 172 year: 2011 ident: 4374_CR50 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-172 – volume: 58 start-page: 1730 year: 2017 ident: 4374_CR141 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcx114 – volume: 122 start-page: 431 year: 2014 ident: 4374_CR1 publication-title: Environ Health Perspect doi: 10.1289/ehp.1307110 – volume: 193 start-page: 650 year: 2012 ident: 4374_CR95 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03983.x – volume: 57 start-page: 2510 year: 2016 ident: 4374_CR86 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcw163 – volume: 176 start-page: 590 year: 2007 ident: 4374_CR153 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02195.x – volume: 10 start-page: 2562 year: 2019 ident: 4374_CR163 publication-title: Nat Commun doi: 10.1038/s41467-019-10544-y – volume: 85 start-page: 517 year: 2001 ident: 4374_CR27 publication-title: Br J Nutr doi: 10.1079/BJN2000280 – volume: 39 start-page: 5531 year: 2005 ident: 4374_CR147 publication-title: Environ Sci Technol doi: 10.1021/es0502324 – volume: 448 start-page: 209 year: 2007 ident: 4374_CR74 publication-title: Nature doi: 10.1038/nature05964 – volume: 65 start-page: 6013 year: 2014 ident: 4374_CR109 publication-title: J Exp Bot doi: 10.1093/jxb/eru340 – volume: 172 start-page: 1899 year: 2016 ident: 4374_CR152 publication-title: Plant Physiol doi: 10.1104/pp.16.01189 – volume: 10 start-page: 9 year: 2017 ident: 4374_CR34 publication-title: Rice doi: 10.1186/s12284-017-0149-2 – volume: 39 start-page: 84 year: 2019 ident: 4374_CR178 publication-title: Mol Breed doi: 10.1007/s11032-019-0992-5 – ident: #cr-split#-4374_CR135.3 – volume: 68 start-page: 5641 year: 2017 ident: 4374_CR114 publication-title: J Exp Bot doi: 10.1093/jxb/erx364 – volume: 47 start-page: 5613 year: 2013 ident: 4374_CR81 publication-title: Environ Sci Technol doi: 10.1021/es400521h – volume: 127 start-page: 137 year: 2014 ident: 4374_CR170 publication-title: Theor Appl Genet doi: 10.1007/s00122-013-2207-5 – volume: 201 start-page: 104 year: 2014 ident: 4374_CR90 publication-title: New Phytol doi: 10.1111/nph.12497 – volume: 105 start-page: 9931 year: 2008 ident: 4374_CR75 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0802361105 – volume: 296 start-page: 2145 year: 2002 ident: 4374_CR116 publication-title: Science doi: 10.1126/science.1072896 – volume: 53 start-page: 72 year: 2007 ident: 4374_CR131 publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2007.00116.x – volume-title: Some drinking-water disinfectants and contaminants, including arsenic year: 2004 ident: 4374_CR49 – volume: 43 start-page: 8270 year: 2009 ident: 4374_CR82 publication-title: Environ Sci Technol doi: 10.1021/es9018755 – volume: 215 start-page: 1090 year: 2017 ident: 4374_CR155 publication-title: New Phytol doi: 10.1111/nph.14572 – volume: 108 start-page: 20959 year: 2011 ident: 4374_CR140 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1116531109 – start-page: 283 volume-title: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability year: 2013 ident: 4374_CR117 doi: 10.1007/978-94-007-4470-7_10 – volume: 40 start-page: 5730 year: 2006 ident: 4374_CR67 publication-title: Environ Sci Technol doi: 10.1021/es060800v – volume: 161 start-page: 1466 year: 2009 ident: 4374_CR68 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.04.116 – volume: 43 start-page: 1612 year: 2009 ident: 4374_CR80 publication-title: Environ Sci Technol doi: 10.1021/es802612a – volume: 58 start-page: 378 year: 2013 ident: 4374_CR5 publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2013.07.031 – volume: 152 start-page: 309 year: 2010 ident: 4374_CR10 publication-title: Plant Physiol doi: 10.1104/pp.109.146126 – volume-title: Arsenic & Rice year: 2012 ident: 4374_CR78 doi: 10.1007/978-94-007-2947-6 – ident: #cr-split#-4374_CR135.2 – volume-title: Survey report on the nutrition and health of Chinese residents: dataset on the status of nutrition and health in 2002 year: 2008 ident: 4374_CR52 – volume: 10 start-page: 2551 year: 2012 ident: 4374_CR36 publication-title: EFSA J doi: 10.2903/j.efsa.2012.2551 – volume: 152 start-page: 1796 year: 2010 ident: 4374_CR38 publication-title: Plant Physiol doi: 10.1104/pp.109.151035 – volume: 55 start-page: 1 year: 2015 ident: 4374_CR98 publication-title: Crop Sci doi: 10.2135/cropsci2014.03.0249 – volume: 8 start-page: 2197 year: 2017 ident: 4374_CR167 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02197 – volume: 107 start-page: 1059 year: 1995 ident: 4374_CR44 publication-title: Plant Physiol doi: 10.1104/pp.107.4.1059 – volume: 67 start-page: 3645 year: 2016 ident: 4374_CR110 publication-title: J Exp Bot doi: 10.1093/jxb/erw060 – volume: 60 start-page: 2677 year: 2009 ident: 4374_CR139 publication-title: J Exp Bot doi: 10.1093/jxb/erp119 – volume: 68 start-page: 3007 year: 2017 ident: 4374_CR18 publication-title: J Exp Bot doi: 10.1093/jxb/erx165 – volume: 16 start-page: 1691 year: 2018 ident: 4374_CR31 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12905 – volume: 48 start-page: 8498 year: 2014 ident: 4374_CR150 publication-title: Environ Sci Technol doi: 10.1021/es501127k – volume: 231 start-page: 37 year: 2017 ident: 4374_CR156 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2017.07.084 – volume: 185 start-page: 434 year: 2010 ident: 4374_CR88 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03071.x – volume: 239 start-page: 184 year: 2009 ident: 4374_CR15 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2009.01.010 – volume: 78 start-page: 149 year: 2007 ident: 4374_CR48 publication-title: Jap J Soil Sci Plant Nutr – volume: 42 start-page: 7542 year: 2008 ident: 4374_CR125 publication-title: Environ Sci Technol doi: 10.1021/es801238p – volume: 194 start-page: 217 year: 2014 ident: 4374_CR76 publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.08.004 – volume: 159 start-page: 947 year: 2011 ident: 4374_CR121 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.12.016 – volume: 47 start-page: 3957 year: 2013 ident: 4374_CR175 publication-title: Environ Sci Technol doi: 10.1021/es304295n – volume-title: Report of the 29th session of the codex Alimentarius commission, ALINORM 06/29/41 year: 2006 ident: 4374_CR26 – volume: 4 start-page: 197 year: 2007 ident: 4374_CR104 publication-title: Environ Chem doi: 10.1071/EN06079 – volume: 44 start-page: 8108 year: 2010 ident: 4374_CR113 publication-title: Environ Sci Technol doi: 10.1021/es101139z – volume: 62 start-page: 349 year: 2016 ident: 4374_CR43 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2016.1196569 – volume: 73 start-page: 26 year: 2000 ident: 4374_CR145 publication-title: Int Arch Occup Environ Health doi: 10.1007/PL00007934 – volume: 12 start-page: e0177978 year: 2017 ident: 4374_CR119 publication-title: PLoS One doi: 10.1371/journal.pone.0177978 – volume: 43 start-page: 9361 year: 2009 ident: 4374_CR2 publication-title: Environ Sci Technol doi: 10.1021/es9022738 – volume: 53 start-page: 10062 year: 2019 ident: 4374_CR23 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b02418 – volume: 58 start-page: 904 year: 2017 ident: 4374_CR133 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcx029 – volume: 103 start-page: 2075 year: 2006 ident: 4374_CR101 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506836103 – volume: 42 start-page: 5008 year: 2008 ident: 4374_CR179 publication-title: Environ Sci Technol doi: 10.1021/es8001103 – volume: 45 start-page: 4249 year: 2011 ident: 4374_CR58 publication-title: Environ Sci Technol doi: 10.1021/es103971y – volume: 24 start-page: 2155 year: 2012 ident: 4374_CR108 publication-title: Plant Cell doi: 10.1105/tpc.112.096925 – volume: 433 start-page: 377 year: 2018 ident: 4374_CR123 publication-title: Plant Soil doi: 10.1007/s11104-018-3849-5 – volume: 13 start-page: 2523 year: 2019 ident: 4374_CR22 publication-title: ISME J doi: 10.1038/s41396-019-0451-7 – volume: 26 start-page: 9305 year: 2019 ident: 4374_CR73 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-04412-x – volume: 42 start-page: 1051 year: 2008 ident: 4374_CR79 publication-title: Environ Sci Technol doi: 10.1021/es702212p – volume: 42 start-page: 443 year: 2014 ident: 4374_CR180 publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev-earth-060313-054942 – volume: 107 start-page: 16500 year: 2010 ident: 4374_CR138 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005396107 – volume: 45 start-page: 4262 year: 2011 ident: 4374_CR120 publication-title: Environ Sci Technol doi: 10.1021/es104080s – volume: 59 start-page: 580 year: 2013 ident: 4374_CR55 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2013.804390 – volume: 53 start-page: 5787 year: 2019 ident: 4374_CR56 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b00592 – volume: 21 start-page: 1757 year: 2010 ident: 4374_CR100 publication-title: Food Control doi: 10.1016/j.foodcont.2010.08.005 – volume: 13 start-page: 916 year: 2013 ident: 4374_CR45 publication-title: Soil Sed doi: 10.1007/s11368-013-0658-6 – volume: 65 start-page: 4849 year: 2014 ident: 4374_CR164 publication-title: J Exp Bot doi: 10.1093/jxb/eru259 – volume: 639 start-page: 271 year: 2018 ident: 4374_CR20 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.05.050 – volume: 224 start-page: 136 year: 2017 ident: 4374_CR168 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.01.072 – volume: 17 start-page: 1897 year: 2015 ident: 4374_CR62 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12572 – volume: 7 start-page: 14438 year: 2017 ident: 4374_CR132 publication-title: Sci Rep doi: 10.1038/s41598-017-14832-9 – ident: 4374_CR53 – volume: 365 start-page: 227 year: 2013 ident: 4374_CR177 publication-title: Plant Soil doi: 10.1007/s11104-012-1376-3 |
RelatedPersons | Chen Ch'uan |
RelatedPersons_xml | – fullname: Chen Ch'uan |
SSID | ssj0003216 |
Score | 2.6976712 |
SecondaryResourceType | review_article |
Snippet | Background
Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major... Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major... BackgroundArsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major... BACKGROUND: Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accumulation Arsenic Bioavailability Biomedical and Life Sciences Cadmium Chen Ch'uan Detoxification Ecology Food Food safety Genes genotype Genotypes Grain human health Life Sciences Marschner Review paddy soils Plant Physiology Plant Sciences Redox potential Rice Rice fields risk Safety and security measures Soil chemistry Soil pH Soil Science & Conservation Soils staple foods toxicity Translocation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WdA_dQ2m7jbpriweDPWxijixb1lNJRkIZrIyxQt6ErI8RaJwuHw_973fnyAldWd-MLdvipDv9Tqf7HcAHY8uyQteKhdIbJnzgTHFPhwBCzU3uXdE6it9vyutb8W1STOKG2zIeq-xsYmuo3dzSHvkXniOUR1Mqq6v7P4yqRlF0NZbQ2IN9NMFV1YP94ejmx8-tLc55W_yULlgm1SSmzWyS53DloxMYFBzIpWDlo6XpXwP9JFLaLkDjIziMyDEdbIb6GF745gReDX4vInuGP4GXwzlivYfXMBwslr6Z2tQ0LrXGzabrWWqsXc9ita502qREJ9Q2mE03RBt4e7nqqCPewO149OvrNYvVEphFyLNitanrTFWl5F7yYHEZFoVBACJdroSrg5Q-c3XfO7TOxjpUPSlMyFVueOa4sPlb6DXzxp9CavuFUwadG4Qbog6FMlYE4axQfRuc5An0O0FpG6nEqaLFnd6RIJNwNQpXt8LVZQKftu_cb4g0nm39keSvScvwy9bEZAHsH_FV6QG5PZSklyVw3g2Rjuq31LvJksD77WNUHIqGmMbP19gGsaLKKEqZwOduaHef-H_fzp7_4zs44OSTt9s059BbLdb-AoHLqr6Ms_Mvfc7n9g priority: 102 providerName: ProQuest |
Title | Arsenic and cadmium accumulation in rice and mitigation strategies |
URI | https://link.springer.com/article/10.1007/s11104-019-04374-6 https://www.proquest.com/docview/2349584778 https://www.proquest.com/docview/2551909579 |
Volume | 446 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0TkEfRFflqndHBcEHLXTTtNk8trrroXiIuLA-hTQfsnDblf14uP_emWy6ix8n-NTSTkOY6WRmMjO_ALzUpqpGGFplvnI6486zTDJHRQC-ZbpwtgyB4qfL6mLKP8zKWWwKW_fV7n1KMqzUh2Y3tFRUMUGb-YXgWXUbjkuM3amQa8rq_fpbsHDgKd1kuZCz2Crz9zF-MUe_L8p_ZEeD0Zk8hAfRW0zrnXgfwS3XDeB-_X0VETPcAO40S_TvrgdwdxwAqK8fQ1Ov1q6bm1R3NjXaLubbRaqN2S7iWV3pvEsJTCgQLOY7mA18vN70wBFPYDoZf317kcWzEjKDDs8ma3Xb5nJUCeYE8waNMC81uh_CFpLb1gvhctsOncW1WRuLiie49oUsNMst46Z4CkfdsnMnkJphaaXG0AadDd76UmrDPbeGy6HxVrAEhj3LlIlA4nSexZU6QCATmxWyWQU2qyqB1_tvfuxgNP5J_YokoUjHcGSjY6sAzo_QqlRNQQ-16OUJnPbCUlH51ooVGPWh1RWjBF7sX6PaUC5Ed265RRr0FGVOOcoE3vRCPgxx89ye_R_5c7jHKEIPmzancLRZbd0ZujGb9hyO6-ZdM6Hr-28fx3htxpefv5yHv_knPtbq4Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDBABAYECcQDWKSOE9cPCLWwqWNbhdAm9c04toMqrenWD6H9U_yN3CVOK0DsbW9R4jjR-T59vt8BvDI2z3sYWrEy94YJX3KmuKdDAGXBTepdVgeKx6N8eCq-jLPxFvxqa2HoWGWrE2tF7WaW9sjf8xRdeVSlsvfx_IJR1yjKrrYtNBq2OPSXPzFkW3w4-Izr-5rz_b2TT0MWugowi67BkhWmKBLVyyX3kpcWzZXIDBpq6VIlXFFK6RNXdL1DLWasQxaVwpSpSg1PHBc2xXlvwLZI84R3YHuwN_r6ba37U143W6ULlkg1DmU6TbEeWlo68UHJiFQKlv9hCv82CP9kZmuDt38P7gZPNe43rHUftny1A3f6P-YBrcPvwM3BDH3Lywcw6M8XvprY2FQutsZNJ6tpbKxdTUN3sHhSxQRfVA-YThpgD7y9WLZQFQ_h9Fro-Ag61azyjyG23cwpg8EUujeiKDNlrCiFs0J1bekkj6DbEkrbAF1OHTTO9AZ0mYirkbi6Jq7OI3i7fue8Ae64cvQbor8mqcaZrQnFCfh_hI-l-xRmUVFgEsFuu0Q6iPtCb5gzgpfrxyiolH0xlZ-tcAz6piqhrGgE79ql3Uzx_397cvUXX8Ct4cnxkT46GB0-hduc9gPqLaJd6CznK_8MnaZl8Txwagzfr1s4fgNnbCWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDBABAYECcQDWEsdJ24eEGrZqo1BNSEm9c04_pgqrenoh9D-Nf467hKnFSD2trcocZzofOe78939DuCVNnneQ9eK-dxpJpznrOCOkgB8yXXqbFY7il9G-eGp-DTOxlvwq62FobTKdk-sN2o7M3RGvsdTNOVxK5W9PR_SIk72hx8ufjDqIEWR1radRsMix-7yJ7pvi_dH-7jWrzkfHnz7eMhChwFm0ExYslKXZVL0csmd5N6g6hKZRqUtbVoIW3opXWLLrrO4o2ljkV2l0D4tUs0Ty4VJcd4bsC3JK-rA9uBgdPJ1rQdSXjdepQuWyGIcSnaawj3UupT9QYGJVAqW_6EW_1YO_0Rpa-U3vAd3g9Ua9xs2uw9brtqBO_2zeUDucDtwczBDO_PyAQz684WrJibWlY2NttPJahprY1bT0CksnlQxQRnVA6aTBuQDby-WLWzFQzi9Fjo-gk41q9xjiE03s4VGxwpNHVH6rNBGeGGNKLrGW8kj6LaEUibAmFM3jXO1AWAm4iokrqqJq_II3q7fuWhAPK4c_Ybor0jCcWajQ6EC_h9hZak-uVxUIJhEsNsukQqiv1AbRo3g5foxCi1FYnTlZiscg3ZqkVCENIJ37dJupvj_vz25-osv4BYKhfp8NDp-Crc5HQ3Up0W70FnOV-4Z2k_L8nlg1Bi-X7ds_AYr_inl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arsenic+and+cadmium+accumulation+in+rice+and+mitigation+strategies&rft.jtitle=Plant+and+soil&rft.au=Zhao%2C+Fang-Jie&rft.au=Wang%2C+Peng&rft.date=2020-01-01&rft.issn=0032-079X&rft.volume=446&rft.issue=1-2+p.1-21&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2Fs11104-019-04374-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |