Arsenic and cadmium accumulation in rice and mitigation strategies

Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 446; no. 1-2; pp. 1 - 21
Main Authors Zhao, Fang-Jie, Wang, Peng
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health. Scope We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified. Conclusions The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge.
AbstractList Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health. Scope We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified. Conclusions The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge.
BackgroundArsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health.ScopeWe review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified.ConclusionsThe concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge.
Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major dietary source of these two elements for populations consuming rice as a staple food. Reducing their accumulation in rice grain is important for food safety and human health. Scope We review recent progress in understanding the biogeochemical processes controlling As and Cd bioavailability in paddy soil, the mechanisms of their uptake, translocation and detoxification in rice plants, and strategies to reduce their accumulation in rice grain. Similarities and differences between the two elements are emphasized. Some knowledge gaps are also identified. Conclusions The concentrations of As and Cd in rice grain vary by three orders of magnitude, depending on the bioavailability of the two elements in soil, rice genotype and growing conditions. The redox potential in paddy soil has a profound but opposite effect on As and Cd bioavailability, whereas soil pH affects Cd bioavailability more than As bioavailability. A number of key genes involved in As and Cd uptake, translocation, sequestration, and detoxification in rice have been characterized. Allelic variations of several genes underlying the variations in Cd accumulation have been identified, but more remains to be elucidated, especially for As. Two types of strategies can be used to reduce As and Cd accumulation, reducing their bioavailability in soil or their uptake and translocation in rice. Reducing the accumulation of both As and Cd in rice simultaneously remains a great challenge.
Audience Academic
Author Wang, Peng
Zhao, Fang-Jie
Author_xml – sequence: 1
  givenname: Fang-Jie
  orcidid: 0000-0002-0164-169X
  surname: Zhao
  fullname: Zhao, Fang-Jie
  email: Fangjie.Zhao@njau.edu.cn
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University
– sequence: 2
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University
BookMark eNp9kU1r3DAQhkVJoLtJ_kBOhl5y8Xb0ZVnHbWiTQqCXBnITsjReFGw5lexD_n2VdaGwh0UHoeF5xMy8W3IRp4iE3FLYUQD1NVNKQdRAdQ2CK1E3n8iGSsVrCby5IBsAzmpQ-uUz2eb8Ch9v2mzIt33KGIOrbPSVs34My1hZ55ZxGewcpliFWKXg8AiMYQ6HtZznZGc8BMzX5LK3Q8abf_cVef7x_ff9Y_306-Hn_f6pdoLLue5s14FuG8VQsd61kgtpoeHKcy181yuF4DuKHjtqnedUK2F7rrll4Jlw_Ircrf--penPgnk2Y8gOh8FGnJZsmJRUg5ZKF_TLCfo6LSmW7gzjQstWKNUWardSBzugCbGfykyuHI9jcGXBfSj1fUM5UMEEFKFdBZemnBP2xoX5uI4ihsFQMB9pmDUNU9IwxzRMU1R2or6lMNr0fl7iq5QLHA-Y_o9xxvoL3hidog
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_126079
crossref_primary_10_1007_s41742_024_00585_7
crossref_primary_10_1016_j_scitotenv_2022_155870
crossref_primary_10_1016_j_apsoil_2022_104710
crossref_primary_10_1016_j_chemosphere_2021_129891
crossref_primary_10_1007_s11270_024_07196_0
crossref_primary_10_1016_j_envadv_2021_100075
crossref_primary_10_3390_toxics12080532
crossref_primary_10_1016_j_ecoenv_2022_113526
crossref_primary_10_1016_j_envpol_2021_118650
crossref_primary_10_1007_s11356_021_17817_4
crossref_primary_10_1016_j_rsci_2023_11_010
crossref_primary_10_1016_j_cj_2025_01_007
crossref_primary_10_1016_j_cej_2021_133169
crossref_primary_10_1016_j_jfca_2025_107465
crossref_primary_10_1360_TB_2022_0138
crossref_primary_10_1016_j_chemosphere_2024_142903
crossref_primary_10_1007_s11356_022_22627_3
crossref_primary_10_1016_j_jes_2024_08_025
crossref_primary_10_1080_03650340_2023_2175354
crossref_primary_10_1016_j_jenvman_2023_118477
crossref_primary_10_1016_j_jhazmat_2021_125894
crossref_primary_10_1016_j_foodchem_2022_134017
crossref_primary_10_1016_j_jbiotec_2020_11_008
crossref_primary_10_1093_plphys_kiab086
crossref_primary_10_1016_j_fcr_2023_109071
crossref_primary_10_3389_fpls_2023_1261518
crossref_primary_10_3390_su142114355
crossref_primary_10_1093_jxb_erad495
crossref_primary_10_1016_j_envpol_2022_118940
crossref_primary_10_1021_acsnano_3c03066
crossref_primary_10_1079_cabireviews_2023_0008
crossref_primary_10_1016_j_jhazmat_2023_132770
crossref_primary_10_1016_j_chemosphere_2023_140559
crossref_primary_10_1016_j_plantsci_2022_111205
crossref_primary_10_2139_ssrn_4010742
crossref_primary_10_1016_j_jia_2024_07_022
crossref_primary_10_1016_j_scitotenv_2023_162443
crossref_primary_10_1038_s41598_024_77066_6
crossref_primary_10_1007_s11104_022_05802_w
crossref_primary_10_1007_s10725_023_01105_x
crossref_primary_10_1002_cche_10580
crossref_primary_10_1016_j_jclepro_2023_138981
crossref_primary_10_1016_j_scitotenv_2024_171543
crossref_primary_10_2139_ssrn_3995303
crossref_primary_10_1016_j_jhazmat_2021_127703
crossref_primary_10_1111_pbi_14414
crossref_primary_10_1007_s12403_020_00349_6
crossref_primary_10_1021_acs_est_2c01206
crossref_primary_10_1016_j_ecoenv_2024_116810
crossref_primary_10_1016_j_envint_2024_109000
crossref_primary_10_1016_j_jhazmat_2020_124751
crossref_primary_10_1016_j_scitotenv_2024_173169
crossref_primary_10_1007_s11356_023_29224_y
crossref_primary_10_1016_j_jclepro_2021_127403
crossref_primary_10_1007_s11368_022_03409_3
crossref_primary_10_1021_acs_est_0c03001
crossref_primary_10_1021_acs_est_4c05795
crossref_primary_10_3390_agriculture13020471
crossref_primary_10_1016_j_scitotenv_2024_173160
crossref_primary_10_1038_s41598_024_83412_5
crossref_primary_10_1021_acs_jafc_3c04967
crossref_primary_10_1016_j_jhazmat_2023_131651
crossref_primary_10_1371_journal_pone_0283420
crossref_primary_10_1016_j_plaphy_2024_108811
crossref_primary_10_1111_ppl_13294
crossref_primary_10_1007_s00128_021_03286_5
crossref_primary_10_1016_j_envpol_2023_122928
crossref_primary_10_1016_j_scitotenv_2021_152898
crossref_primary_10_1016_j_envres_2024_120171
crossref_primary_10_3390_cells13110907
crossref_primary_10_1016_j_chemosphere_2021_131827
crossref_primary_10_1016_j_jenvman_2023_118135
crossref_primary_10_1111_nph_20168
crossref_primary_10_3390_agronomy13112693
crossref_primary_10_1016_j_jhazmat_2021_126603
crossref_primary_10_1080_10807039_2023_2192292
crossref_primary_10_1016_j_scitotenv_2024_174265
crossref_primary_10_1080_15226514_2022_2066064
crossref_primary_10_1016_j_envpol_2023_121152
crossref_primary_10_1016_j_jhazmat_2022_130391
crossref_primary_10_3389_fpls_2022_953717
crossref_primary_10_1007_s11356_021_13241_w
crossref_primary_10_1016_j_envpol_2022_118923
crossref_primary_10_1016_j_scitotenv_2023_163992
crossref_primary_10_1016_j_jhazmat_2021_127373
crossref_primary_10_1007_s00128_020_03066_7
crossref_primary_10_1080_10643389_2020_1835435
crossref_primary_10_5304_jafscd_2024_132_002
crossref_primary_10_1016_j_jhazmat_2022_129297
crossref_primary_10_1016_j_plaphy_2024_108941
crossref_primary_10_29105_qh11_04_310
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_1007_s11368_022_03366_x
crossref_primary_10_1016_j_envpol_2021_117918
crossref_primary_10_1007_s11104_021_04877_1
crossref_primary_10_1016_j_scitotenv_2023_162929
crossref_primary_10_1007_s00425_022_03869_4
crossref_primary_10_1007_s11104_022_05692_y
crossref_primary_10_1093_jxb_erab444
crossref_primary_10_1021_acs_est_3c11043
crossref_primary_10_3390_su16020687
crossref_primary_10_1007_s11356_023_31536_y
crossref_primary_10_1016_j_envpol_2025_126110
crossref_primary_10_1016_j_jes_2022_10_038
crossref_primary_10_1016_j_jhazmat_2022_130140
crossref_primary_10_1016_j_scitotenv_2023_163228
crossref_primary_10_1016_j_chemosphere_2021_129690
crossref_primary_10_1016_j_molp_2021_09_016
crossref_primary_10_1016_j_scitotenv_2022_160994
crossref_primary_10_3390_cimb46060361
crossref_primary_10_1016_j_envpol_2022_119825
crossref_primary_10_1016_j_ijheh_2024_114510
crossref_primary_10_1016_j_jgg_2022_08_003
crossref_primary_10_1016_j_envpol_2024_123636
crossref_primary_10_1016_j_envpol_2024_124725
crossref_primary_10_1016_j_pedsph_2023_12_017
crossref_primary_10_1016_j_ecoenv_2021_112474
crossref_primary_10_1021_acsomega_5c00353
crossref_primary_10_1007_s11783_024_1820_7
crossref_primary_10_1016_j_pedsph_2023_09_009
crossref_primary_10_1371_journal_pone_0312301
crossref_primary_10_2139_ssrn_3981647
crossref_primary_10_1016_j_scitotenv_2023_167383
crossref_primary_10_1016_j_scitotenv_2021_150675
crossref_primary_10_3389_fpls_2020_00909
crossref_primary_10_1016_j_ecoenv_2023_114884
crossref_primary_10_1016_j_scitotenv_2021_149202
crossref_primary_10_1039_D1EN01132D
crossref_primary_10_3390_agronomy12081952
crossref_primary_10_1111_tpj_16614
crossref_primary_10_1007_s10661_024_12470_z
crossref_primary_10_1016_j_scitotenv_2024_175052
crossref_primary_10_3389_fenvs_2022_979049
crossref_primary_10_1016_j_jes_2020_07_002
crossref_primary_10_1007_s10653_025_02438_4
crossref_primary_10_1016_j_envpol_2023_121968
crossref_primary_10_1016_j_envpol_2021_118681
crossref_primary_10_3390_su16229783
crossref_primary_10_2139_ssrn_4165548
crossref_primary_10_1007_s00344_024_11527_0
crossref_primary_10_3390_soilsystems6020036
crossref_primary_10_1016_j_jfca_2023_105496
crossref_primary_10_1016_j_envexpbot_2022_104783
crossref_primary_10_1093_plphys_kiac534
crossref_primary_10_1111_ppl_14214
crossref_primary_10_3390_ijerph17196991
crossref_primary_10_1016_j_envpol_2021_117355
crossref_primary_10_3390_pr12102241
crossref_primary_10_1016_j_scitotenv_2021_152603
crossref_primary_10_2139_ssrn_4149198
crossref_primary_10_1016_j_scitotenv_2024_174853
crossref_primary_10_1007_s11104_021_05004_w
crossref_primary_10_1186_s40543_022_00354_1
crossref_primary_10_1007_s11104_023_06018_2
crossref_primary_10_1039_D1JA00037C
crossref_primary_10_1016_j_envpol_2024_123786
crossref_primary_10_1016_j_soilbio_2022_108679
crossref_primary_10_1016_j_chemosphere_2023_140157
crossref_primary_10_3389_fmicb_2022_852697
crossref_primary_10_1016_j_jenvman_2024_122848
crossref_primary_10_1016_j_envpol_2021_118311
crossref_primary_10_3390_agronomy14092129
crossref_primary_10_3390_foods13193153
crossref_primary_10_1016_j_ecoenv_2022_113700
crossref_primary_10_32604_phyton_2023_027924
crossref_primary_10_1021_acs_est_5c00233
crossref_primary_10_1007_s40726_021_00180_w
crossref_primary_10_3389_fpls_2023_1230012
crossref_primary_10_1007_s44246_023_00072_2
crossref_primary_10_1007_s00128_024_03915_9
crossref_primary_10_1007_s11104_023_06192_3
crossref_primary_10_1016_j_scitotenv_2021_147163
crossref_primary_10_1016_j_envres_2022_115098
crossref_primary_10_3389_fpls_2022_1032681
crossref_primary_10_1038_s41538_024_00293_8
crossref_primary_10_1093_jxb_erac426
crossref_primary_10_1093_jxb_erac302
crossref_primary_10_1080_00207233_2022_2154568
crossref_primary_10_1093_jxb_erad074
crossref_primary_10_3390_ijms22010041
crossref_primary_10_1007_s10653_023_01702_9
crossref_primary_10_3390_agronomy13102472
crossref_primary_10_1016_j_jenvman_2024_121190
crossref_primary_10_1016_j_chemosphere_2023_139719
crossref_primary_10_1016_j_scitotenv_2022_160421
crossref_primary_10_1016_j_chemosphere_2022_134085
crossref_primary_10_1016_j_jhazmat_2021_125390
crossref_primary_10_1016_j_jclepro_2022_133730
crossref_primary_10_1016_j_scitotenv_2023_168394
crossref_primary_10_1002_ajhb_23685
crossref_primary_10_1007_s11356_022_24875_9
crossref_primary_10_1016_j_plaphy_2024_109169
crossref_primary_10_1016_j_scitotenv_2024_177945
crossref_primary_10_1016_j_rcar_2024_03_001
crossref_primary_10_1016_j_envexpbot_2022_104867
crossref_primary_10_1007_s11104_022_05384_7
crossref_primary_10_1016_j_jhazmat_2020_123922
crossref_primary_10_3389_fenvs_2022_1082340
crossref_primary_10_3390_toxics11010053
crossref_primary_10_1016_j_scitotenv_2023_161516
crossref_primary_10_1016_j_envint_2021_106749
crossref_primary_10_1016_j_envpol_2021_118497
crossref_primary_10_1007_s11104_022_05323_6
crossref_primary_10_1289_EHP11730
crossref_primary_10_1021_acs_est_0c04713
crossref_primary_10_1016_j_psep_2022_02_069
crossref_primary_10_1016_j_envres_2022_113226
crossref_primary_10_1016_j_jenvman_2024_121661
crossref_primary_10_1007_s44246_023_00073_1
crossref_primary_10_1016_j_chemosphere_2021_131102
crossref_primary_10_1021_acs_est_5c00817
crossref_primary_10_1073_pnas_2113071118
crossref_primary_10_1016_j_jes_2023_08_027
crossref_primary_10_1016_j_watres_2022_118804
crossref_primary_10_1021_acs_est_0c06561
crossref_primary_10_1093_pcp_pcaa150
crossref_primary_10_1016_j_envpol_2020_115944
crossref_primary_10_1016_j_jhazmat_2022_128701
crossref_primary_10_1016_j_jhazmat_2021_127677
crossref_primary_10_1016_j_scitotenv_2023_168269
crossref_primary_10_1016_j_scitotenv_2024_177157
crossref_primary_10_1007_s10725_022_00897_8
crossref_primary_10_1016_j_chemosphere_2022_133924
crossref_primary_10_1016_j_jhazmat_2023_131040
crossref_primary_10_3390_plants11212813
crossref_primary_10_1016_j_envpol_2022_120188
crossref_primary_10_1016_j_rhisph_2023_100680
crossref_primary_10_1016_j_eti_2024_103596
crossref_primary_10_1016_j_envpol_2023_121644
crossref_primary_10_1016_j_chemosphere_2022_133931
crossref_primary_10_1016_j_envpol_2022_120619
crossref_primary_10_1080_10643389_2020_1795053
crossref_primary_10_1016_j_jhazmat_2021_127551
crossref_primary_10_1021_acs_est_1c00576
crossref_primary_10_2139_ssrn_4096125
crossref_primary_10_1016_j_chemosphere_2021_131695
crossref_primary_10_1016_j_jhazmat_2022_129597
crossref_primary_10_1016_j_jhazmat_2023_130755
crossref_primary_10_1016_j_jhazmat_2023_130879
crossref_primary_10_1016_j_foodchem_2025_143782
crossref_primary_10_1016_j_scitotenv_2022_156229
crossref_primary_10_1007_s11356_023_27857_7
crossref_primary_10_1007_s40710_022_00586_8
crossref_primary_10_1016_j_chemosphere_2023_140074
crossref_primary_10_1016_j_jece_2024_114136
crossref_primary_10_1007_s12403_023_00539_y
crossref_primary_10_1016_j_chemosphere_2022_135080
crossref_primary_10_1016_j_ecoenv_2023_115168
crossref_primary_10_3390_su16135565
crossref_primary_10_3390_foods9121906
crossref_primary_10_3389_fenvs_2021_716770
crossref_primary_10_3390_nano11040839
crossref_primary_10_1016_j_envpol_2021_118475
crossref_primary_10_1016_j_chemosphere_2022_135641
crossref_primary_10_1016_j_ecoenv_2021_112773
crossref_primary_10_3390_agronomy13102554
crossref_primary_10_1007_s11356_023_28833_x
crossref_primary_10_3390_nano12081311
crossref_primary_10_1021_acsomega_1c02741
crossref_primary_10_1016_j_jhazmat_2023_130963
crossref_primary_10_1016_j_jhazmat_2022_130203
crossref_primary_10_3390_toxics11040364
crossref_primary_10_1016_j_jhazmat_2023_131931
crossref_primary_10_3390_antiox10111812
crossref_primary_10_1016_j_chemosphere_2021_130351
crossref_primary_10_1007_s11104_022_05350_3
crossref_primary_10_1016_j_envpol_2023_123053
crossref_primary_10_1093_jxb_eraa287
crossref_primary_10_1016_j_chemosphere_2024_143515
crossref_primary_10_1080_01140671_2021_1999992
crossref_primary_10_1186_s12284_021_00530_8
crossref_primary_10_1016_j_jhazmat_2020_124368
crossref_primary_10_1111_pce_14819
crossref_primary_10_1016_j_jhazmat_2024_135244
crossref_primary_10_1016_j_scitotenv_2024_175193
crossref_primary_10_1016_j_chemosphere_2020_128893
crossref_primary_10_1111_pce_13843
crossref_primary_10_1016_j_envpol_2020_116020
crossref_primary_10_1021_acs_est_3c10763
crossref_primary_10_3390_agriculture14030407
crossref_primary_10_1007_s42729_022_00961_2
crossref_primary_10_1007_s11104_022_05566_3
crossref_primary_10_1016_j_chemosphere_2023_138543
crossref_primary_10_1080_10643389_2024_2373949
crossref_primary_10_1016_j_jhazmat_2022_128365
crossref_primary_10_1021_acs_est_2c01393
crossref_primary_10_1016_j_jhazmat_2020_124495
crossref_primary_10_1016_j_envpol_2024_124452
crossref_primary_10_1021_acs_est_4c12064
crossref_primary_10_1016_j_geoderma_2022_116278
crossref_primary_10_3389_fgene_2022_941118
crossref_primary_10_3390_toxics12010063
crossref_primary_10_1016_j_jhazmat_2024_137054
crossref_primary_10_1007_s11356_024_32839_4
crossref_primary_10_1016_j_jhazmat_2021_128170
crossref_primary_10_1007_s11356_022_23162_x
crossref_primary_10_3390_ijerph18136783
crossref_primary_10_1007_s11368_024_03852_4
crossref_primary_10_1007_s42729_024_02130_z
crossref_primary_10_1016_j_plantsci_2024_112169
crossref_primary_10_1007_s11356_023_27536_7
crossref_primary_10_1016_j_scitotenv_2022_158952
crossref_primary_10_1016_j_envres_2023_117989
crossref_primary_10_1016_j_plaphy_2024_108956
crossref_primary_10_3390_life12101541
crossref_primary_10_3390_nu13113928
crossref_primary_10_1016_j_jhazmat_2022_130308
crossref_primary_10_1007_s11356_022_22451_9
crossref_primary_10_1007_s11104_020_04634_w
crossref_primary_10_1016_j_scitotenv_2021_150279
crossref_primary_10_1007_s00344_024_11449_x
crossref_primary_10_1021_acs_est_4c00748
crossref_primary_10_1016_j_plaphy_2024_109010
crossref_primary_10_1155_2022_4195119
crossref_primary_10_1186_s40538_023_00388_6
crossref_primary_10_1007_s12011_023_03785_y
crossref_primary_10_1016_j_ibiod_2024_105787
crossref_primary_10_1016_j_jfca_2021_103914
crossref_primary_10_1093_jxb_erad330
crossref_primary_10_1016_j_cej_2024_150261
crossref_primary_10_1016_j_jhazmat_2024_136758
crossref_primary_10_17221_143_2021_PSE
crossref_primary_10_1007_s10725_022_00803_2
crossref_primary_10_1016_j_copbio_2024_103168
crossref_primary_10_1007_s11104_021_05067_9
crossref_primary_10_1016_j_jhazmat_2022_129431
crossref_primary_10_1080_15226514_2024_2431096
crossref_primary_10_1111_jipb_13440
crossref_primary_10_1080_15320383_2024_2306159
crossref_primary_10_1007_s11104_024_06727_2
crossref_primary_10_1016_j_eti_2024_103757
crossref_primary_10_1016_j_heliyon_2024_e40987
crossref_primary_10_1016_j_ecoenv_2023_114714
crossref_primary_10_1016_j_jes_2023_07_033
crossref_primary_10_1016_j_soilbio_2024_109600
crossref_primary_10_3390_agriculture14111933
crossref_primary_10_1016_j_jhazmat_2024_135218
crossref_primary_10_1016_S1002_0160_20_60015_7
crossref_primary_10_1111_pce_14576
crossref_primary_10_1016_j_envpol_2022_120868
crossref_primary_10_1021_acs_est_0c02877
crossref_primary_10_1016_j_envpol_2023_122569
crossref_primary_10_1016_j_scitotenv_2023_165226
crossref_primary_10_1016_j_chemosphere_2022_135208
crossref_primary_10_1186_s12870_024_05793_z
crossref_primary_10_1007_s00425_024_04422_1
crossref_primary_10_1016_j_envpol_2021_117987
crossref_primary_10_3389_fpls_2022_1046685
crossref_primary_10_3389_fpls_2021_665842
crossref_primary_10_1007_s00284_023_03434_6
crossref_primary_10_1016_j_fcr_2023_109222
crossref_primary_10_1016_j_scitotenv_2022_153868
crossref_primary_10_1016_j_ecoenv_2023_115110
crossref_primary_10_1016_j_ecoenv_2023_115352
crossref_primary_10_1016_j_scitotenv_2024_170663
crossref_primary_10_1007_s11368_025_03981_4
crossref_primary_10_1016_j_jes_2022_05_036
crossref_primary_10_1016_j_chemosphere_2023_141071
crossref_primary_10_1016_j_envpol_2025_125756
crossref_primary_10_1007_s10722_024_02321_8
crossref_primary_10_1007_s42729_023_01455_5
crossref_primary_10_1016_j_scitotenv_2023_169378
crossref_primary_10_1016_j_envexpbot_2023_105627
crossref_primary_10_1016_j_jksus_2021_101722
crossref_primary_10_1021_acsestengg_4c00119
crossref_primary_10_1016_j_jhazmat_2024_136650
crossref_primary_10_1016_j_ecoenv_2021_112839
crossref_primary_10_1016_j_jhazmat_2024_135684
crossref_primary_10_2139_ssrn_4119265
crossref_primary_10_1016_j_eti_2024_103883
crossref_primary_10_22144_ctujos_2024_450
crossref_primary_10_1007_s11356_021_15570_2
crossref_primary_10_1007_s11104_022_05588_x
crossref_primary_10_3390_toxics12060418
crossref_primary_10_1016_j_chemosphere_2022_134368
crossref_primary_10_1038_s43016_022_00569_w
crossref_primary_10_1016_j_envpol_2022_120515
crossref_primary_10_1016_j_chemosphere_2021_131113
crossref_primary_10_1016_j_scitotenv_2023_163392
crossref_primary_10_1016_j_cotox_2021_04_004
crossref_primary_10_1016_j_hazadv_2024_100543
Cites_doi 10.1073/pnas.0900238106
10.1007/s11104-008-9786-y
10.1016/j.envpol.2018.03.048
10.1105/tpc.18.00375
10.1016/j.chemosphere.2018.05.143
10.1016/j.envpol.2019.03.063
10.1073/pnas.1508987112
10.1016/j.chemosphere.2011.02.044
10.1021/es101952f
10.1105/tpc.11.6.1153
10.1021/es304977m
10.1104/pp.113.216564
10.1093/jxb/erz093
10.1093/jxb/erv164
10.1111/nph.14691
10.1016/B978-0-12-407247-3.00004-4
10.1021/es101962d
10.1093/jxb/err136
10.1111/j.1365-3040.2012.02527.x
10.1093/jxb/err158
10.1002/047086303X
10.1104/pp.16.01332
10.1021/acs.est.7b03028
10.1111/j.1365-313X.2011.04789.x
10.1021/es030309t
10.1104/pp.111.173088
10.1021/es9026248
10.1016/j.scitotenv.2010.12.028
10.1111/nph.15190
10.1016/j.jhazmat.2014.03.017
10.1111/tpj.13612
10.1111/j.1469-8137.2011.03789.x
10.1021/acs.est.6b02656
10.1016/j.envpol.2016.10.043
10.1021/es902100h
10.1021/acs.est.7b04791
10.1016/j.taap.2009.03.015
10.1111/j.1469-8137.2005.01519.x
10.1038/s41467-018-03088-0
10.1073/pnas.1414968111
10.1111/j.1365-2389.1994.tb00527.x
10.1021/es3025337
10.1021/acs.est.8b06863
10.1093/jxb/erz335
10.1016/j.bbrc.2019.03.024
10.1093/pcp/pcz054
10.1021/es802412r
10.1038/srep02195
10.1104/pp.109.140350
10.1021/acs.est.6b06255
10.1021/es401997d
10.1021/cr00094a002
10.1021/es00036a019
10.1021/acs.est.6b01974
10.1021/es702748q
10.1016/j.taap.2008.12.016
10.1021/es800324u
10.1038/s41467-019-12946-4
10.1111/j.1469-8137.2010.03192.x
10.1016/j.envpol.2019.05.086
10.1016/j.tplants.2012.08.003
10.1016/j.envint.2019.03.004
10.1021/es803643v
10.1021/es034383n
10.1111/j.1469-8137.2011.03956.x
10.1093/jxb/erw362
10.1007/s12011-008-8239-z
10.1016/j.envpol.2018.01.099
10.1021/acs.est.8b00300
10.1016/j.foodchem.2014.07.060
10.1007/s11104-009-0074-2
10.1146/annurev-arplant-042809-112152
10.1080/00380768.2018.1438811
10.1038/ncomms5617
10.1038/s41598-017-18090-7
10.1007/s40726-015-0002-4
10.1021/es0259842
10.1021/es5047099
10.1371/journal.pbio.1002009
10.1111/j.1469-8137.2010.03459.x
10.1021/es071516m
10.1016/j.pbi.2017.05.002
10.1111/pce.12747
10.1146/annurev.arplant.53.100301.135154
10.1021/es103463d
10.1093/pcp/pcr166
10.1021/acs.est.7b01487
10.1016/j.envint.2011.05.007
10.1021/es070627i
10.3389/fpls.2018.00476
10.1073/pnas.1211132109
10.1016/j.geoderma.2015.10.011
10.1186/1471-2229-11-172
10.1093/pcp/pcx114
10.1289/ehp.1307110
10.1111/j.1469-8137.2011.03983.x
10.1093/pcp/pcw163
10.1111/j.1469-8137.2007.02195.x
10.1038/s41467-019-10544-y
10.1079/BJN2000280
10.1021/es0502324
10.1038/nature05964
10.1093/jxb/eru340
10.1104/pp.16.01189
10.1186/s12284-017-0149-2
10.1007/s11032-019-0992-5
10.1093/jxb/erx364
10.1021/es400521h
10.1007/s00122-013-2207-5
10.1111/nph.12497
10.1073/pnas.0802361105
10.1126/science.1072896
10.1111/j.1747-0765.2007.00116.x
10.1021/es9018755
10.1111/nph.14572
10.1073/pnas.1116531109
10.1007/978-94-007-4470-7_10
10.1021/es060800v
10.1016/j.jhazmat.2008.04.116
10.1021/es802612a
10.1016/j.ecoleng.2013.07.031
10.1104/pp.109.146126
10.1007/978-94-007-2947-6
10.2903/j.efsa.2012.2551
10.1104/pp.109.151035
10.2135/cropsci2014.03.0249
10.3389/fpls.2017.02197
10.1104/pp.107.4.1059
10.1093/jxb/erw060
10.1093/jxb/erp119
10.1093/jxb/erx165
10.1111/pbi.12905
10.1021/es501127k
10.1016/j.envpol.2017.07.084
10.1111/j.1469-8137.2009.03071.x
10.1016/j.taap.2009.01.010
10.1021/es801238p
10.1016/j.envpol.2014.08.004
10.1016/j.envpol.2010.12.016
10.1021/es304295n
10.1071/EN06079
10.1021/es101139z
10.1080/00380768.2016.1196569
10.1007/PL00007934
10.1371/journal.pone.0177978
10.1021/es9022738
10.1021/acs.est.9b02418
10.1093/pcp/pcx029
10.1073/pnas.0506836103
10.1021/es8001103
10.1021/es103971y
10.1105/tpc.112.096925
10.1007/s11104-018-3849-5
10.1038/s41396-019-0451-7
10.1007/s11356-019-04412-x
10.1021/es702212p
10.1146/annurev-earth-060313-054942
10.1073/pnas.1005396107
10.1021/es104080s
10.1080/00380768.2013.804390
10.1021/acs.est.9b00592
10.1016/j.foodcont.2010.08.005
10.1007/s11368-013-0658-6
10.1093/jxb/eru259
10.1016/j.scitotenv.2018.05.050
10.1016/j.envpol.2017.01.072
10.1111/1462-2920.12572
10.1038/s41598-017-14832-9
10.1007/s11104-012-1376-3
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2020 Springer
Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2020 Springer
– notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-019-04374-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 21
ExternalDocumentID A613014240
10_1007_s11104_019_04374_6
GeographicLocations Bangladesh
Japan
China
GeographicLocations_xml – name: China
– name: Japan
– name: Bangladesh
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21661132001; 41671309
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c435t-babb098672e72fc85345a0637d394dbf77e0db1edeb1acd31974af393a20d24c3
IEDL.DBID U2A
ISSN 0032-079X
IngestDate Fri Jul 11 02:13:28 EDT 2025
Wed Aug 20 00:35:32 EDT 2025
Tue Jun 10 20:18:56 EDT 2025
Tue Jul 01 01:47:07 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Fri Feb 21 02:33:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Translocation
Cadmium
Food safety
Arsenic
Uptake
Rice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-babb098672e72fc85345a0637d394dbf77e0db1edeb1acd31974af393a20d24c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0164-169X
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11104-019-04374-6.pdf
PQID 2349584778
PQPubID 54098
PageCount 21
ParticipantIDs proquest_miscellaneous_2551909579
proquest_journals_2349584778
gale_infotracacademiconefile_A613014240
crossref_citationtrail_10_1007_s11104_019_04374_6
crossref_primary_10_1007_s11104_019_04374_6
springer_journals_10_1007_s11104_019_04374_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Fujimaki, Suzui, Ishioka, Kawachi, Ito, Chino, Nakamura (CR38) 2010; 152
Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (CR149) 2009; 43
Inahara, Ogawa, Azuma (CR48) 2007; 78
de Livera, McLaughlin, Hettiarachchi, Kirby, Beak (CR30) 2011; 409
Tanaka, Fujimaki, Fujiwara, Yoneyama, Hayashi (CR131) 2007; 53
(CR49) 2004
Sui, Zhao, Zhu, Gong, Tang, Huang, Zhang, Zhao (CR124) 2019; 70
Sui, Chang, Tang, Liu, Huang, Zhao (CR123) 2018; 433
Tan, Zhu, Fan, Peng, Wang, Sun, Chen (CR130) 2019; 512
(CR26) 2006
Tang, Chen, Chen, Ji, Zhao (CR133) 2017; 58
Clemens, Aarts, Thomine, Verbruggen (CR24) 2013; 18
Shi, Wang, Chen, Tang, Wu, Salt, Chao, Zhao (CR115) 2016; 172
Fu, Lu, Zhang, Yang, Chao, Wang, Shi, Chen, Chao, Li, Ma, Xia (CR37) 2019; 70
Jin (CR52) 2008
Kuramata, Sakakibara, Kataoka, Abe, Asano, Baba, Takagi, Ishikawa (CR62) 2015; 17
CR35
Ma, Shen, Wu, Tang, Shen, Zhao (CR76) 2014; 194
Dixit, Hering (CR33) 2003; 37
Limmer, Wise, Dykes, Seyfferth (CR66) 2018; 52
Chao, Chen, Chen, Shi, Chen, Wang, Danku, Zhao, Salt (CR14) 2014; 12
Carey, Norton, Deacon, Scheckel, Lombi, Punshon, Guerinot, Lanzirotti, Newville, Choi, Price, Meharg (CR11) 2011; 192
Tseng (CR137) 2009; 235
Kirk (CR60) 2004
Li, Sun, Williams, Nunes, Zhu (CR65) 2011; 37
Honma, Ohba, Kaneko, Nakamura, Makino, Katou (CR43) 2016; 62
Åkesson, Barregard, Bergdahl, Nordberg, Nordberg, Skerfving (CR1) 2014; 122
Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (CR8) 2010; 44
Hu, Li, Yuan, Ouyang, Zhou, Huang, Huang, Luo, Christie, Wu (CR45) 2013; 13
Lv, Wang, Xu, Shuai, Luo, Zhan, Zhu, Wang, Zhu, Zhang, Huang (CR73) 2019; 26
Chen, Sun, Tang, Liu, Moore, Maathuis, Miller, McGrath, Zhao (CR18) 2017; 68
Ueno, Yamaji, Kono, Huang, Ando, Yano, Ma (CR138) 2010; 107
Ishikawa, Suzui, Ito-Tanabata, Ishii, Igura, Abe, Kuramata, Kawachi, Fujimaki (CR50) 2011; 11
Xu, Wang, Zhang, Chen, Wang, Kopittke, Kretzschmar, Zhao (CR157) 2019; 251
Yu, Wang, Li, Li, Liu, Wang, Lei (CR168) 2017; 224
Chaney, Bitton (CR12) 1980
Rinklebe, Shaheen, Yu (CR105) 2016; 270
Chaney (CR13) 2015; 1
Park, Song, Ko, Eom, Hansen, Schiller, Lee, Martinoia, Lee (CR97) 2012; 69
Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (CR75) 2008; 105
Ha, Smith, Howden, Dietrich, Bugg, O'Connell, Goldsbrough, Cobbett (CR40) 1999; 11
Zhang, Pinson, Tarpley, Huang, Lahner, Yakubova, Baxter, Guerinot, Salt (CR170) 2014; 127
Cobbett, Goldsbrough (CR25) 2002; 53
Cao, Sun, Ai, Mei, Liu, Sun, Xu, Liu, Chen, Ma (CR9) 2017; 51
Zhao, McGrath, Meharg (CR173) 2010; 61
Uraguchi, Mori, Kuramata, Kawasaki, Arao, Ishikawa (CR139) 2009; 60
Xu, McGrath, Zhao (CR153) 2007; 176
Pinson, Tarpley, Yan, Yeater, Lahner, Yakubova, Huang, Zhang, Guerinot, Salt (CR98) 2015; 55
Mitani-Ueno, Yamaji, Ma (CR86) 2016; 57
Deng, Yamaji, Ma, Lee, Jeon, Martinoia, Lee, Song (CR31) 2018; 16
Tang, Chen, Miller, Zhao (CR134) 2019; 60
Chen, Zhang, Yang, Wang, McGrath, Zhao (CR21) 2018; 207
Stroud, Norton, Islam, Dasgupta, White, Price, Meharg, McGrath, Zhao (CR121) 2011; 159
Chen, Huang, Xie, Chen, Tang, Zhao (CR17) 2017; 51
Panaullah, Alam, Hossain, Loeppert, Lauren, Meisner, Ahmed, Duxbury (CR96) 2009; 317
Song, Yamaki, Yamaji, Ko, Jung, Fujii-Kashino, An, Martinoia, Lee, Ma (CR118) 2014; 111
Uraguchi, Kamiya, Sakamoto, Kasai, Sato, Nagamura, Yoshida, Kyozuka, Ishikawa, Fujiwara (CR140) 2011; 108
Miyadate, Adachi, Hiraizumi, Tezuka, Nakazawa, Kawamoto, Katou, Kodama, Sakurai, Takahashi, Satoh-Nagasawa, Watanabe, Fujimura, Akagi (CR87) 2011; 189
Torres-Escribano, Leal, Velez, Montoro (CR136) 2008; 42
Lomax, Liu, Wu, Xue, Xiong, Zhou, McGrath, Meharg, Miller, Zhao (CR70) 2012; 193
Mitani-Ueno, Yamaji, Zhao, Ma (CR85) 2011; 62
Williams, Price, Raab, Hossain, Feldmann, Meharg (CR147) 2005; 39
Wu, Yamaji, Yamane, Kashino-Fujii, Sato, Ma (CR152) 2016; 172
Arao, Kawasaki, Baba, Mori, Matsumoto (CR2) 2009; 43
Sun, Williams, Carey, Zhu, Deacon, Raab, Feldmann, Islam, Meharg (CR125) 2008; 42
Carey, Scheckel, Lombi, Newville, Choi, Norton, Charnock, Feldmann, Price, Meharg (CR10) 2010; 152
Cullen, Reimer (CR28) 1989; 89
Meharg, Rahman (CR77) 2003; 37
Xu, Shi, Wang, Tang, Lv, Zhu, Ding, Wang, Zhao, Wu (CR155) 2017; 215
Yang, Zhang, Yuan, Duan, Jin, Zhao, Zhu (CR166) 2018; 236
Zheng, Li, Sun, Shim, Cai (CR177) 2013; 365
CR54
Moore, Schröder, Wu, Martin, Hawes, McGrath, Hawkesford, Ma, Zhao, Grovenor (CR89) 2011; 156
CR53
CR135
Kamiya, Islam, Duan, Uraguchi, Fujiwara (CR55) 2013; 59
Xu, Chen, Wang, Kretzschmar, Zhao (CR156) 2017; 231
Bian, Chen, Liu, Cui, Li, Pan, Xie, Zheng, Zhang, Zheng, Chang (CR5) 2013; 58
Mestrot, Uroic, Plantevin, Islam, Krupp, Feldmann, Meharg (CR82) 2009; 43
Seyfferth, Webb, Andrews, Fendorf (CR113) 2010; 44
Khan, Stroud, Zhu, McGrath, Zhao (CR57) 2010; 44
Sanchez-Bermejo, Castrillo, del Llano, Navarro, Zarco-Fernandez, Jorge Martinez-Herrera, Leo-del Puerto, Munoz, Camara, Paz-Ares, Alonso-Blanco, Leyva (CR107) 2014; 5
Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (CR6) 2014; 272
CR151
Liu, Li, Luo, Liu, Wang, Liu, Li (CR68) 2009; 161
Howden, Goldsbrough, Andersen, Cobbett (CR44) 1995; 107
Uraguchi, Tanaka, Hofmann, Abiko, Ohkama-Ohtsu, Weber, Kamiya, Sone, Nakamura, Takanezawa, Kiyono, Fujiwara, Clemens (CR141) 2017; 58
Seyfferth, Fendorf (CR112) 2012; 46
Yamaji, Sakurai, Mitani-Ueno, Ma (CR161) 2015; 112
Wang, Wang, Gu, Kopittke, Zhao, Wang (CR143) 2019; 53
Takahashi, Minamikawa, Hattori, Kurishima, Kihou, Yuita (CR127) 2004; 38
Kerl, Schindele, Brueggenwirth, Blanco, Rafferty, Clemens, Planer-Friedrich (CR56) 2019; 53
Qin, Rosen, Zhang, Wang, Franke, Rensing (CR101) 2006; 103
Chen, Moore, Miller, McGrath, Ma, Zhao (CR16) 2015; 66
Sasaki, Yamaji, Ma (CR109) 2014; 65
Zhou, Jiang, Ming, Wang, Tang, Sun (CR178) 2019; 39
Ma, Yamaji, Mitani, Tamai, Konishi, Fujiwara, Katsuhara, Yano (CR74) 2007; 448
Liu, Chen, Li, Peng, Zhang, Hong, Jiang, Ruan, Zhang, Yang, Gao, Qian (CR69) 2017; 7
Duan, Shao, Tang, Chen, Wang, Tang, Yang, Liu, Zhao (CR34) 2017; 10
Li, Ago, Liu, Mitani, Feldmann, McGrath, Ma, Zhao (CR63) 2009; 150
Meharg, Zhao (CR78) 2012
Luo, Huang, Zeng, Peng, Zhang, Ma, Guan, Yi, Fu, Han, Lin, Qian, Gong (CR72) 2018; 9
Salt (CR106) 2017; 215
Zhao, Ago, Mitani, Li, Su, Yamaji, McGrath, Ma (CR172) 2010; 186
(CR36) 2012; 10
Hayashi, Kuramata, Abe, Takagi, Ozawa, Ishikawa (CR42) 2017; 91
Xu, McGrath, Meharg, Zhao (CR154) 2008; 42
Zhao, Harris, Yan, Ma, Wu, Liu, McGrath, Zhou, Zhu (CR174) 2013; 47
Su, McGrath, Zhao (CR122) 2010; 328
Chen, Tang, Wang, Zhao (CR19) 2018; 238
Wang, Zhang, Mao, Xu, Zhao (CR142) 2016; 67
Takahashi, Ishimaru, Senoura, Shimo, Ishikawa, Arao, Nakanishi, Nishizawa (CR128) 2011; 62
Zhu, Chen, Xu, Zhu, Huang (CR181) 2016; 219
Zhu, Yoshinaga, Zhao, Rosen (CR180) 2014; 42
Huhmann, Harvey, Uddin, Choudhury, Ahmed, Duxbury, Bostick, van Geen (CR47) 2017; 51
Ye, Li, Xu, Zeng, Cheng, Yang, Luo, Lian (CR167) 2017; 8
Satoh-Nagasawa, Mori, Nakazawa, Kawamoto, Nagato, Sakurai, Takahashi, Watanabe, Akagi (CR111) 2012; 53
Ishikawa, Ishimaru, Igura, Kuramata, Abe, Senoura, Hase, Arao, Nishizawa, Nakanishi (CR51) 2012; 109
Qin, Lehr, Yuan, Le, McDermott, Rosen (CR102) 2009; 106
Shao, Che, Yamaji, Shen, Ma (CR114) 2017; 68
Raab, Schat, Meharg, Feldmann (CR103) 2005; 168
Chen, Parvez, Gamble, Islam, Ahmed, Argos, Graziano, Ahsan (CR15) 2009; 239
Sasaki, Yamaji, Ma (CR110) 2016; 67
Yamaji, Xia, Mitani-Ueno, Yokosho, Ma (CR160) 2013; 162
Williams, Villada, Deacon, Raab, Figuerola, Green, Feldmann, Meharg (CR148) 2007; 41
Mestrot, Feldmann, Krupp, Hossain, Roman-Ross, Meharg (CR83) 2011; 45
Huang, Chen, Zhang, Tang, Shen, Rosen, Zhao (CR46) 2016; 50
Khaokaew, Chaney, Landrot, Ginder-Vogel, Sparks (CR58) 2011; 45
Yan, Wang, Wang, Yang, Lian, Tang, Huang, Salt, Zhao (CR162) 2016; 39
Stroud, Khan, Norton, Islam, Dasgupta, Zhu, Price, Meharg, McGrath, Zhao (CR120) 2011; 45
Zavala, Gerads, Gürleyük, Duxbury (CR169) 2008; 42
Zhu, Sun, Lei, Teng, Liu, Chen, Wang, Carey, Deacon, Raab, Meharg, Williams (CR179) 2008; 42
Zhao, Ma, Zhu, Tang, McGrath (CR176) 2015; 49
Zhao, Zhu, Meharg (CR175) 2013; 47
CR84
Naito, Matsumoto, Shindoh, Nishimura (CR93) 2015; 168
Chen, Hua, Chen, Rathinasabapathi, Cao, Ma (CR23) 2019; 53
Combs (CR27) 2001; 85
Arao, Makino, Kawasaki, Akahane, Kiho (CR3) 2018; 64
Bolan, Makino, Kunhikrishnan, Kim, Ishikawa, Murakami, Naidu, Kirkham (CR7) 2013; 119
Chen, Li, Huang, Zhang, Xie, Lu, Dong, Zhao (CR22) 2019; 13
Weber, Hofacker, Voegelin, Kretzschmar (CR146) 2010; 44
Moore, Chen, van de Meene, Hughes, Liu, Geraki, Mosselmans, McGrath, Grovenor, Zhao (CR90) 2014; 201
Yang, Zhang, Zhang, Hu, Zhang, Lu, Dong, Wang, Zhao, Huang, Lian (CR164) 2014; 65
Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao, Zhang, Liu, Tian, Huang, Wang, Dong, Hu, Ming, Xing, Wang, Xiao, Salt, Lian (CR165) 2018; 30
Qian, Chen, Zhang, Li, Chen, Li (CR100) 2010; 21
Kim, Lee, Yoon, Woo (CR59) 2016; 50
Lu, Zhang, Tang, Huang, Ma, Zhao (CR71) 2019; 126
Muehe, Wang, Kerl, Planer-Friedrich, Fendorf (CR91) 2019; 10
Raab, Williams, Meharg, Feldmann (CR104) 2007; 4
Wang, Chen, Kopittke, Zhao (CR144) 2019; 249
Nordberg (CR94) 2009; 238
Meharg, Williams, Adomako, Lawgali, Deacon, Villada, Cambell, Sun, Zhu, Feldmann, Raab, Zhao, Islam, Hossain, Yanai (CR80) 2009; 43
Williams, Santner, Larsen, Lehto, Oburger, Wenzel, Glud, Davison, Zhang (CR150) 2014; 48
Yamaguchi, Nakamura, Dong, Takahashi, Amachi, Makino (CR158) 2011; 83
Moore, Schroder, Lombi, Zhao, McGrath, Hawkesford, Shewry, Grovenor (CR88) 2010; 185
Tang, Mao, Li, Lv, Zhang, Chen, He, Wang, Zeng, Shao, Pan, Hu, Peng, Fu, Li, Xia, Zhao (CR132) 2017; 7
Naidu, Bolan, Kookana, Tiller (CR92) 1994; 45
CR99
Fulda, Voegelin, Kretzschmar (CR39) 2013; 47
Chen, Yang, Wang, Wang, Li, Zhao (CR20) 2018; 639
Dittmar, Voegelin, Maurer, Roberts, Hug, Saha, Ali, Badruzzaman, Kretzschmar (CR32) 2010; 44
Smith, Lopipero, Bates, Steinmaus (CR116) 2002; 296
Yan, Xu, Xie, Gao, Wu, Sun, Feng, Chen, Zhang, Dai, Li, Lin, Zhang, Wang, Li, Zhu, Li, Li, Chen, Ma, Zhang, He (CR163) 2019; 10
Song, Wang, Mao, Sui, Yong, Yang, Jiang, Zhang, Gong (CR119) 2017; 12
Meharg, Lombi, Williams, Scheckel, Feldmann, Raab, Zhu, Islam (CR79) 2008;
T Kamiya (4374_CR55) 2013; 59
AA Meharg (4374_CR79) 2008; 42
Y Song (4374_CR119) 2017; 12
R Takahashi (4374_CR128) 2011; 62
A Sasaki (4374_CR110) 2016; 67
F-J Zhao (4374_CR176) 2015; 49
Y Cao (4374_CR9) 2017; 51
FA Weber (4374_CR146) 2010; 44
Rufus L. Chaney (4374_CR13) 2015; 1
N Yamaji (4374_CR161) 2015; 112
G Kirk (4374_CR60) 2004
JQ Zhou (4374_CR178) 2019; 39
R Takahashi (4374_CR129) 2012; 35
Z Tang (4374_CR134) 2019; 60
WR Cullen (4374_CR28) 1989; 89
A Sasaki (4374_CR108) 2012; 24
AA Meharg (4374_CR77) 2003; 37
YZ Qian (4374_CR100) 2010; 21
JF Ma (4374_CR74) 2007; 448
J Qin (4374_CR101) 2006; 103
S Uraguchi (4374_CR140) 2011; 108
Y-T Kim (4374_CR59) 2016; 50
E Kobayashi (4374_CR61) 2009; 127
R Bian (4374_CR6) 2014; 272
4374_CR84
PJ Hu (4374_CR45) 2013; 13
N Mitani-Ueno (4374_CR86) 2016; 57
NS Bolan (4374_CR7) 2013; 119
DZ Wu (4374_CR152) 2016; 172
SB Ha (4374_CR40) 1999; 11
S Dixit (4374_CR33) 2003; 37
C Liu (4374_CR69) 2017; 7
KD Daskalakis (4374_CR29) 1992; 26
E Sanchez-Bermejo (4374_CR107) 2014; 5
D Ueno (4374_CR138) 2010; 107
N Mitani-Ueno (4374_CR85) 2011; 62
A Mestrot (4374_CR83) 2011; 45
J Park (4374_CR97) 2012; 69
RJ Bian (4374_CR5) 2013; 58
RL Chaney (4374_CR12) 1980
N Yamaji (4374_CR160) 2013; 162
Chenni Lu (4374_CR71) 2019; 126
S Clemens (4374_CR24) 2013; 18
R Howden (4374_CR44) 1995; 107
W-Y Song (4374_CR118) 2014; 111
M Yang (4374_CR164) 2014; 65
M Yang (4374_CR165) 2018; 30
JF Ma (4374_CR75) 2008; 105
FJ Zhao (4374_CR175) 2013; 47
PN Williams (4374_CR149) 2009; 43
Y Chen (4374_CR15) 2009; 239
MA Khan (4374_CR57) 2010; 44
KL Moore (4374_CR90) 2014; 201
EM Muehe (4374_CR91) 2019; 10
J Dittmar (4374_CR32) 2010; 44
S Fujimaki (4374_CR38) 2010; 152
C Liu (4374_CR68) 2009; 161
GF Combs (4374_CR27) 2001; 85
Y Ye (4374_CR167) 2017; 8
Hongping Chen (4374_CR20) 2018; 639
Y Chen (4374_CR18) 2017; 68
YG Zhu (4374_CR180) 2014; 42
AL Seyfferth (4374_CR112) 2012; 46
JL Stroud (4374_CR121) 2011; 159
4374_CR54
4374_CR53
A Raab (4374_CR103) 2005; 168
GL Duan (4374_CR34) 2017; 10
Y Takahashi (4374_CR127) 2004; 38
JL Stroud (4374_CR120) 2011; 45
FQ Sui (4374_CR124) 2019; 70
H Yan (4374_CR163) 2019; 10
G Lv (4374_CR73) 2019; 26
T Borch (4374_CR8) 2010; 44
SG Jin (4374_CR52) 2008
YS Chen (4374_CR23) 2019; 53
European Food Safety Authority (4374_CR36) 2012; 10
G Li (4374_CR65) 2011; 37
BL Huhmann (4374_CR47) 2017; 51
AA Meharg (4374_CR78) 2012
M Banerjee (4374_CR4) 2013; 3
PN Williams (4374_CR148) 2007; 41
S Uraguchi (4374_CR139) 2009; 60
S Uraguchi (4374_CR141) 2017; 58
C Chen (4374_CR22) 2019; 13
MZ Zheng (4374_CR177) 2013; 365
AM Carey (4374_CR11) 2011; 192
S Khaokaew (4374_CR58) 2011; 45
S-K Sun (4374_CR126) 2018; 219
Hongping Chen (4374_CR21) 2018; 207
H Miyadate (4374_CR87) 2011; 189
cr-split#-4374_CR135.3
R Naidu (4374_CR92) 1994; 45
JL Yan (4374_CR162) 2016; 39
XY Xu (4374_CR154) 2008; 42
E Smolders (4374_CR117) 2013
FJ Zhao (4374_CR172) 2010; 186
A Raab (4374_CR104) 2007; 4
N Satoh-Nagasawa (4374_CR111) 2012; 53
cr-split#-4374_CR135.1
M Inahara (4374_CR48) 2007; 78
cr-split#-4374_CR135.2
SRM Pinson (4374_CR98) 2015; 55
PT Wang (4374_CR142) 2016; 67
AM Carey (4374_CR10) 2010; 152
MA Limmer (4374_CR66) 2018; 52
KL Moore (4374_CR89) 2011; 156
GJ Norton (4374_CR95) 2012; 193
M Kuramata (4374_CR62) 2015; 17
S Torres-Escribano (4374_CR136) 2008; 42
S Hayashi (4374_CR42) 2017; 91
GX Sun (4374_CR125) 2008; 42
HH Zhu (4374_CR181) 2016; 219
4374_CR35
DY Chao (4374_CR14) 2014; 12
JF Shao (4374_CR114) 2017; 68
J Wang (4374_CR143) 2019; 53
A Mestrot (4374_CR82) 2009; 43
PN Williams (4374_CR147) 2005; 39
T Arao (4374_CR2) 2009; 43
J Rinklebe (4374_CR105) 2016; 270
T Honma (4374_CR43) 2016; 62
AA Meharg (4374_CR80) 2009; 43
International Agency for Research on Cancer (4374_CR49) 2004
L Tang (4374_CR132) 2017; 7
XY Xu (4374_CR153) 2007; 176
B Fulda (4374_CR39) 2013; 47
S Ishikawa (4374_CR50) 2011; 11
C Cobbett (4374_CR25) 2002; 53
CH Tseng (4374_CR137) 2009; 235
C Lomax (4374_CR70) 2012; 193
T Watanabe (4374_CR145) 2000; 73
H-Y Yu (4374_CR168) 2017; 224
S Shi (4374_CR115) 2016; 172
P Wang (4374_CR144) 2019; 249
C Chen (4374_CR17) 2017; 51
F Deng (4374_CR31) 2018; 16
K Tanaka (4374_CR131) 2007; 53
GF Nordberg (4374_CR94) 2009; 238
JM Xu (4374_CR155) 2017; 215
N Yamaguchi (4374_CR158) 2011; 83
Y-P Yang (4374_CR166) 2018; 236
AL Seyfferth (4374_CR113) 2010; 44
4374_CR99
A Sasaki (4374_CR109) 2014; 65
YJ Zavala (4374_CR169) 2008; 42
A Åkesson (4374_CR1) 2014; 122
KL Moore (4374_CR88) 2010; 185
J de Livera (4374_CR30) 2011; 409
F-Q Sui (4374_CR123) 2018; 433
R Ma (4374_CR76) 2014; 194
J Qin (4374_CR102) 2009; 106
L Tan (4374_CR130) 2019; 512
PN Williams (4374_CR150) 2014; 48
Xiaowei Xu (4374_CR157) 2019; 251
FJ Zhao (4374_CR173) 2010; 61
K Huang (4374_CR46) 2016; 50
DE Salt (4374_CR106) 2017; 215
YH Su (4374_CR122) 2010; 328
S Naito (4374_CR93) 2015; 168
YG Zhu (4374_CR179) 2008; 42
J-S Luo (4374_CR72) 2018; 9
FJ Zhao (4374_CR174) 2013; 47
Xiaowei Xu (4374_CR156) 2017; 231
RY Li (4374_CR64) 2009; 43
Z Tang (4374_CR133) 2017; 58
CF Kerl (4374_CR56) 2019; 53
T Arao (4374_CR3) 2018; 64
N Yamaji (4374_CR159) 2017; 39
AH Smith (4374_CR116) 2002; 296
WJ Liu (4374_CR67) 2006; 40
Hongping Chen (4374_CR19) 2018; 238
Shan Fu (4374_CR37) 2019; 70
Codex Alimentarius Commission (4374_CR26) 2006
J Zhang (4374_CR171) 2017; 51
S Ishikawa (4374_CR51) 2012; 109
Y Chen (4374_CR16) 2015; 66
X Hao (4374_CR41) 2018; 9
AA Meharg (4374_CR81) 2013; 47
GM Panaullah (4374_CR96) 2009; 317
M Zhang (4374_CR170) 2014; 127
RY Li (4374_CR63) 2009; 150
4374_CR151
References_xml – year: 2004
  ident: CR60
  publication-title: The biogeochemistry of submerged soils
– volume: 168
  start-page: 294
  year: 2015
  end-page: 301
  ident: CR93
  article-title: Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan
  publication-title: Food Chem
– volume: 639
  start-page: 271
  year: 2018
  end-page: 277
  ident: CR20
  article-title: Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China
  publication-title: Science of The Total Environment
– year: 2004
  ident: CR49
  publication-title: Some drinking-water disinfectants and contaminants, including arsenic
– volume: 66
  start-page: 3717
  year: 2015
  end-page: 3724
  ident: CR16
  article-title: The role of nodes in arsenic storage and distribution in rice
  publication-title: J Exp Bot
– volume: 43
  start-page: 1612
  year: 2009
  end-page: 1617
  ident: CR80
  article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice
  publication-title: Environ Sci Technol
– volume: 185
  start-page: 434
  year: 2010
  end-page: 445
  ident: CR88
  article-title: NanoSIMS analysis of arsenic and selenium in cereal grain
  publication-title: New Phytol
– volume: 8
  start-page: 2197
  year: 2017
  ident: CR167
  article-title: OsPT4 contributes to arsenate uptake and transport in rice
  publication-title: Front Plant Sci
– volume: 122
  start-page: 431
  year: 2014
  end-page: 438
  ident: CR1
  article-title: Non-renal effects and the risk assessment of environmental cadmium exposure
  publication-title: Environ Health Perspect
– volume: 48
  start-page: 8498
  year: 2014
  end-page: 8506
  ident: CR150
  article-title: Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice
  publication-title: Environ Sci Technol
– volume: 44
  start-page: 8515
  year: 2010
  end-page: 8521
  ident: CR57
  article-title: Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils
  publication-title: Environ Sci Technol
– volume: 4
  start-page: 197
  year: 2007
  end-page: 203
  ident: CR104
  article-title: Uptake and translocation of inorganic and methylated arsenic species by plants
  publication-title: Environ Chem
– volume: 51
  start-page: 4377
  year: 2017
  end-page: 4386
  ident: CR171
  article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils
  publication-title: Environ Sci Technol
– volume: 127
  start-page: 137
  year: 2014
  end-page: 165
  ident: CR170
  article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain
  publication-title: Theor Appl Genet
– volume: 43
  start-page: 9361
  year: 2009
  end-page: 9367
  ident: CR2
  article-title: Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice
  publication-title: Environ Sci Technol
– volume: 12
  start-page: e1002009
  year: 2014
  ident: CR14
  article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
  publication-title: PLoS Biol
– volume: 53
  start-page: 5787
  year: 2019
  end-page: 5796
  ident: CR56
  article-title: Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants
  publication-title: Environ Sci Technol
– ident: CR135
– volume: 13
  start-page: 2523
  year: 2019
  end-page: 2535
  ident: CR22
  article-title: Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils
  publication-title: ISME J
– ident: CR54
– volume: 10
  start-page: 9
  year: 2017
  ident: CR34
  article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars
  publication-title: Rice
– volume: 152
  start-page: 1796
  year: 2010
  end-page: 1806
  ident: CR38
  article-title: Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant
  publication-title: Plant Physiol
– volume: 62
  start-page: 349
  year: 2016
  end-page: 356
  ident: CR43
  article-title: Effects of soil amendments on arsenic and cadmium uptake by rice plants ( L. cv. Koshihikari) under different water management practices
  publication-title: Soil Sci Plant Nutr
– volume: 44
  start-page: 8108
  year: 2010
  end-page: 8113
  ident: CR113
  article-title: Arsenic localization, speciation, and co-occurrence with iron on rice ( L.) roots having variable Fe coatings
  publication-title: Environ Sci Technol
– volume: 21
  start-page: 1757
  year: 2010
  end-page: 1763
  ident: CR100
  article-title: Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk
  publication-title: Food Control
– volume: 45
  start-page: 1798
  year: 2011
  end-page: 1804
  ident: CR83
  article-title: Field fluxes and speciation of arsines emanating from soils
  publication-title: Environ Sci Technol
– year: 2012
  ident: CR78
  publication-title: Arsenic & Rice
– volume: 47
  start-page: 5613
  year: 2013
  end-page: 5618
  ident: CR81
  article-title: Variation in rice cadmium related to human exposure
  publication-title: Environ Sci Technol
– volume: 35
  start-page: 1948
  year: 2012
  end-page: 1957
  ident: CR129
  article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and cd in rice
  publication-title: Plant Cell Environ
– volume: 231
  start-page: 37
  year: 2017
  end-page: 47
  ident: CR156
  article-title: Control of arsenic mobilization in paddy soils by manganese and iron oxides
  publication-title: Environmental Pollution
– volume: 85
  start-page: 517
  year: 2001
  end-page: 547
  ident: CR27
  article-title: Selenium in global food systems
  publication-title: Br J Nutr
– volume: 78
  start-page: 149
  year: 2007
  end-page: 155
  ident: CR48
  article-title: Countermeasure by means of flooding in latter growth stage to restrain cadmium uptake by lowland rice
  publication-title: Jap J Soil Sci Plant Nutr
– volume: 108
  start-page: 20959
  year: 2011
  end-page: 20964
  ident: CR140
  article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 12131
  year: 2017
  end-page: 12138
  ident: CR9
  article-title: Knocking out gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains
  publication-title: Environ Sci Technol
– volume: 328
  start-page: 27
  year: 2010
  end-page: 34
  ident: CR122
  article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley
  publication-title: Plant Soil
– volume: 168
  start-page: 551
  year: 2005
  end-page: 558
  ident: CR103
  article-title: Uptake, translocation and transformation of arsenate and arsenite in sunflower ( ): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations
  publication-title: New Phytol
– volume: 7
  start-page: 14438
  year: 2017
  ident: CR132
  article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low cd-accumulating indica rice without compromising yield
  publication-title: Sci Rep
– volume: 30
  start-page: 2720
  year: 2018
  end-page: 2740
  ident: CR165
  article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice
  publication-title: Plant Cell
– volume: 409
  start-page: 1489
  year: 2011
  end-page: 1497
  ident: CR30
  article-title: Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions
  publication-title: Sci Total Environ
– volume: 41
  start-page: 6854
  year: 2007
  end-page: 6859
  ident: CR148
  article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley
  publication-title: Environ Sci Technol
– volume: 50
  start-page: 6389
  year: 2016
  end-page: 6396
  ident: CR46
  article-title: Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil
  publication-title: Environ Sci Technol
– volume: 51
  start-page: 11553
  year: 2017
  end-page: 11560
  ident: CR47
  article-title: Field study of rice yield diminished by soil arsenic in Bangladesh
  publication-title: Environ Sci Technol
– volume: 39
  start-page: 84
  year: 2019
  ident: CR178
  article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in indica rice hybrids
  publication-title: Mol Breed
– volume: 53
  start-page: 159
  year: 2002
  end-page: 182
  ident: CR25
  article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis
  publication-title: Annu Rev Plant Biol
– volume: 270
  start-page: 21
  year: 2016
  end-page: 32
  ident: CR105
  article-title: Release of as, Ba, cd, cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia
  publication-title: Geoderma
– volume: 42
  start-page: 3861
  year: 2008
  end-page: 3866
  ident: CR169
  article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health
  publication-title: Environ Sci Technol
– volume: 238
  start-page: 482
  year: 2018
  end-page: 490
  ident: CR19
  article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice
  publication-title: Environmental Pollution
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  ident: CR75
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc Natl Acad Sci U S A
– volume: 53
  start-page: 72
  year: 2007
  end-page: 77
  ident: CR131
  article-title: Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants ( L.)
  publication-title: Soil Sci Plant Nutr
– volume: 47
  start-page: 3957
  year: 2013
  end-page: 3966
  ident: CR175
  article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms
  publication-title: Environ Sci Technol
– volume: 69
  start-page: 278
  year: 2012
  end-page: 288
  ident: CR97
  article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
  publication-title: Plant J
– volume: 109
  start-page: 19166
  year: 2012
  end-page: 19171
  ident: CR51
  article-title: Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice
  publication-title: Proc Natl Acad Sci U S A
– volume: 43
  start-page: 637
  year: 2009
  end-page: 642
  ident: CR149
  article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan
  publication-title: China Environ Sci Technol
– volume: 239
  start-page: 184
  year: 2009
  end-page: 192
  ident: CR15
  article-title: Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh
  publication-title: Toxicol Appl Pharmacol
– volume: 37
  start-page: 229
  year: 2003
  end-page: 234
  ident: CR77
  article-title: Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption
  publication-title: Environ Sci Technol
– volume: 9
  start-page: 645
  year: 2018
  ident: CR72
  article-title: A defensin-like protein drives cadmium efflux and allocation in rice
  publication-title: Nat Commun
– volume: 17
  start-page: 1897
  year: 2015
  end-page: 1909
  ident: CR62
  article-title: Arsenic biotransformation by sp isolated from rice rhizosphere
  publication-title: Environ Microbiol
– volume: 44
  start-page: 116
  year: 2010
  end-page: 122
  ident: CR146
  article-title: Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil
  publication-title: Environ Sci Technol
– volume: 13
  start-page: 916
  year: 2013
  end-page: 924
  ident: CR45
  article-title: Effect of water management on cadmium and arsenic accumulation by rice ( L.) with different metal accumulation capacities. J
  publication-title: Soil Sed
– volume: 126
  start-page: 619
  year: 2019
  end-page: 626
  ident: CR71
  article-title: Producing cadmium-free Indica rice by overexpressing OsHMA3
  publication-title: Environment International
– volume: 1
  start-page: 13
  issue: 1
  year: 2015
  end-page: 22
  ident: CR13
  article-title: How Does Contamination of Rice Soils with Cd and Zn Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers
  publication-title: Current Pollution Reports
– volume: 215
  start-page: 926
  year: 2017
  end-page: 928
  ident: CR106
  article-title: Would the real arsenate reductase please stand up?
  publication-title: New Phytol
– volume: 152
  start-page: 309
  year: 2010
  end-page: 319
  ident: CR10
  article-title: Grain unloading of arsenic species in rice
  publication-title: Plant Physiol
– volume: 58
  start-page: 904
  year: 2017
  end-page: 913
  ident: CR133
  article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain
  publication-title: Plant Cell Physiol
– volume: 11
  start-page: 172
  year: 2011
  ident: CR50
  article-title: Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars ( ) using positron-emitting Cd tracer
  publication-title: BMC Plant Biol
– volume: 70
  start-page: 2857
  year: 2019
  end-page: 2871
  ident: CR124
  article-title: Map-based cloning of a new total loss-of-function allele of causes high cadmium accumulation in rice grain
  publication-title: J Exp Bot
– start-page: 283
  year: 2013
  end-page: 311
  ident: CR117
  article-title: Chapter 10. Cadmium
  publication-title: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability
– volume: 42
  start-page: 1051
  year: 2008
  end-page: 1057
  ident: CR79
  article-title: Speciation and localization of arsenic in white and brown rice grains
  publication-title: Environ Sci Technol
– volume: 512
  start-page: 112
  year: 2019
  end-page: 118
  ident: CR130
  article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/cd to grain in rice
  publication-title: Biochem Biophys Res Commun
– volume: 64
  start-page: 433
  year: 2018
  end-page: 437
  ident: CR3
  article-title: Effect of air temperature after heading of rice on the arsenic concentration of grain
  publication-title: Soil Sci Plant Nutr
– volume: 448
  start-page: 209
  year: 2007
  end-page: 212
  ident: CR74
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
– volume: 10
  start-page: 2562
  year: 2019
  ident: CR163
  article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies
  publication-title: Nat Commun
– volume: 224
  start-page: 136
  year: 2017
  end-page: 147
  ident: CR168
  article-title: Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice
  publication-title: Environ Pollut
– volume: 42
  start-page: 443
  year: 2014
  end-page: 467
  ident: CR180
  article-title: Earth abides arsenic biotransformations
  publication-title: Annu Rev Earth Planet Sci
– volume: 193
  start-page: 665
  year: 2012
  end-page: 672
  ident: CR70
  article-title: Methylated arsenic species in plants originate from soil microorganisms
  publication-title: New Phytol
– volume: 112
  start-page: 11401
  year: 2015
  end-page: 11406
  ident: CR161
  article-title: Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice
  publication-title: Proc Natl Acad Sci U S A
– volume: 207
  start-page: 699
  year: 2018
  end-page: 707
  ident: CR21
  article-title: Effective methods to reduce cadmium accumulation in rice grain
  publication-title: Chemosphere
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  ident: CR173
  article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu Rev Plant Biol
– volume: 43
  start-page: 3778
  year: 2009
  end-page: 3783
  ident: CR64
  article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization
  publication-title: Environ Sci Technol
– volume: 43
  start-page: 8270
  year: 2009
  end-page: 8275
  ident: CR82
  article-title: Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil
  publication-title: Environ Sci Technol
– volume: 119
  start-page: 183
  year: 2013
  end-page: 273
  ident: CR7
  article-title: Cadmium contamination and its risk management in rice ecosystems
  publication-title: Adv Agron
– volume: 45
  start-page: 4249
  year: 2011
  end-page: 4255
  ident: CR58
  article-title: Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions
  publication-title: Environ Sci Technol
– volume: 59
  start-page: 580
  year: 2013
  end-page: 590
  ident: CR55
  article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice
  publication-title: Soil Sci Plant Nutr
– volume: 161
  start-page: 1466
  year: 2009
  end-page: 1472
  ident: CR68
  article-title: Foliar application of two silica sols reduced cadmium accumulation in rice grains
  publication-title: J Hazard Mater
– ident: CR151
– volume: 433
  start-page: 377
  year: 2018
  end-page: 389
  ident: CR123
  article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize
  publication-title: Plant Soil
– volume: 39
  start-page: 1941
  year: 2016
  end-page: 1954
  ident: CR162
  article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars
  publication-title: Plant Cell Environ
– year: 2008
  ident: CR52
  publication-title: Survey report on the nutrition and health of Chinese residents: dataset on the status of nutrition and health in 2002
– volume: 5
  start-page: 4617
  year: 2014
  ident: CR107
  article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in
  publication-title: Nat Commun
– volume: 46
  start-page: 13176
  year: 2012
  end-page: 13183
  ident: CR112
  article-title: Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( L.)
  publication-title: Environ Sci Technol
– volume: 172
  start-page: 1708
  year: 2016
  end-page: 1719
  ident: CR115
  article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation
  publication-title: Plant Physiol
– volume: 103
  start-page: 2075
  year: 2006
  end-page: 2080
  ident: CR101
  article-title: Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase
  publication-title: Proc Natl Acad Sci U S A
– volume: 67
  start-page: 6051
  year: 2016
  end-page: 6059
  ident: CR142
  article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice
  publication-title: J Exp Bot
– volume: 38
  start-page: 1038
  year: 2004
  end-page: 1044
  ident: CR127
  article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods
  publication-title: Environ Sci Technol
– volume: 47
  start-page: 12775
  year: 2013
  end-page: 12783
  ident: CR39
  article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper
  publication-title: Environ Sci Technol
– volume: 57
  start-page: 2510
  year: 2016
  end-page: 2518
  ident: CR86
  article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice
  publication-title: Plant Cell Physiol
– volume: 62
  start-page: 4843
  year: 2011
  end-page: 4850
  ident: CR128
  article-title: The OsNRAMP1 iron transporter is involved in cd accumulation in rice
  publication-title: J Exp Bot
– volume: 42
  start-page: 5008
  year: 2008
  end-page: 5013
  ident: CR179
  article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice
  publication-title: Environ Sci Technol
– volume: 156
  start-page: 913
  year: 2011
  end-page: 924
  ident: CR89
  article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots
  publication-title: Plant Physiol
– volume: 24
  start-page: 2155
  year: 2012
  end-page: 2167
  ident: CR108
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
– volume: 89
  start-page: 713
  year: 1989
  end-page: 764
  ident: CR28
  article-title: Arsenic speciation in the environment
  publication-title: Chem Rev
– volume: 296
  start-page: 2145
  year: 2002
  end-page: 2146
  ident: CR116
  article-title: Arsenic epidemiology and drinking water standards
  publication-title: Science
– volume: 18
  start-page: 92
  year: 2013
  end-page: 99
  ident: CR24
  article-title: Plant science: the key to preventing slow cadmium poisoning
  publication-title: Trends Plant Sci
– volume: 201
  start-page: 104
  year: 2014
  end-page: 115
  ident: CR90
  article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues
  publication-title: New Phytol
– volume: 238
  start-page: 192
  year: 2009
  end-page: 200
  ident: CR94
  article-title: Historical perspectives on cadmium toxicology
  publication-title: Toxicol Appl Pharmacol
– volume: 162
  start-page: 927
  year: 2013
  end-page: 939
  ident: CR160
  article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2
  publication-title: Plant Physiol
– volume: 68
  start-page: 5641
  year: 2017
  end-page: 5651
  ident: CR114
  article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice
  publication-title: J Exp Bot
– volume: 51
  start-page: 13190
  year: 2017
  end-page: 13198
  ident: CR17
  article-title: Microbial processes mediating the evolution of methylarsine gases from dimethylarsenate in paddy soils
  publication-title: Environ Sci Technol
– volume: 12
  start-page: e0177978
  year: 2017
  ident: CR119
  article-title: Dietary cadmium exposure assessment among the Chinese population
  publication-title: PLoS One
– volume: 39
  start-page: 18
  year: 2017
  end-page: 24
  ident: CR159
  article-title: Node-controlled allocation of mineral elements in Poaceae
  publication-title: Curr Opin Plant Biol
– volume: 42
  start-page: 3867
  year: 2008
  end-page: 3872
  ident: CR136
  article-title: Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments
  publication-title: Environ Sci Technol
– ident: CR35
– volume: 60
  start-page: 2677
  year: 2009
  end-page: 2688
  ident: CR139
  article-title: Root-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice
  publication-title: J Exp Bot
– volume: 37
  start-page: 4182
  year: 2003
  end-page: 4189
  ident: CR33
  article-title: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility
  publication-title: Environ Sci Technol
– volume: 37
  start-page: 1219
  year: 2011
  end-page: 1225
  ident: CR65
  article-title: Inorganic arsenic in Chinese food and its cancer risk
  publication-title: Environ Int
– volume: 40
  start-page: 5730
  year: 2006
  end-page: 5736
  ident: CR67
  article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants ( L.)
  publication-title: Environ Sci Technol
– volume: 249
  start-page: 1038
  year: 2019
  end-page: 1048
  ident: CR144
  article-title: Cadmium contamination in agricultural soils of China and the impact on food safety
  publication-title: Environ Pollut
– volume: 11
  start-page: 1153
  year: 1999
  end-page: 1163
  ident: CR40
  article-title: Phytochelatin synthase genes from arabidopsis and the yeast
  publication-title: Plant Cell
– ident: CR84
– volume: 83
  start-page: 925
  year: 2011
  end-page: 932
  ident: CR158
  article-title: Arsenic release from flooded paddy soils is influenced by speciation, eh, pH, and iron dissolution
  publication-title: Chemosphere
– volume: 16
  start-page: 1691
  year: 2018
  end-page: 1699
  ident: CR31
  article-title: Engineering rice with lower grain arsenic
  publication-title: Plant Biotechnol J
– volume: 67
  start-page: 3645
  year: 2016
  end-page: 3653
  ident: CR110
  article-title: Transporters involved in mineral nutrient uptake in rice
  publication-title: J Exp Bot
– volume: 68
  start-page: 3007
  year: 2017
  end-page: 3016
  ident: CR18
  article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice
  publication-title: J Exp Bot
– volume: 45
  start-page: 4262
  year: 2011
  end-page: 4269
  ident: CR120
  article-title: Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions
  publication-title: Environ Sci Technol
– volume: 272
  start-page: 121
  year: 2014
  end-page: 128
  ident: CR6
  article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment
  publication-title: J Hazard Mater
– volume: 219
  start-page: 641
  year: 2018
  end-page: 653
  ident: CR126
  article-title: Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots
  publication-title: New Phytol
– volume: 50
  start-page: 11637
  year: 2016
  end-page: 11645
  ident: CR59
  article-title: Kinetics of dimethylated thioarsenicals and the formation of highly toxic dimethylmonothioarsinic acid in environment
  publication-title: Environ Sci Technol
– volume: 194
  start-page: 217
  year: 2014
  end-page: 223
  ident: CR76
  article-title: Impact of agronomic practices on arsenic accumulation and speciation in rice grain
  publication-title: Environ Pollut
– volume: 45
  start-page: 419
  year: 1994
  end-page: 429
  ident: CR92
  article-title: Ionic strength and pH effects on the sorption of cadmium and the surface charge of soils
  publication-title: Eur J Soil Sci
– volume: 65
  start-page: 6013
  year: 2014
  end-page: 6021
  ident: CR109
  article-title: Overexpression of OsHMA3 enhances cd tolerance and expression of Zn transporter genes in rice
  publication-title: J Exp Bot
– volume: 317
  start-page: 31
  year: 2009
  end-page: 39
  ident: CR96
  article-title: Arsenic toxicity to rice ( L.) in Bangladesh
  publication-title: Plant Soil
– volume: 55
  start-page: 1
  year: 2015
  end-page: 18
  ident: CR98
  article-title: World-wide genetic diversity for mineral element concentrations in rice grain
  publication-title: Crop Sci
– volume: 172
  start-page: 1899
  year: 2016
  end-page: 1910
  ident: CR152
  article-title: The HvNramp5 tansporter mediates uptake of cadmium and manganese, but not iron
  publication-title: Plant Physiol
– volume: 107
  start-page: 1059
  year: 1995
  end-page: 1066
  ident: CR44
  article-title: Cadmium-sensitive, mutants of are phytochelatin deficient
  publication-title: Plant Physiol
– volume: 107
  start-page: 16500
  year: 2010
  end-page: 16505
  ident: CR138
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proc Natl Acad Sci U S A
– volume: 176
  start-page: 590
  year: 2007
  end-page: 599
  ident: CR153
  article-title: Rapid reduction of arsenate in the medium mediated by plant roots
  publication-title: New Phytol
– volume: 215
  start-page: 1090
  year: 2017
  end-page: 1101
  ident: CR155
  article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice
  publication-title: New Phytol
– volume: 60
  start-page: 1525
  year: 2019
  end-page: 1535
  ident: CR134
  article-title: The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice
  publication-title: Plant Cell Physiol
– volume: 365
  start-page: 227
  year: 2013
  end-page: 238
  ident: CR177
  article-title: Differential toxicity and accumulation of inorganic and methylated arsenic in rice
  publication-title: Plant Soil
– ident: CR99
– year: 2006
  ident: CR26
  publication-title: Report of the 29th session of the codex Alimentarius commission, ALINORM 06/29/41
– volume: 53
  start-page: 10062
  year: 2019
  end-page: 10069
  ident: CR23
  article-title: Expressing arsenite antiporter PvACR3;1 in rice ( L.) decreases inorganic arsenic content in rice grains
  publication-title: Environ Sci Technol
– volume: 52
  start-page: 4809
  year: 2018
  end-page: 4816
  ident: CR66
  article-title: Silicon decreases dimethylarsinic acid concentration in rice grain and mitigates straighthead disorder
  publication-title: Environ Sci Technol
– volume: 44
  start-page: 8842
  year: 2010
  end-page: 8848
  ident: CR32
  article-title: Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies
  publication-title: Environ Sci Technol
– volume: 150
  start-page: 2071
  year: 2009
  end-page: 2080
  ident: CR63
  article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species
  publication-title: Plant Physiol
– volume: 189
  start-page: 190
  year: 2011
  end-page: 199
  ident: CR87
  article-title: OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytol
– volume: 73
  start-page: 26
  year: 2000
  end-page: 34
  ident: CR145
  article-title: Cadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981
  publication-title: Int Arch Occup Environ Health
– volume: 10
  start-page: 4985
  year: 2019
  ident: CR91
  article-title: Rice production threatened by coupled stresses of climate and soil arsenic
  publication-title: Nat Commun
– volume: 236
  start-page: 598
  year: 2018
  end-page: 608
  ident: CR166
  article-title: Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation
  publication-title: Environ Pollut
– volume: 219
  start-page: 99
  year: 2016
  end-page: 106
  ident: CR181
  article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China
  publication-title: Environ Pollut
– ident: CR53
– volume: 26
  start-page: 9305
  year: 2019
  end-page: 9313
  ident: CR73
  article-title: Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce cd concentration in rice grains: a field study
  publication-title: Environ Sci Pollut Res
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  ident: CR176
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ Sci Technol
– volume: 10
  start-page: 2551
  year: 2012
  end-page: 2588
  ident: CR36
  article-title: Cadmium dietary exposure in the European population
  publication-title: EFSA J
– volume: 62
  start-page: 4391
  year: 2011
  end-page: 4398
  ident: CR85
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: J Exp Bot
– volume: 42
  start-page: 5574
  year: 2008
  end-page: 5579
  ident: CR154
  article-title: Growing rice aerobically markedly decreases arsenic accumulation
  publication-title: Environ Sci Technol
– volume: 58
  start-page: 378
  year: 2013
  end-page: 383
  ident: CR5
  article-title: Biochar soil amendment as a solution to prevent cd-tainted rice from China: results from a cross-site field experiment
  publication-title: Ecol Eng
– volume: 70
  start-page: 5909
  issue: 20
  year: 2019
  end-page: 5918
  ident: CR37
  article-title: The ABC transporter ABCG36 is required for cadmium tolerance in rice
  publication-title: Journal of Experimental Botany
– volume: 39
  start-page: 5531
  year: 2005
  end-page: 5540
  ident: CR147
  article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure
  publication-title: Environ Sci Technol
– volume: 44
  start-page: 15
  year: 2010
  end-page: 23
  ident: CR8
  article-title: Biogeochemical redox processes and their impact on contaminant dynamics
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 17704
  year: 2017
  ident: CR69
  article-title: Characterization of a major QTL for manganese accumulation in rice grain
  publication-title: Sci Rep
– volume: 159
  start-page: 947
  year: 2011
  end-page: 953
  ident: CR121
  article-title: The dynamics of arsenic in four paddy fields in the Bengal delta
  publication-title: Environ Pollut
– volume: 3
  start-page: 2195
  year: 2013
  ident: CR4
  article-title: High arsenic in rice is associated with elevated genotoxic effects in humans
  publication-title: Sci Rep
– volume: 53
  start-page: 2500
  year: 2019
  end-page: 2508
  ident: CR143
  article-title: Iron–manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems
  publication-title: Environ Sci Technol
– volume: 192
  start-page: 87
  year: 2011
  end-page: 98
  ident: CR11
  article-title: Phloem transport of arsenic species from flag leaf to grain during grain filling
  publication-title: New Phytol
– volume: 26
  start-page: 2462
  year: 1992
  end-page: 2468
  ident: CR29
  article-title: Solubility of CdS (greennockite) in sulfidic water at 25 C
  publication-title: Environ Sci Technol
– volume: 9
  start-page: 476
  year: 2018
  ident: CR41
  article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice
  publication-title: Front Plant Sci
– volume: 186
  start-page: 392
  year: 2010
  end-page: 399
  ident: CR172
  article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots
  publication-title: New Phytol
– volume: 53
  start-page: 213
  year: 2012
  end-page: 224
  ident: CR111
  article-title: Mutations in rice ( ) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium
  publication-title: Plant Cell Physiol
– volume: 91
  start-page: 840
  year: 2017
  end-page: 848
  ident: CR42
  article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains
  publication-title: Plant J
– volume: 42
  start-page: 7542
  year: 2008
  end-page: 7546
  ident: CR125
  article-title: Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain
  publication-title: Environ Sci Technol
– volume: 235
  start-page: 338
  year: 2009
  end-page: 350
  ident: CR137
  article-title: A review on environmental factors regulating arsenic methylation in humans
  publication-title: Toxicol Appl Pharmacol
– volume: 127
  start-page: 257
  year: 2009
  end-page: 268
  ident: CR61
  article-title: Influence of consumption of cadmium-polluted rice or jinzu river water on occurrence of renal tubular dysfunction and/or Itai-itai disease
  publication-title: Biol Trace Elem Res
– volume: 65
  start-page: 4849
  year: 2014
  end-page: 4861
  ident: CR164
  article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots
  publication-title: J Exp Bot
– volume: 47
  start-page: 7147
  year: 2013
  end-page: 7154
  ident: CR174
  article-title: Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice
  publication-title: Environ Sci Technol
– volume: 106
  start-page: 5213
  year: 2009
  end-page: 5217
  ident: CR102
  article-title: Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga
  publication-title: Proc Natl Acad Sci U S A
– volume: 111
  start-page: 15699
  year: 2014
  end-page: 15704
  ident: CR118
  article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain
  publication-title: Proc Natl Acad Sci U S A
– volume: 58
  start-page: 1730
  year: 2017
  end-page: 1742
  ident: CR141
  article-title: Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains
  publication-title: Plant Cell Physiol
– volume: 251
  start-page: 952
  year: 2019
  end-page: 960
  ident: CR157
  article-title: Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction
  publication-title: Environmental Pollution
– volume: 193
  start-page: 650
  year: 2012
  end-page: 664
  ident: CR95
  article-title: Variation in grain arsenic assessed in a diverse panel of rice ( ) grown in multiple sites
  publication-title: New Phytol
– start-page: 59
  year: 1980
  end-page: 83
  ident: CR12
  article-title: Health risks associated with toxic metals in municipal sludge
  publication-title: Sludge: health risks of land applications
– volume: 106
  start-page: 5213
  year: 2009
  ident: 4374_CR102
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900238106
– volume: 317
  start-page: 31
  year: 2009
  ident: 4374_CR96
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9786-y
– volume: 238
  start-page: 482
  year: 2018
  ident: 4374_CR19
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2018.03.048
– volume: 30
  start-page: 2720
  year: 2018
  ident: 4374_CR165
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00375
– volume: 207
  start-page: 699
  year: 2018
  ident: 4374_CR21
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.143
– volume: 249
  start-page: 1038
  year: 2019
  ident: 4374_CR144
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.03.063
– volume: 112
  start-page: 11401
  year: 2015
  ident: 4374_CR161
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1508987112
– volume: 83
  start-page: 925
  year: 2011
  ident: 4374_CR158
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.044
– volume: 44
  start-page: 8515
  year: 2010
  ident: 4374_CR57
  publication-title: Environ Sci Technol
  doi: 10.1021/es101952f
– volume: 11
  start-page: 1153
  year: 1999
  ident: 4374_CR40
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.6.1153
– volume: 47
  start-page: 7147
  year: 2013
  ident: 4374_CR174
  publication-title: Environ Sci Technol
  doi: 10.1021/es304977m
– volume: 162
  start-page: 927
  year: 2013
  ident: 4374_CR160
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.216564
– volume: 70
  start-page: 2857
  year: 2019
  ident: 4374_CR124
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz093
– volume: 66
  start-page: 3717
  year: 2015
  ident: 4374_CR16
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv164
– volume: 215
  start-page: 926
  year: 2017
  ident: 4374_CR106
  publication-title: New Phytol
  doi: 10.1111/nph.14691
– volume: 119
  start-page: 183
  year: 2013
  ident: 4374_CR7
  publication-title: Adv Agron
  doi: 10.1016/B978-0-12-407247-3.00004-4
– volume: 44
  start-page: 8842
  year: 2010
  ident: 4374_CR32
  publication-title: Environ Sci Technol
  doi: 10.1021/es101962d
– volume: 62
  start-page: 4843
  year: 2011
  ident: 4374_CR128
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err136
– volume: 35
  start-page: 1948
  year: 2012
  ident: 4374_CR129
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2012.02527.x
– volume: 62
  start-page: 4391
  year: 2011
  ident: 4374_CR85
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err158
– volume-title: The biogeochemistry of submerged soils
  year: 2004
  ident: 4374_CR60
  doi: 10.1002/047086303X
– volume: 172
  start-page: 1708
  year: 2016
  ident: 4374_CR115
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01332
– volume: 51
  start-page: 12131
  year: 2017
  ident: 4374_CR9
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b03028
– volume: 69
  start-page: 278
  year: 2012
  ident: 4374_CR97
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04789.x
– ident: 4374_CR151
– volume: 37
  start-page: 4182
  year: 2003
  ident: 4374_CR33
  publication-title: Environ Sci Technol
  doi: 10.1021/es030309t
– volume: 156
  start-page: 913
  year: 2011
  ident: 4374_CR89
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.173088
– volume: 44
  start-page: 15
  year: 2010
  ident: 4374_CR8
  publication-title: Environ Sci Technol
  doi: 10.1021/es9026248
– volume: 409
  start-page: 1489
  year: 2011
  ident: 4374_CR30
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.12.028
– volume: 219
  start-page: 641
  year: 2018
  ident: 4374_CR126
  publication-title: New Phytol
  doi: 10.1111/nph.15190
– volume: 272
  start-page: 121
  year: 2014
  ident: 4374_CR6
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2014.03.017
– volume: 91
  start-page: 840
  year: 2017
  ident: 4374_CR42
  publication-title: Plant J
  doi: 10.1111/tpj.13612
– volume: 192
  start-page: 87
  year: 2011
  ident: 4374_CR11
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03789.x
– volume: 50
  start-page: 11637
  year: 2016
  ident: 4374_CR59
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b02656
– volume: 219
  start-page: 99
  year: 2016
  ident: 4374_CR181
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2016.10.043
– volume: 44
  start-page: 116
  year: 2010
  ident: 4374_CR146
  publication-title: Environ Sci Technol
  doi: 10.1021/es902100h
– volume: 51
  start-page: 13190
  year: 2017
  ident: 4374_CR17
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b04791
– volume: 238
  start-page: 192
  year: 2009
  ident: 4374_CR94
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2009.03.015
– volume: 168
  start-page: 551
  year: 2005
  ident: 4374_CR103
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2005.01519.x
– volume: 9
  start-page: 645
  year: 2018
  ident: 4374_CR72
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03088-0
– volume: 111
  start-page: 15699
  year: 2014
  ident: 4374_CR118
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1414968111
– volume: 45
  start-page: 419
  year: 1994
  ident: 4374_CR92
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.1994.tb00527.x
– volume: 46
  start-page: 13176
  year: 2012
  ident: 4374_CR112
  publication-title: Environ Sci Technol
  doi: 10.1021/es3025337
– volume: 53
  start-page: 2500
  year: 2019
  ident: 4374_CR143
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b06863
– volume: 70
  start-page: 5909
  issue: 20
  year: 2019
  ident: 4374_CR37
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erz335
– volume: 512
  start-page: 112
  year: 2019
  ident: 4374_CR130
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2019.03.024
– volume: 60
  start-page: 1525
  year: 2019
  ident: 4374_CR134
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcz054
– volume: 43
  start-page: 637
  year: 2009
  ident: 4374_CR149
  publication-title: China Environ Sci Technol
  doi: 10.1021/es802412r
– volume: 3
  start-page: 2195
  year: 2013
  ident: 4374_CR4
  publication-title: Sci Rep
  doi: 10.1038/srep02195
– volume: 150
  start-page: 2071
  year: 2009
  ident: 4374_CR63
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.140350
– volume: 51
  start-page: 4377
  year: 2017
  ident: 4374_CR171
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b06255
– volume: 47
  start-page: 12775
  year: 2013
  ident: 4374_CR39
  publication-title: Environ Sci Technol
  doi: 10.1021/es401997d
– volume: 89
  start-page: 713
  year: 1989
  ident: 4374_CR28
  publication-title: Chem Rev
  doi: 10.1021/cr00094a002
– volume: 26
  start-page: 2462
  year: 1992
  ident: 4374_CR29
  publication-title: Environ Sci Technol
  doi: 10.1021/es00036a019
– volume: 50
  start-page: 6389
  year: 2016
  ident: 4374_CR46
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b01974
– volume: 42
  start-page: 3861
  year: 2008
  ident: 4374_CR169
  publication-title: Environ Sci Technol
  doi: 10.1021/es702748q
– volume: 235
  start-page: 338
  year: 2009
  ident: 4374_CR137
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2008.12.016
– volume: 42
  start-page: 5574
  year: 2008
  ident: 4374_CR154
  publication-title: Environ Sci Technol
  doi: 10.1021/es800324u
– volume: 10
  start-page: 4985
  year: 2019
  ident: 4374_CR91
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12946-4
– volume: 186
  start-page: 392
  year: 2010
  ident: 4374_CR172
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03192.x
– start-page: 59
  volume-title: Sludge: health risks of land applications
  year: 1980
  ident: 4374_CR12
– volume: 251
  start-page: 952
  year: 2019
  ident: 4374_CR157
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2019.05.086
– ident: 4374_CR35
– volume: 18
  start-page: 92
  year: 2013
  ident: 4374_CR24
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2012.08.003
– ident: 4374_CR54
– volume: 126
  start-page: 619
  year: 2019
  ident: 4374_CR71
  publication-title: Environment International
  doi: 10.1016/j.envint.2019.03.004
– volume: 43
  start-page: 3778
  year: 2009
  ident: 4374_CR64
  publication-title: Environ Sci Technol
  doi: 10.1021/es803643v
– volume: 38
  start-page: 1038
  year: 2004
  ident: 4374_CR127
  publication-title: Environ Sci Technol
  doi: 10.1021/es034383n
– volume: 193
  start-page: 665
  year: 2012
  ident: 4374_CR70
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03956.x
– volume: 67
  start-page: 6051
  year: 2016
  ident: 4374_CR142
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw362
– volume: 127
  start-page: 257
  year: 2009
  ident: 4374_CR61
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-008-8239-z
– volume: 236
  start-page: 598
  year: 2018
  ident: 4374_CR166
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.01.099
– volume: 52
  start-page: 4809
  year: 2018
  ident: 4374_CR66
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b00300
– volume: 168
  start-page: 294
  year: 2015
  ident: 4374_CR93
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2014.07.060
– volume: 328
  start-page: 27
  year: 2010
  ident: 4374_CR122
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0074-2
– ident: #cr-split#-4374_CR135.1
– volume: 61
  start-page: 535
  year: 2010
  ident: 4374_CR173
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042809-112152
– volume: 64
  start-page: 433
  year: 2018
  ident: 4374_CR3
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2018.1438811
– volume: 5
  start-page: 4617
  year: 2014
  ident: 4374_CR107
  publication-title: Nat Commun
  doi: 10.1038/ncomms5617
– volume: 7
  start-page: 17704
  year: 2017
  ident: 4374_CR69
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18090-7
– volume: 1
  start-page: 13
  issue: 1
  year: 2015
  ident: 4374_CR13
  publication-title: Current Pollution Reports
  doi: 10.1007/s40726-015-0002-4
– volume: 37
  start-page: 229
  year: 2003
  ident: 4374_CR77
  publication-title: Environ Sci Technol
  doi: 10.1021/es0259842
– volume: 49
  start-page: 750
  year: 2015
  ident: 4374_CR176
  publication-title: Environ Sci Technol
  doi: 10.1021/es5047099
– volume: 12
  start-page: e1002009
  year: 2014
  ident: 4374_CR14
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002009
– volume: 189
  start-page: 190
  year: 2011
  ident: 4374_CR87
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03459.x
– ident: 4374_CR99
– volume: 42
  start-page: 3867
  year: 2008
  ident: 4374_CR136
  publication-title: Environ Sci Technol
  doi: 10.1021/es071516m
– volume: 39
  start-page: 18
  year: 2017
  ident: 4374_CR159
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2017.05.002
– volume: 39
  start-page: 1941
  year: 2016
  ident: 4374_CR162
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12747
– volume: 53
  start-page: 159
  year: 2002
  ident: 4374_CR25
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.53.100301.135154
– volume: 45
  start-page: 1798
  year: 2011
  ident: 4374_CR83
  publication-title: Environ Sci Technol
  doi: 10.1021/es103463d
– volume: 53
  start-page: 213
  year: 2012
  ident: 4374_CR111
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr166
– volume: 51
  start-page: 11553
  year: 2017
  ident: 4374_CR47
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b01487
– volume: 37
  start-page: 1219
  year: 2011
  ident: 4374_CR65
  publication-title: Environ Int
  doi: 10.1016/j.envint.2011.05.007
– volume: 41
  start-page: 6854
  year: 2007
  ident: 4374_CR148
  publication-title: Environ Sci Technol
  doi: 10.1021/es070627i
– ident: 4374_CR84
– volume: 9
  start-page: 476
  year: 2018
  ident: 4374_CR41
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00476
– volume: 109
  start-page: 19166
  year: 2012
  ident: 4374_CR51
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1211132109
– volume: 270
  start-page: 21
  year: 2016
  ident: 4374_CR105
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.10.011
– volume: 11
  start-page: 172
  year: 2011
  ident: 4374_CR50
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-172
– volume: 58
  start-page: 1730
  year: 2017
  ident: 4374_CR141
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcx114
– volume: 122
  start-page: 431
  year: 2014
  ident: 4374_CR1
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1307110
– volume: 193
  start-page: 650
  year: 2012
  ident: 4374_CR95
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03983.x
– volume: 57
  start-page: 2510
  year: 2016
  ident: 4374_CR86
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcw163
– volume: 176
  start-page: 590
  year: 2007
  ident: 4374_CR153
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02195.x
– volume: 10
  start-page: 2562
  year: 2019
  ident: 4374_CR163
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10544-y
– volume: 85
  start-page: 517
  year: 2001
  ident: 4374_CR27
  publication-title: Br J Nutr
  doi: 10.1079/BJN2000280
– volume: 39
  start-page: 5531
  year: 2005
  ident: 4374_CR147
  publication-title: Environ Sci Technol
  doi: 10.1021/es0502324
– volume: 448
  start-page: 209
  year: 2007
  ident: 4374_CR74
  publication-title: Nature
  doi: 10.1038/nature05964
– volume: 65
  start-page: 6013
  year: 2014
  ident: 4374_CR109
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru340
– volume: 172
  start-page: 1899
  year: 2016
  ident: 4374_CR152
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01189
– volume: 10
  start-page: 9
  year: 2017
  ident: 4374_CR34
  publication-title: Rice
  doi: 10.1186/s12284-017-0149-2
– volume: 39
  start-page: 84
  year: 2019
  ident: 4374_CR178
  publication-title: Mol Breed
  doi: 10.1007/s11032-019-0992-5
– ident: #cr-split#-4374_CR135.3
– volume: 68
  start-page: 5641
  year: 2017
  ident: 4374_CR114
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx364
– volume: 47
  start-page: 5613
  year: 2013
  ident: 4374_CR81
  publication-title: Environ Sci Technol
  doi: 10.1021/es400521h
– volume: 127
  start-page: 137
  year: 2014
  ident: 4374_CR170
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-013-2207-5
– volume: 201
  start-page: 104
  year: 2014
  ident: 4374_CR90
  publication-title: New Phytol
  doi: 10.1111/nph.12497
– volume: 105
  start-page: 9931
  year: 2008
  ident: 4374_CR75
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0802361105
– volume: 296
  start-page: 2145
  year: 2002
  ident: 4374_CR116
  publication-title: Science
  doi: 10.1126/science.1072896
– volume: 53
  start-page: 72
  year: 2007
  ident: 4374_CR131
  publication-title: Soil Sci Plant Nutr
  doi: 10.1111/j.1747-0765.2007.00116.x
– volume-title: Some drinking-water disinfectants and contaminants, including arsenic
  year: 2004
  ident: 4374_CR49
– volume: 43
  start-page: 8270
  year: 2009
  ident: 4374_CR82
  publication-title: Environ Sci Technol
  doi: 10.1021/es9018755
– volume: 215
  start-page: 1090
  year: 2017
  ident: 4374_CR155
  publication-title: New Phytol
  doi: 10.1111/nph.14572
– volume: 108
  start-page: 20959
  year: 2011
  ident: 4374_CR140
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1116531109
– start-page: 283
  volume-title: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability
  year: 2013
  ident: 4374_CR117
  doi: 10.1007/978-94-007-4470-7_10
– volume: 40
  start-page: 5730
  year: 2006
  ident: 4374_CR67
  publication-title: Environ Sci Technol
  doi: 10.1021/es060800v
– volume: 161
  start-page: 1466
  year: 2009
  ident: 4374_CR68
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.04.116
– volume: 43
  start-page: 1612
  year: 2009
  ident: 4374_CR80
  publication-title: Environ Sci Technol
  doi: 10.1021/es802612a
– volume: 58
  start-page: 378
  year: 2013
  ident: 4374_CR5
  publication-title: Ecol Eng
  doi: 10.1016/j.ecoleng.2013.07.031
– volume: 152
  start-page: 309
  year: 2010
  ident: 4374_CR10
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.146126
– volume-title: Arsenic & Rice
  year: 2012
  ident: 4374_CR78
  doi: 10.1007/978-94-007-2947-6
– ident: #cr-split#-4374_CR135.2
– volume-title: Survey report on the nutrition and health of Chinese residents: dataset on the status of nutrition and health in 2002
  year: 2008
  ident: 4374_CR52
– volume: 10
  start-page: 2551
  year: 2012
  ident: 4374_CR36
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2012.2551
– volume: 152
  start-page: 1796
  year: 2010
  ident: 4374_CR38
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.151035
– volume: 55
  start-page: 1
  year: 2015
  ident: 4374_CR98
  publication-title: Crop Sci
  doi: 10.2135/cropsci2014.03.0249
– volume: 8
  start-page: 2197
  year: 2017
  ident: 4374_CR167
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.02197
– volume: 107
  start-page: 1059
  year: 1995
  ident: 4374_CR44
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.4.1059
– volume: 67
  start-page: 3645
  year: 2016
  ident: 4374_CR110
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw060
– volume: 60
  start-page: 2677
  year: 2009
  ident: 4374_CR139
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp119
– volume: 68
  start-page: 3007
  year: 2017
  ident: 4374_CR18
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx165
– volume: 16
  start-page: 1691
  year: 2018
  ident: 4374_CR31
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12905
– volume: 48
  start-page: 8498
  year: 2014
  ident: 4374_CR150
  publication-title: Environ Sci Technol
  doi: 10.1021/es501127k
– volume: 231
  start-page: 37
  year: 2017
  ident: 4374_CR156
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2017.07.084
– volume: 185
  start-page: 434
  year: 2010
  ident: 4374_CR88
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2009.03071.x
– volume: 239
  start-page: 184
  year: 2009
  ident: 4374_CR15
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2009.01.010
– volume: 78
  start-page: 149
  year: 2007
  ident: 4374_CR48
  publication-title: Jap J Soil Sci Plant Nutr
– volume: 42
  start-page: 7542
  year: 2008
  ident: 4374_CR125
  publication-title: Environ Sci Technol
  doi: 10.1021/es801238p
– volume: 194
  start-page: 217
  year: 2014
  ident: 4374_CR76
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.08.004
– volume: 159
  start-page: 947
  year: 2011
  ident: 4374_CR121
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.12.016
– volume: 47
  start-page: 3957
  year: 2013
  ident: 4374_CR175
  publication-title: Environ Sci Technol
  doi: 10.1021/es304295n
– volume-title: Report of the 29th session of the codex Alimentarius commission, ALINORM 06/29/41
  year: 2006
  ident: 4374_CR26
– volume: 4
  start-page: 197
  year: 2007
  ident: 4374_CR104
  publication-title: Environ Chem
  doi: 10.1071/EN06079
– volume: 44
  start-page: 8108
  year: 2010
  ident: 4374_CR113
  publication-title: Environ Sci Technol
  doi: 10.1021/es101139z
– volume: 62
  start-page: 349
  year: 2016
  ident: 4374_CR43
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2016.1196569
– volume: 73
  start-page: 26
  year: 2000
  ident: 4374_CR145
  publication-title: Int Arch Occup Environ Health
  doi: 10.1007/PL00007934
– volume: 12
  start-page: e0177978
  year: 2017
  ident: 4374_CR119
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177978
– volume: 43
  start-page: 9361
  year: 2009
  ident: 4374_CR2
  publication-title: Environ Sci Technol
  doi: 10.1021/es9022738
– volume: 53
  start-page: 10062
  year: 2019
  ident: 4374_CR23
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b02418
– volume: 58
  start-page: 904
  year: 2017
  ident: 4374_CR133
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcx029
– volume: 103
  start-page: 2075
  year: 2006
  ident: 4374_CR101
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506836103
– volume: 42
  start-page: 5008
  year: 2008
  ident: 4374_CR179
  publication-title: Environ Sci Technol
  doi: 10.1021/es8001103
– volume: 45
  start-page: 4249
  year: 2011
  ident: 4374_CR58
  publication-title: Environ Sci Technol
  doi: 10.1021/es103971y
– volume: 24
  start-page: 2155
  year: 2012
  ident: 4374_CR108
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096925
– volume: 433
  start-page: 377
  year: 2018
  ident: 4374_CR123
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3849-5
– volume: 13
  start-page: 2523
  year: 2019
  ident: 4374_CR22
  publication-title: ISME J
  doi: 10.1038/s41396-019-0451-7
– volume: 26
  start-page: 9305
  year: 2019
  ident: 4374_CR73
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-04412-x
– volume: 42
  start-page: 1051
  year: 2008
  ident: 4374_CR79
  publication-title: Environ Sci Technol
  doi: 10.1021/es702212p
– volume: 42
  start-page: 443
  year: 2014
  ident: 4374_CR180
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev-earth-060313-054942
– volume: 107
  start-page: 16500
  year: 2010
  ident: 4374_CR138
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005396107
– volume: 45
  start-page: 4262
  year: 2011
  ident: 4374_CR120
  publication-title: Environ Sci Technol
  doi: 10.1021/es104080s
– volume: 59
  start-page: 580
  year: 2013
  ident: 4374_CR55
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2013.804390
– volume: 53
  start-page: 5787
  year: 2019
  ident: 4374_CR56
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b00592
– volume: 21
  start-page: 1757
  year: 2010
  ident: 4374_CR100
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2010.08.005
– volume: 13
  start-page: 916
  year: 2013
  ident: 4374_CR45
  publication-title: Soil Sed
  doi: 10.1007/s11368-013-0658-6
– volume: 65
  start-page: 4849
  year: 2014
  ident: 4374_CR164
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru259
– volume: 639
  start-page: 271
  year: 2018
  ident: 4374_CR20
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2018.05.050
– volume: 224
  start-page: 136
  year: 2017
  ident: 4374_CR168
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.01.072
– volume: 17
  start-page: 1897
  year: 2015
  ident: 4374_CR62
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12572
– volume: 7
  start-page: 14438
  year: 2017
  ident: 4374_CR132
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14832-9
– ident: 4374_CR53
– volume: 365
  start-page: 227
  year: 2013
  ident: 4374_CR177
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1376-3
RelatedPersons Chen Ch'uan
RelatedPersons_xml – fullname: Chen Ch'uan
SSID ssj0003216
Score 2.6976712
SecondaryResourceType review_article
Snippet Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major...
Background Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major...
BackgroundArsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major...
BACKGROUND: Arsenic (As) and cadmium (Cd) are two toxic elements that have a relatively high risk of transfer from paddy soil to rice grain. Rice is a major...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accumulation
Arsenic
Bioavailability
Biomedical and Life Sciences
Cadmium
Chen Ch'uan
Detoxification
Ecology
Food
Food safety
Genes
genotype
Genotypes
Grain
human health
Life Sciences
Marschner Review
paddy soils
Plant Physiology
Plant Sciences
Redox potential
Rice
Rice fields
risk
Safety and security measures
Soil chemistry
Soil pH
Soil Science & Conservation
Soils
staple foods
toxicity
Translocation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WdA_dQ2m7jbpriweDPWxijixb1lNJRkIZrIyxQt6ErI8RaJwuHw_973fnyAldWd-MLdvipDv9Tqf7HcAHY8uyQteKhdIbJnzgTHFPhwBCzU3uXdE6it9vyutb8W1STOKG2zIeq-xsYmuo3dzSHvkXniOUR1Mqq6v7P4yqRlF0NZbQ2IN9NMFV1YP94ejmx8-tLc55W_yULlgm1SSmzWyS53DloxMYFBzIpWDlo6XpXwP9JFLaLkDjIziMyDEdbIb6GF745gReDX4vInuGP4GXwzlivYfXMBwslr6Z2tQ0LrXGzabrWWqsXc9ita502qREJ9Q2mE03RBt4e7nqqCPewO149OvrNYvVEphFyLNitanrTFWl5F7yYHEZFoVBACJdroSrg5Q-c3XfO7TOxjpUPSlMyFVueOa4sPlb6DXzxp9CavuFUwadG4Qbog6FMlYE4axQfRuc5An0O0FpG6nEqaLFnd6RIJNwNQpXt8LVZQKftu_cb4g0nm39keSvScvwy9bEZAHsH_FV6QG5PZSklyVw3g2Rjuq31LvJksD77WNUHIqGmMbP19gGsaLKKEqZwOduaHef-H_fzp7_4zs44OSTt9s059BbLdb-AoHLqr6Ms_Mvfc7n9g
  priority: 102
  providerName: ProQuest
Title Arsenic and cadmium accumulation in rice and mitigation strategies
URI https://link.springer.com/article/10.1007/s11104-019-04374-6
https://www.proquest.com/docview/2349584778
https://www.proquest.com/docview/2551909579
Volume 446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0TkEfRFflqndHBcEHLXTTtNk8trrroXiIuLA-hTQfsnDblf14uP_emWy6ix8n-NTSTkOY6WRmMjO_ALzUpqpGGFplvnI6486zTDJHRQC-ZbpwtgyB4qfL6mLKP8zKWWwKW_fV7n1KMqzUh2Y3tFRUMUGb-YXgWXUbjkuM3amQa8rq_fpbsHDgKd1kuZCz2Crz9zF-MUe_L8p_ZEeD0Zk8hAfRW0zrnXgfwS3XDeB-_X0VETPcAO40S_TvrgdwdxwAqK8fQ1Ov1q6bm1R3NjXaLubbRaqN2S7iWV3pvEsJTCgQLOY7mA18vN70wBFPYDoZf317kcWzEjKDDs8ma3Xb5nJUCeYE8waNMC81uh_CFpLb1gvhctsOncW1WRuLiie49oUsNMst46Z4CkfdsnMnkJphaaXG0AadDd76UmrDPbeGy6HxVrAEhj3LlIlA4nSexZU6QCATmxWyWQU2qyqB1_tvfuxgNP5J_YokoUjHcGSjY6sAzo_QqlRNQQ-16OUJnPbCUlH51ooVGPWh1RWjBF7sX6PaUC5Ed265RRr0FGVOOcoE3vRCPgxx89ye_R_5c7jHKEIPmzancLRZbd0ZujGb9hyO6-ZdM6Hr-28fx3htxpefv5yHv_knPtbq4Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDBABAYECcQDWKSOE9cPCLWwqWNbhdAm9c04toMqrenWD6H9U_yN3CVOK0DsbW9R4jjR-T59vt8BvDI2z3sYWrEy94YJX3KmuKdDAGXBTepdVgeKx6N8eCq-jLPxFvxqa2HoWGWrE2tF7WaW9sjf8xRdeVSlsvfx_IJR1yjKrrYtNBq2OPSXPzFkW3w4-Izr-5rz_b2TT0MWugowi67BkhWmKBLVyyX3kpcWzZXIDBpq6VIlXFFK6RNXdL1DLWasQxaVwpSpSg1PHBc2xXlvwLZI84R3YHuwN_r6ba37U143W6ULlkg1DmU6TbEeWlo68UHJiFQKlv9hCv82CP9kZmuDt38P7gZPNe43rHUftny1A3f6P-YBrcPvwM3BDH3Lywcw6M8XvprY2FQutsZNJ6tpbKxdTUN3sHhSxQRfVA-YThpgD7y9WLZQFQ_h9Fro-Ag61azyjyG23cwpg8EUujeiKDNlrCiFs0J1bekkj6DbEkrbAF1OHTTO9AZ0mYirkbi6Jq7OI3i7fue8Ae64cvQbor8mqcaZrQnFCfh_hI-l-xRmUVFgEsFuu0Q6iPtCb5gzgpfrxyiolH0xlZ-tcAz6piqhrGgE79ql3Uzx_397cvUXX8Ct4cnxkT46GB0-hduc9gPqLaJd6CznK_8MnaZl8Txwagzfr1s4fgNnbCWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDBABAYECcQDWEsdJ24eEGrZqo1BNSEm9c04_pgqrenoh9D-Nf467hKnFSD2trcocZzofOe78939DuCVNnneQ9eK-dxpJpznrOCOkgB8yXXqbFY7il9G-eGp-DTOxlvwq62FobTKdk-sN2o7M3RGvsdTNOVxK5W9PR_SIk72hx8ufjDqIEWR1radRsMix-7yJ7pvi_dH-7jWrzkfHnz7eMhChwFm0ExYslKXZVL0csmd5N6g6hKZRqUtbVoIW3opXWLLrrO4o2ljkV2l0D4tUs0Ty4VJcd4bsC3JK-rA9uBgdPJ1rQdSXjdepQuWyGIcSnaawj3UupT9QYGJVAqW_6EW_1YO_0Rpa-U3vAd3g9Ua9xs2uw9brtqBO_2zeUDucDtwczBDO_PyAQz684WrJibWlY2NttPJahprY1bT0CksnlQxQRnVA6aTBuQDby-WLWzFQzi9Fjo-gk41q9xjiE03s4VGxwpNHVH6rNBGeGGNKLrGW8kj6LaEUibAmFM3jXO1AWAm4iokrqqJq_II3q7fuWhAPK4c_Ybor0jCcWajQ6EC_h9hZak-uVxUIJhEsNsukQqiv1AbRo3g5foxCi1FYnTlZiscg3ZqkVCENIJ37dJupvj_vz25-osv4BYKhfp8NDp-Crc5HQ3Up0W70FnOV-4Z2k_L8nlg1Bi-X7ds_AYr_inl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arsenic+and+cadmium+accumulation+in+rice+and+mitigation+strategies&rft.jtitle=Plant+and+soil&rft.au=Zhao%2C+Fang-Jie&rft.au=Wang%2C+Peng&rft.date=2020-01-01&rft.issn=0032-079X&rft.volume=446&rft.issue=1-2+p.1-21&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2Fs11104-019-04374-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon