Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing

The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 %...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 25; no. 6; pp. 3389 - 3412
Main Authors Yu, Aoyuan, Shen, Xiaojing, Ma, Qianli, Lu, Jiayuan, Hu, Xinyao, Zhang, Yangmei, Liu, Quan, Liang, Linlin, Liu, Lei, Liu, Shuo, Tong, Hongfei, Che, Huizheng, Zhang, Xiaoye, Sun, Junying
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 20.03.2025
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGFcore) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGFcoating). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea.
AbstractList The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15  ±  0.07, 1.24  ±  0.08, 1.30  ±  0.09, and 1.36  ±  0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51  ±  0.05, 0.55  ±  0.04, 0.56  ±  0.05, and 0.56  ±  0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core ( HGFcore ) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating ( HGFcoating ). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17  ±  0.08, 1.27  ±  0.10, 1.35  ±  0.10, and 1.41  ±  0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08  ±  0.03, 1.07  ±  0.03, 1.07  ±  0.03, and 1.09  ±  0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea.
The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGFcore) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGFcoating). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea.
The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGF.sub.core) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGF.sub.coating). The mean HGF.sub.coating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGF.sub.core for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGF.sub.core values were increased when the air mass passed over or originated from the Bohai Sea.
Audience Academic
Author Ma, Qianli
Hu, Xinyao
Tong, Hongfei
Lu, Jiayuan
Che, Huizheng
Yu, Aoyuan
Liu, Lei
Liu, Quan
Liang, Linlin
Shen, Xiaojing
Zhang, Yangmei
Sun, Junying
Zhang, Xiaoye
Liu, Shuo
Author_xml – sequence: 1
  givenname: Aoyuan
  surname: Yu
  fullname: Yu, Aoyuan
– sequence: 2
  givenname: Xiaojing
  surname: Shen
  fullname: Shen, Xiaojing
– sequence: 3
  givenname: Qianli
  surname: Ma
  fullname: Ma, Qianli
– sequence: 4
  givenname: Jiayuan
  surname: Lu
  fullname: Lu, Jiayuan
– sequence: 5
  givenname: Xinyao
  surname: Hu
  fullname: Hu, Xinyao
– sequence: 6
  givenname: Yangmei
  orcidid: 0000-0001-8825-1469
  surname: Zhang
  fullname: Zhang, Yangmei
– sequence: 7
  givenname: Quan
  orcidid: 0000-0003-0382-5764
  surname: Liu
  fullname: Liu, Quan
– sequence: 8
  givenname: Linlin
  surname: Liang
  fullname: Liang, Linlin
– sequence: 9
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
– sequence: 10
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
– sequence: 11
  givenname: Hongfei
  surname: Tong
  fullname: Tong, Hongfei
– sequence: 12
  givenname: Huizheng
  orcidid: 0000-0002-9458-3387
  surname: Che
  fullname: Che, Huizheng
– sequence: 13
  givenname: Xiaoye
  surname: Zhang
  fullname: Zhang, Xiaoye
– sequence: 14
  givenname: Junying
  surname: Sun
  fullname: Sun, Junying
BookMark eNptkktv1DAUhSNUJNrCnqUlVizSxo_EzrJUPEaqhERhbd3Y14NHSRxsT8X0n_Hv8HQq6CDkhR_6zrm61-esOpnDjFX1mjYXLe3FJZilZm3Nuepr1rD2WXVKO9XUkjNx8uT8ojpLadMUoqHitPp16--xjpjCeIeWfN-tY0gmLN74vCMwW3IXRsh-3F-XGBaM2WMiwRGYBo9zJts4wEwAizCMZIECmLEgE0LaxmI6FKOnNv8UyaUKTsR65zAWQw8jmcJwYGGGcXePkaRdyoXyM3mHfuPn9cvquYMx4avH_bz69uH91-tP9c3nj6vrq5vaCN7mGgSjXS-cY-io6lo5NEoKYwdA17FOOm6ZxUHwHgygUIa3DbfDIKXs9ip-Xq0OvjbARi_RTxB3OoDXDw8hrvVjy5orpTpqmXBWCutYb5ELYEJZKcFIVbzeHLzKJH9sMWW9CdtYWkyaU9lTSgVnf6k1FFM_u5AjmMkno68Up33Xci4KdfEfqqwyTG9KOJwv70eCt0eCwmT8mdewTUmvbr8cs82BNeWnUkT3p3Ha6H3edMmbZq3e503v88Z_A4Gjzto
Cites_doi 10.5194/amt-3-1205-2010
10.5194/amt-2-363-2009
10.5194/acp-19-10205-2019
10.1021/j100879a010
10.1016/0021-8502(88)90278-9
10.1016/j.jes.2020.06.004
10.1016/j.atmosenv.2023.120311
10.1016/j.scitotenv.2022.154664
10.1002/2016JD025581
10.1029/2008JD010894
10.1080/02786820701534593
10.5194/acp-17-3215-2017
10.5194/acp-10-2919-2010
10.1002/2014JD022601
10.5194/acp-14-4733-2014
10.1016/j.atmosenv.2015.10.053
10.1007/s13351-018-7060-7
10.1016/j.atmosenv.2009.06.021
10.5194/acp-11-11477-2011
10.5194/acp-23-611-2023
10.1038/srep27151
10.1016/j.atmosres.2021.105553
10.1016/j.atmosenv.2012.09.064
10.1007/s00376-020-0127-2
10.5194/acp-7-677-2007
10.5194/acp-18-4533-2018
10.1016/j.scitotenv.2022.160469
10.5194/acp-9-7161-2009
10.1002/2016JD024966
10.1016/j.apr.2020.12.008
10.5194/acp-11-3479-2011
10.1021/acs.chemrev.5b00529
10.1080/02786820802255668
10.1029/2010RG000349
10.1073/pnas.96.7.3372
10.5194/acp-12-10771-2012
10.1021/acs.est.5b01505
10.1016/j.atmosenv.2018.09.041
10.1016/j.chemosphere.2020.126086
10.5194/acp-17-5239-2017
10.1007/s00376-019-8248-1
10.5194/acp-13-3979-2013
10.1080/02786826.2015.1094181
10.5194/acp-10-4253-2010
10.5194/acp-22-8117-2022
10.1016/j.atmosres.2017.01.007
10.1016/j.atmosres.2018.03.011
10.5194/acp-20-915-2020
10.5194/acp-13-2015-2013
10.5194/acp-18-14079-2018
10.1029/2008JD010923
10.5194/acp-22-2293-2022
10.1029/2004JD005657
10.1080/02786826.2016.1255712
10.1016/j.atmosenv.2011.08.035
10.5194/acp-20-3777-2020
10.5194/acp-10-7489-2010
10.5194/acp-19-12631-2019
10.5194/acp-8-6155-2008
10.5194/acp-16-8431-2016
10.5194/acp-9-7607-2009
10.1016/j.jaerosci.2009.03.007
10.5194/acp-7-1961-2007
10.1016/j.scitotenv.2023.164215
10.1080/02786826.2018.1530724
10.1016/j.jaerosci.2006.12.002
10.1016/j.jaerosci.2008.07.013
10.1016/j.envpol.2018.03.067
10.1016/j.atmosenv.2023.119615
10.5194/acp-19-5235-2019
10.1007/s11430-012-4515-z
10.1002/anie.200501122
10.5194/acp-22-561-2022
10.1029/2009JD013558
10.1021/acs.estlett.0c00403
10.1073/pnas.1616540113
10.1016/j.atmosenv.2023.120226
10.1080/02786820802104981
10.1029/2011GL048869
10.5194/acp-18-11581-2018
10.5194/acp-14-1277-2014
10.5194/acp-9-7067-2009
10.1029/2012JD017588
10.5194/acp-8-5715-2008
10.1016/j.atmosenv.2013.05.069
10.1016/j.envint.2023.108301
10.1016/j.scitotenv.2019.05.283
10.1021/es00169a002
10.1029/2005GL023827
10.1007/s13351-018-7051-8
10.4209/aaqr.2020.02.0067
10.1016/j.atmosenv.2023.119728
10.1016/j.atmosres.2008.04.004
10.5194/acp-18-1729-2018
10.1111/j.1600-0889.2008.00350.x
10.5194/acp-18-5607-2018
10.5194/acp-10-4953-2010
10.1016/j.atmosenv.2019.117066
10.1016/j.atmosenv.2008.06.003
10.1080/0002889698506043
10.5194/egusphere-egu22-29
10.1029/2019GL084047
10.5194/acp-16-1123-2016
10.5194/acp-19-1327-2019
10.1016/j.jes.2017.03.036
10.5194/amt-7-2953-2014
10.1016/j.scitotenv.2017.09.176
10.1016/j.envpol.2020.115775
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-25-3389-2025
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 3412
ExternalDocumentID oai_doaj_org_article_388861d24fd74df29de34a248d77ac78
A831965334
10_5194_acp_25_3389_2025
GeographicLocations Beijing China
United States--US
China
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: Beijing China
– name: United States--US
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c435t-a421694ff2ef18657b0874cdbaef6267f3d2deb439acae48c3503dbb77764ff23
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:19:12 EDT 2025
Sun Jul 13 03:50:58 EDT 2025
Tue Jun 17 21:58:03 EDT 2025
Tue Jun 10 20:54:44 EDT 2025
Fri Jun 27 05:15:10 EDT 2025
Tue Jul 01 05:17:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-a421694ff2ef18657b0874cdbaef6267f3d2deb439acae48c3503dbb77764ff23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0382-5764
0000-0001-8825-1469
0000-0002-9458-3387
OpenAccessLink https://www.proquest.com/docview/3179111432?pq-origsite=%requestingapplication%
PQID 3179111432
PQPubID 105744
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_388861d24fd74df29de34a248d77ac78
proquest_journals_3179111432
gale_infotracmisc_A831965334
gale_infotracacademiconefile_A831965334
gale_incontextgauss_ISR_A831965334
crossref_primary_10_5194_acp_25_3389_2025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-20
PublicationDateYYYYMMDD 2025-03-20
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref3
  doi: 10.5194/amt-3-1205-2010
– ident: ref17
  doi: 10.5194/amt-2-363-2009
– ident: ref94
  doi: 10.5194/acp-19-10205-2019
– ident: ref66
  doi: 10.1021/j100879a010
– ident: ref88
  doi: 10.1016/0021-8502(88)90278-9
– ident: ref34
  doi: 10.1016/j.jes.2020.06.004
– ident: ref33
  doi: 10.1016/j.atmosenv.2023.120311
– ident: ref79
  doi: 10.1016/j.scitotenv.2022.154664
– ident: ref84
  doi: 10.1002/2016JD025581
– ident: ref100
  doi: 10.1029/2008JD010894
– ident: ref75
  doi: 10.1080/02786820701534593
– ident: ref107
  doi: 10.5194/acp-17-3215-2017
– ident: ref62
  doi: 10.5194/acp-10-2919-2010
– ident: ref14
  doi: 10.1002/2014JD022601
– ident: ref31
  doi: 10.5194/acp-14-4733-2014
– ident: ref103
  doi: 10.1016/j.atmosenv.2015.10.053
– ident: ref64
  doi: 10.1007/s13351-018-7060-7
– ident: ref73
  doi: 10.1016/j.atmosenv.2009.06.021
– ident: ref74
  doi: 10.5194/acp-11-11477-2011
– ident: ref22
  doi: 10.5194/acp-23-611-2023
– ident: ref69
  doi: 10.1038/srep27151
– ident: ref96
  doi: 10.1016/j.atmosres.2021.105553
– ident: ref98
  doi: 10.1016/j.atmosenv.2012.09.064
– ident: ref110
  doi: 10.1007/s00376-020-0127-2
– ident: ref18
  doi: 10.5194/acp-7-677-2007
– ident: ref19
  doi: 10.5194/acp-18-4533-2018
– ident: ref46
  doi: 10.1016/j.scitotenv.2022.160469
– ident: ref36
  doi: 10.5194/acp-9-7161-2009
– ident: ref49
  doi: 10.1002/2016JD024966
– ident: ref15
  doi: 10.1016/j.apr.2020.12.008
– ident: ref45
  doi: 10.5194/acp-11-3479-2011
– ident: ref71
  doi: 10.1021/acs.chemrev.5b00529
– ident: ref76
  doi: 10.1080/02786820802255668
– ident: ref16
  doi: 10.1029/2010RG000349
– ident: ref7
  doi: 10.1073/pnas.96.7.3372
– ident: ref30
  doi: 10.5194/acp-12-10771-2012
– ident: ref41
  doi: 10.1021/acs.est.5b01505
– ident: ref80
  doi: 10.1016/j.atmosenv.2018.09.041
– ident: ref25
  doi: 10.1016/j.chemosphere.2020.126086
– ident: ref82
  doi: 10.5194/acp-17-5239-2017
– ident: ref106
  doi: 10.1007/s00376-019-8248-1
– ident: ref24
  doi: 10.5194/acp-13-3979-2013
– ident: ref54
  doi: 10.1080/02786826.2015.1094181
– ident: ref2
  doi: 10.5194/acp-10-4253-2010
– ident: ref8
  doi: 10.5194/acp-22-8117-2022
– ident: ref91
  doi: 10.1016/j.atmosres.2017.01.007
– ident: ref108
  doi: 10.1016/j.atmosres.2018.03.011
– ident: ref20
  doi: 10.5194/acp-20-915-2020
– ident: ref43
  doi: 10.5194/acp-13-2015-2013
– ident: ref32
  doi: 10.5194/acp-18-14079-2018
– ident: ref87
  doi: 10.1029/2008JD010923
– ident: ref11
  doi: 10.5194/acp-22-2293-2022
– ident: ref39
  doi: 10.1029/2004JD005657
– ident: ref28
  doi: 10.1080/02786826.2016.1255712
– ident: ref81
  doi: 10.1016/j.atmosenv.2011.08.035
– ident: ref95
  doi: 10.5194/acp-20-3777-2020
– ident: ref67
  doi: 10.5194/acp-10-7489-2010
– ident: ref72
  doi: 10.5194/acp-19-12631-2019
– ident: ref86
  doi: 10.5194/acp-8-6155-2008
– ident: ref12
  doi: 10.5194/acp-16-8431-2016
– ident: ref53
  doi: 10.5194/acp-9-7607-2009
– ident: ref89
  doi: 10.1016/j.jaerosci.2009.03.007
– ident: ref58
  doi: 10.5194/acp-7-1961-2007
– ident: ref29
  doi: 10.1016/j.scitotenv.2023.164215
– ident: ref57
  doi: 10.1080/02786826.2018.1530724
– ident: ref1
  doi: 10.1016/j.jaerosci.2006.12.002
– ident: ref27
  doi: 10.1016/j.jaerosci.2008.07.013
– ident: ref37
– ident: ref51
  doi: 10.1016/j.envpol.2018.03.067
– ident: ref60
  doi: 10.1016/j.atmosenv.2023.119615
– ident: ref5
– ident: ref99
  doi: 10.5194/acp-19-5235-2019
– ident: ref104
  doi: 10.1007/s11430-012-4515-z
– ident: ref59
  doi: 10.1002/anie.200501122
– ident: ref68
  doi: 10.5194/acp-22-561-2022
– ident: ref23
  doi: 10.1029/2009JD013558
– ident: ref13
  doi: 10.1021/acs.estlett.0c00403
– ident: ref78
  doi: 10.1073/pnas.1616540113
– ident: ref47
  doi: 10.1016/j.atmosenv.2023.120226
– ident: ref35
  doi: 10.1080/02786820802104981
– ident: ref56
  doi: 10.1029/2011GL048869
– ident: ref109
  doi: 10.5194/acp-18-11581-2018
– ident: ref26
  doi: 10.5194/acp-14-1277-2014
– ident: ref61
  doi: 10.5194/acp-9-7067-2009
– ident: ref4
  doi: 10.1029/2012JD017588
– ident: ref65
  doi: 10.5194/acp-8-5715-2008
– ident: ref77
  doi: 10.1016/j.atmosenv.2013.05.069
– ident: ref97
  doi: 10.1016/j.envint.2023.108301
– ident: ref92
  doi: 10.1016/j.scitotenv.2019.05.283
– ident: ref6
  doi: 10.1021/es00169a002
– ident: ref85
  doi: 10.1029/2005GL023827
– ident: ref105
  doi: 10.1007/s13351-018-7051-8
– ident: ref55
  doi: 10.4209/aaqr.2020.02.0067
– ident: ref102
  doi: 10.1016/j.atmosenv.2023.119728
– ident: ref63
  doi: 10.1016/j.atmosres.2008.04.004
– ident: ref9
  doi: 10.5194/acp-18-1729-2018
– ident: ref70
  doi: 10.1111/j.1600-0889.2008.00350.x
– ident: ref48
  doi: 10.5194/acp-18-5607-2018
– ident: ref101
  doi: 10.5194/acp-10-4953-2010
– ident: ref21
  doi: 10.1016/j.atmosenv.2019.117066
– ident: ref50
  doi: 10.1016/j.atmosenv.2008.06.003
– ident: ref42
  doi: 10.1080/0002889698506043
– ident: ref44
  doi: 10.5194/egusphere-egu22-29
– ident: ref83
  doi: 10.1029/2019GL084047
– ident: ref90
  doi: 10.5194/acp-16-1123-2016
– ident: ref10
  doi: 10.5194/acp-19-1327-2019
– ident: ref93
  doi: 10.1016/j.jes.2017.03.036
– ident: ref40
  doi: 10.5194/amt-7-2953-2014
– ident: ref38
  doi: 10.1016/j.scitotenv.2017.09.176
– ident: ref52
  doi: 10.1016/j.envpol.2020.115775
SSID ssj0025014
Score 2.4679077
Snippet The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile...
The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3389
SubjectTerms Aerosol particles
Aerosols
Air masses
Air pollution
Analog computers
Analytical instruments
Atmospheric aerosols
Climate change
Diameters
Growth factors
Humidity
Hydrophobicity
Hygroscopicity
Mobility
Nitrates
Outdoor air quality
Particle size
Probability density function
Probability density functions
Relative humidity
Temperature
Volatility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQTxFokYUQiIPVxHZi59hWVAUJDpRKvVl-lkW7SZTdRaL_jH_HTB5oFwlx4ZjNJFl7nPH3OeNvCHmV69r5MgWmdFkzKYNnWsBhCtGlqkRMPiTIfqouruSH6_J6p9QX5oSN8sBjxx0LoGhVEbhMQcmQeB2ikJZLHZSyXg3bfGHOm8nURLXwaxlSrUrnDGszjR8oAa3IY-s7xksG1KyGIYIlsncmpEG3_2_ReZhyzu-TexNWpCfjf3xA7sTmIck-Asxt-2E1nL6mZ8sFYM7h6BH5ebm4jQwIdLv8HgP9-uMGtSrbbuEBa1PbBArBCFyB0Jt2uAzfo54qbRO1K4c7I-m2d7ahNsKF7ZJ2c94cXY1riYE6uNHubf54CK5MxBWd665A_FjSVetGW4sKKLexp6N-NF009DQuvsHs-Zhcnb_7cnbBptoMzAPA2jAreVHVMiUeU6GrUrlcK-mDszEBR1JJBA7uBrhjvY1Se1HmIjinlKrwKvGEHDRtE58S6uoYvHA6BAX0qSjqkELQldeKcy-tzcjb2UGmGyU4DFAXdKYBZxpeGnSmQWdm5BQ9-NsOxbOHH2BImanLzL-GVEZeov8NymM0mH9zY7frtXl_-dmcaAxZuH05I28mo9RuemjktJ0B2oSKWnuWh3uW8P76_dPzMDNT_FgbgaqxQFUFf_Y_WvSc3MXewdw5nh-Sg02_jUcApjbuxfDe_AK8ZCFe
  priority: 102
  providerName: Directory of Open Access Journals
Title Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing
URI https://www.proquest.com/docview/3179111432
https://doaj.org/article/388861d24fd74df29de34a248d77ac78
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVY98IL4lMURmUhBOLBWus4sfOE1mllIG2CjYm9Wf7sitokpC0S-2f8O-5N0rEiwVOUxEnlHuf63Ovrcwl5NVS5dWn0TKo0Z0J4x1QCp9EHG7MUOXmTIHuaHV-Ij5fpZRdwW3ZplRub2BhqXzqMke8nqKMJ5D3h76rvDKtG4epqV0Jjh-yCCVaqR3bHR6efzm5cLlw1Q5crU0OGNZrahUpgLWLfuIrxlIGLlsNQwVLZtyamRr__X1a6mXom98m9jjPSgxbkB-ROKB6S_gnQ3bJuouL0NT2cz4B7NmePyK_z2XVg4EiX8x_B06ufU9SsLKuZA85NTeEpGCWABCk4rTAcX6OuKi0jNQuLOyTpuramoCbAg-WcVpv8ObpoY4qeWnjR7df89SMYoQgLuqm_AnZkThelbdsaVEK5DjVtdaTprKDjMPsGs-hjcjE5-nJ4zLoaDcwB0VoxI_goy0WMPMSRylJph0oK560JEXwlGRPPAXagPcaZIJRL0mHirZVSZvhU8oT0irIITwm1efAuscp7CW7UaJT76L3KnJKcO2FMn7zdAKSrVopDgwuDYGoAU_NUI5gaweyTMSJ40w5FtJsLZT3V3V-mE_D-s5HnInopfOS5D4kwXCgvpXFS9clLxF-jTEaBeThTs14u9YfzM32g0HThNuY-edM1iuWqhk522xqgT6istdVyb6slfMdu-_ZmmOnOjiz1n1H_7P-3n5O72G_MjuPDPdJb1evwAujSyg7Ijpq8H3RfBh4nJ5-_Dprgw2_llx3D
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoAL4ikCBVaIhzhYTdZr7_qAUFsICX0caCv1tt1nCEps4ySg9kdx598xY8elQYJbj7bH68fsznwzOw9CXnRlZmwSXCRkkkWcOxvJGA6D8yakCWLyOkD2IB0c808nycka-dnmwmBYZSsTa0HtCos-8s0Y62gCeI_Zu_JbhF2jcHe1baHRTItdf_YDTLbZ2-F74O9LxvofjnYG0bKrQGQBGswjzVkvzXgIzIeeTBNhulJw64z2AdC9CLFj8KKgqLXVnksbJ93YGSOESPGuGMa9Rq7zGDQ5Zqb3P14YeLhHhwZeKrsRdoRqtkUBI_FNbcuIJREYhBlMTGzMfUkN1t0C_qUTakXXv01uLREq3Wqm1B2y5vO7pLMP4Lqoah88fUV3JmNAuvXRPfLrcHzuIzDbi8l37-iXsxFWyCzKsQWET3XuKIhAmAAI-GmJzv8Kq7jSIlA9NZiPSReV0TnVHm4sJrRso_XotPFgOmpgoMvD_PUQ9If4KW27vYDUmtBpYRpajXVXzn1Fm6rVdJzTbT_-Cjr7Pjm-Et49IOt5kfuHhJrMOxsb6ZwAo63Xy1xwTqZWCsYs17pD3rQMUmVT-EOBwYTMVMBMxRKFzFTIzA7ZRg5e0GHJ7vpEUY3U8pepWEqZ9hzjwQnuAsucj7lmXDohtBWyQ54j_xUW5cgx6mekF7OZGh5-VlsSBSUmTXfI6yVRKOYVfOQyiQK-Cet4rVBurFCC1LCrl9tpppZSa6b-rLFH_7_8jNwYHO3vqb3hwe5jchP_Acblse4GWZ9XC_8EgNrcPK1XByWnV70cfwMbz1bG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyEuiKdYKGAhHuIQ7a7jxM4BoT7VpbCqWir15vq5LNpNluwuqP1n8OuYyaO0SHDrMcnEiT3jmW_s8QwhL3syMzYJLhIyySLOnY1kDJfBeRPSBDF5FSA7TPeO-YeT5GSF_GrPwmBYZasTK0XtCotr5N0Y82gCeI9ZNzRhEQfbu-9n3yKsIIU7rW05jVpE9v3ZD3Df5u8G28DrV4zt7nze2ouaCgORBZiwiDRn_TTjITAf-jJNhOlJwa0z2gdA-iLEjsFPg9HWVnsubZz0YmeMECLFt2Jo9wZZE-gVrZK1zZ3hweGFu4c7dujupbIXYX2oepMUEBPvajuLWBKBe5iBmGKZ7ktGsaod8C8LUZm93TvkdoNX6UYtYHfJis_vkc4ngNpFWa3I09d0azIG3Ftd3Sc_j8bnPgInvph8945-ORthvsxiNraA96nOHQWFCOKA8J_OcCugxJyutAhUTw2ezqTL0uicag8vFhM6a2P36LRez3TUQEOXm_nrI7g64qe0rf0COmxCp4WpaTVmYTn3Ja1zWNNxTjf9-CtY8Afk-Fq495Cs5kXuHxFqMu9sbKRzAly4fj9zwTmZWikYs1zrDnnbMkjN6jQgCtwnZKYCZiqWKGSmQmZ2yCZy8IIOE3hXN4pypJohU7GUMu07xoMT3AWWOR9zzbh0QmgrZIe8QP4rTNGRo7CP9HI-V4OjQ7UhUW3iEeoOedMQhWJRQiebIxXQJ8zqdYVy_Qol6BB79XErZqrRYXP1Z8Y9_v_j5-QmTEX1cTDcf0Ju4RBgkB7rrZPVRbn0TwG1LcyzZnpQcnrdM_I3Zp5cWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size-resolved+hygroscopicity+and+volatility+properties+of+ambient+urban+aerosol+particles+measured+by+a+volatility+hygroscopicity+tandem+differential+mobility+analyzer+system+in+Beijing&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yu%2C+Aoyuan&rft.au=Shen%2C+Xiaojing&rft.au=Ma%2C+Qianli&rft.au=Lu%2C+Jiayuan&rft.date=2025-03-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=25&rft.issue=6&rft.spage=3389&rft.epage=3412&rft_id=info:doi/10.5194%2Facp-25-3389-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_25_3389_2025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon