Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing
The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 %...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 25; no. 6; pp. 3389 - 3412 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
20.03.2025
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGFcore) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGFcoating). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea. |
---|---|
AbstractList | The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core ( HGFcore ) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating ( HGFcoating ). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea. The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGFcore) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGFcoating). The mean HGFcoating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGFcore for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGFcore values were increased when the air mass passed over or originated from the Bohai Sea. The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile cores were measured using a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) system at a relative humidity of 90 % and a thermal denuder temperature of 270 °C from 11 October to 6 November 2023 in Beijing. The mean hygroscopic growth factor (HGF) for particles of 50, 80, 100, and 150 nm diameter was 1.15 ± 0.07, 1.24 ± 0.08, 1.30 ± 0.09, and 1.36 ± 0.10, respectively, while the mean volatile shrink factor (VSF) was 0.51 ± 0.05, 0.55 ± 0.04, 0.56 ± 0.05, and 0.56 ± 0.07, respectively. Both the HGF probability density function (HGF PDF) and the VSF probability density function (VSF PDF) for all selected particle sizes exhibited a pronounced bimodal distribution, indicating that the particles were primarily in an external mixing state. Hygroscopicity was observed to increase with particle size in both clean and pollution periods, while volatility decreased slightly with particle size during the clean period, without an apparent trend during the pollution period. A positive correlation was identified between hygroscopicity and volatility, as well as between the number fraction of nearly hydrophobic (NH) and non-volatile (NV) particles. Furthermore, this study measured the HGF of the non-volatile core (HGF.sub.core) of submicron ambient aerosol particles heated at 270 °C and derived the HGF of the volatile coating (HGF.sub.coating). The mean HGF.sub.coating for particles of 50, 80, 100, and 150 nm diameter was 1.17 ± 0.08, 1.27 ± 0.10, 1.35 ± 0.10, and 1.41 ± 0.10, respectively, which is 2 % to 7 % higher than the mean HGF for the same particle sizes. The mean HGF.sub.core for particles of 50, 80, 100, and 150 nm diameter was 1.08 ± 0.03, 1.07 ± 0.03, 1.07 ± 0.03, and 1.09 ± 0.04, respectively. The HGF.sub.core values were increased when the air mass passed over or originated from the Bohai Sea. |
Audience | Academic |
Author | Ma, Qianli Hu, Xinyao Tong, Hongfei Lu, Jiayuan Che, Huizheng Yu, Aoyuan Liu, Lei Liu, Quan Liang, Linlin Shen, Xiaojing Zhang, Yangmei Sun, Junying Zhang, Xiaoye Liu, Shuo |
Author_xml | – sequence: 1 givenname: Aoyuan surname: Yu fullname: Yu, Aoyuan – sequence: 2 givenname: Xiaojing surname: Shen fullname: Shen, Xiaojing – sequence: 3 givenname: Qianli surname: Ma fullname: Ma, Qianli – sequence: 4 givenname: Jiayuan surname: Lu fullname: Lu, Jiayuan – sequence: 5 givenname: Xinyao surname: Hu fullname: Hu, Xinyao – sequence: 6 givenname: Yangmei orcidid: 0000-0001-8825-1469 surname: Zhang fullname: Zhang, Yangmei – sequence: 7 givenname: Quan orcidid: 0000-0003-0382-5764 surname: Liu fullname: Liu, Quan – sequence: 8 givenname: Linlin surname: Liang fullname: Liang, Linlin – sequence: 9 givenname: Lei surname: Liu fullname: Liu, Lei – sequence: 10 givenname: Shuo surname: Liu fullname: Liu, Shuo – sequence: 11 givenname: Hongfei surname: Tong fullname: Tong, Hongfei – sequence: 12 givenname: Huizheng orcidid: 0000-0002-9458-3387 surname: Che fullname: Che, Huizheng – sequence: 13 givenname: Xiaoye surname: Zhang fullname: Zhang, Xiaoye – sequence: 14 givenname: Junying surname: Sun fullname: Sun, Junying |
BookMark | eNptkktv1DAUhSNUJNrCnqUlVizSxo_EzrJUPEaqhERhbd3Y14NHSRxsT8X0n_Hv8HQq6CDkhR_6zrm61-esOpnDjFX1mjYXLe3FJZilZm3Nuepr1rD2WXVKO9XUkjNx8uT8ojpLadMUoqHitPp16--xjpjCeIeWfN-tY0gmLN74vCMwW3IXRsh-3F-XGBaM2WMiwRGYBo9zJts4wEwAizCMZIECmLEgE0LaxmI6FKOnNv8UyaUKTsR65zAWQw8jmcJwYGGGcXePkaRdyoXyM3mHfuPn9cvquYMx4avH_bz69uH91-tP9c3nj6vrq5vaCN7mGgSjXS-cY-io6lo5NEoKYwdA17FOOm6ZxUHwHgygUIa3DbfDIKXs9ip-Xq0OvjbARi_RTxB3OoDXDw8hrvVjy5orpTpqmXBWCutYb5ELYEJZKcFIVbzeHLzKJH9sMWW9CdtYWkyaU9lTSgVnf6k1FFM_u5AjmMkno68Up33Xci4KdfEfqqwyTG9KOJwv70eCt0eCwmT8mdewTUmvbr8cs82BNeWnUkT3p3Ha6H3edMmbZq3e503v88Z_A4Gjzto |
Cites_doi | 10.5194/amt-3-1205-2010 10.5194/amt-2-363-2009 10.5194/acp-19-10205-2019 10.1021/j100879a010 10.1016/0021-8502(88)90278-9 10.1016/j.jes.2020.06.004 10.1016/j.atmosenv.2023.120311 10.1016/j.scitotenv.2022.154664 10.1002/2016JD025581 10.1029/2008JD010894 10.1080/02786820701534593 10.5194/acp-17-3215-2017 10.5194/acp-10-2919-2010 10.1002/2014JD022601 10.5194/acp-14-4733-2014 10.1016/j.atmosenv.2015.10.053 10.1007/s13351-018-7060-7 10.1016/j.atmosenv.2009.06.021 10.5194/acp-11-11477-2011 10.5194/acp-23-611-2023 10.1038/srep27151 10.1016/j.atmosres.2021.105553 10.1016/j.atmosenv.2012.09.064 10.1007/s00376-020-0127-2 10.5194/acp-7-677-2007 10.5194/acp-18-4533-2018 10.1016/j.scitotenv.2022.160469 10.5194/acp-9-7161-2009 10.1002/2016JD024966 10.1016/j.apr.2020.12.008 10.5194/acp-11-3479-2011 10.1021/acs.chemrev.5b00529 10.1080/02786820802255668 10.1029/2010RG000349 10.1073/pnas.96.7.3372 10.5194/acp-12-10771-2012 10.1021/acs.est.5b01505 10.1016/j.atmosenv.2018.09.041 10.1016/j.chemosphere.2020.126086 10.5194/acp-17-5239-2017 10.1007/s00376-019-8248-1 10.5194/acp-13-3979-2013 10.1080/02786826.2015.1094181 10.5194/acp-10-4253-2010 10.5194/acp-22-8117-2022 10.1016/j.atmosres.2017.01.007 10.1016/j.atmosres.2018.03.011 10.5194/acp-20-915-2020 10.5194/acp-13-2015-2013 10.5194/acp-18-14079-2018 10.1029/2008JD010923 10.5194/acp-22-2293-2022 10.1029/2004JD005657 10.1080/02786826.2016.1255712 10.1016/j.atmosenv.2011.08.035 10.5194/acp-20-3777-2020 10.5194/acp-10-7489-2010 10.5194/acp-19-12631-2019 10.5194/acp-8-6155-2008 10.5194/acp-16-8431-2016 10.5194/acp-9-7607-2009 10.1016/j.jaerosci.2009.03.007 10.5194/acp-7-1961-2007 10.1016/j.scitotenv.2023.164215 10.1080/02786826.2018.1530724 10.1016/j.jaerosci.2006.12.002 10.1016/j.jaerosci.2008.07.013 10.1016/j.envpol.2018.03.067 10.1016/j.atmosenv.2023.119615 10.5194/acp-19-5235-2019 10.1007/s11430-012-4515-z 10.1002/anie.200501122 10.5194/acp-22-561-2022 10.1029/2009JD013558 10.1021/acs.estlett.0c00403 10.1073/pnas.1616540113 10.1016/j.atmosenv.2023.120226 10.1080/02786820802104981 10.1029/2011GL048869 10.5194/acp-18-11581-2018 10.5194/acp-14-1277-2014 10.5194/acp-9-7067-2009 10.1029/2012JD017588 10.5194/acp-8-5715-2008 10.1016/j.atmosenv.2013.05.069 10.1016/j.envint.2023.108301 10.1016/j.scitotenv.2019.05.283 10.1021/es00169a002 10.1029/2005GL023827 10.1007/s13351-018-7051-8 10.4209/aaqr.2020.02.0067 10.1016/j.atmosenv.2023.119728 10.1016/j.atmosres.2008.04.004 10.5194/acp-18-1729-2018 10.1111/j.1600-0889.2008.00350.x 10.5194/acp-18-5607-2018 10.5194/acp-10-4953-2010 10.1016/j.atmosenv.2019.117066 10.1016/j.atmosenv.2008.06.003 10.1080/0002889698506043 10.5194/egusphere-egu22-29 10.1029/2019GL084047 10.5194/acp-16-1123-2016 10.5194/acp-19-1327-2019 10.1016/j.jes.2017.03.036 10.5194/amt-7-2953-2014 10.1016/j.scitotenv.2017.09.176 10.1016/j.envpol.2020.115775 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 Copernicus GmbH 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 Copernicus GmbH – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-25-3389-2025 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 3412 |
ExternalDocumentID | oai_doaj_org_article_388861d24fd74df29de34a248d77ac78 A831965334 10_5194_acp_25_3389_2025 |
GeographicLocations | Beijing China United States--US China Germany |
GeographicLocations_xml | – name: China – name: Germany – name: Beijing China – name: United States--US |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c435t-a421694ff2ef18657b0874cdbaef6267f3d2deb439acae48c3503dbb77764ff23 |
IEDL.DBID | BENPR |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:19:12 EDT 2025 Sun Jul 13 03:50:58 EDT 2025 Tue Jun 17 21:58:03 EDT 2025 Tue Jun 10 20:54:44 EDT 2025 Fri Jun 27 05:15:10 EDT 2025 Tue Jul 01 05:17:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-a421694ff2ef18657b0874cdbaef6267f3d2deb439acae48c3503dbb77764ff23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0382-5764 0000-0001-8825-1469 0000-0002-9458-3387 |
OpenAccessLink | https://www.proquest.com/docview/3179111432?pq-origsite=%requestingapplication% |
PQID | 3179111432 |
PQPubID | 105744 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_388861d24fd74df29de34a248d77ac78 proquest_journals_3179111432 gale_infotracmisc_A831965334 gale_infotracacademiconefile_A831965334 gale_incontextgauss_ISR_A831965334 crossref_primary_10_5194_acp_25_3389_2025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-20 |
PublicationDateYYYYMMDD | 2025-03-20 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2025 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref70 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref3 doi: 10.5194/amt-3-1205-2010 – ident: ref17 doi: 10.5194/amt-2-363-2009 – ident: ref94 doi: 10.5194/acp-19-10205-2019 – ident: ref66 doi: 10.1021/j100879a010 – ident: ref88 doi: 10.1016/0021-8502(88)90278-9 – ident: ref34 doi: 10.1016/j.jes.2020.06.004 – ident: ref33 doi: 10.1016/j.atmosenv.2023.120311 – ident: ref79 doi: 10.1016/j.scitotenv.2022.154664 – ident: ref84 doi: 10.1002/2016JD025581 – ident: ref100 doi: 10.1029/2008JD010894 – ident: ref75 doi: 10.1080/02786820701534593 – ident: ref107 doi: 10.5194/acp-17-3215-2017 – ident: ref62 doi: 10.5194/acp-10-2919-2010 – ident: ref14 doi: 10.1002/2014JD022601 – ident: ref31 doi: 10.5194/acp-14-4733-2014 – ident: ref103 doi: 10.1016/j.atmosenv.2015.10.053 – ident: ref64 doi: 10.1007/s13351-018-7060-7 – ident: ref73 doi: 10.1016/j.atmosenv.2009.06.021 – ident: ref74 doi: 10.5194/acp-11-11477-2011 – ident: ref22 doi: 10.5194/acp-23-611-2023 – ident: ref69 doi: 10.1038/srep27151 – ident: ref96 doi: 10.1016/j.atmosres.2021.105553 – ident: ref98 doi: 10.1016/j.atmosenv.2012.09.064 – ident: ref110 doi: 10.1007/s00376-020-0127-2 – ident: ref18 doi: 10.5194/acp-7-677-2007 – ident: ref19 doi: 10.5194/acp-18-4533-2018 – ident: ref46 doi: 10.1016/j.scitotenv.2022.160469 – ident: ref36 doi: 10.5194/acp-9-7161-2009 – ident: ref49 doi: 10.1002/2016JD024966 – ident: ref15 doi: 10.1016/j.apr.2020.12.008 – ident: ref45 doi: 10.5194/acp-11-3479-2011 – ident: ref71 doi: 10.1021/acs.chemrev.5b00529 – ident: ref76 doi: 10.1080/02786820802255668 – ident: ref16 doi: 10.1029/2010RG000349 – ident: ref7 doi: 10.1073/pnas.96.7.3372 – ident: ref30 doi: 10.5194/acp-12-10771-2012 – ident: ref41 doi: 10.1021/acs.est.5b01505 – ident: ref80 doi: 10.1016/j.atmosenv.2018.09.041 – ident: ref25 doi: 10.1016/j.chemosphere.2020.126086 – ident: ref82 doi: 10.5194/acp-17-5239-2017 – ident: ref106 doi: 10.1007/s00376-019-8248-1 – ident: ref24 doi: 10.5194/acp-13-3979-2013 – ident: ref54 doi: 10.1080/02786826.2015.1094181 – ident: ref2 doi: 10.5194/acp-10-4253-2010 – ident: ref8 doi: 10.5194/acp-22-8117-2022 – ident: ref91 doi: 10.1016/j.atmosres.2017.01.007 – ident: ref108 doi: 10.1016/j.atmosres.2018.03.011 – ident: ref20 doi: 10.5194/acp-20-915-2020 – ident: ref43 doi: 10.5194/acp-13-2015-2013 – ident: ref32 doi: 10.5194/acp-18-14079-2018 – ident: ref87 doi: 10.1029/2008JD010923 – ident: ref11 doi: 10.5194/acp-22-2293-2022 – ident: ref39 doi: 10.1029/2004JD005657 – ident: ref28 doi: 10.1080/02786826.2016.1255712 – ident: ref81 doi: 10.1016/j.atmosenv.2011.08.035 – ident: ref95 doi: 10.5194/acp-20-3777-2020 – ident: ref67 doi: 10.5194/acp-10-7489-2010 – ident: ref72 doi: 10.5194/acp-19-12631-2019 – ident: ref86 doi: 10.5194/acp-8-6155-2008 – ident: ref12 doi: 10.5194/acp-16-8431-2016 – ident: ref53 doi: 10.5194/acp-9-7607-2009 – ident: ref89 doi: 10.1016/j.jaerosci.2009.03.007 – ident: ref58 doi: 10.5194/acp-7-1961-2007 – ident: ref29 doi: 10.1016/j.scitotenv.2023.164215 – ident: ref57 doi: 10.1080/02786826.2018.1530724 – ident: ref1 doi: 10.1016/j.jaerosci.2006.12.002 – ident: ref27 doi: 10.1016/j.jaerosci.2008.07.013 – ident: ref37 – ident: ref51 doi: 10.1016/j.envpol.2018.03.067 – ident: ref60 doi: 10.1016/j.atmosenv.2023.119615 – ident: ref5 – ident: ref99 doi: 10.5194/acp-19-5235-2019 – ident: ref104 doi: 10.1007/s11430-012-4515-z – ident: ref59 doi: 10.1002/anie.200501122 – ident: ref68 doi: 10.5194/acp-22-561-2022 – ident: ref23 doi: 10.1029/2009JD013558 – ident: ref13 doi: 10.1021/acs.estlett.0c00403 – ident: ref78 doi: 10.1073/pnas.1616540113 – ident: ref47 doi: 10.1016/j.atmosenv.2023.120226 – ident: ref35 doi: 10.1080/02786820802104981 – ident: ref56 doi: 10.1029/2011GL048869 – ident: ref109 doi: 10.5194/acp-18-11581-2018 – ident: ref26 doi: 10.5194/acp-14-1277-2014 – ident: ref61 doi: 10.5194/acp-9-7067-2009 – ident: ref4 doi: 10.1029/2012JD017588 – ident: ref65 doi: 10.5194/acp-8-5715-2008 – ident: ref77 doi: 10.1016/j.atmosenv.2013.05.069 – ident: ref97 doi: 10.1016/j.envint.2023.108301 – ident: ref92 doi: 10.1016/j.scitotenv.2019.05.283 – ident: ref6 doi: 10.1021/es00169a002 – ident: ref85 doi: 10.1029/2005GL023827 – ident: ref105 doi: 10.1007/s13351-018-7051-8 – ident: ref55 doi: 10.4209/aaqr.2020.02.0067 – ident: ref102 doi: 10.1016/j.atmosenv.2023.119728 – ident: ref63 doi: 10.1016/j.atmosres.2008.04.004 – ident: ref9 doi: 10.5194/acp-18-1729-2018 – ident: ref70 doi: 10.1111/j.1600-0889.2008.00350.x – ident: ref48 doi: 10.5194/acp-18-5607-2018 – ident: ref101 doi: 10.5194/acp-10-4953-2010 – ident: ref21 doi: 10.1016/j.atmosenv.2019.117066 – ident: ref50 doi: 10.1016/j.atmosenv.2008.06.003 – ident: ref42 doi: 10.1080/0002889698506043 – ident: ref44 doi: 10.5194/egusphere-egu22-29 – ident: ref83 doi: 10.1029/2019GL084047 – ident: ref90 doi: 10.5194/acp-16-1123-2016 – ident: ref10 doi: 10.5194/acp-19-1327-2019 – ident: ref93 doi: 10.1016/j.jes.2017.03.036 – ident: ref40 doi: 10.5194/amt-7-2953-2014 – ident: ref38 doi: 10.1016/j.scitotenv.2017.09.176 – ident: ref52 doi: 10.1016/j.envpol.2020.115775 |
SSID | ssj0025014 |
Score | 2.4679077 |
Snippet | The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile... The hygroscopicity and volatility of submicron ambient aerosol particles with diameters of 50, 80, 110, and 150 nm and the hygroscopicity of their non-volatile... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3389 |
SubjectTerms | Aerosol particles Aerosols Air masses Air pollution Analog computers Analytical instruments Atmospheric aerosols Climate change Diameters Growth factors Humidity Hydrophobicity Hygroscopicity Mobility Nitrates Outdoor air quality Particle size Probability density function Probability density functions Relative humidity Temperature Volatility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQTxFokYUQiIPVxHZi59hWVAUJDpRKvVl-lkW7SZTdRaL_jH_HTB5oFwlx4ZjNJFl7nPH3OeNvCHmV69r5MgWmdFkzKYNnWsBhCtGlqkRMPiTIfqouruSH6_J6p9QX5oSN8sBjxx0LoGhVEbhMQcmQeB2ikJZLHZSyXg3bfGHOm8nURLXwaxlSrUrnDGszjR8oAa3IY-s7xksG1KyGIYIlsncmpEG3_2_ReZhyzu-TexNWpCfjf3xA7sTmIck-Asxt-2E1nL6mZ8sFYM7h6BH5ebm4jQwIdLv8HgP9-uMGtSrbbuEBa1PbBArBCFyB0Jt2uAzfo54qbRO1K4c7I-m2d7ahNsKF7ZJ2c94cXY1riYE6uNHubf54CK5MxBWd665A_FjSVetGW4sKKLexp6N-NF009DQuvsHs-Zhcnb_7cnbBptoMzAPA2jAreVHVMiUeU6GrUrlcK-mDszEBR1JJBA7uBrhjvY1Se1HmIjinlKrwKvGEHDRtE58S6uoYvHA6BAX0qSjqkELQldeKcy-tzcjb2UGmGyU4DFAXdKYBZxpeGnSmQWdm5BQ9-NsOxbOHH2BImanLzL-GVEZeov8NymM0mH9zY7frtXl_-dmcaAxZuH05I28mo9RuemjktJ0B2oSKWnuWh3uW8P76_dPzMDNT_FgbgaqxQFUFf_Y_WvSc3MXewdw5nh-Sg02_jUcApjbuxfDe_AK8ZCFe priority: 102 providerName: Directory of Open Access Journals |
Title | Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing |
URI | https://www.proquest.com/docview/3179111432 https://doaj.org/article/388861d24fd74df29de34a248d77ac78 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVY98IL4lMURmUhBOLBWus4sfOE1mllIG2CjYm9Wf7sitokpC0S-2f8O-5N0rEiwVOUxEnlHuf63Ovrcwl5NVS5dWn0TKo0Z0J4x1QCp9EHG7MUOXmTIHuaHV-Ij5fpZRdwW3ZplRub2BhqXzqMke8nqKMJ5D3h76rvDKtG4epqV0Jjh-yCCVaqR3bHR6efzm5cLlw1Q5crU0OGNZrahUpgLWLfuIrxlIGLlsNQwVLZtyamRr__X1a6mXom98m9jjPSgxbkB-ROKB6S_gnQ3bJuouL0NT2cz4B7NmePyK_z2XVg4EiX8x_B06ufU9SsLKuZA85NTeEpGCWABCk4rTAcX6OuKi0jNQuLOyTpuramoCbAg-WcVpv8ObpoY4qeWnjR7df89SMYoQgLuqm_AnZkThelbdsaVEK5DjVtdaTprKDjMPsGs-hjcjE5-nJ4zLoaDcwB0VoxI_goy0WMPMSRylJph0oK560JEXwlGRPPAXagPcaZIJRL0mHirZVSZvhU8oT0irIITwm1efAuscp7CW7UaJT76L3KnJKcO2FMn7zdAKSrVopDgwuDYGoAU_NUI5gaweyTMSJ40w5FtJsLZT3V3V-mE_D-s5HnInopfOS5D4kwXCgvpXFS9clLxF-jTEaBeThTs14u9YfzM32g0HThNuY-edM1iuWqhk522xqgT6istdVyb6slfMdu-_ZmmOnOjiz1n1H_7P-3n5O72G_MjuPDPdJb1evwAujSyg7Ijpq8H3RfBh4nJ5-_Dprgw2_llx3D |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoAL4ikCBVaIhzhYTdZr7_qAUFsICX0caCv1tt1nCEps4ySg9kdx598xY8elQYJbj7bH68fsznwzOw9CXnRlZmwSXCRkkkWcOxvJGA6D8yakCWLyOkD2IB0c808nycka-dnmwmBYZSsTa0HtCos-8s0Y62gCeI_Zu_JbhF2jcHe1baHRTItdf_YDTLbZ2-F74O9LxvofjnYG0bKrQGQBGswjzVkvzXgIzIeeTBNhulJw64z2AdC9CLFj8KKgqLXVnksbJ93YGSOESPGuGMa9Rq7zGDQ5Zqb3P14YeLhHhwZeKrsRdoRqtkUBI_FNbcuIJREYhBlMTGzMfUkN1t0C_qUTakXXv01uLREq3Wqm1B2y5vO7pLMP4Lqoah88fUV3JmNAuvXRPfLrcHzuIzDbi8l37-iXsxFWyCzKsQWET3XuKIhAmAAI-GmJzv8Kq7jSIlA9NZiPSReV0TnVHm4sJrRso_XotPFgOmpgoMvD_PUQ9If4KW27vYDUmtBpYRpajXVXzn1Fm6rVdJzTbT_-Cjr7Pjm-Et49IOt5kfuHhJrMOxsb6ZwAo63Xy1xwTqZWCsYs17pD3rQMUmVT-EOBwYTMVMBMxRKFzFTIzA7ZRg5e0GHJ7vpEUY3U8pepWEqZ9hzjwQnuAsucj7lmXDohtBWyQ54j_xUW5cgx6mekF7OZGh5-VlsSBSUmTXfI6yVRKOYVfOQyiQK-Cet4rVBurFCC1LCrl9tpppZSa6b-rLFH_7_8jNwYHO3vqb3hwe5jchP_Acblse4GWZ9XC_8EgNrcPK1XByWnV70cfwMbz1bG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyEuiKdYKGAhHuIQ7a7jxM4BoT7VpbCqWir15vq5LNpNluwuqP1n8OuYyaO0SHDrMcnEiT3jmW_s8QwhL3syMzYJLhIyySLOnY1kDJfBeRPSBDF5FSA7TPeO-YeT5GSF_GrPwmBYZasTK0XtCotr5N0Y82gCeI9ZNzRhEQfbu-9n3yKsIIU7rW05jVpE9v3ZD3Df5u8G28DrV4zt7nze2ouaCgORBZiwiDRn_TTjITAf-jJNhOlJwa0z2gdA-iLEjsFPg9HWVnsubZz0YmeMECLFt2Jo9wZZE-gVrZK1zZ3hweGFu4c7dujupbIXYX2oepMUEBPvajuLWBKBe5iBmGKZ7ktGsaod8C8LUZm93TvkdoNX6UYtYHfJis_vkc4ngNpFWa3I09d0azIG3Ftd3Sc_j8bnPgInvph8945-ORthvsxiNraA96nOHQWFCOKA8J_OcCugxJyutAhUTw2ezqTL0uicag8vFhM6a2P36LRez3TUQEOXm_nrI7g64qe0rf0COmxCp4WpaTVmYTn3Ja1zWNNxTjf9-CtY8Afk-Fq495Cs5kXuHxFqMu9sbKRzAly4fj9zwTmZWikYs1zrDnnbMkjN6jQgCtwnZKYCZiqWKGSmQmZ2yCZy8IIOE3hXN4pypJohU7GUMu07xoMT3AWWOR9zzbh0QmgrZIe8QP4rTNGRo7CP9HI-V4OjQ7UhUW3iEeoOedMQhWJRQiebIxXQJ8zqdYVy_Qol6BB79XErZqrRYXP1Z8Y9_v_j5-QmTEX1cTDcf0Ju4RBgkB7rrZPVRbn0TwG1LcyzZnpQcnrdM_I3Zp5cWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size-resolved+hygroscopicity+and+volatility+properties+of+ambient+urban+aerosol+particles+measured+by+a+volatility+hygroscopicity+tandem+differential+mobility+analyzer+system+in+Beijing&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Yu%2C+Aoyuan&rft.au=Shen%2C+Xiaojing&rft.au=Ma%2C+Qianli&rft.au=Lu%2C+Jiayuan&rft.date=2025-03-20&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=25&rft.issue=6&rft.spage=3389&rft.epage=3412&rft_id=info:doi/10.5194%2Facp-25-3389-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_25_3389_2025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |