Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension

Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 23; no. 18; pp. 10625 - 10642
Main Authors Rosky, Elise, Cantrell, Will, Li, Tianshu, Nakamura, Issei, Shaw, Raymond A
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 26.09.2023
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to -1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of -500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations.
AbstractList Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to -1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of -500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations.
Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to −1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of −500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations.
Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating particles (INPs) increasing rapidly with decreasing temperature. Here, molecular-dynamics simulations of heterogeneous ice nucleation demonstrate that the ice nucleation rate is also sensitive to pressure and that negative pressure within supercooled water shifts freezing temperatures to higher temperatures. Negative pressure, or tension, occurs naturally in water capillary bridges and pores and can also result from water agitation. Capillary bridge simulations presented in this study confirm that negative Laplace pressure within the water increases heterogeneous-freezing temperatures. The increase in freezing temperatures with negative pressure is approximately linear within the atmospherically relevant range of 1 to − 1000 atm. An equation describing the slope depends on the latent heat of freezing and the molar volume difference between liquid water and ice. Results indicate that negative pressures of − 500 atm, which correspond to nanometer-scale water surface curvatures, lead to a roughly 4 K increase in heterogeneous-freezing temperatures. In mixed-phase clouds, this would result in an increase of approximately 1 order of magnitude in active INP concentrations. The findings presented here indicate that any process leading to negative pressure in supercooled water may play a role in ice formation, consistent with experimental evidence of enhanced ice nucleation due to surface geometry or mechanical agitation of water droplets. This points towards the potential for dynamic processes such as contact nucleation and droplet collision or breakup to increase ice nucleation rates through pressure perturbations.
Audience Academic
Author Cantrell, Will
Nakamura, Issei
Li, Tianshu
Shaw, Raymond A
Rosky, Elise
Author_xml – sequence: 1
  fullname: Rosky, Elise
– sequence: 2
  fullname: Cantrell, Will
– sequence: 3
  fullname: Li, Tianshu
– sequence: 4
  fullname: Nakamura, Issei
– sequence: 5
  fullname: Shaw, Raymond A
BookMark eNptkl2L1DAUhous4O7qD_Au4JUXXZPTJmkvl8WPgRXBj-uQJqedDG0yJqmrF_53MzOiDkggCYfnfXMOea-qCx88VtVzRm8469tX2uxraGpGBfAaKDSPqksmOlrLBtqLf-5PqquUdpQCp6y9rH6-DzOaddaRJLeUM7vgE4n4DfVM8lZnssWMMUzoMayJOIPEr2bGI0mCMWtM5IC5aYuRZFz2GHVeIxbYkwdd1GT1tuxG791cnvpRKJ-K_Gn1eNRzwme_z-vqy5vXn-_e1fcf3m7ubu9r0zY81z1yAN7jYIdRCotA20ZC343WIu2EsF0_ik4bgKalgo7amJHLIkEYRCtkc11tTr426J3aR7eUJlTQTh0LIU5Kx-zKVErzjlurrRw60zJmh6FlQgAwMJoywYrXi5PXPoavK6asdmGNvrSvoBMdByFp_5eadDF1fgw5arO4ZNStFEJIzuSBuvkPVZbFxZnyw6Mr9TPByzNBYTJ-z5NeU1KbTx_PWXZiTQwpRRz_DM6oOoRGldAoaNQxNOoQmuYXZG63Fw
Cites_doi 10.1021/jp805227c
10.1038/213384a0
10.1175/BAMS-86-6-795
10.1038/ncomms2918
10.1890/05-1879
10.1175/1520-0450(1983)022<1964:CVIFOF>2.0.CO;2
10.1063/1.4919714
10.1175/1520-0450(1969)008<0994:FOSWDD>2.0.CO;2
10.1073/pnas.1913855117
10.1021/acs.jpclett.5b01531
10.1063/1.4938749
10.1021/acs.jpcc.5b09740
10.5194/acp-20-9419-2020
10.1002/qj.49711749710
10.1175/JAS-D-17-0112.1
10.1002/grl.50700
10.5194/acp-20-3209-2020
10.1038/nature07226
10.1038/nmat2508
10.1016/j.cplett.2021.139289
10.1021/acsnano.9b01014
10.1016/j.cplett.2013.07.085
10.1038/s41598-017-16787-3
10.1017/CBO9780511976377
10.1016/j.est.2022.104755
10.5194/acp-11-8767-2011
10.1021/jp071957s
10.1016/S0169-8095(01)00132-6
10.1103/PhysRevLett.117.135702
10.5194/acp-21-18519-2021
10.1002/qj.49709942111
10.1088/0965-0393/18/1/015012
10.1039/C4CP03948C
10.1073/pnas.0910818107
10.1063/5.0049031
10.1039/c1cp22167a
10.1126/science.155.3768.1413
10.1063/5.0140814
10.5194/acp-23-1579-2023
10.1103/PhysRevB.31.5262
10.1021/acs.jpclett.8b02244
10.5194/acp-14-2071-2014
10.1103/PhysRevE.97.023103
10.1063/1.4953854
10.1038/srep02031
10.1021/jacs.5b08748
10.1021/jp4118375
10.1146/annurev-fluid-030321-103941
10.5194/acp-2022-696
10.1103/PhysRevLett.126.015704
10.1063/1.5145334
10.1126/science.189.4206.880
10.5194/acp-11-8003-2011
10.1021/acs.jpcb.2c06246
10.1103/PhysRevB.28.784
10.1073/pnas.1620999114
10.1021/acs.jpcb.7b11476
10.1021/jp0506336
10.37099/mtu.dc.all-datasets/41
10.1103/PhysRevLett.113.235701
10.1006/jcph.1995.1039
10.5194/acp-22-10099-2022
10.1021/jp9626531
10.1039/c3fd00035d
10.1021/ja411507a
10.3390/atmos11010001
10.1021/jp066080w
10.1029/2004GL020483
10.1021/jacs.0c10663
10.1038/s41467-018-08222-6
10.5194/acp-12-9817-2012
10.1029/2021GL097373
10.1038/35020537
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-23-10625-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Agricultural & Environmental Science
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Continental Europe Database
Technology Collection
ProQuest Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 10642
ExternalDocumentID oai_doaj_org_article_a585ddad7b8c411dbb41662212ca0161
A766675179
10_5194_acp_23_10625_2023
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c435t-9e52259ebdbf76de20437298fdde0866d89f68ac2234060faccf57225e2b64673
IEDL.DBID 8FG
ISSN 1680-7324
1680-7316
IngestDate Thu Sep 05 15:40:46 EDT 2024
Fri Sep 13 03:37:06 EDT 2024
Thu Feb 22 23:27:05 EST 2024
Thu Nov 09 12:32:16 EST 2023
Sat Sep 28 20:58:03 EDT 2024
Fri Aug 23 01:21:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-9e52259ebdbf76de20437298fdde0866d89f68ac2234060faccf57225e2b64673
ORCID 0000-0002-3477-4456
0000-0003-0390-2424
OpenAccessLink https://www.proquest.com/docview/2868526709/abstract/?pq-origsite=%requestingapplication%
PQID 2868526709
PQPubID 105744
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a585ddad7b8c411dbb41662212ca0161
proquest_journals_2868526709
gale_infotracmisc_A766675179
gale_infotracacademiconefile_A766675179
gale_incontextgauss_ISR_A766675179
crossref_primary_10_5194_acp_23_10625_2023
PublicationCentury 2000
PublicationDate 2023-09-26
PublicationDateYYYYMMDD 2023-09-26
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-26
  day: 26
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref48
  doi: 10.1021/jp805227c
– ident: ref18
  doi: 10.1038/213384a0
– ident: ref6
  doi: 10.1175/BAMS-86-6-795
– ident: ref40
  doi: 10.1038/ncomms2918
– ident: ref28
  doi: 10.1890/05-1879
– ident: ref37
  doi: 10.1175/1520-0450(1983)022<1964:CVIFOF>2.0.CO;2
– ident: ref11
  doi: 10.1063/1.4919714
– ident: ref1
  doi: 10.1175/1520-0450(1969)008<0994:FOSWDD>2.0.CO;2
– ident: ref63
  doi: 10.1073/pnas.1913855117
– ident: ref52
  doi: 10.1021/acs.jpclett.5b01531
– ident: ref72
  doi: 10.1063/1.4938749
– ident: ref4
  doi: 10.1021/acs.jpcc.5b09740
– ident: ref12
  doi: 10.5194/acp-20-9419-2020
– ident: ref59
  doi: 10.1002/qj.49711749710
– ident: ref21
  doi: 10.1175/JAS-D-17-0112.1
– ident: ref71
  doi: 10.1002/grl.50700
– ident: ref2
– ident: ref47
  doi: 10.5194/acp-20-3209-2020
– ident: ref70
  doi: 10.1038/nature07226
– ident: ref38
  doi: 10.1038/nmat2508
– ident: ref61
  doi: 10.1016/j.cplett.2021.139289
– ident: ref8
  doi: 10.1021/acsnano.9b01014
– ident: ref50
  doi: 10.1016/j.cplett.2013.07.085
– ident: ref46
  doi: 10.1038/s41598-017-16787-3
– ident: ref35
  doi: 10.1017/CBO9780511976377
– ident: ref69
  doi: 10.1016/j.est.2022.104755
– ident: ref51
  doi: 10.5194/acp-11-8767-2011
– ident: ref22
  doi: 10.1021/jp071957s
– ident: ref15
  doi: 10.1016/S0169-8095(01)00132-6
– ident: ref17
  doi: 10.1103/PhysRevLett.117.135702
– ident: ref29
  doi: 10.5194/acp-21-18519-2021
– ident: ref53
  doi: 10.1002/qj.49709942111
– ident: ref67
  doi: 10.1088/0965-0393/18/1/015012
– ident: ref25
  doi: 10.1039/C4CP03948C
– ident: ref13
  doi: 10.1073/pnas.0910818107
– ident: ref16
  doi: 10.1063/5.0049031
– ident: ref39
  doi: 10.1039/c1cp22167a
– ident: ref60
  doi: 10.1126/science.155.3768.1413
– ident: ref49
  doi: 10.1063/5.0140814
– ident: ref31
  doi: 10.5194/acp-23-1579-2023
– ident: ref66
  doi: 10.1103/PhysRevB.31.5262
– ident: ref57
  doi: 10.1021/acs.jpclett.8b02244
– ident: ref45
  doi: 10.5194/acp-14-2071-2014
– ident: ref73
  doi: 10.1103/PhysRevE.97.023103
– ident: ref42
  doi: 10.1063/1.4953854
– ident: ref41
  doi: 10.1038/srep02031
– ident: ref19
  doi: 10.1021/jacs.5b08748
– ident: ref43
  doi: 10.1021/jp4118375
– ident: ref10
  doi: 10.1146/annurev-fluid-030321-103941
– ident: ref20
  doi: 10.5194/acp-2022-696
– ident: ref5
  doi: 10.1103/PhysRevLett.126.015704
– ident: ref55
  doi: 10.1063/1.5145334
– ident: ref30
  doi: 10.1126/science.189.4206.880
– ident: ref36
  doi: 10.5194/acp-11-8003-2011
– ident: ref14
  doi: 10.1021/acs.jpcb.2c06246
– ident: ref65
  doi: 10.1103/PhysRevB.28.784
– ident: ref24
  doi: 10.1073/pnas.1620999114
– ident: ref58
  doi: 10.1021/acs.jpcb.7b11476
– ident: ref64
  doi: 10.1021/jp0506336
– ident: ref7
  doi: 10.37099/mtu.dc.all-datasets/41
– ident: ref23
  doi: 10.1103/PhysRevLett.113.235701
– ident: ref54
  doi: 10.1006/jcph.1995.1039
– ident: ref62
  doi: 10.5194/acp-22-10099-2022
– ident: ref33
  doi: 10.1021/jp9626531
– ident: ref32
  doi: 10.1039/c3fd00035d
– ident: ref44
  doi: 10.1021/ja411507a
– ident: ref56
– ident: ref74
  doi: 10.3390/atmos11010001
– ident: ref75
  doi: 10.1021/jp066080w
– ident: ref3
  doi: 10.1029/2004GL020483
– ident: ref27
  doi: 10.1021/jacs.0c10663
– ident: ref9
  doi: 10.1038/s41467-018-08222-6
– ident: ref26
  doi: 10.5194/acp-12-9817-2012
– ident: ref68
  doi: 10.1029/2021GL097373
– ident: ref34
  doi: 10.1038/35020537
SSID ssj0025014
Score 2.4567206
Snippet Heterogeneous ice nucleation is thought to be the primary pathway for the formation of ice in mixed-phase clouds, with the number of active ice-nucleating...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 10625
SubjectTerms Agitation
Agreements
Analysis
Approximation
Bridges
Capillary pressure
Cloud formation
Droplets
Freezing
Freezing temperatures
Hypotheses
Ice formation
Ice nucleation
Latent heat
Molar volume
Molecular dynamics
Nucleation
Perturbation
Pressure
Simulation
Simulation methods
Supercooled water
Surface geometry
Temperature
Tension
Water
Water droplets
Water drops
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF5KT16KVovRVhYRC8LS9zbJJu9Yi6UKz4Ntobdlf9qCJo8kj-Kh_3u_2eSJ7yBePCaZ_Nidyew3ycw3jL1zceaDclLIYK0oKL-xxsInCuXyMs59CAUVOC-_qovr4stNefNHqy_KCRvpgceJOzHAs94bX9naFfO5txYQQkl4XGcIriTvOy83wdQUatHfMgq1VD0T1Jtp_J8JtFKcGLcSkvKxgPwFNQ_fWpEScf_f3HNac86fsr0JLPLT8SGfsZ3Q7LNsCZzbdulzOH_Pz37cAXSmrefsYbnpdsv7u59TZ66eE00TrjPcmoHfUv5LC7MJiPk53ARviNI4SfLWuXXXcxJL-R-cmKsm2mUIN_we0LTjVHjWcWdW1LKo-8VTFnzbvGDX55-uzi7E1GBBOKCkQSwC0Fe5CNbbWCkfqE4WYLuO8HkIdZSvF1HVxgFCYN2fReNcLCucEqRV8LD5Adtt2ia8ZLily2cO2CMsCIFFW5amyKOX3kcLiJWxD5tJ1quRR0Mj_iCNaGhEy1wnjWjSSMY-khp-CxIFdtoBw9CTYeh_GUbG3pISNZFcNJRF892s-15_vvymTysEbRWRk2XseBKK7dAZjGIsSsCgiBdrS_JwSxJvods-vLEVPXmBXsta1aUkhrxX_2NEr9kTmh3KVpHqkO0O3TocARIN9k2y_kdyCAlk
  priority: 102
  providerName: Directory of Open Access Journals
Title Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
URI https://www.proquest.com/docview/2868526709/abstract/
https://doaj.org/article/a585ddad7b8c411dbb41662212ca0161
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9q--KL-Imp9VhEFITl7jbJJvckbel5Cle0Wuzbsp9tQbPXJEfxwf_dmb1N5R70KSSZJCQzmf3N7sxvCHlt_MQ6YTjjTmtWYH5jDQMfK4TJSz-1zhVY4Lw8FYvz4tNFebFDFkMtDKZVDj4xOmobDM6Rj3kt6pIj29hYaZwFMP34_eqGYf8oXGdNzTTukb0pcuJhzfj8w13ohatnGHqJesKwV9NmfRPQSzFWZsU45mdBJMCwmfjWCBWJ_P_lruMYNH9IHiTwSA832n5EdlzzmGRLwL2hjdPj9A09_nENIDTuPSG_l0P3W9pd_0ydujqKtE1wn_5K9fQK82ECmJEL646C26ANUhxHSRqMWbcdRbGYD0KRySrRMINwQ28BqrYUC9FaatQKWxi1v2jMig_NU3I-P_l2vGCp4QIzgJp6NnOAxsqZ01b7SliHdbMAvmsPPhBCH2HrmRe1MgApAAdMvDLGlxVc4rgW4HHzZ2S3CY17TuCRJp8YwCJuhojM67JURe4tt9ZrgFwZeTd8ZLna8GpIiEdQIxI0Inkuo0YkaiQjR6iGO0GkxI4HQnsp0x8mFQQ-1ipb6doU06nVGrCm4DA0G4W4NiOvUIkSSS8azKq5VOuukx-_nsnDCoK4CsnKMvI2CfmANqZSkQK8FPJkbUkebEnCX2m2Tw-2IpNX6ORfG97__-kX5D6-N-alcHFAdvt27V4C-On1KNr1iOwdnZx-PsPtfPnl-yhOJfwBa3MJBg
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgHOCC-BSB0loIgYRkdddJnOwJtRXLFro9QCv1Ztlju61UkiXJCnHof2fG6y3aAxyTTBI548y8sWfeMPYWwsh5BVJIb60oKL-xRscnCgV5GcbO-4IKnOcnanZWfDkvz9OCW5_SKtc2MRpq1wKtke_JWtWlJLaxj4ufgrpG0e5qaqFxl90rcnSdVCk-_XwbcNGeGQVcqh4J6tC02tVEzFLsGVgISVlZiP8FtRDf8EuRvv9fRjp6nukj9jBBRr6_0vFjdsc3T1g2R7TbdnFRnL_jh9dXCD3j0VN2M1_3vOX91Y_Un6vnRNaEzxkuzcAvKQumxcnjMfLnaCx4Q8TGUZK3AMuu5yQWs0A48Vcl8mUUbvgvBKgdp_KzjoNZUOOi7jePufBt84ydTT-dHs5EarMgALHSICYeMVg58dbZUCnnqVoWIXcd0PJhwKNcPQmqNoBAAr3_KBiAUFZ4i5dWoZ3Nn7Otpm38C4avhHwEiED8hHBYsGVpijw46VywCLQy9mH9kfVixaahMQohjWjUiJa5jhrRpJGMHZAabgWJCDueaLsLnf4rbTDccc64ytZQjMfOWkSYSqJDBkNoNmNvSImaqC4ayqW5MMu-10ffv-n9CkO3iijKMvY-CYV26AyOYlWagIMidqwNye0NSfwXYfPyeq7oZAt6_Xfmvvz_5V12f3Y6P9bHRydfX7EH9A0oM0WqbbY1dEv_GuHPYHfiHP8Du5YEBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0BfFFrB8YW9tFREFY7m6TbHJP0q-jVe8o1ULflv1sC232THKID_7vzuztVe5BH5NMEpKZzP4m-9vfEPLO-KF1wnDGndasQH5jDQMfK4TJSz-yzhW4wHk6EycXxefL8jLxn7pEq1zlxJiobTD4j3zAa1GXHNXGBj7RIs6OJp_mPxh2kMKZ1tRO4yHZrApRQoRvHhzPzs7vyy-cQcPyS9RDhv2alnOcgGCKgTJzxpGjBdUAw4bia6NUFPP_V8qO49DkKXmSACTdX3p8izxwzTOSTQH7hjb-Iqfv6eHtDQDRuPWc_J6uOuDS7uYudevqKEo3wXX6a9XTa-TEBAglFxYdhdRBG5Q5jpY0GLNoO4pmkRNCUc0qSTGDcUN_AlxtKS5Ga6lRc2xj1P6ikRkfmhfkYnL8_fCEpaYLzABy6tnYASIrx05b7SthHa6dBQBee8iDUP4IW4-9qJUBWAFYYOiVMb6s4BTHtYCsm78kG01o3CsCtzT50AAecWNEZV6XpSpyb7m1XgPsysjH1UuW86W2hoSaBD0iwSOS5zJ6RKJHMnKAbrg3RFnsuCO0VzJ9ZVJB8WOtspWuTTEaWa0BbwoOw7NRiG0z8hadKFH4osEQulKLrpOn387lfgWFXIWCZRn5kIx86FsFT7FcqAAPhVpZa5Y7a5bwZZr1w6tYkSkzdPJvHL_-_-E98ggCXH49nX3ZJo_xFSBNhYsdstG3C_cGsFCvd1OQ_wFnRgmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+simulations+reveal+that+heterogeneous+ice+nucleation+occurs+at+higher+temperatures+in+water+under+capillary+tension&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Rosky%2C+Elise&rft.au=Cantrell%2C+Will&rft.au=Li%2C+Tianshu&rft.au=Nakamura%2C+Issei&rft.date=2023-09-26&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=23&rft.issue=18&rft.spage=10625&rft_id=info:doi/10.5194%2Facp-23-10625-2023&rft.externalDBID=ISR&rft.externalDocID=A766675179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon