Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing

Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs)...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 9; no. 16; pp. 4761 - 4773
Main Authors Zhao, Xiaofei, Liu, Chundong, Yu, Jing, Li, Zhen, Liu, Lu, Li, Chonghui, Xu, Shicai, Li, Weifeng, Man, Baoyuan, Zhang, Chao
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.11.2020
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS /Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS /AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS /AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.
AbstractList Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS 2 ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS 2 /Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS 2 /AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS 2 /AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.
Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS2) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS2/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS2/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS2/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.
Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS /Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS /AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS /AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.
Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS2) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS2/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS2/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS2/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.
Author Li, Zhen
Yu, Jing
Xu, Shicai
Zhang, Chao
Zhao, Xiaofei
Li, Chonghui
Liu, Chundong
Liu, Lu
Li, Weifeng
Man, Baoyuan
Author_xml – sequence: 1
  givenname: Xiaofei
  surname: Zhao
  fullname: Zhao, Xiaofei
  organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China
– sequence: 2
  givenname: Chundong
  surname: Liu
  fullname: Liu, Chundong
  organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China
– sequence: 3
  givenname: Jing
  surname: Yu
  fullname: Yu, Jing
  organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China
– sequence: 4
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China
– sequence: 5
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China
– sequence: 6
  givenname: Chonghui
  surname: Li
  fullname: Li, Chonghui
  organization: Institute for Integrative Nanosciences, IFW Dresden, Dresden, 01069, Germany
– sequence: 7
  givenname: Shicai
  surname: Xu
  fullname: Xu, Shicai
  organization: College of Physics and Electronic Information, Dezhou University, Dezhou253023, P.R. China
– sequence: 8
  givenname: Weifeng
  surname: Li
  fullname: Li, Weifeng
  organization: School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China
– sequence: 9
  givenname: Baoyuan
  surname: Man
  fullname: Man, Baoyuan
  email: byman@sdnu.edu.cn
  organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China
– sequence: 10
  givenname: Chao
  orcidid: 0000-0002-3295-8980
  surname: Zhang
  fullname: Zhang, Chao
  email: czsdnu@126.com
  organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China
BookMark eNp9kc2L1TAUxYuM4DjO3mXAjS6qSZqkzUpkGJ2BgYH5WIfbNHkvj76kJqnS_97U-gGCk829hPM7nMt5WZ344E1VvSb4PeGEf_Dgw7SvKaa4xoyzZ9UpJZLWnSDs5M-OxYvqPKUDLk_KhkhxWi1XyxALG3qn0XEes0saRoM0fHPZmYRsiGjvdvt6MrHsR_DaIPADSma0tR4NeOd3KM3Rgja18ftVMaA7KFKUJqNzDEmHaUFv7y_v7t8V0KeCvKqeWxiTOf81z6rHz5cPF1f1ze2X64tPN7VmDc-15J3sGNiGSysbrGkjgXIhheW6sW0rqO2w1E3XykG2XA4YqCWkF5wS3pq-OauuN98hwEFN0R0hLiqAUz8_QtwpiNmVSxTTg5S97AaKDbNW9Axgndi2Ghf74vVm85pi-DqblNUhzNGX-Ioy3lEpKF9VYlPpcnmKxirtMmQXfI7gRkWwWltTW2tqbU2trRUQ_wP-jvsE8nFDvsOYTRzMLs5LWf4G-x8qiWCtIM0P96azkg
CitedBy_id crossref_primary_10_1021_acsanm_3c05750
crossref_primary_10_1016_j_jallcom_2022_165813
crossref_primary_10_1515_nanoph_2020_0644
crossref_primary_10_1021_acsanm_4c01641
crossref_primary_10_1155_2024_6637846
crossref_primary_10_1016_j_optmat_2022_111994
crossref_primary_10_1088_1742_6596_2011_1_012055
crossref_primary_10_1364_OE_441176
crossref_primary_10_1364_OME_439069
crossref_primary_10_1364_OL_415733
crossref_primary_10_1021_acsami_1c00702
crossref_primary_10_1364_OE_419133
crossref_primary_10_1021_acssensors_1c00166
crossref_primary_10_1016_j_sna_2022_113932
crossref_primary_10_1021_acs_iecr_1c04048
crossref_primary_10_1016_j_carbon_2021_12_055
crossref_primary_10_1016_j_optcom_2021_126994
crossref_primary_10_1016_j_snb_2025_137588
crossref_primary_10_1016_j_nanoso_2021_100748
crossref_primary_10_1364_OL_418602
crossref_primary_10_1016_j_apsusc_2021_151811
crossref_primary_10_3390_coatings12030360
crossref_primary_10_1016_j_jallcom_2021_163345
crossref_primary_10_1515_nanoph_2021_0381
crossref_primary_10_1021_acsami_1c08712
crossref_primary_10_3390_ma15155197
crossref_primary_10_1016_j_jmrt_2021_03_103
crossref_primary_10_1016_j_vibspec_2021_103293
crossref_primary_10_1364_OE_421217
crossref_primary_10_1088_1402_4896_ad49dd
crossref_primary_10_1149_2162_8777_ac80d2
crossref_primary_10_1021_acsanm_3c04652
crossref_primary_10_1007_s12274_024_6427_6
crossref_primary_10_1021_acsomega_1c04536
crossref_primary_10_1364_OE_472520
crossref_primary_10_3390_nano12030401
crossref_primary_10_1016_j_jmat_2020_12_006
crossref_primary_10_1016_j_colsurfa_2025_136511
crossref_primary_10_1021_acs_analchem_3c01282
crossref_primary_10_1002_adsr_202400155
crossref_primary_10_1016_j_snb_2023_135218
crossref_primary_10_1002_mop_32971
crossref_primary_10_1016_j_physe_2021_115080
crossref_primary_10_1116_6_0002589
crossref_primary_10_2147_IJN_S303130
crossref_primary_10_1016_j_heliyon_2024_e30499
crossref_primary_10_1016_j_optcom_2021_126863
crossref_primary_10_1016_j_optcom_2021_127797
crossref_primary_10_1016_j_apsusc_2022_153383
crossref_primary_10_1039_D1TC01351C
crossref_primary_10_1063_5_0042808
crossref_primary_10_3788_PI_2023_R04
crossref_primary_10_1364_AO_411974
crossref_primary_10_1016_j_optcom_2022_128830
crossref_primary_10_1186_s12951_022_01481_y
crossref_primary_10_1515_nanoph_2022_0194
crossref_primary_10_3390_nano12060896
crossref_primary_10_1515_nanoph_2021_0476
crossref_primary_10_1016_j_optmat_2021_111536
crossref_primary_10_1364_OE_435627
crossref_primary_10_1364_OME_424275
crossref_primary_10_1016_j_snb_2021_131025
crossref_primary_10_3390_nano11123196
crossref_primary_10_1021_acs_jpclett_3c02379
crossref_primary_10_3390_nano13091518
crossref_primary_10_1364_AO_433239
crossref_primary_10_1021_acsami_4c22399
crossref_primary_10_1021_acsanm_4c07135
crossref_primary_10_1364_OE_448656
crossref_primary_10_1016_j_talanta_2021_122819
crossref_primary_10_1016_j_jece_2023_109437
crossref_primary_10_1016_j_vibspec_2021_103312
crossref_primary_10_1016_j_vibspec_2021_103311
crossref_primary_10_1016_j_jallcom_2023_169063
crossref_primary_10_1016_j_optcom_2024_130954
crossref_primary_10_1364_OME_423992
crossref_primary_10_1016_j_ceramint_2020_12_294
crossref_primary_10_1364_OL_430044
crossref_primary_10_1016_j_vibspec_2021_103319
crossref_primary_10_1002_smll_202412467
crossref_primary_10_1088_1674_1056_abea88
crossref_primary_10_2139_ssrn_4189356
crossref_primary_10_1364_OE_443835
crossref_primary_10_1016_j_ccr_2023_215349
crossref_primary_10_3390_nano12071202
crossref_primary_10_1364_PRJ_421415
crossref_primary_10_1016_j_optlastec_2023_109394
crossref_primary_10_1002_admi_202102468
crossref_primary_10_1364_OE_419051
crossref_primary_10_1016_j_surfcoat_2022_128323
crossref_primary_10_1021_acsanm_0c02452
crossref_primary_10_1016_j_optlastec_2021_107417
crossref_primary_10_1016_j_snb_2024_136176
crossref_primary_10_1515_nanoph_2021_0179
crossref_primary_10_3390_nano10122371
crossref_primary_10_1039_D3AN00171G
crossref_primary_10_1016_j_cap_2021_02_012
crossref_primary_10_1021_acsphotonics_4c00700
crossref_primary_10_1016_j_jallcom_2021_160837
crossref_primary_10_1364_OE_435662
crossref_primary_10_1364_OME_469588
crossref_primary_10_1021_acsami_3c08819
crossref_primary_10_1016_j_ceramint_2021_04_227
crossref_primary_10_1364_OE_481784
crossref_primary_10_1016_j_eti_2021_102033
crossref_primary_10_1016_j_flatc_2021_100282
crossref_primary_10_1364_AO_414750
crossref_primary_10_1364_OE_447107
crossref_primary_10_1364_AO_425645
crossref_primary_10_1016_j_ijleo_2022_169551
crossref_primary_10_1002_pssr_202000499
crossref_primary_10_1016_j_cej_2024_152316
crossref_primary_10_1007_s11468_021_01587_3
crossref_primary_10_1016_j_apsusc_2022_153746
crossref_primary_10_1039_D0TA08335F
crossref_primary_10_1021_acs_jpcc_2c08038
crossref_primary_10_1039_D1TC05009E
crossref_primary_10_1021_acsami_1c08233
crossref_primary_10_1364_OL_434468
crossref_primary_10_1016_j_apsusc_2020_148908
crossref_primary_10_1016_j_colsurfa_2021_126542
crossref_primary_10_1021_acs_analchem_1c03646
crossref_primary_10_1016_j_colsurfa_2021_126787
crossref_primary_10_3390_bios13080825
crossref_primary_10_1016_j_colsurfa_2021_126546
crossref_primary_10_1016_j_matchemphys_2021_125597
crossref_primary_10_1002_VIW_20240077
crossref_primary_10_1016_j_optmat_2023_114241
crossref_primary_10_1016_j_vacuum_2024_113320
crossref_primary_10_3390_nano14070566
crossref_primary_10_3390_photonics8100415
crossref_primary_10_1016_j_optcom_2023_129926
crossref_primary_10_1016_j_jsamd_2023_100584
crossref_primary_10_1364_OE_410603
crossref_primary_10_1021_acsanm_0c03048
crossref_primary_10_1039_D0TA10044G
crossref_primary_10_1016_j_saa_2023_122365
crossref_primary_10_1016_j_jallcom_2022_163789
crossref_primary_10_1016_j_apsusc_2020_148735
crossref_primary_10_1016_j_saa_2022_121373
crossref_primary_10_1016_j_matchemphys_2022_125823
crossref_primary_10_1016_j_snb_2021_130149
crossref_primary_10_3390_ma15207311
crossref_primary_10_1364_OE_418551
crossref_primary_10_1016_j_physe_2021_114696
crossref_primary_10_1016_j_saa_2021_120015
crossref_primary_10_1364_JOSAB_420129
crossref_primary_10_1021_acsami_1c24284
crossref_primary_10_3389_fmolb_2021_813007
Cites_doi 10.1364/OE.26.021546
10.1021/acs.nanolett.8b04104
10.1021/ja501951v
10.1002/ange.201106004
10.1039/C9NR07098B
10.1021/acs.nanolett.0c02683
10.1002/adma.201602603
10.1088/0022-3719/12/5/017
10.1039/C9TA06091J
10.1364/OE.26.021784
10.1126/science.275.5303.1102
10.1039/C8NR07141A
10.1039/C9NR06561J
10.1021/nl402278y
10.1021/acs.jpclett.9b01390
10.1103/PhysRevLett.93.137404
10.1016/j.snb.2017.11.080
10.1002/smll.201805516
10.1002/adma.201702893
10.1002/adma.201204283
10.1515/nanoph-2013-0040
10.1021/ac00050a717
10.1016/j.nanoen.2020.104579
10.1364/OE.26.023831
10.1063/5.0018854
10.1039/c0cc05311b
10.1364/OE.23.024811
10.1039/C7RA05568D
10.1002/adom.201800911
10.1021/jacs.5b01732
10.1021/acs.chemmater.9b01698
10.1039/C7NR09276H
10.1021/am5043092
10.1021/acsami.9b22725
10.1039/c3an36792d
10.1515/nanoph-2019-0124
10.1063/1.4923379
10.1002/advs.201900925
10.1364/OE.27.009879
10.1080/23746149.2016.1177469
10.1364/AO.54.000477
10.1038/lsa.2015.115
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1515/nanoph-2020-0454
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 4773
ExternalDocumentID oai_doaj_org_article_4cd99b98d20e4ff6b4aa4ff60f7c09d9
10_1515_nanoph_2020_0454
10_1515_nanoph_2020_04549164761
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2019M662423
– fundername: Shandong Province Higher Educational Science and Technology Program
  grantid: J18KZ011
– fundername: Taishan Scholars Program of Shandong Province
  grantid: tsqn201812104
– fundername: National Natural Science Foundation of China
  grantid: 11804200; 11974222; 11904214; 11774208
– fundername: Qingchuang Science and Technology Plan of Shandong Province
  grantid: 2019KJJ0142019KJJ017
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
SA.
AAYXX
CITATION
SLJYH
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c435t-958984af359f930c239a25696f5c3f7762f809c3879d9759d0a2f11b652157eb3
IEDL.DBID BENPR
ISSN 2192-8606
IngestDate Wed Aug 27 01:30:53 EDT 2025
Fri Jul 25 03:20:43 EDT 2025
Tue Jul 01 00:41:50 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Thu Jul 10 10:36:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-958984af359f930c239a25696f5c3f7762f809c3879d9759d0a2f11b652157eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3295-8980
OpenAccessLink https://www.proquest.com/docview/2458296259?pq-origsite=%requestingapplication%
PQID 2458296259
PQPubID 2038884
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4cd99b98d20e4ff6b4aa4ff60f7c09d9
proquest_journals_2458296259
crossref_citationtrail_10_1515_nanoph_2020_0454
crossref_primary_10_1515_nanoph_2020_0454
walterdegruyter_journals_10_1515_nanoph_2020_04549164761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2021020812491355656_j_nanoph-2020-0454_ref_006_w2aab3b7d295b1b6b1ab2b1b6Aa
2021020812491355656_j_nanoph-2020-0454_ref_040_w2aab3b7d295b1b6b1ab2b1c40Aa
2021020812491355656_j_nanoph-2020-0454_ref_031_w2aab3b7d295b1b6b1ab2b1c31Aa
2021020812491355656_j_nanoph-2020-0454_ref_036_w2aab3b7d295b1b6b1ab2b1c36Aa
2021020812491355656_j_nanoph-2020-0454_ref_021_w2aab3b7d295b1b6b1ab2b1c21Aa
2021020812491355656_j_nanoph-2020-0454_ref_026_w2aab3b7d295b1b6b1ab2b1c26Aa
2021020812491355656_j_nanoph-2020-0454_ref_030_w2aab3b7d295b1b6b1ab2b1c30Aa
2021020812491355656_j_nanoph-2020-0454_ref_012_w2aab3b7d295b1b6b1ab2b1c12Aa
2021020812491355656_j_nanoph-2020-0454_ref_017_w2aab3b7d295b1b6b1ab2b1c17Aa
2021020812491355656_j_nanoph-2020-0454_ref_011_w2aab3b7d295b1b6b1ab2b1c11Aa
2021020812491355656_j_nanoph-2020-0454_ref_016_w2aab3b7d295b1b6b1ab2b1c16Aa
2021020812491355656_j_nanoph-2020-0454_ref_035_w2aab3b7d295b1b6b1ab2b1c35Aa
2021020812491355656_j_nanoph-2020-0454_ref_007_w2aab3b7d295b1b6b1ab2b1b7Aa
2021020812491355656_j_nanoph-2020-0454_ref_034_w2aab3b7d295b1b6b1ab2b1c34Aa
2021020812491355656_j_nanoph-2020-0454_ref_039_w2aab3b7d295b1b6b1ab2b1c39Aa
2021020812491355656_j_nanoph-2020-0454_ref_004_w2aab3b7d295b1b6b1ab2b1b4Aa
2021020812491355656_j_nanoph-2020-0454_ref_020_w2aab3b7d295b1b6b1ab2b1c20Aa
2021020812491355656_j_nanoph-2020-0454_ref_025_w2aab3b7d295b1b6b1ab2b1c25Aa
2021020812491355656_j_nanoph-2020-0454_ref_024_w2aab3b7d295b1b6b1ab2b1c24Aa
2021020812491355656_j_nanoph-2020-0454_ref_029_w2aab3b7d295b1b6b1ab2b1c29Aa
2021020812491355656_j_nanoph-2020-0454_ref_008_w2aab3b7d295b1b6b1ab2b1b8Aa
2021020812491355656_j_nanoph-2020-0454_ref_010_w2aab3b7d295b1b6b1ab2b1c10Aa
2021020812491355656_j_nanoph-2020-0454_ref_015_w2aab3b7d295b1b6b1ab2b1c15Aa
2021020812491355656_j_nanoph-2020-0454_ref_042_w2aab3b7d295b1b6b1ab2b1c42Aa
2021020812491355656_j_nanoph-2020-0454_ref_014_w2aab3b7d295b1b6b1ab2b1c14Aa
2021020812491355656_j_nanoph-2020-0454_ref_019_w2aab3b7d295b1b6b1ab2b1c19Aa
2021020812491355656_j_nanoph-2020-0454_ref_033_w2aab3b7d295b1b6b1ab2b1c33Aa
2021020812491355656_j_nanoph-2020-0454_ref_038_w2aab3b7d295b1b6b1ab2b1c38Aa
2021020812491355656_j_nanoph-2020-0454_ref_003_w2aab3b7d295b1b6b1ab2b1b3Aa
2021020812491355656_j_nanoph-2020-0454_ref_005_w2aab3b7d295b1b6b1ab2b1b5Aa
2021020812491355656_j_nanoph-2020-0454_ref_032_w2aab3b7d295b1b6b1ab2b1c32Aa
2021020812491355656_j_nanoph-2020-0454_ref_037_w2aab3b7d295b1b6b1ab2b1c37Aa
2021020812491355656_j_nanoph-2020-0454_ref_023_w2aab3b7d295b1b6b1ab2b1c23Aa
2021020812491355656_j_nanoph-2020-0454_ref_028_w2aab3b7d295b1b6b1ab2b1c28Aa
2021020812491355656_j_nanoph-2020-0454_ref_018_w2aab3b7d295b1b6b1ab2b1c18Aa
2021020812491355656_j_nanoph-2020-0454_ref_002_w2aab3b7d295b1b6b1ab2b1b2Aa
2021020812491355656_j_nanoph-2020-0454_ref_009_w2aab3b7d295b1b6b1ab2b1b9Aa
2021020812491355656_j_nanoph-2020-0454_ref_022_w2aab3b7d295b1b6b1ab2b1c22Aa
2021020812491355656_j_nanoph-2020-0454_ref_027_w2aab3b7d295b1b6b1ab2b1c27Aa
cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.2
2021020812491355656_j_nanoph-2020-0454_ref_041_w2aab3b7d295b1b6b1ab2b1c41Aa
cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.1
2021020812491355656_j_nanoph-2020-0454_ref_013_w2aab3b7d295b1b6b1ab2b1c13Aa
References_xml – ident: 2021020812491355656_j_nanoph-2020-0454_ref_010_w2aab3b7d295b1b6b1ab2b1c10Aa
  doi: 10.1364/OE.26.021546
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_042_w2aab3b7d295b1b6b1ab2b1c42Aa
  doi: 10.1021/acs.nanolett.8b04104
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_008_w2aab3b7d295b1b6b1ab2b1b8Aa
  doi: 10.1021/ja501951v
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_019_w2aab3b7d295b1b6b1ab2b1c19Aa
  doi: 10.1002/ange.201106004
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_038_w2aab3b7d295b1b6b1ab2b1c38Aa
  doi: 10.1039/C9NR07098B
– ident: #cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.1
  doi: 10.1021/acs.nanolett.0c02683
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_007_w2aab3b7d295b1b6b1ab2b1b7Aa
  doi: 10.1002/adma.201602603
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_024_w2aab3b7d295b1b6b1ab2b1c24Aa
  doi: 10.1088/0022-3719/12/5/017
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_031_w2aab3b7d295b1b6b1ab2b1c31Aa
  doi: 10.1039/C9TA06091J
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_033_w2aab3b7d295b1b6b1ab2b1c33Aa
  doi: 10.1364/OE.26.021784
– ident: #cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.2
  doi: 10.1021/acs.nanolett.0c02683
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_035_w2aab3b7d295b1b6b1ab2b1c35Aa
  doi: 10.1126/science.275.5303.1102
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_040_w2aab3b7d295b1b6b1ab2b1c40Aa
  doi: 10.1039/C8NR07141A
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_016_w2aab3b7d295b1b6b1ab2b1c16Aa
  doi: 10.1039/C9NR06561J
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_030_w2aab3b7d295b1b6b1ab2b1c30Aa
  doi: 10.1021/nl402278y
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_017_w2aab3b7d295b1b6b1ab2b1c17Aa
  doi: 10.1021/acs.jpclett.9b01390
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_041_w2aab3b7d295b1b6b1ab2b1c41Aa
  doi: 10.1103/PhysRevLett.93.137404
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_034_w2aab3b7d295b1b6b1ab2b1c34Aa
  doi: 10.1016/j.snb.2017.11.080
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_009_w2aab3b7d295b1b6b1ab2b1b9Aa
  doi: 10.1002/smll.201805516
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_002_w2aab3b7d295b1b6b1ab2b1b2Aa
  doi: 10.1002/adma.201702893
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_015_w2aab3b7d295b1b6b1ab2b1c15Aa
  doi: 10.1002/adma.201204283
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_004_w2aab3b7d295b1b6b1ab2b1b4Aa
  doi: 10.1515/nanoph-2013-0040
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_003_w2aab3b7d295b1b6b1ab2b1b3Aa
  doi: 10.1021/ac00050a717
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_028_w2aab3b7d295b1b6b1ab2b1c28Aa
  doi: 10.1016/j.nanoen.2020.104579
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_021_w2aab3b7d295b1b6b1ab2b1c21Aa
  doi: 10.1364/OE.26.023831
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_032_w2aab3b7d295b1b6b1ab2b1c32Aa
  doi: 10.1063/5.0018854
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_013_w2aab3b7d295b1b6b1ab2b1c13Aa
  doi: 10.1039/c0cc05311b
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_023_w2aab3b7d295b1b6b1ab2b1c23Aa
  doi: 10.1364/OE.23.024811
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_037_w2aab3b7d295b1b6b1ab2b1c37Aa
  doi: 10.1039/C7RA05568D
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_022_w2aab3b7d295b1b6b1ab2b1c22Aa
  doi: 10.1002/adom.201800911
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_029_w2aab3b7d295b1b6b1ab2b1c29Aa
  doi: 10.1021/jacs.5b01732
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_020_w2aab3b7d295b1b6b1ab2b1c20Aa
  doi: 10.1021/acs.chemmater.9b01698
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_011_w2aab3b7d295b1b6b1ab2b1c11Aa
  doi: 10.1039/C7NR09276H
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_018_w2aab3b7d295b1b6b1ab2b1c18Aa
  doi: 10.1021/am5043092
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_027_w2aab3b7d295b1b6b1ab2b1c27Aa
  doi: 10.1021/acsami.9b22725
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_014_w2aab3b7d295b1b6b1ab2b1c14Aa
  doi: 10.1039/c3an36792d
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_036_w2aab3b7d295b1b6b1ab2b1c36Aa
  doi: 10.1515/nanoph-2019-0124
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_026_w2aab3b7d295b1b6b1ab2b1c26Aa
  doi: 10.1063/1.4923379
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_006_w2aab3b7d295b1b6b1ab2b1b6Aa
  doi: 10.1002/advs.201900925
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_005_w2aab3b7d295b1b6b1ab2b1b5Aa
  doi: 10.1364/OE.27.009879
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_039_w2aab3b7d295b1b6b1ab2b1c39Aa
  doi: 10.1080/23746149.2016.1177469
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_025_w2aab3b7d295b1b6b1ab2b1c25Aa
  doi: 10.1364/AO.54.000477
– ident: 2021020812491355656_j_nanoph-2020-0454_ref_012_w2aab3b7d295b1b6b1ab2b1c12Aa
  doi: 10.1038/lsa.2015.115
SSID ssj0000993196
Score 2.5196278
Snippet Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4761
SubjectTerms Adenosine triphosphate
Cleaning
Electromagnetic absorption
Electromagnetic fields
Electron transfer
Environmental monitoring
Finite difference method
Gold
Heterostructures
Holes
hydrophobic
Hydrophobicity
Molybdenum disulfide
multiscale cavities
Nanoparticles
Photodegradation
Plasmonics
Pollutants
Pollution monitoring
Raman spectroscopy
Rhodamine 6G
self-cleaning
SERS sensing
Spectrum analysis
Substrates
Synergistic effect
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlygpUVsC8iHHuBgrTeJE_sICLRCag88JG7WxA-gQtnVZrfV_ntmnCwvifbSU6TITizPJPONZ-Ybxr6XVMnjohQAYERRVSDAu1roAEpLr0dSUnHyj5_l-Lo4v1E3L1p9UU5YRw_cbdywcN6Y2mifyVDEWNYFAF1lrJw0PpXuoc174Uz96nAP6RZ1lkMIIzTC9D5GifZ72EAzmd6hgmSU2qiKVzYpUfe_wpsbf1Lk2ofb2WI5X0VKkwE6-8g2euTIj7oVf2IfQrPFNnsUyftvtP3MluOln-GLJ_W94ylfsEU5BO7gd2JP5QhTObEUi-lz0QCHxvM2PESBzwY6K-HtYhbBBRGau5QlwC8Ah_JUmkkUmJPpkh9cnl5cHuLEho4cvrDrs9Ork7HoGywIhyhpLozSRhcQc2WiyaXLcgMIgUwZlctjhf_JqKVxua5woytlvIQsjkZ1iTZfVeiGb7O1ZtKEHcahqHVZGiejyslFgypmUWaQOecRMcKADVdbbF3PPk5NMB4seSEoFNsJxZJQLAllwA6fZkw75o2_jD0mqT2NI87sdAM1yfaaZP-lSQO2u5K57T_k1mYUVzTkJA6YfqMHz6PeW5chtrZy9PV_LO8bW08Km-ogd9nafLYIewiI5vV-0v1HgpUKAg
  priority: 102
  providerName: Directory of Open Access Journals
Title Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing
URI https://www.degruyter.com/doi/10.1515/nanoph-2020-0454
https://www.proquest.com/docview/2458296259
https://doaj.org/article/4cd99b98d20e4ff6b4aa4ff60f7c09d9
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoeuFS3iJQIh840IMVZ5_2CVGUECFRoZRKva1m_WiRqt0lm4Dy75lxnERFoqeVVrb3MeOZz_Nk7H1BmTzGSwEAWmRlCQKsqYVykCtp1URKSk7-dlHMr7Kv1_l1NLj1MaxyJxODoLatIRv5OCEHjya0_rH7JahrFHlXYwuNI3aMIlipATs-n158X-ytLIh_iMeowxxCGaEQrkdfJerxcQNN290ioyQU4phn93RTKOF_D3ee_AkebOtuluvNaucxDYpo9pSdRATJP21J_ow9cs1z9iSiSR73av-CbeYbu8QHt_VPw0PcYI_0cNzA71BFlSNc5VStWHSH5AEOjeW9u_MC1waymfB-vfRgnHDNbYgW4AvAoTykaFIpzLbb8A-X08XlGU5syPTwkl3Npj8-z0VstCAMoqWV0LnSKgOf5trrVJok1YBQSBc-N6kvUV56JbVJVamtLnNtJSR-MqkL1P15icfxV2zQtI17zThktSoKbaTPUzqqQekTLxNIjLGIHGHIxrtfXJlYhZyaYdxVdBpBolRbolRElIqIMmRn-xndtgLHA2PPiWr7cVQ7O9xolzdV3IpVZqzWtVY2kS7zvqgzALpKXxqJHzhkpzuaV3FD99WB_YZM_cMHh1H_ey9NVduKyZuHV37LHgdWDJmOp2ywWq7dO4Q8q3rEjtTsyyhy9ygYDv4Cq8kDeQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoBLeYtAgT2ARA-rbPzcPVSIR0NKH4c-pN7MeB8tUmWHOGmVP8VvZGZjJyoSvfVkyVqvH9945pudnRnG3meUyWO8FACgRZLnIMCaUigHqZJWDaSk5OSDw2x0mvw4S8_W2J8uF4a2VXY6MShqWxtaI-9HFODRxNY_jX8L6hpF0dWuhcZCLPbc_BpdtmZ79xvi-yGKhjsnX0ei7SogDFKDqdCp0ioBH6fa61iaKNaAdl9nPjWxz1E5eCW1iVWurc5TbSVEfjAoMzR0aY6-J857j91PYrTklJk-_L5c00G2RRJN_eyQOAmFzkEbGUXW0K-gqscXKJYRbahMkxuWMDQMuMFyN65DvNy688lsPu3is8HsDR-zjZav8s8LAXvC1lz1lD1quStvNUPzjM1HczvBG9flL8PDLsUG0XfcwFWo2cqRHHOqjSzGq1QFDpXljbv0AucGWqHhzWziwTjhqouwN4EfAQ7lISGUCm_W4zn_eLxzdLyFF1a00PGcnd4JAC_YelVX7iXjkJQqy7SRPo3JMYTcR15GEBljkadCj_W7T1yYtuY5td64LMj3QVCKBSgFgVIQKD22tbxivKj3ccvYL4TachxV6g4n6sl50f74RWKs1qVWNpIu8T4rEwA6Sp8biS_YY5sd5kWrPppiJew9pv6Rg9Wo_z2Xphpx2eDV7TO_Yw9GJwf7xf7u4d5r9jCIZcix3GTr08nMvUGyNS3fBgnn7Odd_1J_Ac5uOqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcWp5iaQEfQKIHa7152gcOhXbZUiioS6XewsSPFqlKVsku1f4u_iAz2WxKEXBA6ilSZOf1TTzf2DOfGXuRUCWP8VIAgBZRmoIAa3KhHMRKWjWUkoqTPx4l45Po_Wl8usZ-rGphKK3SurNqvpgtFVIHtjRzmijrtAbQAw8KKMrpOUIcUHJiHA2m1reZlYducYlxW_36YA9BfhkEo_0vb8ei3VpAGOQHM6FjpVUEPoy116E0QagBnb9OfGxCn-II4ZXUJlSptjqNtZUQ-OEwT9DbxSkGoHjdW2w9SXQY99j67vjd5FM3tYOkiwybtrVD_iQUxgjtAumfHv2aQ2z2DbhGdjcum2Xz7pv84v1Gd9lGS1v57tLO7rE1V9xnmy2F5e0AUT9gi_HCVnjjMv9meJOsWKMROG7geyPdypEjc5JIFtOrigUOheW1u_ACrw00UcPreeXBOOGK8yZFgR8DNuVNXSjpb5bTBX812T-e7GDHguY7HrKTG4HgEesVZeEeMw5RrhAKI30cUnwIqQ-8DCAwxiJdhT4brD5xZlrpc9qB4yKjEAhByZagZARKRqD02U7XY7qU_fhH2zeEWteOBLubE2V1lrX_fxYZq3WulQ2ki7xP8giAjtKnRuIL9tn2CvOsHUXqLKBFTU0Rap-p3-zgqtXfnkuTVFwyfPL_XZ-z25_3RtmHg6PDLXansdimCnOb9WbV3D1FOjbLn7Xmz9nXm_7jfgJi9ETe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+multiscale+cavities+for+high-performance+and+self-cleaning+surface-enhanced+Raman+spectroscopy+%28SERS%29+sensing&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Zhao%2C+Xiaofei&rft.au=Liu%2C+Chundong&rft.au=Yu%2C+Jing&rft.au=Li%2C+Zhen&rft.date=2020-11-01&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=9&rft.issue=16&rft.spage=4761&rft.epage=4773&rft_id=info:doi/10.1515%2Fnanoph-2020-0454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2020_0454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon