Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing
Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs)...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 9; no. 16; pp. 4761 - 4773 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.11.2020
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS
) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS
/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS
/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS
/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation. |
---|---|
AbstractList | Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS
2
) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS
2
/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS
2
/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS
2
/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation. Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS2) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS2/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS2/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS2/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation. Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS ) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS /Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS /AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS /AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation. Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS2) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS2/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS2/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS2/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation. |
Author | Li, Zhen Yu, Jing Xu, Shicai Zhang, Chao Zhao, Xiaofei Li, Chonghui Liu, Chundong Liu, Lu Li, Weifeng Man, Baoyuan |
Author_xml | – sequence: 1 givenname: Xiaofei surname: Zhao fullname: Zhao, Xiaofei organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China – sequence: 2 givenname: Chundong surname: Liu fullname: Liu, Chundong organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China – sequence: 3 givenname: Jing surname: Yu fullname: Yu, Jing organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China – sequence: 4 givenname: Zhen surname: Li fullname: Li, Zhen organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China – sequence: 5 givenname: Lu surname: Liu fullname: Liu, Lu organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China – sequence: 6 givenname: Chonghui surname: Li fullname: Li, Chonghui organization: Institute for Integrative Nanosciences, IFW Dresden, Dresden, 01069, Germany – sequence: 7 givenname: Shicai surname: Xu fullname: Xu, Shicai organization: College of Physics and Electronic Information, Dezhou University, Dezhou253023, P.R. China – sequence: 8 givenname: Weifeng surname: Li fullname: Li, Weifeng organization: School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China – sequence: 9 givenname: Baoyuan surname: Man fullname: Man, Baoyuan email: byman@sdnu.edu.cn organization: Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, School of Physics and Electronics, Shandong Normal University, Jinan250014, P.R. China – sequence: 10 givenname: Chao orcidid: 0000-0002-3295-8980 surname: Zhang fullname: Zhang, Chao email: czsdnu@126.com organization: Institute of Materials and Clean Energy, Shandong Normal University, Jinan250014, P.R. China |
BookMark | eNp9kc2L1TAUxYuM4DjO3mXAjS6qSZqkzUpkGJ2BgYH5WIfbNHkvj76kJqnS_97U-gGCk829hPM7nMt5WZ344E1VvSb4PeGEf_Dgw7SvKaa4xoyzZ9UpJZLWnSDs5M-OxYvqPKUDLk_KhkhxWi1XyxALG3qn0XEes0saRoM0fHPZmYRsiGjvdvt6MrHsR_DaIPADSma0tR4NeOd3KM3Rgja18ftVMaA7KFKUJqNzDEmHaUFv7y_v7t8V0KeCvKqeWxiTOf81z6rHz5cPF1f1ze2X64tPN7VmDc-15J3sGNiGSysbrGkjgXIhheW6sW0rqO2w1E3XykG2XA4YqCWkF5wS3pq-OauuN98hwEFN0R0hLiqAUz8_QtwpiNmVSxTTg5S97AaKDbNW9Axgndi2Ghf74vVm85pi-DqblNUhzNGX-Ioy3lEpKF9VYlPpcnmKxirtMmQXfI7gRkWwWltTW2tqbU2trRUQ_wP-jvsE8nFDvsOYTRzMLs5LWf4G-x8qiWCtIM0P96azkg |
CitedBy_id | crossref_primary_10_1021_acsanm_3c05750 crossref_primary_10_1016_j_jallcom_2022_165813 crossref_primary_10_1515_nanoph_2020_0644 crossref_primary_10_1021_acsanm_4c01641 crossref_primary_10_1155_2024_6637846 crossref_primary_10_1016_j_optmat_2022_111994 crossref_primary_10_1088_1742_6596_2011_1_012055 crossref_primary_10_1364_OE_441176 crossref_primary_10_1364_OME_439069 crossref_primary_10_1364_OL_415733 crossref_primary_10_1021_acsami_1c00702 crossref_primary_10_1364_OE_419133 crossref_primary_10_1021_acssensors_1c00166 crossref_primary_10_1016_j_sna_2022_113932 crossref_primary_10_1021_acs_iecr_1c04048 crossref_primary_10_1016_j_carbon_2021_12_055 crossref_primary_10_1016_j_optcom_2021_126994 crossref_primary_10_1016_j_snb_2025_137588 crossref_primary_10_1016_j_nanoso_2021_100748 crossref_primary_10_1364_OL_418602 crossref_primary_10_1016_j_apsusc_2021_151811 crossref_primary_10_3390_coatings12030360 crossref_primary_10_1016_j_jallcom_2021_163345 crossref_primary_10_1515_nanoph_2021_0381 crossref_primary_10_1021_acsami_1c08712 crossref_primary_10_3390_ma15155197 crossref_primary_10_1016_j_jmrt_2021_03_103 crossref_primary_10_1016_j_vibspec_2021_103293 crossref_primary_10_1364_OE_421217 crossref_primary_10_1088_1402_4896_ad49dd crossref_primary_10_1149_2162_8777_ac80d2 crossref_primary_10_1021_acsanm_3c04652 crossref_primary_10_1007_s12274_024_6427_6 crossref_primary_10_1021_acsomega_1c04536 crossref_primary_10_1364_OE_472520 crossref_primary_10_3390_nano12030401 crossref_primary_10_1016_j_jmat_2020_12_006 crossref_primary_10_1016_j_colsurfa_2025_136511 crossref_primary_10_1021_acs_analchem_3c01282 crossref_primary_10_1002_adsr_202400155 crossref_primary_10_1016_j_snb_2023_135218 crossref_primary_10_1002_mop_32971 crossref_primary_10_1016_j_physe_2021_115080 crossref_primary_10_1116_6_0002589 crossref_primary_10_2147_IJN_S303130 crossref_primary_10_1016_j_heliyon_2024_e30499 crossref_primary_10_1016_j_optcom_2021_126863 crossref_primary_10_1016_j_optcom_2021_127797 crossref_primary_10_1016_j_apsusc_2022_153383 crossref_primary_10_1039_D1TC01351C crossref_primary_10_1063_5_0042808 crossref_primary_10_3788_PI_2023_R04 crossref_primary_10_1364_AO_411974 crossref_primary_10_1016_j_optcom_2022_128830 crossref_primary_10_1186_s12951_022_01481_y crossref_primary_10_1515_nanoph_2022_0194 crossref_primary_10_3390_nano12060896 crossref_primary_10_1515_nanoph_2021_0476 crossref_primary_10_1016_j_optmat_2021_111536 crossref_primary_10_1364_OE_435627 crossref_primary_10_1364_OME_424275 crossref_primary_10_1016_j_snb_2021_131025 crossref_primary_10_3390_nano11123196 crossref_primary_10_1021_acs_jpclett_3c02379 crossref_primary_10_3390_nano13091518 crossref_primary_10_1364_AO_433239 crossref_primary_10_1021_acsami_4c22399 crossref_primary_10_1021_acsanm_4c07135 crossref_primary_10_1364_OE_448656 crossref_primary_10_1016_j_talanta_2021_122819 crossref_primary_10_1016_j_jece_2023_109437 crossref_primary_10_1016_j_vibspec_2021_103312 crossref_primary_10_1016_j_vibspec_2021_103311 crossref_primary_10_1016_j_jallcom_2023_169063 crossref_primary_10_1016_j_optcom_2024_130954 crossref_primary_10_1364_OME_423992 crossref_primary_10_1016_j_ceramint_2020_12_294 crossref_primary_10_1364_OL_430044 crossref_primary_10_1016_j_vibspec_2021_103319 crossref_primary_10_1002_smll_202412467 crossref_primary_10_1088_1674_1056_abea88 crossref_primary_10_2139_ssrn_4189356 crossref_primary_10_1364_OE_443835 crossref_primary_10_1016_j_ccr_2023_215349 crossref_primary_10_3390_nano12071202 crossref_primary_10_1364_PRJ_421415 crossref_primary_10_1016_j_optlastec_2023_109394 crossref_primary_10_1002_admi_202102468 crossref_primary_10_1364_OE_419051 crossref_primary_10_1016_j_surfcoat_2022_128323 crossref_primary_10_1021_acsanm_0c02452 crossref_primary_10_1016_j_optlastec_2021_107417 crossref_primary_10_1016_j_snb_2024_136176 crossref_primary_10_1515_nanoph_2021_0179 crossref_primary_10_3390_nano10122371 crossref_primary_10_1039_D3AN00171G crossref_primary_10_1016_j_cap_2021_02_012 crossref_primary_10_1021_acsphotonics_4c00700 crossref_primary_10_1016_j_jallcom_2021_160837 crossref_primary_10_1364_OE_435662 crossref_primary_10_1364_OME_469588 crossref_primary_10_1021_acsami_3c08819 crossref_primary_10_1016_j_ceramint_2021_04_227 crossref_primary_10_1364_OE_481784 crossref_primary_10_1016_j_eti_2021_102033 crossref_primary_10_1016_j_flatc_2021_100282 crossref_primary_10_1364_AO_414750 crossref_primary_10_1364_OE_447107 crossref_primary_10_1364_AO_425645 crossref_primary_10_1016_j_ijleo_2022_169551 crossref_primary_10_1002_pssr_202000499 crossref_primary_10_1016_j_cej_2024_152316 crossref_primary_10_1007_s11468_021_01587_3 crossref_primary_10_1016_j_apsusc_2022_153746 crossref_primary_10_1039_D0TA08335F crossref_primary_10_1021_acs_jpcc_2c08038 crossref_primary_10_1039_D1TC05009E crossref_primary_10_1021_acsami_1c08233 crossref_primary_10_1364_OL_434468 crossref_primary_10_1016_j_apsusc_2020_148908 crossref_primary_10_1016_j_colsurfa_2021_126542 crossref_primary_10_1021_acs_analchem_1c03646 crossref_primary_10_1016_j_colsurfa_2021_126787 crossref_primary_10_3390_bios13080825 crossref_primary_10_1016_j_colsurfa_2021_126546 crossref_primary_10_1016_j_matchemphys_2021_125597 crossref_primary_10_1002_VIW_20240077 crossref_primary_10_1016_j_optmat_2023_114241 crossref_primary_10_1016_j_vacuum_2024_113320 crossref_primary_10_3390_nano14070566 crossref_primary_10_3390_photonics8100415 crossref_primary_10_1016_j_optcom_2023_129926 crossref_primary_10_1016_j_jsamd_2023_100584 crossref_primary_10_1364_OE_410603 crossref_primary_10_1021_acsanm_0c03048 crossref_primary_10_1039_D0TA10044G crossref_primary_10_1016_j_saa_2023_122365 crossref_primary_10_1016_j_jallcom_2022_163789 crossref_primary_10_1016_j_apsusc_2020_148735 crossref_primary_10_1016_j_saa_2022_121373 crossref_primary_10_1016_j_matchemphys_2022_125823 crossref_primary_10_1016_j_snb_2021_130149 crossref_primary_10_3390_ma15207311 crossref_primary_10_1364_OE_418551 crossref_primary_10_1016_j_physe_2021_114696 crossref_primary_10_1016_j_saa_2021_120015 crossref_primary_10_1364_JOSAB_420129 crossref_primary_10_1021_acsami_1c24284 crossref_primary_10_3389_fmolb_2021_813007 |
Cites_doi | 10.1364/OE.26.021546 10.1021/acs.nanolett.8b04104 10.1021/ja501951v 10.1002/ange.201106004 10.1039/C9NR07098B 10.1021/acs.nanolett.0c02683 10.1002/adma.201602603 10.1088/0022-3719/12/5/017 10.1039/C9TA06091J 10.1364/OE.26.021784 10.1126/science.275.5303.1102 10.1039/C8NR07141A 10.1039/C9NR06561J 10.1021/nl402278y 10.1021/acs.jpclett.9b01390 10.1103/PhysRevLett.93.137404 10.1016/j.snb.2017.11.080 10.1002/smll.201805516 10.1002/adma.201702893 10.1002/adma.201204283 10.1515/nanoph-2013-0040 10.1021/ac00050a717 10.1016/j.nanoen.2020.104579 10.1364/OE.26.023831 10.1063/5.0018854 10.1039/c0cc05311b 10.1364/OE.23.024811 10.1039/C7RA05568D 10.1002/adom.201800911 10.1021/jacs.5b01732 10.1021/acs.chemmater.9b01698 10.1039/C7NR09276H 10.1021/am5043092 10.1021/acsami.9b22725 10.1039/c3an36792d 10.1515/nanoph-2019-0124 10.1063/1.4923379 10.1002/advs.201900925 10.1364/OE.27.009879 10.1080/23746149.2016.1177469 10.1364/AO.54.000477 10.1038/lsa.2015.115 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1515/nanoph-2020-0454 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 4773 |
ExternalDocumentID | oai_doaj_org_article_4cd99b98d20e4ff6b4aa4ff60f7c09d9 10_1515_nanoph_2020_0454 10_1515_nanoph_2020_04549164761 |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2019M662423 – fundername: Shandong Province Higher Educational Science and Technology Program grantid: J18KZ011 – fundername: Taishan Scholars Program of Shandong Province grantid: tsqn201812104 – fundername: National Natural Science Foundation of China grantid: 11804200; 11974222; 11904214; 11774208 – fundername: Qingchuang Science and Technology Plan of Shandong Province grantid: 2019KJJ0142019KJJ017 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 SA. AAYXX CITATION SLJYH 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c435t-958984af359f930c239a25696f5c3f7762f809c3879d9759d0a2f11b652157eb3 |
IEDL.DBID | BENPR |
ISSN | 2192-8606 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Fri Jul 25 03:20:43 EDT 2025 Tue Jul 01 00:41:50 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Thu Jul 10 10:36:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-958984af359f930c239a25696f5c3f7762f809c3879d9759d0a2f11b652157eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3295-8980 |
OpenAccessLink | https://www.proquest.com/docview/2458296259?pq-origsite=%requestingapplication% |
PQID | 2458296259 |
PQPubID | 2038884 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cd99b98d20e4ff6b4aa4ff60f7c09d9 proquest_journals_2458296259 crossref_citationtrail_10_1515_nanoph_2020_0454 crossref_primary_10_1515_nanoph_2020_0454 walterdegruyter_journals_10_1515_nanoph_2020_04549164761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationYear | 2020 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2021020812491355656_j_nanoph-2020-0454_ref_006_w2aab3b7d295b1b6b1ab2b1b6Aa 2021020812491355656_j_nanoph-2020-0454_ref_040_w2aab3b7d295b1b6b1ab2b1c40Aa 2021020812491355656_j_nanoph-2020-0454_ref_031_w2aab3b7d295b1b6b1ab2b1c31Aa 2021020812491355656_j_nanoph-2020-0454_ref_036_w2aab3b7d295b1b6b1ab2b1c36Aa 2021020812491355656_j_nanoph-2020-0454_ref_021_w2aab3b7d295b1b6b1ab2b1c21Aa 2021020812491355656_j_nanoph-2020-0454_ref_026_w2aab3b7d295b1b6b1ab2b1c26Aa 2021020812491355656_j_nanoph-2020-0454_ref_030_w2aab3b7d295b1b6b1ab2b1c30Aa 2021020812491355656_j_nanoph-2020-0454_ref_012_w2aab3b7d295b1b6b1ab2b1c12Aa 2021020812491355656_j_nanoph-2020-0454_ref_017_w2aab3b7d295b1b6b1ab2b1c17Aa 2021020812491355656_j_nanoph-2020-0454_ref_011_w2aab3b7d295b1b6b1ab2b1c11Aa 2021020812491355656_j_nanoph-2020-0454_ref_016_w2aab3b7d295b1b6b1ab2b1c16Aa 2021020812491355656_j_nanoph-2020-0454_ref_035_w2aab3b7d295b1b6b1ab2b1c35Aa 2021020812491355656_j_nanoph-2020-0454_ref_007_w2aab3b7d295b1b6b1ab2b1b7Aa 2021020812491355656_j_nanoph-2020-0454_ref_034_w2aab3b7d295b1b6b1ab2b1c34Aa 2021020812491355656_j_nanoph-2020-0454_ref_039_w2aab3b7d295b1b6b1ab2b1c39Aa 2021020812491355656_j_nanoph-2020-0454_ref_004_w2aab3b7d295b1b6b1ab2b1b4Aa 2021020812491355656_j_nanoph-2020-0454_ref_020_w2aab3b7d295b1b6b1ab2b1c20Aa 2021020812491355656_j_nanoph-2020-0454_ref_025_w2aab3b7d295b1b6b1ab2b1c25Aa 2021020812491355656_j_nanoph-2020-0454_ref_024_w2aab3b7d295b1b6b1ab2b1c24Aa 2021020812491355656_j_nanoph-2020-0454_ref_029_w2aab3b7d295b1b6b1ab2b1c29Aa 2021020812491355656_j_nanoph-2020-0454_ref_008_w2aab3b7d295b1b6b1ab2b1b8Aa 2021020812491355656_j_nanoph-2020-0454_ref_010_w2aab3b7d295b1b6b1ab2b1c10Aa 2021020812491355656_j_nanoph-2020-0454_ref_015_w2aab3b7d295b1b6b1ab2b1c15Aa 2021020812491355656_j_nanoph-2020-0454_ref_042_w2aab3b7d295b1b6b1ab2b1c42Aa 2021020812491355656_j_nanoph-2020-0454_ref_014_w2aab3b7d295b1b6b1ab2b1c14Aa 2021020812491355656_j_nanoph-2020-0454_ref_019_w2aab3b7d295b1b6b1ab2b1c19Aa 2021020812491355656_j_nanoph-2020-0454_ref_033_w2aab3b7d295b1b6b1ab2b1c33Aa 2021020812491355656_j_nanoph-2020-0454_ref_038_w2aab3b7d295b1b6b1ab2b1c38Aa 2021020812491355656_j_nanoph-2020-0454_ref_003_w2aab3b7d295b1b6b1ab2b1b3Aa 2021020812491355656_j_nanoph-2020-0454_ref_005_w2aab3b7d295b1b6b1ab2b1b5Aa 2021020812491355656_j_nanoph-2020-0454_ref_032_w2aab3b7d295b1b6b1ab2b1c32Aa 2021020812491355656_j_nanoph-2020-0454_ref_037_w2aab3b7d295b1b6b1ab2b1c37Aa 2021020812491355656_j_nanoph-2020-0454_ref_023_w2aab3b7d295b1b6b1ab2b1c23Aa 2021020812491355656_j_nanoph-2020-0454_ref_028_w2aab3b7d295b1b6b1ab2b1c28Aa 2021020812491355656_j_nanoph-2020-0454_ref_018_w2aab3b7d295b1b6b1ab2b1c18Aa 2021020812491355656_j_nanoph-2020-0454_ref_002_w2aab3b7d295b1b6b1ab2b1b2Aa 2021020812491355656_j_nanoph-2020-0454_ref_009_w2aab3b7d295b1b6b1ab2b1b9Aa 2021020812491355656_j_nanoph-2020-0454_ref_022_w2aab3b7d295b1b6b1ab2b1c22Aa 2021020812491355656_j_nanoph-2020-0454_ref_027_w2aab3b7d295b1b6b1ab2b1c27Aa cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.2 2021020812491355656_j_nanoph-2020-0454_ref_041_w2aab3b7d295b1b6b1ab2b1c41Aa cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.1 2021020812491355656_j_nanoph-2020-0454_ref_013_w2aab3b7d295b1b6b1ab2b1c13Aa |
References_xml | – ident: 2021020812491355656_j_nanoph-2020-0454_ref_010_w2aab3b7d295b1b6b1ab2b1c10Aa doi: 10.1364/OE.26.021546 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_042_w2aab3b7d295b1b6b1ab2b1c42Aa doi: 10.1021/acs.nanolett.8b04104 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_008_w2aab3b7d295b1b6b1ab2b1b8Aa doi: 10.1021/ja501951v – ident: 2021020812491355656_j_nanoph-2020-0454_ref_019_w2aab3b7d295b1b6b1ab2b1c19Aa doi: 10.1002/ange.201106004 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_038_w2aab3b7d295b1b6b1ab2b1c38Aa doi: 10.1039/C9NR07098B – ident: #cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.1 doi: 10.1021/acs.nanolett.0c02683 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_007_w2aab3b7d295b1b6b1ab2b1b7Aa doi: 10.1002/adma.201602603 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_024_w2aab3b7d295b1b6b1ab2b1c24Aa doi: 10.1088/0022-3719/12/5/017 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_031_w2aab3b7d295b1b6b1ab2b1c31Aa doi: 10.1039/C9TA06091J – ident: 2021020812491355656_j_nanoph-2020-0454_ref_033_w2aab3b7d295b1b6b1ab2b1c33Aa doi: 10.1364/OE.26.021784 – ident: #cr-split#-2021020812491355656_j_nanoph-2020-0454_ref_001_w2aab3b7d295b1b6b1ab2b1b1Aa.2 doi: 10.1021/acs.nanolett.0c02683 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_035_w2aab3b7d295b1b6b1ab2b1c35Aa doi: 10.1126/science.275.5303.1102 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_040_w2aab3b7d295b1b6b1ab2b1c40Aa doi: 10.1039/C8NR07141A – ident: 2021020812491355656_j_nanoph-2020-0454_ref_016_w2aab3b7d295b1b6b1ab2b1c16Aa doi: 10.1039/C9NR06561J – ident: 2021020812491355656_j_nanoph-2020-0454_ref_030_w2aab3b7d295b1b6b1ab2b1c30Aa doi: 10.1021/nl402278y – ident: 2021020812491355656_j_nanoph-2020-0454_ref_017_w2aab3b7d295b1b6b1ab2b1c17Aa doi: 10.1021/acs.jpclett.9b01390 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_041_w2aab3b7d295b1b6b1ab2b1c41Aa doi: 10.1103/PhysRevLett.93.137404 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_034_w2aab3b7d295b1b6b1ab2b1c34Aa doi: 10.1016/j.snb.2017.11.080 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_009_w2aab3b7d295b1b6b1ab2b1b9Aa doi: 10.1002/smll.201805516 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_002_w2aab3b7d295b1b6b1ab2b1b2Aa doi: 10.1002/adma.201702893 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_015_w2aab3b7d295b1b6b1ab2b1c15Aa doi: 10.1002/adma.201204283 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_004_w2aab3b7d295b1b6b1ab2b1b4Aa doi: 10.1515/nanoph-2013-0040 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_003_w2aab3b7d295b1b6b1ab2b1b3Aa doi: 10.1021/ac00050a717 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_028_w2aab3b7d295b1b6b1ab2b1c28Aa doi: 10.1016/j.nanoen.2020.104579 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_021_w2aab3b7d295b1b6b1ab2b1c21Aa doi: 10.1364/OE.26.023831 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_032_w2aab3b7d295b1b6b1ab2b1c32Aa doi: 10.1063/5.0018854 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_013_w2aab3b7d295b1b6b1ab2b1c13Aa doi: 10.1039/c0cc05311b – ident: 2021020812491355656_j_nanoph-2020-0454_ref_023_w2aab3b7d295b1b6b1ab2b1c23Aa doi: 10.1364/OE.23.024811 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_037_w2aab3b7d295b1b6b1ab2b1c37Aa doi: 10.1039/C7RA05568D – ident: 2021020812491355656_j_nanoph-2020-0454_ref_022_w2aab3b7d295b1b6b1ab2b1c22Aa doi: 10.1002/adom.201800911 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_029_w2aab3b7d295b1b6b1ab2b1c29Aa doi: 10.1021/jacs.5b01732 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_020_w2aab3b7d295b1b6b1ab2b1c20Aa doi: 10.1021/acs.chemmater.9b01698 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_011_w2aab3b7d295b1b6b1ab2b1c11Aa doi: 10.1039/C7NR09276H – ident: 2021020812491355656_j_nanoph-2020-0454_ref_018_w2aab3b7d295b1b6b1ab2b1c18Aa doi: 10.1021/am5043092 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_027_w2aab3b7d295b1b6b1ab2b1c27Aa doi: 10.1021/acsami.9b22725 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_014_w2aab3b7d295b1b6b1ab2b1c14Aa doi: 10.1039/c3an36792d – ident: 2021020812491355656_j_nanoph-2020-0454_ref_036_w2aab3b7d295b1b6b1ab2b1c36Aa doi: 10.1515/nanoph-2019-0124 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_026_w2aab3b7d295b1b6b1ab2b1c26Aa doi: 10.1063/1.4923379 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_006_w2aab3b7d295b1b6b1ab2b1b6Aa doi: 10.1002/advs.201900925 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_005_w2aab3b7d295b1b6b1ab2b1b5Aa doi: 10.1364/OE.27.009879 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_039_w2aab3b7d295b1b6b1ab2b1c39Aa doi: 10.1080/23746149.2016.1177469 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_025_w2aab3b7d295b1b6b1ab2b1c25Aa doi: 10.1364/AO.54.000477 – ident: 2021020812491355656_j_nanoph-2020-0454_ref_012_w2aab3b7d295b1b6b1ab2b1c12Aa doi: 10.1038/lsa.2015.115 |
SSID | ssj0000993196 |
Score | 2.5196278 |
Snippet | Cavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4761 |
SubjectTerms | Adenosine triphosphate Cleaning Electromagnetic absorption Electromagnetic fields Electron transfer Environmental monitoring Finite difference method Gold Heterostructures Holes hydrophobic Hydrophobicity Molybdenum disulfide multiscale cavities Nanoparticles Photodegradation Plasmonics Pollutants Pollution monitoring Raman spectroscopy Rhodamine 6G self-cleaning SERS sensing Spectrum analysis Substrates Synergistic effect |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlygpUVsC8iHHuBgrTeJE_sICLRCag88JG7WxA-gQtnVZrfV_ntmnCwvifbSU6TITizPJPONZ-Ybxr6XVMnjohQAYERRVSDAu1roAEpLr0dSUnHyj5_l-Lo4v1E3L1p9UU5YRw_cbdywcN6Y2mifyVDEWNYFAF1lrJw0PpXuoc174Uz96nAP6RZ1lkMIIzTC9D5GifZ72EAzmd6hgmSU2qiKVzYpUfe_wpsbf1Lk2ofb2WI5X0VKkwE6-8g2euTIj7oVf2IfQrPFNnsUyftvtP3MluOln-GLJ_W94ylfsEU5BO7gd2JP5QhTObEUi-lz0QCHxvM2PESBzwY6K-HtYhbBBRGau5QlwC8Ah_JUmkkUmJPpkh9cnl5cHuLEho4cvrDrs9Ork7HoGywIhyhpLozSRhcQc2WiyaXLcgMIgUwZlctjhf_JqKVxua5woytlvIQsjkZ1iTZfVeiGb7O1ZtKEHcahqHVZGiejyslFgypmUWaQOecRMcKADVdbbF3PPk5NMB4seSEoFNsJxZJQLAllwA6fZkw75o2_jD0mqT2NI87sdAM1yfaaZP-lSQO2u5K57T_k1mYUVzTkJA6YfqMHz6PeW5chtrZy9PV_LO8bW08Km-ogd9nafLYIewiI5vV-0v1HgpUKAg priority: 102 providerName: Directory of Open Access Journals |
Title | Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2020-0454 https://www.proquest.com/docview/2458296259 https://doaj.org/article/4cd99b98d20e4ff6b4aa4ff60f7c09d9 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoeuFS3iJQIh840IMVZ5_2CVGUECFRoZRKva1m_WiRqt0lm4Dy75lxnERFoqeVVrb3MeOZz_Nk7H1BmTzGSwEAWmRlCQKsqYVykCtp1URKSk7-dlHMr7Kv1_l1NLj1MaxyJxODoLatIRv5OCEHjya0_rH7JahrFHlXYwuNI3aMIlipATs-n158X-ytLIh_iMeowxxCGaEQrkdfJerxcQNN290ioyQU4phn93RTKOF_D3ee_AkebOtuluvNaucxDYpo9pSdRATJP21J_ow9cs1z9iSiSR73av-CbeYbu8QHt_VPw0PcYI_0cNzA71BFlSNc5VStWHSH5AEOjeW9u_MC1waymfB-vfRgnHDNbYgW4AvAoTykaFIpzLbb8A-X08XlGU5syPTwkl3Npj8-z0VstCAMoqWV0LnSKgOf5trrVJok1YBQSBc-N6kvUV56JbVJVamtLnNtJSR-MqkL1P15icfxV2zQtI17zThktSoKbaTPUzqqQekTLxNIjLGIHGHIxrtfXJlYhZyaYdxVdBpBolRbolRElIqIMmRn-xndtgLHA2PPiWr7cVQ7O9xolzdV3IpVZqzWtVY2kS7zvqgzALpKXxqJHzhkpzuaV3FD99WB_YZM_cMHh1H_ey9NVduKyZuHV37LHgdWDJmOp2ywWq7dO4Q8q3rEjtTsyyhy9ygYDv4Cq8kDeQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoBLeYtAgT2ARA-rbPzcPVSIR0NKH4c-pN7MeB8tUmWHOGmVP8VvZGZjJyoSvfVkyVqvH9945pudnRnG3meUyWO8FACgRZLnIMCaUigHqZJWDaSk5OSDw2x0mvw4S8_W2J8uF4a2VXY6MShqWxtaI-9HFODRxNY_jX8L6hpF0dWuhcZCLPbc_BpdtmZ79xvi-yGKhjsnX0ei7SogDFKDqdCp0ioBH6fa61iaKNaAdl9nPjWxz1E5eCW1iVWurc5TbSVEfjAoMzR0aY6-J857j91PYrTklJk-_L5c00G2RRJN_eyQOAmFzkEbGUXW0K-gqscXKJYRbahMkxuWMDQMuMFyN65DvNy688lsPu3is8HsDR-zjZav8s8LAXvC1lz1lD1quStvNUPzjM1HczvBG9flL8PDLsUG0XfcwFWo2cqRHHOqjSzGq1QFDpXljbv0AucGWqHhzWziwTjhqouwN4EfAQ7lISGUCm_W4zn_eLxzdLyFF1a00PGcnd4JAC_YelVX7iXjkJQqy7SRPo3JMYTcR15GEBljkadCj_W7T1yYtuY5td64LMj3QVCKBSgFgVIQKD22tbxivKj3ccvYL4TachxV6g4n6sl50f74RWKs1qVWNpIu8T4rEwA6Sp8biS_YY5sd5kWrPppiJew9pv6Rg9Wo_z2Xphpx2eDV7TO_Yw9GJwf7xf7u4d5r9jCIZcix3GTr08nMvUGyNS3fBgnn7Odd_1J_Ac5uOqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcWp5iaQEfQKIHa7152gcOhXbZUiioS6XewsSPFqlKVsku1f4u_iAz2WxKEXBA6ilSZOf1TTzf2DOfGXuRUCWP8VIAgBZRmoIAa3KhHMRKWjWUkoqTPx4l45Po_Wl8usZ-rGphKK3SurNqvpgtFVIHtjRzmijrtAbQAw8KKMrpOUIcUHJiHA2m1reZlYducYlxW_36YA9BfhkEo_0vb8ei3VpAGOQHM6FjpVUEPoy116E0QagBnb9OfGxCn-II4ZXUJlSptjqNtZUQ-OEwT9DbxSkGoHjdW2w9SXQY99j67vjd5FM3tYOkiwybtrVD_iQUxgjtAumfHv2aQ2z2DbhGdjcum2Xz7pv84v1Gd9lGS1v57tLO7rE1V9xnmy2F5e0AUT9gi_HCVnjjMv9meJOsWKMROG7geyPdypEjc5JIFtOrigUOheW1u_ACrw00UcPreeXBOOGK8yZFgR8DNuVNXSjpb5bTBX812T-e7GDHguY7HrKTG4HgEesVZeEeMw5RrhAKI30cUnwIqQ-8DCAwxiJdhT4brD5xZlrpc9qB4yKjEAhByZagZARKRqD02U7XY7qU_fhH2zeEWteOBLubE2V1lrX_fxYZq3WulQ2ki7xP8giAjtKnRuIL9tn2CvOsHUXqLKBFTU0Rap-p3-zgqtXfnkuTVFwyfPL_XZ-z25_3RtmHg6PDLXansdimCnOb9WbV3D1FOjbLn7Xmz9nXm_7jfgJi9ETe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+multiscale+cavities+for+high-performance+and+self-cleaning+surface-enhanced+Raman+spectroscopy+%28SERS%29+sensing&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Zhao%2C+Xiaofei&rft.au=Liu%2C+Chundong&rft.au=Yu%2C+Jing&rft.au=Li%2C+Zhen&rft.date=2020-11-01&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=9&rft.issue=16&rft.spage=4761&rft.epage=4773&rft_id=info:doi/10.1515%2Fnanoph-2020-0454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2020_0454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon |