Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal

[Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A. Subject to synthetic...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 355; pp. 145 - 153
Main Authors Liu, Zhongshan, Wang, Hongwei, Ou, Junjie, Chen, Lianfang, Ye, Mingliang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A. Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g−1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g−1. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L−1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g−1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.
AbstractList Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g-1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g-1. Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L-1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g-1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g-1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g-1. Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L-1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g-1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.
Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH₂, 88 μmol g⁻¹) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m² g⁻¹. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L⁻¹) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g⁻¹. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.
Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH , 88 μmol g ) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m  g . Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L ) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g . Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.
[Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A. Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g−1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g−1. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L−1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g−1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.
Author Chen, Lianfang
Ou, Junjie
Ye, Mingliang
Liu, Zhongshan
Wang, Hongwei
Author_xml – sequence: 1
  givenname: Zhongshan
  surname: Liu
  fullname: Liu, Zhongshan
  organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 2
  givenname: Hongwei
  surname: Wang
  fullname: Wang, Hongwei
  organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 3
  givenname: Junjie
  surname: Ou
  fullname: Ou, Junjie
  email: junjieou@dicp.ac.cn
  organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 4
  givenname: Lianfang
  surname: Chen
  fullname: Chen, Lianfang
  organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 5
  givenname: Mingliang
  surname: Ye
  fullname: Ye, Mingliang
  email: mingliang@dicp.ac.cn
  organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29783155$$D View this record in MEDLINE/PubMed
BookMark eNqFUbtuFDEUtVAQ2SR8AshlKGbix3geokDRikCkSGlIbXn8YLx47MH2Jgo9_403u2loVrewdH0euuecgRMfvAbgA0Y1Rri92tSbSfyZRa4Jwn2NWI0IeQNWuO9oRSltT8AKUdRUtB-aU3CW0gYhhDvWvAOnZOh6ihlbgb_r4FOOW5lt8DAYOFkdRZSTlcK5Z7iEGLYJzsEHZ_OUoIlhhjI8Cqd9hiH-FN7KshWzfgrxV4KX6_ub9AkKr2CetI1QLIsrai8GJkQ42rRMuujBaxj1vJO6AG-NcEm_P7zn4OHm64_19-ru_tvt-vqukg1luRoYI4ORZFSIUEpa08pRETw2WLeoIZgpTAUeGoUGYnAzdtQQ2ZfvXglZhp6Dy73uEsPvrU6ZzzZJ7ZzwupzJCcZtPzDaoePQYljCJKQv0I8H6HacteJLtLOIz_w15QL4vAfIGFKK2nBp80sgOQrrOEZ81ynf8EOnfNcpR4yXTgub_cd-NTjG-7Ln6ZLoY6mVJ2m1l1rZqGXmKtgjCv8ApHzAaA
CitedBy_id crossref_primary_10_1002_smll_202205501
crossref_primary_10_1016_j_seppur_2023_124748
crossref_primary_10_1021_acsami_1c09238
crossref_primary_10_1016_j_jhazmat_2020_122353
crossref_primary_10_1016_j_jhazmat_2021_126796
crossref_primary_10_1016_j_scitotenv_2022_155279
crossref_primary_10_1016_j_jssc_2019_01_002
crossref_primary_10_1016_j_microc_2023_109270
crossref_primary_10_1016_j_seppur_2021_119238
crossref_primary_10_1016_j_jhazmat_2023_132680
crossref_primary_10_1016_j_molliq_2023_123475
crossref_primary_10_1016_j_jece_2023_110549
crossref_primary_10_1016_j_matchemphys_2021_124725
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1002_ange_202100881
crossref_primary_10_1002_chem_201806025
crossref_primary_10_1007_s11356_020_10348_4
crossref_primary_10_1016_j_jtice_2020_02_008
crossref_primary_10_1002_ange_201914461
crossref_primary_10_1016_j_jece_2021_105687
crossref_primary_10_1016_j_micromeso_2019_109990
crossref_primary_10_1039_D3SC04973F
crossref_primary_10_1016_j_chroma_2019_460477
crossref_primary_10_1021_jacs_3c04995
crossref_primary_10_1021_acs_chemmater_2c03282
crossref_primary_10_1016_j_jhazmat_2021_126702
crossref_primary_10_1016_j_jhazmat_2019_121514
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1039_D4NR02017K
crossref_primary_10_1016_j_xinn_2021_100076
crossref_primary_10_1021_acsanm_9b01969
crossref_primary_10_3390_w11102087
crossref_primary_10_1002_jssc_202100649
crossref_primary_10_1016_j_apsusc_2019_144403
crossref_primary_10_1016_j_jhazmat_2018_12_113
crossref_primary_10_1016_j_chemosphere_2020_127580
crossref_primary_10_1021_acssuschemeng_2c00285
crossref_primary_10_1016_j_jes_2018_12_010
crossref_primary_10_1002_asia_201901686
crossref_primary_10_1016_j_jclepro_2022_130566
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1016_j_seppur_2024_126631
crossref_primary_10_3390_molecules28093752
crossref_primary_10_1016_j_mtchem_2021_100573
crossref_primary_10_1016_j_cej_2022_134907
crossref_primary_10_1016_j_jhazmat_2019_121824
crossref_primary_10_1016_j_micromeso_2022_112285
crossref_primary_10_1016_j_jchromb_2023_123648
crossref_primary_10_1021_acsami_9b17324
crossref_primary_10_1021_acsanm_3c00442
crossref_primary_10_1016_j_aca_2022_339517
crossref_primary_10_1039_D0TA05469K
crossref_primary_10_1016_j_chemosphere_2022_135919
crossref_primary_10_1016_j_apcata_2022_118733
crossref_primary_10_1016_j_eti_2025_104129
crossref_primary_10_1021_acsami_1c14043
crossref_primary_10_1016_j_chemosphere_2019_125378
crossref_primary_10_1007_s42114_023_00776_4
crossref_primary_10_1016_j_jcis_2022_02_014
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_apsusc_2024_162185
crossref_primary_10_1016_j_jpba_2022_114633
crossref_primary_10_1055_s_0041_1723020
crossref_primary_10_1016_j_seppur_2023_126222
crossref_primary_10_1038_s43246_024_00536_x
crossref_primary_10_1002_gch2_201800073
crossref_primary_10_1016_j_jhazmat_2020_124390
crossref_primary_10_1016_j_psep_2023_10_002
crossref_primary_10_1016_j_seppur_2024_126628
crossref_primary_10_1002_jssc_202200026
crossref_primary_10_1016_j_jtice_2020_08_016
crossref_primary_10_1016_j_seppur_2022_121611
crossref_primary_10_3390_nano11071651
crossref_primary_10_1021_acs_iecr_2c02155
crossref_primary_10_1039_C8QM00622A
crossref_primary_10_1016_j_cej_2024_149414
crossref_primary_10_1016_j_ijbiomac_2023_125946
crossref_primary_10_1016_j_jhazmat_2020_123955
crossref_primary_10_1039_C9NR00388F
crossref_primary_10_1016_j_ccr_2024_216087
crossref_primary_10_1016_j_chemosphere_2023_140223
crossref_primary_10_1007_s10853_021_05872_8
crossref_primary_10_1039_D1RA02342J
crossref_primary_10_1021_acsnano_2c08580
crossref_primary_10_1002_anie_202100881
crossref_primary_10_1007_s10971_020_05370_4
crossref_primary_10_1021_acs_energyfuels_1c03426
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_2139_ssrn_3986049
crossref_primary_10_1002_adfm_202309938
crossref_primary_10_1016_j_jchromb_2023_123697
crossref_primary_10_1016_j_reactfunctpolym_2022_105309
crossref_primary_10_3390_ma14195851
crossref_primary_10_1002_smll_202206041
crossref_primary_10_1007_s10934_021_01151_8
Cites_doi 10.1002/adfm.201102920
10.1126/science.aac8343
10.1021/acsami.6b15752
10.1039/C4CC08919G
10.1039/C4CC05665E
10.1021/acs.chemmater.5b04879
10.1021/am400122r
10.1002/adma.200700154
10.1073/pnas.1221824110
10.1039/c4an00076e
10.1002/chem.201504836
10.1021/cm061531a
10.1021/jacs.6b06959
10.1039/C5CS00710K
10.1002/adma.200903765
10.1021/ja206846p
10.1039/B307853C
10.1002/anie.201107070
10.1038/nature16185
10.1039/C5CC03413B
10.1039/c2cs35157a
10.1016/j.jhazmat.2017.11.001
10.1021/acscentsci.6b00331
10.1021/acs.chemmater.5b02902
10.1002/adma.201601351
10.1039/c1gc15349h
10.1002/adma.200800030
10.1039/C5CC06742A
10.1039/C2CS35072F
10.1021/cm402239e
10.1021/ar600034p
10.1039/b405516k
10.1021/ja203857g
10.1016/j.jhazmat.2017.10.013
10.1002/adma.201603945
10.1021/acs.accounts.5b00369
10.1126/science.1120411
10.1021/ic010560e
10.1021/jacs.5b04992
10.1021/ja4103293
10.1126/science.1238159
10.1021/cm051880p
10.1021/ja990425p
10.1016/j.carbon.2010.10.024
10.1021/jacs.5b10754
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2018.05.022
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
EndPage 153
ExternalDocumentID 29783155
10_1016_j_jhazmat_2018_05_022
S0304389418303704
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c435t-95529fc2bd023326f6cbd21b41e604215d13a194d092f14b73f2c8b418dacaca3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Fri Jul 11 11:49:55 EDT 2025
Fri Jul 11 11:13:27 EDT 2025
Wed Feb 19 02:42:52 EST 2025
Tue Jul 01 00:49:14 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic framework
Hierarchically porous monolith
Ring-opening polymerization
Bisphenol A removal
Hydrazine
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-95529fc2bd023326f6cbd21b41e604215d13a194d092f14b73f2c8b418dacaca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29783155
PQID 2042754228
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2116895370
proquest_miscellaneous_2042754228
pubmed_primary_29783155
crossref_citationtrail_10_1016_j_jhazmat_2018_05_022
crossref_primary_10_1016_j_jhazmat_2018_05_022
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2018_05_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-05
PublicationDateYYYYMMDD 2018-08-05
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-05
  day: 05
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Smith, Parent, Overholts, Beaucage, Bisbey, Chavez, Hwang, Park, Evans, Gianneschi, Dichtel (bib0165) 2017; 3
Xiao, Wang, Li, Li, Shi, Wu, Lin, Chen, Wang (bib0215) 2018; 345
Zhang, Cooper (bib0095) 2007; 19
Spitler, Colson, Uribe-Romo, Woll, Giovino, Saldivar, Dichtel (bib0115) 2012; 51
Antonietti, Fechler, Fellinger (bib0055) 2014; 26
Wang, Bozhilov, Feng (bib0070) 2006; 18
Ahmed, Hasell, Clowes, Myers, Cooper, Zhang (bib0075) 2015; 51
Zhang, Qiu, Si, Wang, Gao (bib0090) 2011; 49
Li, Zhang, Tsuru (bib0145) 2017; 9
Waller, Gándara, Yaghi (bib0130) 2015; 48
Ding, Dong, Wang, Chen, Wang, Su, Wang (bib0180) 2016; 138
Li, Feng, Zou, Zhang, Xia, Liu, Mu (bib0195) 2014; 50
Ojuva, Akhtar, Tomsia, Bergström (bib0040) 2013; 5
Sai, Tan, Hur, Asenath-Smith, Hovden, Jiang, Riccio, Muller, Elser, Estroff, Gruner, Wiesner (bib0020) 2013; 341
White, Yoshizawa, Antonietti, Titirici (bib0060) 2011; 13
Cozzi (bib0225) 2004; 33
Côté, Benin, Ockwig, O’Keeffe, Matzger, Yaghi (bib0100) 2005; 310
Biswal, Chaudhari, Banerjee, Kharul (bib0155) 2016; 22
Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0170) 2011; 133
Feinle, Elsaesser, Husing (bib0005) 2016; 45
Huang, Sun, Qin, Zhao, Xiong, Peng, Ou, Zou (bib0205) 2014; 139
Cavalleri, Gonella, Terreni, Vignolo, Floreano, Morgante, Canepa, Rolandi (bib0200) 2004; 6
Bertrand, Michaelis, Ong, Griffin, Dinca (bib0120) 2013; 110
Alsbaiee, Smith, Xiao, Ling, Helbling, Dichtel (bib0210) 2016; 529
Kandambeth, Biswal, Chaudhari, Rout, Kunjattu H, Mitra, Karak, Das, Mukherjee, Kharul, Banerjee (bib0160) 2017; 29
Hao, Li, Qian, Lu (bib0045) 2010; 22
Kang, Peng, Qian, Yuan, Addicoat, Heine, Hu, Tee, Guo, Zhao (bib0150) 2016; 28
Dalapati, Jin, Gao, Xu, Nagai, Jiang (bib0185) 2013; 135
Hao, Li, Qian, Wang, Zhang, Zhang, Wang, Schüth, Bongard, Lu (bib0050) 2011; 133
Holland, Abrams, Stein (bib0035) 1999; 121
Fellinger, White, Titirici, Antonietti (bib0065) 2012; 22
Saba, Mousavi, Bühlmann, Hillmyer (bib0025) 2015; 137
Tilford, Mugavero, Pellechia, Lavigne (bib0105) 2008; 20
Yang, Liu, Cao, Yan (bib0190) 2015; 51
Ding, Wang (bib0125) 2013; 42
Zhu, Yang, Cranston, Zhu (bib0085) 2016; 28
Lu, Wang, Chen, Ge, Leng, Dong, Huang, Gao (bib0140) 2015; 51
Chisholm, Gallucci, Zhen, Huffman (bib0220) 2001; 40
Lin, Diercks, Zhang, Kornienko, Nichols, Zhao, Paris, Kim, Yang, Yaghi, Chang (bib0175) 2015; 349
Shi, Yu (bib0030) 2016; 28
Chen, Huang, Zhang, Li, Cao, Pei, Zhou, Feng, Wang (bib0080) 2016; 138
Smått, Weidenthaler, Rosenholm, Lindén (bib0015) 2006; 18
Nakanishi, Tanaka (bib0010) 2007; 40
Feng, Ding, Jiang (bib0110) 2012; 41
Liu, Wang, Zhao, Hao, Fang, Wang (bib0135) 2018; 344
Smått (10.1016/j.jhazmat.2018.05.022_bib0015) 2006; 18
Nakanishi (10.1016/j.jhazmat.2018.05.022_bib0010) 2007; 40
Ding (10.1016/j.jhazmat.2018.05.022_bib0180) 2016; 138
Xiao (10.1016/j.jhazmat.2018.05.022_bib0215) 2018; 345
Ojuva (10.1016/j.jhazmat.2018.05.022_bib0040) 2013; 5
Smith (10.1016/j.jhazmat.2018.05.022_bib0165) 2017; 3
Chisholm (10.1016/j.jhazmat.2018.05.022_bib0220) 2001; 40
Dalapati (10.1016/j.jhazmat.2018.05.022_bib0185) 2013; 135
Shi (10.1016/j.jhazmat.2018.05.022_bib0030) 2016; 28
Biswal (10.1016/j.jhazmat.2018.05.022_bib0155) 2016; 22
Wang (10.1016/j.jhazmat.2018.05.022_bib0070) 2006; 18
Saba (10.1016/j.jhazmat.2018.05.022_bib0025) 2015; 137
Chen (10.1016/j.jhazmat.2018.05.022_bib0080) 2016; 138
White (10.1016/j.jhazmat.2018.05.022_bib0060) 2011; 13
Spitler (10.1016/j.jhazmat.2018.05.022_bib0115) 2012; 51
Hao (10.1016/j.jhazmat.2018.05.022_bib0050) 2011; 133
Cavalleri (10.1016/j.jhazmat.2018.05.022_bib0200) 2004; 6
Huang (10.1016/j.jhazmat.2018.05.022_bib0205) 2014; 139
Kandambeth (10.1016/j.jhazmat.2018.05.022_bib0160) 2017; 29
Feinle (10.1016/j.jhazmat.2018.05.022_bib0005) 2016; 45
Sai (10.1016/j.jhazmat.2018.05.022_bib0020) 2013; 341
Ding (10.1016/j.jhazmat.2018.05.022_bib0125) 2013; 42
Antonietti (10.1016/j.jhazmat.2018.05.022_bib0055) 2014; 26
Zhang (10.1016/j.jhazmat.2018.05.022_bib0095) 2007; 19
Holland (10.1016/j.jhazmat.2018.05.022_bib0035) 1999; 121
Ahmed (10.1016/j.jhazmat.2018.05.022_bib0075) 2015; 51
Feng (10.1016/j.jhazmat.2018.05.022_bib0110) 2012; 41
Li (10.1016/j.jhazmat.2018.05.022_bib0195) 2014; 50
Waller (10.1016/j.jhazmat.2018.05.022_bib0130) 2015; 48
Lu (10.1016/j.jhazmat.2018.05.022_bib0140) 2015; 51
Zhang (10.1016/j.jhazmat.2018.05.022_bib0090) 2011; 49
Ding (10.1016/j.jhazmat.2018.05.022_bib0170) 2011; 133
Zhu (10.1016/j.jhazmat.2018.05.022_bib0085) 2016; 28
Li (10.1016/j.jhazmat.2018.05.022_bib0145) 2017; 9
Cozzi (10.1016/j.jhazmat.2018.05.022_bib0225) 2004; 33
Tilford (10.1016/j.jhazmat.2018.05.022_bib0105) 2008; 20
Kang (10.1016/j.jhazmat.2018.05.022_bib0150) 2016; 28
Hao (10.1016/j.jhazmat.2018.05.022_bib0045) 2010; 22
Côté (10.1016/j.jhazmat.2018.05.022_bib0100) 2005; 310
Lin (10.1016/j.jhazmat.2018.05.022_bib0175) 2015; 349
Liu (10.1016/j.jhazmat.2018.05.022_bib0135) 2018; 344
Alsbaiee (10.1016/j.jhazmat.2018.05.022_bib0210) 2016; 529
Bertrand (10.1016/j.jhazmat.2018.05.022_bib0120) 2013; 110
Fellinger (10.1016/j.jhazmat.2018.05.022_bib0065) 2012; 22
Yang (10.1016/j.jhazmat.2018.05.022_bib0190) 2015; 51
References_xml – volume: 133
  start-page: 11378
  year: 2011
  end-page: 11388
  ident: bib0050
  article-title: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 13825
  year: 2014
  end-page: 13828
  ident: bib0195
  article-title: A 2D azine-linked covalent organic framework for gas storage applications
  publication-title: Chem. Commun.
– volume: 51
  start-page: 2623
  year: 2012
  end-page: 2627
  ident: bib0115
  article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2669
  year: 2013
  end-page: 2676
  ident: bib0040
  article-title: Laminated adsorbents with very rapid CO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 5051
  year: 2001
  end-page: 5054
  ident: bib0220
  article-title: Three-coordinate zinc amide and phenoxide complexes supported by a bulky schiff base ligand
  publication-title: Inorg. Chem.
– volume: 529
  start-page: 190
  year: 2016
  end-page: 194
  ident: bib0210
  article-title: Rapid removal of organic micropollutants from water by a porous
  publication-title: Nature
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: bib0100
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
– volume: 22
  start-page: 3254
  year: 2012
  end-page: 3260
  ident: bib0065
  article-title: Borax-mediated formation of carbon aerogels from glucose
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 15562
  year: 2015
  end-page: 15565
  ident: bib0140
  article-title: A novel 3D covalent organic framework membrane grown on a porous
  publication-title: Chem. Commun.
– volume: 341
  start-page: 530
  year: 2013
  end-page: 534
  ident: bib0020
  article-title: Hierarchical porous polymer scaffolds from block copolymers
  publication-title: Science
– volume: 26
  start-page: 196
  year: 2014
  end-page: 210
  ident: bib0055
  article-title: Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes
  publication-title: Chem. Mater.
– volume: 19
  start-page: 1529
  year: 2007
  end-page: 1533
  ident: bib0095
  article-title: Aligned porous structures by directional freezing
  publication-title: Adv. Mater.
– volume: 33
  start-page: 410
  year: 2004
  end-page: 421
  ident: bib0225
  article-title: Metal-salen schiff base complexes in catalysis: practical aspects
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 8896
  year: 2015
  end-page: 8899
  ident: bib0025
  article-title: Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2428
  year: 2011
  end-page: 2434
  ident: bib0060
  article-title: A sustainable synthesis of nitrogen-doped carbon aerogels
  publication-title: Green Chem.
– volume: 138
  start-page: 10810
  year: 2016
  end-page: 10813
  ident: bib0080
  article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4042
  year: 2004
  end-page: 4046
  ident: bib0200
  article-title: High resolution X-ray photoelectron spectroscopy of L-cysteine self-assembled films
  publication-title: Phys. Chem. Chem. Phys.
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: bib0110
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 344
  start-page: 220
  year: 2018
  end-page: 229
  ident: bib0135
  article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix
  publication-title: J. Hazard. Mater.
– volume: 138
  start-page: 3031
  year: 2016
  end-page: 3037
  ident: bib0180
  article-title: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1443
  year: 2006
  end-page: 1450
  ident: bib0015
  article-title: Hierarchically porous metal oxide monoliths prepared by the nanocasting route
  publication-title: Chem. Mater.
– volume: 110
  start-page: 4923
  year: 2013
  end-page: 4928
  ident: bib0120
  article-title: Thiophene-based covalent organic frameworks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  ident: bib0175
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO
  publication-title: Science
– volume: 29
  start-page: 1603945
  year: 2017
  ident: bib0160
  article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes
  publication-title: Adv. Mater.
– volume: 51
  start-page: 12254
  year: 2015
  end-page: 12257
  ident: bib0190
  article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation
  publication-title: Chem. Commun.
– volume: 121
  start-page: 4308
  year: 1999
  end-page: 4309
  ident: bib0035
  article-title: Dual templating of macroporous silicates with zeolitic microporous frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  ident: bib0130
  article-title: Chemistry of covalent organic frameworks
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 853
  year: 2010
  end-page: 857
  ident: bib0045
  article-title: Rapid synthesis of nitrogen-doped porous carbon monolith for CO
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2466
  year: 2016
  end-page: 2477
  ident: bib0030
  article-title: Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion
  publication-title: Chem. Mater.
– volume: 135
  start-page: 17310
  year: 2013
  end-page: 17313
  ident: bib0185
  article-title: An azine-linked covalent organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1277
  year: 2016
  end-page: 1285
  ident: bib0150
  article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO
  publication-title: Chem. Mater.
– volume: 40
  start-page: 863
  year: 2007
  end-page: 873
  ident: bib0010
  article-title: Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations
  publication-title: Acc. Chem. Res.
– volume: 139
  start-page: 2199
  year: 2014
  end-page: 2206
  ident: bib0205
  article-title: Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides
  publication-title: Analyst
– volume: 28
  start-page: 7652
  year: 2016
  end-page: 7657
  ident: bib0085
  article-title: Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications
  publication-title: Adv. Mater.
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  ident: bib0170
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  ident: bib0125
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 827
  year: 2011
  end-page: 837
  ident: bib0090
  article-title: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions
  publication-title: Carbon
– volume: 45
  start-page: 3377
  year: 2016
  end-page: 3399
  ident: bib0005
  article-title: Sol-gel synthesis of monolithic materials with hierarchical porosity
  publication-title: Chem. Soc. Rev.
– volume: 345
  start-page: 123
  year: 2018
  end-page: 130
  ident: bib0215
  article-title: New insights into bisphenols removal by nitrogen-rich nanocarbons: synergistic effect between adsorption and oxidative degradation
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 4695
  year: 2016
  end-page: 4699
  ident: bib0155
  article-title: Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation
  publication-title: Chem.—Eur. J.
– volume: 18
  start-page: 6373
  year: 2006
  end-page: 6381
  ident: bib0070
  article-title: Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures
  publication-title: Chem. Mater.
– volume: 20
  start-page: 2741
  year: 2008
  end-page: 2746
  ident: bib0105
  article-title: Tailoring microporosity in covalent organic frameworks
  publication-title: Adv. Mater.
– volume: 51
  start-page: 1717
  year: 2015
  end-page: 1720
  ident: bib0075
  article-title: Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach
  publication-title: Chem. Commun.
– volume: 9
  start-page: 8433
  year: 2017
  end-page: 8436
  ident: bib0145
  article-title: Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 58
  year: 2017
  end-page: 65
  ident: bib0165
  article-title: Colloidal covalent organic frameworks
  publication-title: ACS Cent. Sci.
– volume: 22
  start-page: 3254
  year: 2012
  ident: 10.1016/j.jhazmat.2018.05.022_bib0065
  article-title: Borax-mediated formation of carbon aerogels from glucose
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102920
– volume: 349
  start-page: 1208
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0175
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 9
  start-page: 8433
  year: 2017
  ident: 10.1016/j.jhazmat.2018.05.022_bib0145
  article-title: Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15752
– volume: 51
  start-page: 1717
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0075
  article-title: Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08919G
– volume: 50
  start-page: 13825
  year: 2014
  ident: 10.1016/j.jhazmat.2018.05.022_bib0195
  article-title: A 2D azine-linked covalent organic framework for gas storage applications
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05665E
– volume: 28
  start-page: 2466
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0030
  article-title: Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04879
– volume: 5
  start-page: 2669
  year: 2013
  ident: 10.1016/j.jhazmat.2018.05.022_bib0040
  article-title: Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400122r
– volume: 19
  start-page: 1529
  year: 2007
  ident: 10.1016/j.jhazmat.2018.05.022_bib0095
  article-title: Aligned porous structures by directional freezing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700154
– volume: 110
  start-page: 4923
  year: 2013
  ident: 10.1016/j.jhazmat.2018.05.022_bib0120
  article-title: Thiophene-based covalent organic frameworks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1221824110
– volume: 139
  start-page: 2199
  year: 2014
  ident: 10.1016/j.jhazmat.2018.05.022_bib0205
  article-title: Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides
  publication-title: Analyst
  doi: 10.1039/c4an00076e
– volume: 22
  start-page: 4695
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0155
  article-title: Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201504836
– volume: 18
  start-page: 6373
  year: 2006
  ident: 10.1016/j.jhazmat.2018.05.022_bib0070
  article-title: Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures
  publication-title: Chem. Mater.
  doi: 10.1021/cm061531a
– volume: 138
  start-page: 10810
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0080
  article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06959
– volume: 45
  start-page: 3377
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0005
  article-title: Sol-gel synthesis of monolithic materials with hierarchical porosity
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00710K
– volume: 22
  start-page: 853
  year: 2010
  ident: 10.1016/j.jhazmat.2018.05.022_bib0045
  article-title: Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903765
– volume: 133
  start-page: 19816
  year: 2011
  ident: 10.1016/j.jhazmat.2018.05.022_bib0170
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 33
  start-page: 410
  year: 2004
  ident: 10.1016/j.jhazmat.2018.05.022_bib0225
  article-title: Metal-salen schiff base complexes in catalysis: practical aspects
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B307853C
– volume: 51
  start-page: 2623
  year: 2012
  ident: 10.1016/j.jhazmat.2018.05.022_bib0115
  article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107070
– volume: 529
  start-page: 190
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0210
  article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
  publication-title: Nature
  doi: 10.1038/nature16185
– volume: 51
  start-page: 12254
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0190
  article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03413B
– volume: 41
  start-page: 6010
  year: 2012
  ident: 10.1016/j.jhazmat.2018.05.022_bib0110
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 345
  start-page: 123
  year: 2018
  ident: 10.1016/j.jhazmat.2018.05.022_bib0215
  article-title: New insights into bisphenols removal by nitrogen-rich nanocarbons: synergistic effect between adsorption and oxidative degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.11.001
– volume: 3
  start-page: 58
  year: 2017
  ident: 10.1016/j.jhazmat.2018.05.022_bib0165
  article-title: Colloidal covalent organic frameworks
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00331
– volume: 28
  start-page: 1277
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0150
  article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02902
– volume: 28
  start-page: 7652
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0085
  article-title: Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601351
– volume: 13
  start-page: 2428
  year: 2011
  ident: 10.1016/j.jhazmat.2018.05.022_bib0060
  article-title: A sustainable synthesis of nitrogen-doped carbon aerogels
  publication-title: Green Chem.
  doi: 10.1039/c1gc15349h
– volume: 20
  start-page: 2741
  year: 2008
  ident: 10.1016/j.jhazmat.2018.05.022_bib0105
  article-title: Tailoring microporosity in covalent organic frameworks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800030
– volume: 51
  start-page: 15562
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0140
  article-title: A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06742A
– volume: 42
  start-page: 548
  year: 2013
  ident: 10.1016/j.jhazmat.2018.05.022_bib0125
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 26
  start-page: 196
  year: 2014
  ident: 10.1016/j.jhazmat.2018.05.022_bib0055
  article-title: Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes
  publication-title: Chem. Mater.
  doi: 10.1021/cm402239e
– volume: 40
  start-page: 863
  year: 2007
  ident: 10.1016/j.jhazmat.2018.05.022_bib0010
  article-title: Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar600034p
– volume: 6
  start-page: 4042
  year: 2004
  ident: 10.1016/j.jhazmat.2018.05.022_bib0200
  article-title: High resolution X-ray photoelectron spectroscopy of L-cysteine self-assembled films
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b405516k
– volume: 133
  start-page: 11378
  year: 2011
  ident: 10.1016/j.jhazmat.2018.05.022_bib0050
  article-title: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203857g
– volume: 344
  start-page: 220
  year: 2018
  ident: 10.1016/j.jhazmat.2018.05.022_bib0135
  article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.10.013
– volume: 29
  start-page: 1603945
  year: 2017
  ident: 10.1016/j.jhazmat.2018.05.022_bib0160
  article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603945
– volume: 48
  start-page: 3053
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0130
  article-title: Chemistry of covalent organic frameworks
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00369
– volume: 310
  start-page: 1166
  year: 2005
  ident: 10.1016/j.jhazmat.2018.05.022_bib0100
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 40
  start-page: 5051
  year: 2001
  ident: 10.1016/j.jhazmat.2018.05.022_bib0220
  article-title: Three-coordinate zinc amide and phenoxide complexes supported by a bulky schiff base ligand
  publication-title: Inorg. Chem.
  doi: 10.1021/ic010560e
– volume: 137
  start-page: 8896
  year: 2015
  ident: 10.1016/j.jhazmat.2018.05.022_bib0025
  article-title: Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04992
– volume: 135
  start-page: 17310
  year: 2013
  ident: 10.1016/j.jhazmat.2018.05.022_bib0185
  article-title: An azine-linked covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4103293
– volume: 341
  start-page: 530
  year: 2013
  ident: 10.1016/j.jhazmat.2018.05.022_bib0020
  article-title: Hierarchical porous polymer scaffolds from block copolymers
  publication-title: Science
  doi: 10.1126/science.1238159
– volume: 18
  start-page: 1443
  year: 2006
  ident: 10.1016/j.jhazmat.2018.05.022_bib0015
  article-title: Hierarchically porous metal oxide monoliths prepared by the nanocasting route
  publication-title: Chem. Mater.
  doi: 10.1021/cm051880p
– volume: 121
  start-page: 4308
  year: 1999
  ident: 10.1016/j.jhazmat.2018.05.022_bib0035
  article-title: Dual templating of macroporous silicates with zeolitic microporous frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990425p
– volume: 49
  start-page: 827
  year: 2011
  ident: 10.1016/j.jhazmat.2018.05.022_bib0090
  article-title: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.024
– volume: 138
  start-page: 3031
  year: 2016
  ident: 10.1016/j.jhazmat.2018.05.022_bib0180
  article-title: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10754
SSID ssj0001754
Score 2.5528595
Snippet [Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based...
Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms acetates
adsorption
aldehydes
bisphenol A
Bisphenol A removal
Covalent organic framework
crystal structure
Hierarchically porous monolith
Hydrazine
hydrogen bonding
macropores
palladium
polymerization
Ring-opening polymerization
surface area
Suzuki reaction
Title Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal
URI https://dx.doi.org/10.1016/j.jhazmat.2018.05.022
https://www.ncbi.nlm.nih.gov/pubmed/29783155
https://www.proquest.com/docview/2042754228
https://www.proquest.com/docview/2116895370
Volume 355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gXPRgFHwsKmkTD3iY3e3XTM-RbNysoHBAEm6dfk3YDc4Sl4TowZv_26p5AB6QhMxpZronla7qrq-nvq4C-BCTknk0ZZZy4zIC7JlXVZk5KWXkOhW-oAPOXw_z2YnaP9WnazDpz8IQrbJb-9s1vVmtuyejbjRHF_P56JiCeuhuFRrlWBZNTlClCrLy4e8bmge6xzaFFEUAsPXNKZ7RYrg4c78QGBLDyzQJPIW4yz_dhT8bPzR9Bk87AMn2Whmfw1qqN-HJrbSCm_Doi7vagj9Ui7PPDsuWFaOq103cANVy_pMh8MZdP0MzJArc2YrRSRMWlmh66IhYW-4p4NOOvbViu5Oj6eojc3VkTXyB3Yp-MwS_zM9XRBlbonjsR_pOn3oBJ9NP3yazrCu6kAVETpdZqbUoqyB8RG-O2K7Kg4-Ce8VTjhOc68il46WK41JUXPlCViIYfG2iC3jJl7BeL-v0GpjzQbrSeERVSqVceKNxe-Y8oVLuKzEA1Q-1DV1GciqMcW576tnCdhqypCE71hY1NIDhdbeLNiXHfR1Mr0f7j21ZdBv3dX3f693ivKNgiqsTagcbKUHVg4X5TxvOc1NqNM4BvGqN5lpiQf_cEMxtP1y4N_CY7ho6on4L62hS6R1CpEu_08yBHdjY-3wwO_wL78kSNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9AAcEBQo4WkkDnDYJn5tvMcqIkppGg60Um-W7fWqicqmIpWqcud_M7PrDeVQKqG92Z6V5RnPfLvzAvhQRiXz0hRZzI3LCLBnXlVF5qSUJddx5EeU4Hw0z6cn6supPt2CcZcLQ2GVSfe3Or3R1mlkkE5zcLFYDL6RUw_NrUKhHMoR1QTdpupUugfb-weH0_lGIaOFbKtIkRMACf4k8gyWe8sz9xOxIQV5maaGpxC3majbIGhjiiaP4VHCkGy_3eYT2Ir1Djy8UVlwB-7N3NVT-EXtOLsCsWxVMWp83bgOkDPn1wyxN374M5REioI7WzNKNmFhhdKHtoi1HZ8CjqYArjX7OP46WX9iri5Z42JgNxzgDPEv84s1RY2tcHvsR_xOr3oGJ5PPx-NplvouZAHB02VWaC2KKghfokFHeFflwZeCe8Vjjnec65JLxwtVDgtRceVHshLB4LQpXcBHPodevarjC2DOB-kK4xFYKRVz4Y3GLzTnCZhyX4k-qO6obUhFyak3xrntos-WNnHIEofsUFvkUB_2NmQXbVWOuwhMx0f7l3hZtBx3kb7v-G7x6pE_xdURuYOLlKAGwsL8Yw3nuSk0ymcfdluh2exY0G83xHMv_39z7-D-9PhoZmcH88NX8IBmmuhE_Rp6KF7xDSKmS_823YjfQyIU5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+hierarchically+porous+monoliths+from+covalent+organic+frameworks+%28COFs%29+and+their+application+for+bisphenol+A+removal&rft.jtitle=Journal+of+hazardous+materials&rft.au=Liu%2C+Zhongshan&rft.au=Wang%2C+Hongwei&rft.au=Ou%2C+Junjie&rft.au=Chen%2C+Lianfang&rft.date=2018-08-05&rft.issn=0304-3894&rft.volume=355+p.145-153&rft.spage=145&rft.epage=153&rft_id=info:doi/10.1016%2Fj.jhazmat.2018.05.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon