Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal
[Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A. Subject to synthetic...
Saved in:
Published in | Journal of hazardous materials Vol. 355; pp. 145 - 153 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A.
Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g−1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g−1. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L−1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g−1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. |
---|---|
AbstractList | Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g-1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g-1. Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L-1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g-1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate.Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g-1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g-1. Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L-1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g-1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH₂, 88 μmol g⁻¹) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m² g⁻¹. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L⁻¹) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g⁻¹. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH , 88 μmol g ) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m g . Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L ) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g . Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. [Display omitted] •A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based monoliths feature a hierarchically porous structure.•COF-based monoliths exhibit good removal performance for bisphenol A. Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH2, 88 μmol g−1) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m2 g−1. Due to the π–π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L−1) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g−1. Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. |
Author | Chen, Lianfang Ou, Junjie Ye, Mingliang Liu, Zhongshan Wang, Hongwei |
Author_xml | – sequence: 1 givenname: Zhongshan surname: Liu fullname: Liu, Zhongshan organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 2 givenname: Hongwei surname: Wang fullname: Wang, Hongwei organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 3 givenname: Junjie surname: Ou fullname: Ou, Junjie email: junjieou@dicp.ac.cn organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 4 givenname: Lianfang surname: Chen fullname: Chen, Lianfang organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 5 givenname: Mingliang surname: Ye fullname: Ye, Mingliang email: mingliang@dicp.ac.cn organization: Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29783155$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUbtuFDEUtVAQ2SR8AshlKGbix3geokDRikCkSGlIbXn8YLx47MH2Jgo9_403u2loVrewdH0euuecgRMfvAbgA0Y1Rri92tSbSfyZRa4Jwn2NWI0IeQNWuO9oRSltT8AKUdRUtB-aU3CW0gYhhDvWvAOnZOh6ihlbgb_r4FOOW5lt8DAYOFkdRZSTlcK5Z7iEGLYJzsEHZ_OUoIlhhjI8Cqd9hiH-FN7KshWzfgrxV4KX6_ub9AkKr2CetI1QLIsrai8GJkQ42rRMuujBaxj1vJO6AG-NcEm_P7zn4OHm64_19-ru_tvt-vqukg1luRoYI4ORZFSIUEpa08pRETw2WLeoIZgpTAUeGoUGYnAzdtQQ2ZfvXglZhp6Dy73uEsPvrU6ZzzZJ7ZzwupzJCcZtPzDaoePQYljCJKQv0I8H6HacteJLtLOIz_w15QL4vAfIGFKK2nBp80sgOQrrOEZ81ynf8EOnfNcpR4yXTgub_cd-NTjG-7Ln6ZLoY6mVJ2m1l1rZqGXmKtgjCv8ApHzAaA |
CitedBy_id | crossref_primary_10_1002_smll_202205501 crossref_primary_10_1016_j_seppur_2023_124748 crossref_primary_10_1021_acsami_1c09238 crossref_primary_10_1016_j_jhazmat_2020_122353 crossref_primary_10_1016_j_jhazmat_2021_126796 crossref_primary_10_1016_j_scitotenv_2022_155279 crossref_primary_10_1016_j_jssc_2019_01_002 crossref_primary_10_1016_j_microc_2023_109270 crossref_primary_10_1016_j_seppur_2021_119238 crossref_primary_10_1016_j_jhazmat_2023_132680 crossref_primary_10_1016_j_molliq_2023_123475 crossref_primary_10_1016_j_jece_2023_110549 crossref_primary_10_1016_j_matchemphys_2021_124725 crossref_primary_10_1002_advs_202409290 crossref_primary_10_1002_ange_202100881 crossref_primary_10_1002_chem_201806025 crossref_primary_10_1007_s11356_020_10348_4 crossref_primary_10_1016_j_jtice_2020_02_008 crossref_primary_10_1002_ange_201914461 crossref_primary_10_1016_j_jece_2021_105687 crossref_primary_10_1016_j_micromeso_2019_109990 crossref_primary_10_1039_D3SC04973F crossref_primary_10_1016_j_chroma_2019_460477 crossref_primary_10_1021_jacs_3c04995 crossref_primary_10_1021_acs_chemmater_2c03282 crossref_primary_10_1016_j_jhazmat_2021_126702 crossref_primary_10_1016_j_jhazmat_2019_121514 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1039_D4NR02017K crossref_primary_10_1016_j_xinn_2021_100076 crossref_primary_10_1021_acsanm_9b01969 crossref_primary_10_3390_w11102087 crossref_primary_10_1002_jssc_202100649 crossref_primary_10_1016_j_apsusc_2019_144403 crossref_primary_10_1016_j_jhazmat_2018_12_113 crossref_primary_10_1016_j_chemosphere_2020_127580 crossref_primary_10_1021_acssuschemeng_2c00285 crossref_primary_10_1016_j_jes_2018_12_010 crossref_primary_10_1002_asia_201901686 crossref_primary_10_1016_j_jclepro_2022_130566 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1002_anie_201914461 crossref_primary_10_1016_j_seppur_2024_126631 crossref_primary_10_3390_molecules28093752 crossref_primary_10_1016_j_mtchem_2021_100573 crossref_primary_10_1016_j_cej_2022_134907 crossref_primary_10_1016_j_jhazmat_2019_121824 crossref_primary_10_1016_j_micromeso_2022_112285 crossref_primary_10_1016_j_jchromb_2023_123648 crossref_primary_10_1021_acsami_9b17324 crossref_primary_10_1021_acsanm_3c00442 crossref_primary_10_1016_j_aca_2022_339517 crossref_primary_10_1039_D0TA05469K crossref_primary_10_1016_j_chemosphere_2022_135919 crossref_primary_10_1016_j_apcata_2022_118733 crossref_primary_10_1016_j_eti_2025_104129 crossref_primary_10_1021_acsami_1c14043 crossref_primary_10_1016_j_chemosphere_2019_125378 crossref_primary_10_1007_s42114_023_00776_4 crossref_primary_10_1016_j_jcis_2022_02_014 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_apsusc_2024_162185 crossref_primary_10_1016_j_jpba_2022_114633 crossref_primary_10_1055_s_0041_1723020 crossref_primary_10_1016_j_seppur_2023_126222 crossref_primary_10_1038_s43246_024_00536_x crossref_primary_10_1002_gch2_201800073 crossref_primary_10_1016_j_jhazmat_2020_124390 crossref_primary_10_1016_j_psep_2023_10_002 crossref_primary_10_1016_j_seppur_2024_126628 crossref_primary_10_1002_jssc_202200026 crossref_primary_10_1016_j_jtice_2020_08_016 crossref_primary_10_1016_j_seppur_2022_121611 crossref_primary_10_3390_nano11071651 crossref_primary_10_1021_acs_iecr_2c02155 crossref_primary_10_1039_C8QM00622A crossref_primary_10_1016_j_cej_2024_149414 crossref_primary_10_1016_j_ijbiomac_2023_125946 crossref_primary_10_1016_j_jhazmat_2020_123955 crossref_primary_10_1039_C9NR00388F crossref_primary_10_1016_j_ccr_2024_216087 crossref_primary_10_1016_j_chemosphere_2023_140223 crossref_primary_10_1007_s10853_021_05872_8 crossref_primary_10_1039_D1RA02342J crossref_primary_10_1021_acsnano_2c08580 crossref_primary_10_1002_anie_202100881 crossref_primary_10_1007_s10971_020_05370_4 crossref_primary_10_1021_acs_energyfuels_1c03426 crossref_primary_10_1039_D0CS00620C crossref_primary_10_2139_ssrn_3986049 crossref_primary_10_1002_adfm_202309938 crossref_primary_10_1016_j_jchromb_2023_123697 crossref_primary_10_1016_j_reactfunctpolym_2022_105309 crossref_primary_10_3390_ma14195851 crossref_primary_10_1002_smll_202206041 crossref_primary_10_1007_s10934_021_01151_8 |
Cites_doi | 10.1002/adfm.201102920 10.1126/science.aac8343 10.1021/acsami.6b15752 10.1039/C4CC08919G 10.1039/C4CC05665E 10.1021/acs.chemmater.5b04879 10.1021/am400122r 10.1002/adma.200700154 10.1073/pnas.1221824110 10.1039/c4an00076e 10.1002/chem.201504836 10.1021/cm061531a 10.1021/jacs.6b06959 10.1039/C5CS00710K 10.1002/adma.200903765 10.1021/ja206846p 10.1039/B307853C 10.1002/anie.201107070 10.1038/nature16185 10.1039/C5CC03413B 10.1039/c2cs35157a 10.1016/j.jhazmat.2017.11.001 10.1021/acscentsci.6b00331 10.1021/acs.chemmater.5b02902 10.1002/adma.201601351 10.1039/c1gc15349h 10.1002/adma.200800030 10.1039/C5CC06742A 10.1039/C2CS35072F 10.1021/cm402239e 10.1021/ar600034p 10.1039/b405516k 10.1021/ja203857g 10.1016/j.jhazmat.2017.10.013 10.1002/adma.201603945 10.1021/acs.accounts.5b00369 10.1126/science.1120411 10.1021/ic010560e 10.1021/jacs.5b04992 10.1021/ja4103293 10.1126/science.1238159 10.1021/cm051880p 10.1021/ja990425p 10.1016/j.carbon.2010.10.024 10.1021/jacs.5b10754 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2018.05.022 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
EndPage | 153 |
ExternalDocumentID | 29783155 10_1016_j_jhazmat_2018_05_022 S0304389418303704 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-95529fc2bd023326f6cbd21b41e604215d13a194d092f14b73f2c8b418dacaca3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 11:49:55 EDT 2025 Fri Jul 11 11:13:27 EDT 2025 Wed Feb 19 02:42:52 EST 2025 Tue Jul 01 00:49:14 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Fri Feb 23 02:48:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic framework Hierarchically porous monolith Ring-opening polymerization Bisphenol A removal Hydrazine |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-95529fc2bd023326f6cbd21b41e604215d13a194d092f14b73f2c8b418dacaca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29783155 |
PQID | 2042754228 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2116895370 proquest_miscellaneous_2042754228 pubmed_primary_29783155 crossref_citationtrail_10_1016_j_jhazmat_2018_05_022 crossref_primary_10_1016_j_jhazmat_2018_05_022 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2018_05_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-05 |
PublicationDateYYYYMMDD | 2018-08-05 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Smith, Parent, Overholts, Beaucage, Bisbey, Chavez, Hwang, Park, Evans, Gianneschi, Dichtel (bib0165) 2017; 3 Xiao, Wang, Li, Li, Shi, Wu, Lin, Chen, Wang (bib0215) 2018; 345 Zhang, Cooper (bib0095) 2007; 19 Spitler, Colson, Uribe-Romo, Woll, Giovino, Saldivar, Dichtel (bib0115) 2012; 51 Antonietti, Fechler, Fellinger (bib0055) 2014; 26 Wang, Bozhilov, Feng (bib0070) 2006; 18 Ahmed, Hasell, Clowes, Myers, Cooper, Zhang (bib0075) 2015; 51 Zhang, Qiu, Si, Wang, Gao (bib0090) 2011; 49 Li, Zhang, Tsuru (bib0145) 2017; 9 Waller, Gándara, Yaghi (bib0130) 2015; 48 Ding, Dong, Wang, Chen, Wang, Su, Wang (bib0180) 2016; 138 Li, Feng, Zou, Zhang, Xia, Liu, Mu (bib0195) 2014; 50 Ojuva, Akhtar, Tomsia, Bergström (bib0040) 2013; 5 Sai, Tan, Hur, Asenath-Smith, Hovden, Jiang, Riccio, Muller, Elser, Estroff, Gruner, Wiesner (bib0020) 2013; 341 White, Yoshizawa, Antonietti, Titirici (bib0060) 2011; 13 Cozzi (bib0225) 2004; 33 Côté, Benin, Ockwig, O’Keeffe, Matzger, Yaghi (bib0100) 2005; 310 Biswal, Chaudhari, Banerjee, Kharul (bib0155) 2016; 22 Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0170) 2011; 133 Feinle, Elsaesser, Husing (bib0005) 2016; 45 Huang, Sun, Qin, Zhao, Xiong, Peng, Ou, Zou (bib0205) 2014; 139 Cavalleri, Gonella, Terreni, Vignolo, Floreano, Morgante, Canepa, Rolandi (bib0200) 2004; 6 Bertrand, Michaelis, Ong, Griffin, Dinca (bib0120) 2013; 110 Alsbaiee, Smith, Xiao, Ling, Helbling, Dichtel (bib0210) 2016; 529 Kandambeth, Biswal, Chaudhari, Rout, Kunjattu H, Mitra, Karak, Das, Mukherjee, Kharul, Banerjee (bib0160) 2017; 29 Hao, Li, Qian, Lu (bib0045) 2010; 22 Kang, Peng, Qian, Yuan, Addicoat, Heine, Hu, Tee, Guo, Zhao (bib0150) 2016; 28 Dalapati, Jin, Gao, Xu, Nagai, Jiang (bib0185) 2013; 135 Hao, Li, Qian, Wang, Zhang, Zhang, Wang, Schüth, Bongard, Lu (bib0050) 2011; 133 Holland, Abrams, Stein (bib0035) 1999; 121 Fellinger, White, Titirici, Antonietti (bib0065) 2012; 22 Saba, Mousavi, Bühlmann, Hillmyer (bib0025) 2015; 137 Tilford, Mugavero, Pellechia, Lavigne (bib0105) 2008; 20 Yang, Liu, Cao, Yan (bib0190) 2015; 51 Ding, Wang (bib0125) 2013; 42 Zhu, Yang, Cranston, Zhu (bib0085) 2016; 28 Lu, Wang, Chen, Ge, Leng, Dong, Huang, Gao (bib0140) 2015; 51 Chisholm, Gallucci, Zhen, Huffman (bib0220) 2001; 40 Lin, Diercks, Zhang, Kornienko, Nichols, Zhao, Paris, Kim, Yang, Yaghi, Chang (bib0175) 2015; 349 Shi, Yu (bib0030) 2016; 28 Chen, Huang, Zhang, Li, Cao, Pei, Zhou, Feng, Wang (bib0080) 2016; 138 Smått, Weidenthaler, Rosenholm, Lindén (bib0015) 2006; 18 Nakanishi, Tanaka (bib0010) 2007; 40 Feng, Ding, Jiang (bib0110) 2012; 41 Liu, Wang, Zhao, Hao, Fang, Wang (bib0135) 2018; 344 Smått (10.1016/j.jhazmat.2018.05.022_bib0015) 2006; 18 Nakanishi (10.1016/j.jhazmat.2018.05.022_bib0010) 2007; 40 Ding (10.1016/j.jhazmat.2018.05.022_bib0180) 2016; 138 Xiao (10.1016/j.jhazmat.2018.05.022_bib0215) 2018; 345 Ojuva (10.1016/j.jhazmat.2018.05.022_bib0040) 2013; 5 Smith (10.1016/j.jhazmat.2018.05.022_bib0165) 2017; 3 Chisholm (10.1016/j.jhazmat.2018.05.022_bib0220) 2001; 40 Dalapati (10.1016/j.jhazmat.2018.05.022_bib0185) 2013; 135 Shi (10.1016/j.jhazmat.2018.05.022_bib0030) 2016; 28 Biswal (10.1016/j.jhazmat.2018.05.022_bib0155) 2016; 22 Wang (10.1016/j.jhazmat.2018.05.022_bib0070) 2006; 18 Saba (10.1016/j.jhazmat.2018.05.022_bib0025) 2015; 137 Chen (10.1016/j.jhazmat.2018.05.022_bib0080) 2016; 138 White (10.1016/j.jhazmat.2018.05.022_bib0060) 2011; 13 Spitler (10.1016/j.jhazmat.2018.05.022_bib0115) 2012; 51 Hao (10.1016/j.jhazmat.2018.05.022_bib0050) 2011; 133 Cavalleri (10.1016/j.jhazmat.2018.05.022_bib0200) 2004; 6 Huang (10.1016/j.jhazmat.2018.05.022_bib0205) 2014; 139 Kandambeth (10.1016/j.jhazmat.2018.05.022_bib0160) 2017; 29 Feinle (10.1016/j.jhazmat.2018.05.022_bib0005) 2016; 45 Sai (10.1016/j.jhazmat.2018.05.022_bib0020) 2013; 341 Ding (10.1016/j.jhazmat.2018.05.022_bib0125) 2013; 42 Antonietti (10.1016/j.jhazmat.2018.05.022_bib0055) 2014; 26 Zhang (10.1016/j.jhazmat.2018.05.022_bib0095) 2007; 19 Holland (10.1016/j.jhazmat.2018.05.022_bib0035) 1999; 121 Ahmed (10.1016/j.jhazmat.2018.05.022_bib0075) 2015; 51 Feng (10.1016/j.jhazmat.2018.05.022_bib0110) 2012; 41 Li (10.1016/j.jhazmat.2018.05.022_bib0195) 2014; 50 Waller (10.1016/j.jhazmat.2018.05.022_bib0130) 2015; 48 Lu (10.1016/j.jhazmat.2018.05.022_bib0140) 2015; 51 Zhang (10.1016/j.jhazmat.2018.05.022_bib0090) 2011; 49 Ding (10.1016/j.jhazmat.2018.05.022_bib0170) 2011; 133 Zhu (10.1016/j.jhazmat.2018.05.022_bib0085) 2016; 28 Li (10.1016/j.jhazmat.2018.05.022_bib0145) 2017; 9 Cozzi (10.1016/j.jhazmat.2018.05.022_bib0225) 2004; 33 Tilford (10.1016/j.jhazmat.2018.05.022_bib0105) 2008; 20 Kang (10.1016/j.jhazmat.2018.05.022_bib0150) 2016; 28 Hao (10.1016/j.jhazmat.2018.05.022_bib0045) 2010; 22 Côté (10.1016/j.jhazmat.2018.05.022_bib0100) 2005; 310 Lin (10.1016/j.jhazmat.2018.05.022_bib0175) 2015; 349 Liu (10.1016/j.jhazmat.2018.05.022_bib0135) 2018; 344 Alsbaiee (10.1016/j.jhazmat.2018.05.022_bib0210) 2016; 529 Bertrand (10.1016/j.jhazmat.2018.05.022_bib0120) 2013; 110 Fellinger (10.1016/j.jhazmat.2018.05.022_bib0065) 2012; 22 Yang (10.1016/j.jhazmat.2018.05.022_bib0190) 2015; 51 |
References_xml | – volume: 133 start-page: 11378 year: 2011 end-page: 11388 ident: bib0050 article-title: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 13825 year: 2014 end-page: 13828 ident: bib0195 article-title: A 2D azine-linked covalent organic framework for gas storage applications publication-title: Chem. Commun. – volume: 51 start-page: 2623 year: 2012 end-page: 2627 ident: bib0115 article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2669 year: 2013 end-page: 2676 ident: bib0040 article-title: Laminated adsorbents with very rapid CO publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 5051 year: 2001 end-page: 5054 ident: bib0220 article-title: Three-coordinate zinc amide and phenoxide complexes supported by a bulky schiff base ligand publication-title: Inorg. Chem. – volume: 529 start-page: 190 year: 2016 end-page: 194 ident: bib0210 article-title: Rapid removal of organic micropollutants from water by a porous publication-title: Nature – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: bib0100 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science – volume: 22 start-page: 3254 year: 2012 end-page: 3260 ident: bib0065 article-title: Borax-mediated formation of carbon aerogels from glucose publication-title: Adv. Funct. Mater. – volume: 51 start-page: 15562 year: 2015 end-page: 15565 ident: bib0140 article-title: A novel 3D covalent organic framework membrane grown on a porous publication-title: Chem. Commun. – volume: 341 start-page: 530 year: 2013 end-page: 534 ident: bib0020 article-title: Hierarchical porous polymer scaffolds from block copolymers publication-title: Science – volume: 26 start-page: 196 year: 2014 end-page: 210 ident: bib0055 article-title: Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes publication-title: Chem. Mater. – volume: 19 start-page: 1529 year: 2007 end-page: 1533 ident: bib0095 article-title: Aligned porous structures by directional freezing publication-title: Adv. Mater. – volume: 33 start-page: 410 year: 2004 end-page: 421 ident: bib0225 article-title: Metal-salen schiff base complexes in catalysis: practical aspects publication-title: Chem. Soc. Rev. – volume: 137 start-page: 8896 year: 2015 end-page: 8899 ident: bib0025 article-title: Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2428 year: 2011 end-page: 2434 ident: bib0060 article-title: A sustainable synthesis of nitrogen-doped carbon aerogels publication-title: Green Chem. – volume: 138 start-page: 10810 year: 2016 end-page: 10813 ident: bib0080 article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4042 year: 2004 end-page: 4046 ident: bib0200 article-title: High resolution X-ray photoelectron spectroscopy of L-cysteine self-assembled films publication-title: Phys. Chem. Chem. Phys. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: bib0110 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 344 start-page: 220 year: 2018 end-page: 229 ident: bib0135 article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix publication-title: J. Hazard. Mater. – volume: 138 start-page: 3031 year: 2016 end-page: 3037 ident: bib0180 article-title: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II) publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1443 year: 2006 end-page: 1450 ident: bib0015 article-title: Hierarchically porous metal oxide monoliths prepared by the nanocasting route publication-title: Chem. Mater. – volume: 110 start-page: 4923 year: 2013 end-page: 4928 ident: bib0120 article-title: Thiophene-based covalent organic frameworks publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: bib0175 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO publication-title: Science – volume: 29 start-page: 1603945 year: 2017 ident: bib0160 article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes publication-title: Adv. Mater. – volume: 51 start-page: 12254 year: 2015 end-page: 12257 ident: bib0190 article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation publication-title: Chem. Commun. – volume: 121 start-page: 4308 year: 1999 end-page: 4309 ident: bib0035 article-title: Dual templating of macroporous silicates with zeolitic microporous frameworks publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 ident: bib0130 article-title: Chemistry of covalent organic frameworks publication-title: Acc. Chem. Res. – volume: 22 start-page: 853 year: 2010 end-page: 857 ident: bib0045 article-title: Rapid synthesis of nitrogen-doped porous carbon monolith for CO publication-title: Adv. Mater. – volume: 28 start-page: 2466 year: 2016 end-page: 2477 ident: bib0030 article-title: Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion publication-title: Chem. Mater. – volume: 135 start-page: 17310 year: 2013 end-page: 17313 ident: bib0185 article-title: An azine-linked covalent organic framework publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1277 year: 2016 end-page: 1285 ident: bib0150 article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO publication-title: Chem. Mater. – volume: 40 start-page: 863 year: 2007 end-page: 873 ident: bib0010 article-title: Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations publication-title: Acc. Chem. Res. – volume: 139 start-page: 2199 year: 2014 end-page: 2206 ident: bib0205 article-title: Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides publication-title: Analyst – volume: 28 start-page: 7652 year: 2016 end-page: 7657 ident: bib0085 article-title: Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications publication-title: Adv. Mater. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 ident: bib0170 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: bib0125 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. – volume: 49 start-page: 827 year: 2011 end-page: 837 ident: bib0090 article-title: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions publication-title: Carbon – volume: 45 start-page: 3377 year: 2016 end-page: 3399 ident: bib0005 article-title: Sol-gel synthesis of monolithic materials with hierarchical porosity publication-title: Chem. Soc. Rev. – volume: 345 start-page: 123 year: 2018 end-page: 130 ident: bib0215 article-title: New insights into bisphenols removal by nitrogen-rich nanocarbons: synergistic effect between adsorption and oxidative degradation publication-title: J. Hazard. Mater. – volume: 22 start-page: 4695 year: 2016 end-page: 4699 ident: bib0155 article-title: Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation publication-title: Chem.—Eur. J. – volume: 18 start-page: 6373 year: 2006 end-page: 6381 ident: bib0070 article-title: Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures publication-title: Chem. Mater. – volume: 20 start-page: 2741 year: 2008 end-page: 2746 ident: bib0105 article-title: Tailoring microporosity in covalent organic frameworks publication-title: Adv. Mater. – volume: 51 start-page: 1717 year: 2015 end-page: 1720 ident: bib0075 article-title: Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach publication-title: Chem. Commun. – volume: 9 start-page: 8433 year: 2017 end-page: 8436 ident: bib0145 article-title: Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 58 year: 2017 end-page: 65 ident: bib0165 article-title: Colloidal covalent organic frameworks publication-title: ACS Cent. Sci. – volume: 22 start-page: 3254 year: 2012 ident: 10.1016/j.jhazmat.2018.05.022_bib0065 article-title: Borax-mediated formation of carbon aerogels from glucose publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102920 – volume: 349 start-page: 1208 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0175 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water publication-title: Science doi: 10.1126/science.aac8343 – volume: 9 start-page: 8433 year: 2017 ident: 10.1016/j.jhazmat.2018.05.022_bib0145 article-title: Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15752 – volume: 51 start-page: 1717 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0075 article-title: Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach publication-title: Chem. Commun. doi: 10.1039/C4CC08919G – volume: 50 start-page: 13825 year: 2014 ident: 10.1016/j.jhazmat.2018.05.022_bib0195 article-title: A 2D azine-linked covalent organic framework for gas storage applications publication-title: Chem. Commun. doi: 10.1039/C4CC05665E – volume: 28 start-page: 2466 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0030 article-title: Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04879 – volume: 5 start-page: 2669 year: 2013 ident: 10.1016/j.jhazmat.2018.05.022_bib0040 article-title: Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400122r – volume: 19 start-page: 1529 year: 2007 ident: 10.1016/j.jhazmat.2018.05.022_bib0095 article-title: Aligned porous structures by directional freezing publication-title: Adv. Mater. doi: 10.1002/adma.200700154 – volume: 110 start-page: 4923 year: 2013 ident: 10.1016/j.jhazmat.2018.05.022_bib0120 article-title: Thiophene-based covalent organic frameworks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1221824110 – volume: 139 start-page: 2199 year: 2014 ident: 10.1016/j.jhazmat.2018.05.022_bib0205 article-title: Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides publication-title: Analyst doi: 10.1039/c4an00076e – volume: 22 start-page: 4695 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0155 article-title: Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation publication-title: Chem.—Eur. J. doi: 10.1002/chem.201504836 – volume: 18 start-page: 6373 year: 2006 ident: 10.1016/j.jhazmat.2018.05.022_bib0070 article-title: Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures publication-title: Chem. Mater. doi: 10.1021/cm061531a – volume: 138 start-page: 10810 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0080 article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06959 – volume: 45 start-page: 3377 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0005 article-title: Sol-gel synthesis of monolithic materials with hierarchical porosity publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00710K – volume: 22 start-page: 853 year: 2010 ident: 10.1016/j.jhazmat.2018.05.022_bib0045 article-title: Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture publication-title: Adv. Mater. doi: 10.1002/adma.200903765 – volume: 133 start-page: 19816 year: 2011 ident: 10.1016/j.jhazmat.2018.05.022_bib0170 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 33 start-page: 410 year: 2004 ident: 10.1016/j.jhazmat.2018.05.022_bib0225 article-title: Metal-salen schiff base complexes in catalysis: practical aspects publication-title: Chem. Soc. Rev. doi: 10.1039/B307853C – volume: 51 start-page: 2623 year: 2012 ident: 10.1016/j.jhazmat.2018.05.022_bib0115 article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107070 – volume: 529 start-page: 190 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0210 article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer publication-title: Nature doi: 10.1038/nature16185 – volume: 51 start-page: 12254 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0190 article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation publication-title: Chem. Commun. doi: 10.1039/C5CC03413B – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.jhazmat.2018.05.022_bib0110 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 345 start-page: 123 year: 2018 ident: 10.1016/j.jhazmat.2018.05.022_bib0215 article-title: New insights into bisphenols removal by nitrogen-rich nanocarbons: synergistic effect between adsorption and oxidative degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.11.001 – volume: 3 start-page: 58 year: 2017 ident: 10.1016/j.jhazmat.2018.05.022_bib0165 article-title: Colloidal covalent organic frameworks publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00331 – volume: 28 start-page: 1277 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0150 article-title: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02902 – volume: 28 start-page: 7652 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0085 article-title: Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications publication-title: Adv. Mater. doi: 10.1002/adma.201601351 – volume: 13 start-page: 2428 year: 2011 ident: 10.1016/j.jhazmat.2018.05.022_bib0060 article-title: A sustainable synthesis of nitrogen-doped carbon aerogels publication-title: Green Chem. doi: 10.1039/c1gc15349h – volume: 20 start-page: 2741 year: 2008 ident: 10.1016/j.jhazmat.2018.05.022_bib0105 article-title: Tailoring microporosity in covalent organic frameworks publication-title: Adv. Mater. doi: 10.1002/adma.200800030 – volume: 51 start-page: 15562 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0140 article-title: A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions publication-title: Chem. Commun. doi: 10.1039/C5CC06742A – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.jhazmat.2018.05.022_bib0125 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 26 start-page: 196 year: 2014 ident: 10.1016/j.jhazmat.2018.05.022_bib0055 article-title: Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes publication-title: Chem. Mater. doi: 10.1021/cm402239e – volume: 40 start-page: 863 year: 2007 ident: 10.1016/j.jhazmat.2018.05.022_bib0010 article-title: Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations publication-title: Acc. Chem. Res. doi: 10.1021/ar600034p – volume: 6 start-page: 4042 year: 2004 ident: 10.1016/j.jhazmat.2018.05.022_bib0200 article-title: High resolution X-ray photoelectron spectroscopy of L-cysteine self-assembled films publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b405516k – volume: 133 start-page: 11378 year: 2011 ident: 10.1016/j.jhazmat.2018.05.022_bib0050 article-title: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203857g – volume: 344 start-page: 220 year: 2018 ident: 10.1016/j.jhazmat.2018.05.022_bib0135 article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.013 – volume: 29 start-page: 1603945 year: 2017 ident: 10.1016/j.jhazmat.2018.05.022_bib0160 article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes publication-title: Adv. Mater. doi: 10.1002/adma.201603945 – volume: 48 start-page: 3053 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0130 article-title: Chemistry of covalent organic frameworks publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.jhazmat.2018.05.022_bib0100 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 40 start-page: 5051 year: 2001 ident: 10.1016/j.jhazmat.2018.05.022_bib0220 article-title: Three-coordinate zinc amide and phenoxide complexes supported by a bulky schiff base ligand publication-title: Inorg. Chem. doi: 10.1021/ic010560e – volume: 137 start-page: 8896 year: 2015 ident: 10.1016/j.jhazmat.2018.05.022_bib0025 article-title: Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04992 – volume: 135 start-page: 17310 year: 2013 ident: 10.1016/j.jhazmat.2018.05.022_bib0185 article-title: An azine-linked covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4103293 – volume: 341 start-page: 530 year: 2013 ident: 10.1016/j.jhazmat.2018.05.022_bib0020 article-title: Hierarchical porous polymer scaffolds from block copolymers publication-title: Science doi: 10.1126/science.1238159 – volume: 18 start-page: 1443 year: 2006 ident: 10.1016/j.jhazmat.2018.05.022_bib0015 article-title: Hierarchically porous metal oxide monoliths prepared by the nanocasting route publication-title: Chem. Mater. doi: 10.1021/cm051880p – volume: 121 start-page: 4308 year: 1999 ident: 10.1016/j.jhazmat.2018.05.022_bib0035 article-title: Dual templating of macroporous silicates with zeolitic microporous frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990425p – volume: 49 start-page: 827 year: 2011 ident: 10.1016/j.jhazmat.2018.05.022_bib0090 article-title: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions publication-title: Carbon doi: 10.1016/j.carbon.2010.10.024 – volume: 138 start-page: 3031 year: 2016 ident: 10.1016/j.jhazmat.2018.05.022_bib0180 article-title: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II) publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10754 |
SSID | ssj0001754 |
Score | 2.5528595 |
Snippet | [Display omitted]
•A method is developed to shape COF powder into monoliths.•The crystallinity and micropore of COF in monolith are well remained.•COF-based... Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | acetates adsorption aldehydes bisphenol A Bisphenol A removal Covalent organic framework crystal structure Hierarchically porous monolith Hydrazine hydrogen bonding macropores palladium polymerization Ring-opening polymerization surface area Suzuki reaction |
Title | Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal |
URI | https://dx.doi.org/10.1016/j.jhazmat.2018.05.022 https://www.ncbi.nlm.nih.gov/pubmed/29783155 https://www.proquest.com/docview/2042754228 https://www.proquest.com/docview/2116895370 |
Volume | 355 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gXPRgFHwsKmkTD3iY3e3XTM-RbNysoHBAEm6dfk3YDc4Sl4TowZv_26p5AB6QhMxpZronla7qrq-nvq4C-BCTknk0ZZZy4zIC7JlXVZk5KWXkOhW-oAPOXw_z2YnaP9WnazDpz8IQrbJb-9s1vVmtuyejbjRHF_P56JiCeuhuFRrlWBZNTlClCrLy4e8bmge6xzaFFEUAsPXNKZ7RYrg4c78QGBLDyzQJPIW4yz_dhT8bPzR9Bk87AMn2Whmfw1qqN-HJrbSCm_Doi7vagj9Ui7PPDsuWFaOq103cANVy_pMh8MZdP0MzJArc2YrRSRMWlmh66IhYW-4p4NOOvbViu5Oj6eojc3VkTXyB3Yp-MwS_zM9XRBlbonjsR_pOn3oBJ9NP3yazrCu6kAVETpdZqbUoqyB8RG-O2K7Kg4-Ce8VTjhOc68il46WK41JUXPlCViIYfG2iC3jJl7BeL-v0GpjzQbrSeERVSqVceKNxe-Y8oVLuKzEA1Q-1DV1GciqMcW576tnCdhqypCE71hY1NIDhdbeLNiXHfR1Mr0f7j21ZdBv3dX3f693ivKNgiqsTagcbKUHVg4X5TxvOc1NqNM4BvGqN5lpiQf_cEMxtP1y4N_CY7ho6on4L62hS6R1CpEu_08yBHdjY-3wwO_wL78kSNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9AAcEBQo4WkkDnDYJn5tvMcqIkppGg60Um-W7fWqicqmIpWqcud_M7PrDeVQKqG92Z6V5RnPfLvzAvhQRiXz0hRZzI3LCLBnXlVF5qSUJddx5EeU4Hw0z6cn6supPt2CcZcLQ2GVSfe3Or3R1mlkkE5zcLFYDL6RUw_NrUKhHMoR1QTdpupUugfb-weH0_lGIaOFbKtIkRMACf4k8gyWe8sz9xOxIQV5maaGpxC3majbIGhjiiaP4VHCkGy_3eYT2Ir1Djy8UVlwB-7N3NVT-EXtOLsCsWxVMWp83bgOkDPn1wyxN374M5REioI7WzNKNmFhhdKHtoi1HZ8CjqYArjX7OP46WX9iri5Z42JgNxzgDPEv84s1RY2tcHvsR_xOr3oGJ5PPx-NplvouZAHB02VWaC2KKghfokFHeFflwZeCe8Vjjnec65JLxwtVDgtRceVHshLB4LQpXcBHPodevarjC2DOB-kK4xFYKRVz4Y3GLzTnCZhyX4k-qO6obUhFyak3xrntos-WNnHIEofsUFvkUB_2NmQXbVWOuwhMx0f7l3hZtBx3kb7v-G7x6pE_xdURuYOLlKAGwsL8Yw3nuSk0ymcfdluh2exY0G83xHMv_39z7-D-9PhoZmcH88NX8IBmmuhE_Rp6KF7xDSKmS_823YjfQyIU5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+hierarchically+porous+monoliths+from+covalent+organic+frameworks+%28COFs%29+and+their+application+for+bisphenol+A+removal&rft.jtitle=Journal+of+hazardous+materials&rft.au=Liu%2C+Zhongshan&rft.au=Wang%2C+Hongwei&rft.au=Ou%2C+Junjie&rft.au=Chen%2C+Lianfang&rft.date=2018-08-05&rft.issn=0304-3894&rft.volume=355+p.145-153&rft.spage=145&rft.epage=153&rft_id=info:doi/10.1016%2Fj.jhazmat.2018.05.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |