Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes
Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 12; no. 9; pp. 1763 - 1776 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
28.04.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm
in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes. |
---|---|
AbstractList | Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm
in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes. Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm−1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes. Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm−1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes. Abstract Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm −1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes. |
Author | Lu, Wei Shi, Yue Wu, Jian Zheng, Ming Zhang, Xing Tai, Hanxu Ning, Yongqiang Wang, Yuhong Zhang, Jianwei Duan, Ruonan |
Author_xml | – sequence: 1 givenname: Yuhong surname: Wang fullname: Wang, Yuhong organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 2 givenname: Hanxu surname: Tai fullname: Tai, Hanxu organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 3 givenname: Ruonan surname: Duan fullname: Duan, Ruonan organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 4 givenname: Ming surname: Zheng fullname: Zheng, Ming organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 5 givenname: Wei surname: Lu fullname: Lu, Wei organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 6 givenname: Yue surname: Shi fullname: Shi, Yue organization: School of Physics, Beihang University, Beijing 102206, China – sequence: 7 givenname: Jianwei surname: Zhang fullname: Zhang, Jianwei organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China – sequence: 8 givenname: Xing surname: Zhang fullname: Zhang, Xing organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China – sequence: 9 givenname: Yongqiang surname: Ning fullname: Ning, Yongqiang organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China – sequence: 10 givenname: Jian orcidid: 0000-0003-3573-0989 surname: Wu fullname: Wu, Jian email: jwu2@buaa.edu.cn organization: School of Physics, Beihang University, Beijing 102206, China |
BookMark | eNp1kc2P1SAUxRszJo7j7F2SuK7y0S9Wxkx0nGQSF-qaXODSx0sfVGjzfGv_cak16kY2nMA5P8g9z6urEANW1UtGX7OWtW8ChDgfak65qCll4kl1zZnk9dCx5uof_ay6zflIy5JSMNldVz8-rzOmegQfyEbJS1rNsiYkZ78cSMbJ1ZAznvSElpxxmuqzL7cmnuYJvxMMmMZLrSHYokcfEJMPI3ExkYMfD6TQiz5BMEiiI8saoKDIBBkTsT5azC-qpw6mjLe_95vq64f3X-4-1o-f7h_u3j3WphHtUg_SotDGWGepoLrjUiJI0Ixz6FsctOEg2951LUoYdG_Byr4plqYxjYRG3FQPO9dGOKo5-ROki4rg1a-DmEYFafFmQmVYX2Y5aC2kbIC5Mq1Go-CtcxKc3Fivdtac4rcV86KOcU2hfF_xgXYtk33LiovuLpNizgndn1cZVVtzam9Obc2prbkSebtHzjAtmCyOab0U8Zf_vyjjkvWdED8Bs6Sm0A |
CitedBy_id | crossref_primary_10_1039_D3TC04371A crossref_primary_10_1088_1361_6463_ad32aa crossref_primary_10_1016_j_optlastec_2023_110211 crossref_primary_10_1021_acsanm_3c05227 crossref_primary_10_1039_D3NR04423H |
Cites_doi | 10.1109/68.553070 10.1002/adma.202106276 10.1002/lpor.201800333 10.1109/3.283807 10.1038/ncomms9276 10.1063/1.2883952 10.1063/1.107835 10.1088/1612-202X/aba0bf 10.1021/acsphotonics.9b00882 10.1063/1.106603 10.1002/9781118148167 10.1063/1.1524303 10.34133/2021/9828026 10.1016/S0022-0248(01)01479-8 10.1016/j.optlastec.2022.108016 10.1016/j.optlastec.2021.107546 10.1002/adma.201102534 10.1143/JJAP.34.4401 10.1109/68.265900 10.1103/PhysRevB.62.10891 10.1039/C9TC05180E 10.1038/s41598-020-60097-0 10.1103/PhysRevB.51.5461 10.1109/JSTQE.2017.2703145 10.1117/12.869391 10.1016/j.apsusc.2020.145540 10.34133/2022/9895418 10.1063/1.126108 10.1109/JQE.1986.1073149 10.34133/2022/9893418 10.1364/OPTICA.4.001228 10.1021/acsphotonics.0c00520 10.1021/acsphotonics.7b01355 10.1109/JQE.2002.808142 10.1016/j.apmt.2022.101546 10.1063/1.118507 10.1364/OE.16.001165 10.1063/1.2060947 10.1364/OE.21.010335 10.1007/s00604-003-0165-3 10.1103/PhysRevLett.123.093901 10.1063/1.2164921 10.1103/PhysRevLett.121.023905 10.1063/1.109700 10.1364/OL.43.004554 10.1109/68.618477 10.1016/0001-6160(89)90246-0 10.1117/1.OE.57.5.056107 10.1016/j.optcom.2007.05.003 10.1007/978-3-662-03880-2 10.34133/2022/9767251 10.1039/C5RA12905B 10.1016/j.jlumin.2018.05.029 10.1016/S0022-0248(99)00466-2 10.1021/acs.nanolett.6b00706 10.1038/nphoton.2008.135 10.1364/OE.2.000119 10.1021/acsami.0c12907 10.1021/acsphotonics.9b00657 10.1109/LPT.2004.835188 10.1109/TNANO.2014.2331706 10.1063/1.125181 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1515/nanoph-2023-0013 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 1776 |
ExternalDocumentID | oai_doaj_org_article_c170238bb3994a1f9314be325ff9af94 10_1515_nanoph_2023_0013 10_1515_nanoph_2023_00131291763 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61874117 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV AEJTT AENEX AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ F-. GROUPED_DOAJ HCIFZ HZ~ O9- OK1 P62 PIMPY PROAC QD8 SA. AAYXX CCPQU CITATION M48 SLJYH 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c435t-89de3bccdfd030b6299ea9ab122a75e8bc2a957f65e9a8b7dad974ea944c49a43 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Tue Oct 22 15:08:04 EDT 2024 Thu Oct 10 17:28:55 EDT 2024 Fri Aug 23 03:20:57 EDT 2024 Fri May 05 02:24:53 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-89de3bccdfd030b6299ea9ab122a75e8bc2a957f65e9a8b7dad974ea944c49a43 |
ORCID | 0000-0003-3573-0989 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2023-0013 |
PQID | 2806519751 |
PQPubID | 2038884 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c170238bb3994a1f9314be325ff9af94 proquest_journals_2806519751 crossref_primary_10_1515_nanoph_2023_0013 walterdegruyter_journals_10_1515_nanoph_2023_00131291763 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-28 |
PublicationDateYYYYMMDD | 2023-04-28 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023050422283821899_j_nanoph-2023-0013_ref_027 2023050422283821899_j_nanoph-2023-0013_ref_026 2023050422283821899_j_nanoph-2023-0013_ref_025 2023050422283821899_j_nanoph-2023-0013_ref_024 2023050422283821899_j_nanoph-2023-0013_ref_023 2023050422283821899_j_nanoph-2023-0013_ref_022 2023050422283821899_j_nanoph-2023-0013_ref_021 2023050422283821899_j_nanoph-2023-0013_ref_020 2023050422283821899_j_nanoph-2023-0013_ref_029 2023050422283821899_j_nanoph-2023-0013_ref_028 2023050422283821899_j_nanoph-2023-0013_ref_030 2023050422283821899_j_nanoph-2023-0013_ref_038 2023050422283821899_j_nanoph-2023-0013_ref_037 2023050422283821899_j_nanoph-2023-0013_ref_036 2023050422283821899_j_nanoph-2023-0013_ref_035 2023050422283821899_j_nanoph-2023-0013_ref_034 2023050422283821899_j_nanoph-2023-0013_ref_033 2023050422283821899_j_nanoph-2023-0013_ref_032 2023050422283821899_j_nanoph-2023-0013_ref_031 2023050422283821899_j_nanoph-2023-0013_ref_039 2023050422283821899_j_nanoph-2023-0013_ref_041 2023050422283821899_j_nanoph-2023-0013_ref_040 2023050422283821899_j_nanoph-2023-0013_ref_005 2023050422283821899_j_nanoph-2023-0013_ref_049 2023050422283821899_j_nanoph-2023-0013_ref_004 2023050422283821899_j_nanoph-2023-0013_ref_048 2023050422283821899_j_nanoph-2023-0013_ref_003 2023050422283821899_j_nanoph-2023-0013_ref_047 2023050422283821899_j_nanoph-2023-0013_ref_002 2023050422283821899_j_nanoph-2023-0013_ref_046 2023050422283821899_j_nanoph-2023-0013_ref_001 2023050422283821899_j_nanoph-2023-0013_ref_045 2023050422283821899_j_nanoph-2023-0013_ref_044 2023050422283821899_j_nanoph-2023-0013_ref_043 2023050422283821899_j_nanoph-2023-0013_ref_042 2023050422283821899_j_nanoph-2023-0013_ref_009 2023050422283821899_j_nanoph-2023-0013_ref_008 2023050422283821899_j_nanoph-2023-0013_ref_007 2023050422283821899_j_nanoph-2023-0013_ref_006 2023050422283821899_j_nanoph-2023-0013_ref_052 2023050422283821899_j_nanoph-2023-0013_ref_051 2023050422283821899_j_nanoph-2023-0013_ref_050 2023050422283821899_j_nanoph-2023-0013_ref_016 2023050422283821899_j_nanoph-2023-0013_ref_015 2023050422283821899_j_nanoph-2023-0013_ref_059 2023050422283821899_j_nanoph-2023-0013_ref_014 2023050422283821899_j_nanoph-2023-0013_ref_058 2023050422283821899_j_nanoph-2023-0013_ref_013 2023050422283821899_j_nanoph-2023-0013_ref_057 2023050422283821899_j_nanoph-2023-0013_ref_012 2023050422283821899_j_nanoph-2023-0013_ref_056 2023050422283821899_j_nanoph-2023-0013_ref_011 2023050422283821899_j_nanoph-2023-0013_ref_055 2023050422283821899_j_nanoph-2023-0013_ref_010 2023050422283821899_j_nanoph-2023-0013_ref_054 2023050422283821899_j_nanoph-2023-0013_ref_053 2023050422283821899_j_nanoph-2023-0013_ref_019 2023050422283821899_j_nanoph-2023-0013_ref_018 2023050422283821899_j_nanoph-2023-0013_ref_017 2023050422283821899_j_nanoph-2023-0013_ref_063 2023050422283821899_j_nanoph-2023-0013_ref_062 2023050422283821899_j_nanoph-2023-0013_ref_061 2023050422283821899_j_nanoph-2023-0013_ref_060 |
References_xml | – ident: 2023050422283821899_j_nanoph-2023-0013_ref_018 doi: 10.1109/68.553070 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_001 doi: 10.1002/adma.202106276 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_059 doi: 10.1002/lpor.201800333 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_053 doi: 10.1109/3.283807 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_005 doi: 10.1038/ncomms9276 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_008 doi: 10.1063/1.2883952 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_048 doi: 10.1063/1.107835 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_023 doi: 10.1088/1612-202X/aba0bf – ident: 2023050422283821899_j_nanoph-2023-0013_ref_056 doi: 10.1021/acsphotonics.9b00882 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_055 doi: 10.1063/1.106603 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_062 doi: 10.1002/9781118148167 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_042 doi: 10.1063/1.1524303 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_046 doi: 10.34133/2021/9828026 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_032 doi: 10.1016/S0022-0248(01)01479-8 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_038 doi: 10.1016/j.optlastec.2022.108016 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_037 doi: 10.1016/j.optlastec.2021.107546 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_002 doi: 10.1002/adma.201102534 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_033 doi: 10.1143/JJAP.34.4401 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_054 doi: 10.1109/68.265900 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_026 doi: 10.1103/PhysRevB.62.10891 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_019 doi: 10.1039/C9TC05180E – ident: 2023050422283821899_j_nanoph-2023-0013_ref_035 doi: 10.1038/s41598-020-60097-0 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_051 doi: 10.1103/PhysRevB.51.5461 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_012 doi: 10.1109/JSTQE.2017.2703145 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_039 doi: 10.1117/12.869391 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_025 doi: 10.1016/j.apsusc.2020.145540 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_021 doi: 10.34133/2022/9895418 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_031 doi: 10.1063/1.126108 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_029 doi: 10.1109/JQE.1986.1073149 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_060 doi: 10.34133/2022/9893418 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_014 doi: 10.1364/OPTICA.4.001228 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_020 doi: 10.1021/acsphotonics.0c00520 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_003 doi: 10.1021/acsphotonics.7b01355 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_016 doi: 10.1109/JQE.2002.808142 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_050 doi: 10.1016/j.apmt.2022.101546 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_043 doi: 10.1063/1.118507 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_022 doi: 10.1364/OE.16.001165 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_041 doi: 10.1063/1.2060947 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_058 doi: 10.1364/OE.21.010335 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_063 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_044 doi: 10.1007/s00604-003-0165-3 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_047 doi: 10.1103/PhysRevLett.123.093901 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_011 doi: 10.1063/1.2164921 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_061 doi: 10.1103/PhysRevLett.121.023905 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_034 doi: 10.1063/1.109700 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_006 doi: 10.1364/OL.43.004554 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_015 doi: 10.1109/68.618477 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_040 doi: 10.1016/0001-6160(89)90246-0 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_017 doi: 10.1117/1.OE.57.5.056107 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_013 doi: 10.1016/j.optcom.2007.05.003 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_052 doi: 10.1007/978-3-662-03880-2 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_045 doi: 10.34133/2022/9767251 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_030 doi: 10.1039/C5RA12905B – ident: 2023050422283821899_j_nanoph-2023-0013_ref_024 doi: 10.1016/j.jlumin.2018.05.029 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_027 doi: 10.1016/S0022-0248(99)00466-2 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_004 doi: 10.1021/acs.nanolett.6b00706 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_007 doi: 10.1038/nphoton.2008.135 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_009 doi: 10.1364/OE.2.000119 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_049 doi: 10.1021/acsami.0c12907 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_057 doi: 10.1021/acsphotonics.9b00657 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_036 doi: 10.1109/LPT.2004.835188 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_028 doi: 10.1109/TNANO.2014.2331706 – ident: 2023050422283821899_j_nanoph-2023-0013_ref_010 doi: 10.1063/1.125181 |
SSID | ssj0000993196 |
Score | 2.3062704 |
Snippet | Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers... Abstract Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1763 |
SubjectTerms | indium-segregation effect multi-atomic step effect Nanostructure optical gain Quantum dots Quantum wells Self-assembly Semiconductor lasers semiconductor nanostructure Spectra tunable laser diodes Tunable lasers Wire |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQE0t5i0JBHlgYLEhiJ_EIiKpCggUqsUV-nHkI0qoPATN_nLOdtoCEWNiSyJFOvs--73z2Z0IORSGNAtCM28wxnPAKpnGGZNZIyI00mQ1iOlfXea_PL-_E3ZervvyesCgPHDvu2CSFDytaYyTlKnEyS7iGLBXOSeVkVAI9kV-SqafIezy2mrokxuzjWtWD4QPzt4Uzz3u-xaEg1_-NY7ZeQ7Xawv1o-j6ZVUdD0OmukVbDFulptHKdLEG9QVYb5kibcTneJB830yGM2D2m-dSbEFVhpyOgfp2VjuHZMWTJ8KKf8T-_Xse8RjENG8rhjUI4Aci0qi0-zxUKKTJa6gWN6XBxvoAOHJ1Mw5EritQbRtQ-DiyMt0i_e3F73mPN9QrMIEeasFJayLQx1lkc6TrHwARKKp2kqSoElNqkSorC5QKkKnVhlcXkA5twbrhUPNsmy_Wghh1CgVuBOTakNpPcFLbk0uQGu9qd4Iso2-Ro1tnVMKpoVD77QMdU0TGVd4zfYJe1yZn3xryd178OHxAVVYOK6i9UtEln5suqGZTjKhSRE1mIpE3KH_5dtPrNLiRGCU7Gu_9h3h5ZiUDkLC07ZBlBAftIbib6IOD4E6ht-14 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-FS3mJpQT5w4WC1SewkPqEWtaqQqBBQqbfIj_GCVJKQ7Krl3D_eGce7qyLBLYmcKPI3M_5mxp5h7J2qtDMAVkhfBIEGrxIWLaTwTkPptCt8LKbz-bw8u5CfLtVlCriNaVvl2iZGQ-07RzHyg5gBzHSlsg_9b0Fdoyi7mlpoPGQ7OXoKhzO2c3xy_uXrJsqC_IdkjDrMIZURNdL1lKvEdfygNW3X_xDUQVwQF7q3NsUS_vd45-51zGB7WAyrP8t1xjQuRKdP2G5ikPxogvwpewDtM_Y4sUmedHV8zm6_rXoYxAJdf06_MFWKXQ3AKfbKR7gKApkz_LJX-B7F8ATVLeZxkznccIinAoU1rcfrTdVCjiyXU5Fj3m_PHPAu8OUqHsPiSMdh4P5n52F8wS5OT75_PBOp5YJwyJuWotYeCuucDx6135a4WIHRxmZ5bioFtXW50aoKpQJtalt549EhwSFSOqmNLF6yWdu18IpxkF6h3w25L7R0la-ldqXDqQ6HeKPqOXu_nuymnyprNOSRIDDNBExDwNCmu2LOjgmNzTiqiR0fdMOiSSrWuKwiAmItci5psoDISwtFrkLQJmg5Z_trLJukqGOzFas5q__CdzvqX_-FZClDA_36_1_eY48mEZMir_fZDOGGN0hllvZtktc7rAv2VA priority: 102 providerName: ProQuest |
Title | Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes |
URI | http://www.degruyter.com/doi/10.1515/nanoph-2023-0013 https://www.proquest.com/docview/2806519751 https://doaj.org/article/c170238bb3994a1f9314be325ff9af94 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sKlvMVCWfnAhYOBJHZiHxCiqEuFRIWAlXqL_Bhvi5Zkye6K9swfZ-xkuyoq3JLIsSx_4_E3Hs8MwHNZaWcQLRe-CJwUXsUtaUjuncbSaVf4lEzn00l5PBUfT-XpNjx6mMDljaZdrCc17eYvL35evqUF_yZV78nkq8Y07eKMx0LgPFKaHdjLBdnp8SLfQPa_91woylusNke0hiui7oPf8qZOru1TKZ3_NQ66_yt5sz3OuvXlauM9TZvS5C7sD2ySvevhvwe3sLkPdwZmyYZ1u3wAv7-uF9jxmTlvWBxCnzV23SGL57BsifPAiUXjDzun_-J5Ho85jFm6cI4XDFOEILem8fR8lcGQEeNlMeExW2zjD1gb2GqdQrIYUXPsmD9vPS4fwnRy9O39MR_KL3BHHGrFlfZYWOd88KQJbEkbFxptbJbnppKorMuNllUoJWqjbOWNJ-OEmgjhhDaieAS7TdvgY2AovCQbHHNfaOEqr4R2paOpDq_pRaoRvNhMdr3os2zU0TohYOoemDoCEy_gFSM4jGhctYv5sdOHtpvVw3KrXVZFMmIt8S9hskDIC4tFLkPQJmgxgoMNlvVG5urkZM50JbMRqL_w3bb617iIOGWkrJ_8v-encLsXMcFzdQC7BDc-I1qzsmPYUZMPY9g7PDr5_GWcDgfGSYL_APc8_DI |
link.rule.ids | 315,783,787,867,2109,2228,12777,21400,24330,27936,27937,33385,33756,43612,43817,67486,69270 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOBS3mKhgA9cOFglifPwCQFiWaDthVbqzfJjvEUqSUh2BZz548w43l0VCW5J5ESRv3l8nrFnGHtR1soZACukL4JAg1cLixZSeKegcsoVPhbTOT6pFmfy03l5ngJuY9pWubGJ0VD7zlGM_DBmADNVl9nr_rugrlGUXU0tNK6zG7JAX00nxecftjEWZD8kYdRfDomMaJCsp0wlevHD1rRdfyGof7ggJnTFM8UC_ldY5_6PmL_2sBzWv1abfGl0Q_M7bD_xR_5mAvwuuwbtPXY7cUmeNHW8z35_WfcwiCUu_Dn9wlQndj0Ap8grH-EyCOTN8M1e4nsUwRNUtZjHLebwk0M8EyisaT1eb2sWcuS4nEoc83534oB3ga_W8RAWRzIOA_dfOw_jA3Y2f3_6biFSwwXhkDWtRKM8FNY5Hzzqvq3QVYFRxmZ5buoSGutyo8o6VCUo09jaG4_LERwipZPKyOIh22u7Fh4xDtKXuOqG3BdKuto3UrnK4VSHV3hTNjP2cjPZup_qamhajyAwegJGEzC05a6YsbeExnYcVcSOD7phqZOCaZfVRD-sRcYlTRYQeWmhyMsQlAlKztjBBkud1HTUO6GaseYvfHej_vVfSJUyNM-P___l5-zm4vT4SB99PPn8hN2axE2KvDlgewg9PEVSs7LPouT-AUex998 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJcylssFPCBCwdrSWIn8bEUluVVkEql3iw_xgtSSaLsRsCZP844yaYUwYVbEtmSlW_G83ns-QzwRBbKGUTLhc8Cpwmv4JZmSO6dwtwpl_leTOf9cb48FW_O5NkOHG1rYeKxSo-rtvuxGRRS5752XUyUTVoDFIHnlanq5jOPd3_zyGLmjQ9XYC_enEFmvne4fHXyYUq1EAmKhjZuUv6t-6Wg1Gv3XyKc-9_6retpXL9FoMUN2B-pIzscsL4JO1jdgusjjWSjk65vw8-TrsGWr2jNz-IQBonYrkUWk65sjeeBE2XGr_ac-sXkHY-Cxaw_XY7fGfblgNyaytPzJFfIiN6yqG7MmotiA1YHtun6-itGPBxb5r_UHtd34HTx8tPRko93LXBHhGnDS-Uxs8754MntbU5RCo0yNklTU0gsrUuNkkXIJSpT2sIbTysRaiKEE8qI7C7sVnWF94Ch8JIW3Jj6TAlX-FIolzv61eEZvchyBk-3P1s3g6SGjksRAkYPwOgITDxtl83geURjahfFsPsPdbvSo29plxSReVhLZEuYJBDawmKWyhCUCUrM4GCLpR49dK37HeVEFTKZQfkHvhet_jUuYkkJzcz3_7_rY7j68cVCv3t9_PYBXBssUfC0PIBdsgp8SFRnYx-NpvwLj8cANA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-gain+nanostructure+with+self-assembled+well-wire+complex+energy-band+engineering+for+high+performance+of+tunable+laser+diodes&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Yuhong&rft.au=Tai%2C+Hanxu&rft.au=Duan%2C+Ruonan&rft.au=Zheng%2C+Ming&rft.date=2023-04-28&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=12&rft.issue=9&rft.spage=1763&rft.epage=1776&rft_id=info:doi/10.1515%2Fnanoph-2023-0013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |