Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes

Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 12; no. 9; pp. 1763 - 1776
Main Authors Wang, Yuhong, Tai, Hanxu, Duan, Ruonan, Zheng, Ming, Lu, Wei, Shi, Yue, Zhang, Jianwei, Zhang, Xing, Ning, Yongqiang, Wu, Jian
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 28.04.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes.
AbstractList Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes.
Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm−1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes.
Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm−1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes.
Abstract Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers for past decades, these traditional nanostructures are encountering the difficulty of enhancing device performance to a higher level due to their inherent gain bottleneck. In this paper, we are proposing a new super-gain nanostructure based on self-assembled well-wire complex energy-band engineering with InGaAs-based materials to break through the existing bottleneck. The nanostructure is constructed by utilizing the special strain-driven indium (In)-segregation and the growth orientation-dependent on-GaAs multi-atomic step effects to achieve the distinguished ultra-wide and uniform super-gain spectra. The structural details and its luminescence mechanism are investigated by multiple measurement means and theoretical modeling. The polarized gain spectra with the max fluctuation of <3 cm −1 in 904 nm–998 nm for transverse electric (TE) mode and 904 nm–977 nm for transverse magnetic (TM) mode are simultaneously obtained with this nanostructure. It enables an ultra-low output power fluctuation of <0.7 dB and a nearly-constant threshold power throughout an ultra-wide wavelength range under a fixed injection level. It was difficult to realize these in the past. Therefore, the described super-gain nanostructure brings a brand-new chance of developing high performance of tunable laser diodes.
Author Lu, Wei
Shi, Yue
Wu, Jian
Zheng, Ming
Zhang, Xing
Tai, Hanxu
Ning, Yongqiang
Wang, Yuhong
Zhang, Jianwei
Duan, Ruonan
Author_xml – sequence: 1
  givenname: Yuhong
  surname: Wang
  fullname: Wang, Yuhong
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 2
  givenname: Hanxu
  surname: Tai
  fullname: Tai, Hanxu
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 3
  givenname: Ruonan
  surname: Duan
  fullname: Duan, Ruonan
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 4
  givenname: Ming
  surname: Zheng
  fullname: Zheng, Ming
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 5
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 6
  givenname: Yue
  surname: Shi
  fullname: Shi, Yue
  organization: School of Physics, Beihang University, Beijing 102206, China
– sequence: 7
  givenname: Jianwei
  surname: Zhang
  fullname: Zhang, Jianwei
  organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 8
  givenname: Xing
  surname: Zhang
  fullname: Zhang, Xing
  organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 9
  givenname: Yongqiang
  surname: Ning
  fullname: Ning, Yongqiang
  organization: State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 10
  givenname: Jian
  orcidid: 0000-0003-3573-0989
  surname: Wu
  fullname: Wu, Jian
  email: jwu2@buaa.edu.cn
  organization: School of Physics, Beihang University, Beijing 102206, China
BookMark eNp1kc2P1SAUxRszJo7j7F2SuK7y0S9Wxkx0nGQSF-qaXODSx0sfVGjzfGv_cak16kY2nMA5P8g9z6urEANW1UtGX7OWtW8ChDgfak65qCll4kl1zZnk9dCx5uof_ay6zflIy5JSMNldVz8-rzOmegQfyEbJS1rNsiYkZ78cSMbJ1ZAznvSElpxxmuqzL7cmnuYJvxMMmMZLrSHYokcfEJMPI3ExkYMfD6TQiz5BMEiiI8saoKDIBBkTsT5azC-qpw6mjLe_95vq64f3X-4-1o-f7h_u3j3WphHtUg_SotDGWGepoLrjUiJI0Ixz6FsctOEg2951LUoYdG_Byr4plqYxjYRG3FQPO9dGOKo5-ROki4rg1a-DmEYFafFmQmVYX2Y5aC2kbIC5Mq1Go-CtcxKc3Fivdtac4rcV86KOcU2hfF_xgXYtk33LiovuLpNizgndn1cZVVtzam9Obc2prbkSebtHzjAtmCyOab0U8Zf_vyjjkvWdED8Bs6Sm0A
CitedBy_id crossref_primary_10_1039_D3TC04371A
crossref_primary_10_1088_1361_6463_ad32aa
crossref_primary_10_1016_j_optlastec_2023_110211
crossref_primary_10_1021_acsanm_3c05227
crossref_primary_10_1039_D3NR04423H
Cites_doi 10.1109/68.553070
10.1002/adma.202106276
10.1002/lpor.201800333
10.1109/3.283807
10.1038/ncomms9276
10.1063/1.2883952
10.1063/1.107835
10.1088/1612-202X/aba0bf
10.1021/acsphotonics.9b00882
10.1063/1.106603
10.1002/9781118148167
10.1063/1.1524303
10.34133/2021/9828026
10.1016/S0022-0248(01)01479-8
10.1016/j.optlastec.2022.108016
10.1016/j.optlastec.2021.107546
10.1002/adma.201102534
10.1143/JJAP.34.4401
10.1109/68.265900
10.1103/PhysRevB.62.10891
10.1039/C9TC05180E
10.1038/s41598-020-60097-0
10.1103/PhysRevB.51.5461
10.1109/JSTQE.2017.2703145
10.1117/12.869391
10.1016/j.apsusc.2020.145540
10.34133/2022/9895418
10.1063/1.126108
10.1109/JQE.1986.1073149
10.34133/2022/9893418
10.1364/OPTICA.4.001228
10.1021/acsphotonics.0c00520
10.1021/acsphotonics.7b01355
10.1109/JQE.2002.808142
10.1016/j.apmt.2022.101546
10.1063/1.118507
10.1364/OE.16.001165
10.1063/1.2060947
10.1364/OE.21.010335
10.1007/s00604-003-0165-3
10.1103/PhysRevLett.123.093901
10.1063/1.2164921
10.1103/PhysRevLett.121.023905
10.1063/1.109700
10.1364/OL.43.004554
10.1109/68.618477
10.1016/0001-6160(89)90246-0
10.1117/1.OE.57.5.056107
10.1016/j.optcom.2007.05.003
10.1007/978-3-662-03880-2
10.34133/2022/9767251
10.1039/C5RA12905B
10.1016/j.jlumin.2018.05.029
10.1016/S0022-0248(99)00466-2
10.1021/acs.nanolett.6b00706
10.1038/nphoton.2008.135
10.1364/OE.2.000119
10.1021/acsami.0c12907
10.1021/acsphotonics.9b00657
10.1109/LPT.2004.835188
10.1109/TNANO.2014.2331706
10.1063/1.125181
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1515/nanoph-2023-0013
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1776
ExternalDocumentID oai_doaj_org_article_c170238bb3994a1f9314be325ff9af94
10_1515_nanoph_2023_0013
10_1515_nanoph_2023_00131291763
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61874117
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
AEJTT
AENEX
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
F-.
GROUPED_DOAJ
HCIFZ
HZ~
O9-
OK1
P62
PIMPY
PROAC
QD8
SA.
AAYXX
CCPQU
CITATION
M48
SLJYH
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c435t-89de3bccdfd030b6299ea9ab122a75e8bc2a957f65e9a8b7dad974ea944c49a43
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Tue Oct 22 15:08:04 EDT 2024
Thu Oct 10 17:28:55 EDT 2024
Fri Aug 23 03:20:57 EDT 2024
Fri May 05 02:24:53 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-89de3bccdfd030b6299ea9ab122a75e8bc2a957f65e9a8b7dad974ea944c49a43
ORCID 0000-0003-3573-0989
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2023-0013
PQID 2806519751
PQPubID 2038884
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c170238bb3994a1f9314be325ff9af94
proquest_journals_2806519751
crossref_primary_10_1515_nanoph_2023_0013
walterdegruyter_journals_10_1515_nanoph_2023_00131291763
PublicationCentury 2000
PublicationDate 2023-04-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023050422283821899_j_nanoph-2023-0013_ref_027
2023050422283821899_j_nanoph-2023-0013_ref_026
2023050422283821899_j_nanoph-2023-0013_ref_025
2023050422283821899_j_nanoph-2023-0013_ref_024
2023050422283821899_j_nanoph-2023-0013_ref_023
2023050422283821899_j_nanoph-2023-0013_ref_022
2023050422283821899_j_nanoph-2023-0013_ref_021
2023050422283821899_j_nanoph-2023-0013_ref_020
2023050422283821899_j_nanoph-2023-0013_ref_029
2023050422283821899_j_nanoph-2023-0013_ref_028
2023050422283821899_j_nanoph-2023-0013_ref_030
2023050422283821899_j_nanoph-2023-0013_ref_038
2023050422283821899_j_nanoph-2023-0013_ref_037
2023050422283821899_j_nanoph-2023-0013_ref_036
2023050422283821899_j_nanoph-2023-0013_ref_035
2023050422283821899_j_nanoph-2023-0013_ref_034
2023050422283821899_j_nanoph-2023-0013_ref_033
2023050422283821899_j_nanoph-2023-0013_ref_032
2023050422283821899_j_nanoph-2023-0013_ref_031
2023050422283821899_j_nanoph-2023-0013_ref_039
2023050422283821899_j_nanoph-2023-0013_ref_041
2023050422283821899_j_nanoph-2023-0013_ref_040
2023050422283821899_j_nanoph-2023-0013_ref_005
2023050422283821899_j_nanoph-2023-0013_ref_049
2023050422283821899_j_nanoph-2023-0013_ref_004
2023050422283821899_j_nanoph-2023-0013_ref_048
2023050422283821899_j_nanoph-2023-0013_ref_003
2023050422283821899_j_nanoph-2023-0013_ref_047
2023050422283821899_j_nanoph-2023-0013_ref_002
2023050422283821899_j_nanoph-2023-0013_ref_046
2023050422283821899_j_nanoph-2023-0013_ref_001
2023050422283821899_j_nanoph-2023-0013_ref_045
2023050422283821899_j_nanoph-2023-0013_ref_044
2023050422283821899_j_nanoph-2023-0013_ref_043
2023050422283821899_j_nanoph-2023-0013_ref_042
2023050422283821899_j_nanoph-2023-0013_ref_009
2023050422283821899_j_nanoph-2023-0013_ref_008
2023050422283821899_j_nanoph-2023-0013_ref_007
2023050422283821899_j_nanoph-2023-0013_ref_006
2023050422283821899_j_nanoph-2023-0013_ref_052
2023050422283821899_j_nanoph-2023-0013_ref_051
2023050422283821899_j_nanoph-2023-0013_ref_050
2023050422283821899_j_nanoph-2023-0013_ref_016
2023050422283821899_j_nanoph-2023-0013_ref_015
2023050422283821899_j_nanoph-2023-0013_ref_059
2023050422283821899_j_nanoph-2023-0013_ref_014
2023050422283821899_j_nanoph-2023-0013_ref_058
2023050422283821899_j_nanoph-2023-0013_ref_013
2023050422283821899_j_nanoph-2023-0013_ref_057
2023050422283821899_j_nanoph-2023-0013_ref_012
2023050422283821899_j_nanoph-2023-0013_ref_056
2023050422283821899_j_nanoph-2023-0013_ref_011
2023050422283821899_j_nanoph-2023-0013_ref_055
2023050422283821899_j_nanoph-2023-0013_ref_010
2023050422283821899_j_nanoph-2023-0013_ref_054
2023050422283821899_j_nanoph-2023-0013_ref_053
2023050422283821899_j_nanoph-2023-0013_ref_019
2023050422283821899_j_nanoph-2023-0013_ref_018
2023050422283821899_j_nanoph-2023-0013_ref_017
2023050422283821899_j_nanoph-2023-0013_ref_063
2023050422283821899_j_nanoph-2023-0013_ref_062
2023050422283821899_j_nanoph-2023-0013_ref_061
2023050422283821899_j_nanoph-2023-0013_ref_060
References_xml – ident: 2023050422283821899_j_nanoph-2023-0013_ref_018
  doi: 10.1109/68.553070
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_001
  doi: 10.1002/adma.202106276
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_059
  doi: 10.1002/lpor.201800333
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_053
  doi: 10.1109/3.283807
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_005
  doi: 10.1038/ncomms9276
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_008
  doi: 10.1063/1.2883952
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_048
  doi: 10.1063/1.107835
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_023
  doi: 10.1088/1612-202X/aba0bf
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_056
  doi: 10.1021/acsphotonics.9b00882
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_055
  doi: 10.1063/1.106603
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_062
  doi: 10.1002/9781118148167
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_042
  doi: 10.1063/1.1524303
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_046
  doi: 10.34133/2021/9828026
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_032
  doi: 10.1016/S0022-0248(01)01479-8
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_038
  doi: 10.1016/j.optlastec.2022.108016
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_037
  doi: 10.1016/j.optlastec.2021.107546
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_002
  doi: 10.1002/adma.201102534
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_033
  doi: 10.1143/JJAP.34.4401
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_054
  doi: 10.1109/68.265900
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_026
  doi: 10.1103/PhysRevB.62.10891
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_019
  doi: 10.1039/C9TC05180E
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_035
  doi: 10.1038/s41598-020-60097-0
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_051
  doi: 10.1103/PhysRevB.51.5461
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_012
  doi: 10.1109/JSTQE.2017.2703145
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_039
  doi: 10.1117/12.869391
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_025
  doi: 10.1016/j.apsusc.2020.145540
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_021
  doi: 10.34133/2022/9895418
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_031
  doi: 10.1063/1.126108
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_029
  doi: 10.1109/JQE.1986.1073149
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_060
  doi: 10.34133/2022/9893418
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_014
  doi: 10.1364/OPTICA.4.001228
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_020
  doi: 10.1021/acsphotonics.0c00520
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_003
  doi: 10.1021/acsphotonics.7b01355
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_016
  doi: 10.1109/JQE.2002.808142
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_050
  doi: 10.1016/j.apmt.2022.101546
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_043
  doi: 10.1063/1.118507
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_022
  doi: 10.1364/OE.16.001165
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_041
  doi: 10.1063/1.2060947
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_058
  doi: 10.1364/OE.21.010335
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_063
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_044
  doi: 10.1007/s00604-003-0165-3
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_047
  doi: 10.1103/PhysRevLett.123.093901
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_011
  doi: 10.1063/1.2164921
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_061
  doi: 10.1103/PhysRevLett.121.023905
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_034
  doi: 10.1063/1.109700
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_006
  doi: 10.1364/OL.43.004554
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_015
  doi: 10.1109/68.618477
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_040
  doi: 10.1016/0001-6160(89)90246-0
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_017
  doi: 10.1117/1.OE.57.5.056107
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_013
  doi: 10.1016/j.optcom.2007.05.003
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_052
  doi: 10.1007/978-3-662-03880-2
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_045
  doi: 10.34133/2022/9767251
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_030
  doi: 10.1039/C5RA12905B
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_024
  doi: 10.1016/j.jlumin.2018.05.029
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_027
  doi: 10.1016/S0022-0248(99)00466-2
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_004
  doi: 10.1021/acs.nanolett.6b00706
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_007
  doi: 10.1038/nphoton.2008.135
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_009
  doi: 10.1364/OE.2.000119
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_049
  doi: 10.1021/acsami.0c12907
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_057
  doi: 10.1021/acsphotonics.9b00657
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_036
  doi: 10.1109/LPT.2004.835188
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_028
  doi: 10.1109/TNANO.2014.2331706
– ident: 2023050422283821899_j_nanoph-2023-0013_ref_010
  doi: 10.1063/1.125181
SSID ssj0000993196
Score 2.3062704
Snippet Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of semiconductor lasers...
Abstract Although traditional quantum-confined nanostructures e.g. regular quantum wells or quantum dots have achieved huge success in the field of...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 1763
SubjectTerms indium-segregation effect
multi-atomic step effect
Nanostructure
optical gain
Quantum dots
Quantum wells
Self-assembly
Semiconductor lasers
semiconductor nanostructure
Spectra
tunable laser diodes
Tunable lasers
Wire
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQE0t5i0JBHlgYLEhiJ_EIiKpCggUqsUV-nHkI0qoPATN_nLOdtoCEWNiSyJFOvs--73z2Z0IORSGNAtCM28wxnPAKpnGGZNZIyI00mQ1iOlfXea_PL-_E3ZervvyesCgPHDvu2CSFDytaYyTlKnEyS7iGLBXOSeVkVAI9kV-SqafIezy2mrokxuzjWtWD4QPzt4Uzz3u-xaEg1_-NY7ZeQ7Xawv1o-j6ZVUdD0OmukVbDFulptHKdLEG9QVYb5kibcTneJB830yGM2D2m-dSbEFVhpyOgfp2VjuHZMWTJ8KKf8T-_Xse8RjENG8rhjUI4Aci0qi0-zxUKKTJa6gWN6XBxvoAOHJ1Mw5EritQbRtQ-DiyMt0i_e3F73mPN9QrMIEeasFJayLQx1lkc6TrHwARKKp2kqSoElNqkSorC5QKkKnVhlcXkA5twbrhUPNsmy_Wghh1CgVuBOTakNpPcFLbk0uQGu9qd4Iso2-Ro1tnVMKpoVD77QMdU0TGVd4zfYJe1yZn3xryd178OHxAVVYOK6i9UtEln5suqGZTjKhSRE1mIpE3KH_5dtPrNLiRGCU7Gu_9h3h5ZiUDkLC07ZBlBAftIbib6IOD4E6ht-14
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-FS3mJpQT5w4WC1SewkPqEWtaqQqBBQqbfIj_GCVJKQ7Krl3D_eGce7qyLBLYmcKPI3M_5mxp5h7J2qtDMAVkhfBIEGrxIWLaTwTkPptCt8LKbz-bw8u5CfLtVlCriNaVvl2iZGQ-07RzHyg5gBzHSlsg_9b0Fdoyi7mlpoPGQ7OXoKhzO2c3xy_uXrJsqC_IdkjDrMIZURNdL1lKvEdfygNW3X_xDUQVwQF7q3NsUS_vd45-51zGB7WAyrP8t1xjQuRKdP2G5ikPxogvwpewDtM_Y4sUmedHV8zm6_rXoYxAJdf06_MFWKXQ3AKfbKR7gKApkz_LJX-B7F8ATVLeZxkznccIinAoU1rcfrTdVCjiyXU5Fj3m_PHPAu8OUqHsPiSMdh4P5n52F8wS5OT75_PBOp5YJwyJuWotYeCuucDx6135a4WIHRxmZ5bioFtXW50aoKpQJtalt549EhwSFSOqmNLF6yWdu18IpxkF6h3w25L7R0la-ldqXDqQ6HeKPqOXu_nuymnyprNOSRIDDNBExDwNCmu2LOjgmNzTiqiR0fdMOiSSrWuKwiAmItci5psoDISwtFrkLQJmg5Z_trLJukqGOzFas5q__CdzvqX_-FZClDA_36_1_eY48mEZMir_fZDOGGN0hllvZtktc7rAv2VA
  priority: 102
  providerName: ProQuest
Title Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes
URI http://www.degruyter.com/doi/10.1515/nanoph-2023-0013
https://www.proquest.com/docview/2806519751
https://doaj.org/article/c170238bb3994a1f9314be325ff9af94
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sKlvMVCWfnAhYOBJHZiHxCiqEuFRIWAlXqL_Bhvi5Zkye6K9swfZ-xkuyoq3JLIsSx_4_E3Hs8MwHNZaWcQLRe-CJwUXsUtaUjuncbSaVf4lEzn00l5PBUfT-XpNjx6mMDljaZdrCc17eYvL35evqUF_yZV78nkq8Y07eKMx0LgPFKaHdjLBdnp8SLfQPa_91woylusNke0hiui7oPf8qZOru1TKZ3_NQ66_yt5sz3OuvXlauM9TZvS5C7sD2ySvevhvwe3sLkPdwZmyYZ1u3wAv7-uF9jxmTlvWBxCnzV23SGL57BsifPAiUXjDzun_-J5Ho85jFm6cI4XDFOEILem8fR8lcGQEeNlMeExW2zjD1gb2GqdQrIYUXPsmD9vPS4fwnRy9O39MR_KL3BHHGrFlfZYWOd88KQJbEkbFxptbJbnppKorMuNllUoJWqjbOWNJ-OEmgjhhDaieAS7TdvgY2AovCQbHHNfaOEqr4R2paOpDq_pRaoRvNhMdr3os2zU0TohYOoemDoCEy_gFSM4jGhctYv5sdOHtpvVw3KrXVZFMmIt8S9hskDIC4tFLkPQJmgxgoMNlvVG5urkZM50JbMRqL_w3bb617iIOGWkrJ_8v-encLsXMcFzdQC7BDc-I1qzsmPYUZMPY9g7PDr5_GWcDgfGSYL_APc8_DI
link.rule.ids 315,783,787,867,2109,2228,12777,21400,24330,27936,27937,33385,33756,43612,43817,67486,69270
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOBS3mKhgA9cOFglifPwCQFiWaDthVbqzfJjvEUqSUh2BZz548w43l0VCW5J5ESRv3l8nrFnGHtR1soZACukL4JAg1cLixZSeKegcsoVPhbTOT6pFmfy03l5ngJuY9pWubGJ0VD7zlGM_DBmADNVl9nr_rugrlGUXU0tNK6zG7JAX00nxecftjEWZD8kYdRfDomMaJCsp0wlevHD1rRdfyGof7ggJnTFM8UC_ldY5_6PmL_2sBzWv1abfGl0Q_M7bD_xR_5mAvwuuwbtPXY7cUmeNHW8z35_WfcwiCUu_Dn9wlQndj0Ap8grH-EyCOTN8M1e4nsUwRNUtZjHLebwk0M8EyisaT1eb2sWcuS4nEoc83534oB3ga_W8RAWRzIOA_dfOw_jA3Y2f3_6biFSwwXhkDWtRKM8FNY5Hzzqvq3QVYFRxmZ5buoSGutyo8o6VCUo09jaG4_LERwipZPKyOIh22u7Fh4xDtKXuOqG3BdKuto3UrnK4VSHV3hTNjP2cjPZup_qamhajyAwegJGEzC05a6YsbeExnYcVcSOD7phqZOCaZfVRD-sRcYlTRYQeWmhyMsQlAlKztjBBkud1HTUO6GaseYvfHej_vVfSJUyNM-P___l5-zm4vT4SB99PPn8hN2axE2KvDlgewg9PEVSs7LPouT-AUex998
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJcylssFPCBCwdrSWIn8bEUluVVkEql3iw_xgtSSaLsRsCZP844yaYUwYVbEtmSlW_G83ns-QzwRBbKGUTLhc8Cpwmv4JZmSO6dwtwpl_leTOf9cb48FW_O5NkOHG1rYeKxSo-rtvuxGRRS5752XUyUTVoDFIHnlanq5jOPd3_zyGLmjQ9XYC_enEFmvne4fHXyYUq1EAmKhjZuUv6t-6Wg1Gv3XyKc-9_6retpXL9FoMUN2B-pIzscsL4JO1jdgusjjWSjk65vw8-TrsGWr2jNz-IQBonYrkUWk65sjeeBE2XGr_ac-sXkHY-Cxaw_XY7fGfblgNyaytPzJFfIiN6yqG7MmotiA1YHtun6-itGPBxb5r_UHtd34HTx8tPRko93LXBHhGnDS-Uxs8754MntbU5RCo0yNklTU0gsrUuNkkXIJSpT2sIbTysRaiKEE8qI7C7sVnWF94Ch8JIW3Jj6TAlX-FIolzv61eEZvchyBk-3P1s3g6SGjksRAkYPwOgITDxtl83geURjahfFsPsPdbvSo29plxSReVhLZEuYJBDawmKWyhCUCUrM4GCLpR49dK37HeVEFTKZQfkHvhet_jUuYkkJzcz3_7_rY7j68cVCv3t9_PYBXBssUfC0PIBdsgp8SFRnYx-NpvwLj8cANA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-gain+nanostructure+with+self-assembled+well-wire+complex+energy-band+engineering+for+high+performance+of+tunable+laser+diodes&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Yuhong&rft.au=Tai%2C+Hanxu&rft.au=Duan%2C+Ruonan&rft.au=Zheng%2C+Ming&rft.date=2023-04-28&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=12&rft.issue=9&rft.spage=1763&rft.epage=1776&rft_id=info:doi/10.1515%2Fnanoph-2023-0013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon