Fabrication of a graphene oxide–gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering

An electrostatic self-assembly procedure was used to fabricate graphene oxide (GO) and gold nanorod (AuNR) hybrids (GO–AuNR), in which poly (N-vinyl-2-pyrrolidone) was used as a stabilizing surfactant to prevent the aggregations of GO sheets. AuNRs were loaded onto the surface of GO, which was confi...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 51; pp. 255 - 264
Main Authors Hu, Chaofan, Rong, Jianhua, Cui, Jianghu, Yang, Yunhua, Yang, Lufeng, Wang, Yaling, Liu, Yingliang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An electrostatic self-assembly procedure was used to fabricate graphene oxide (GO) and gold nanorod (AuNR) hybrids (GO–AuNR), in which poly (N-vinyl-2-pyrrolidone) was used as a stabilizing surfactant to prevent the aggregations of GO sheets. AuNRs were loaded onto the surface of GO, which was confirmed by zeta potential measurements, transmission electron microscopy, atomic force microscopy, UV–Vis–NIR and Raman spectroscopy. The GO–AuNR materials show a great increase of Raman signals for adsorbed aromatic dye molecules, which was demonstrated using cationic and anionic aromatic dyes as probe molecules.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2012.08.051