Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucid...
Saved in:
Published in | Materials in engineering Vol. 30; no. 8; pp. 2903 - 2910 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (∼10
μm) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H
3BO
3 and KBF
4) in the powder yielded a smooth laser sintered surface free of balling. |
---|---|
AbstractList | Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (~10km) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H@d3BO@d3 and KBF@d4) in the powder yielded a smooth laser sintered surface free of balling. Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (∼10 μm) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H 3BO 3 and KBF 4) in the powder yielded a smooth laser sintered surface free of balling. |
Author | Gu, Dongdong Shen, Yifu |
Author_xml | – sequence: 1 givenname: Dongdong surname: Gu fullname: Gu, Dongdong email: dongdonggu@nuaa.edu.cn, dongdonggu@hotmail.com – sequence: 2 givenname: Yifu surname: Shen fullname: Shen, Yifu |
BookMark | eNqFkb1uHCEURikcKf7JG6SgSqrdXIYZZsdFJNuyY0uO0iQ1YuGOlxUDGy4bK28fRpPKhS1dCQTn-4QOZ-wkpoiMfRSwFiDUl_16MsUhrRuAYQ2ijjxhp9AosZKghvfsjGgPIHohmlNG1yYEH5_4YYcxTRgN95E7n9EWHgxh5uRjwTwzaeRUjI8BieoOMfBDenaYL_l3LLXomJ-8NYFPaHcmepqIm-i4TbHkNB-XXXJ0wd6NJhB--L-es193tz9v7lePP7493Fw9rmwru7LqnW3dZmudHMAOppVW9qLvetFtR6FGhU7JBqFrR7VBxMY6h9vRwYC2XnSNPGefl95DTr-PSEVPniyGYCKmI-kBpGqaHjaV_PQqKdsWVH1GBdsFtDkRZRz1IfvJ5L9agJ79671e_OvZvwZRR9bY5YuY9cUUP3sxPrwV_rqEsbr64zFrsh6jxeWXtEv-9YJ_euOq1A |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_109151 crossref_primary_10_1016_j_jclepro_2020_122218 crossref_primary_10_1016_j_addma_2023_103658 crossref_primary_10_1016_j_prosdent_2021_04_021 crossref_primary_10_4028_www_scientific_net_KEM_839_7 crossref_primary_10_1007_s11665_021_05861_7 crossref_primary_10_1016_j_matpr_2019_12_012 crossref_primary_10_1016_j_jmatprotec_2021_117384 crossref_primary_10_1088_2631_7990_ad54a4 crossref_primary_10_1007_s40964_024_00739_1 crossref_primary_10_1108_RPJ_04_2023_0128 crossref_primary_10_4047_jap_2014_6_4_266 crossref_primary_10_1016_j_matchar_2020_110567 crossref_primary_10_1016_j_msec_2017_03_066 crossref_primary_10_1016_j_prosdent_2020_10_006 crossref_primary_10_1002_srin_201800473 crossref_primary_10_1007_s00170_011_3566_1 crossref_primary_10_1007_s40195_023_01551_6 crossref_primary_10_1016_j_addma_2020_101500 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1016_j_eng_2021_03_032 crossref_primary_10_1016_j_rineng_2024_103708 crossref_primary_10_1016_j_addma_2022_103128 crossref_primary_10_1016_j_msea_2014_12_018 crossref_primary_10_4028_www_scientific_net_AMM_518_12 crossref_primary_10_1007_s10800_022_01843_2 crossref_primary_10_1016_j_prosdent_2018_12_016 crossref_primary_10_1007_s12046_021_01770_6 crossref_primary_10_1007_s40195_017_0670_8 crossref_primary_10_1080_14786435_2010_526650 crossref_primary_10_1016_j_cjmeam_2022_100037 crossref_primary_10_1088_1402_4896_acdf8f crossref_primary_10_1007_s00170_023_12489_5 crossref_primary_10_1016_j_matdes_2016_01_099 crossref_primary_10_1016_j_matpr_2017_07_207 crossref_primary_10_1007_s00170_013_5106_7 crossref_primary_10_4028_www_scientific_net_KEM_520_226 crossref_primary_10_3788_LOP220476 crossref_primary_10_1016_j_ijrmhm_2018_10_004 crossref_primary_10_3389_femat_2022_1046694 crossref_primary_10_3390_met7030105 crossref_primary_10_1007_s40964_023_00457_0 crossref_primary_10_1016_j_electacta_2018_04_188 crossref_primary_10_1007_s00170_023_12139_w crossref_primary_10_1088_2053_1591_aaf2d3 crossref_primary_10_1007_s10853_025_10775_z crossref_primary_10_1007_s00170_017_1172_6 crossref_primary_10_1016_j_ceramint_2023_01_030 crossref_primary_10_1016_j_cja_2017_08_019 crossref_primary_10_1016_j_ijleo_2021_168193 crossref_primary_10_1108_RPJ_07_2013_0076 crossref_primary_10_1016_j_ijmachtools_2012_06_002 crossref_primary_10_1016_j_msea_2016_01_028 crossref_primary_10_1016_j_msea_2019_05_108 crossref_primary_10_2320_matertrans_M2016284 crossref_primary_10_1016_j_ces_2020_115583 crossref_primary_10_1016_j_jmrt_2023_09_011 crossref_primary_10_1016_j_jmrt_2024_04_130 crossref_primary_10_1016_j_jmrt_2022_07_121 crossref_primary_10_1016_j_jmatprotec_2020_116802 crossref_primary_10_1016_j_jmapro_2021_09_018 crossref_primary_10_1115_1_4040543 crossref_primary_10_1007_s40194_020_00885_4 crossref_primary_10_3390_met12010106 crossref_primary_10_1016_j_matdes_2017_10_039 crossref_primary_10_1007_s00170_020_05243_8 crossref_primary_10_2351_7_0000888 crossref_primary_10_4047_jap_2020_12_3_124 crossref_primary_10_1557_jmr_2014_194 crossref_primary_10_1016_j_msea_2021_140957 crossref_primary_10_1016_j_precisioneng_2016_06_001 crossref_primary_10_1016_j_ijleo_2016_06_115 crossref_primary_10_2351_1_5086982 crossref_primary_10_4047_jap_2018_10_4_321 crossref_primary_10_1142_S0217979217440155 crossref_primary_10_1016_j_msea_2019_138512 crossref_primary_10_1016_j_jascer_2014_01_009 crossref_primary_10_1016_j_jmrt_2023_10_042 crossref_primary_10_1115_1_4054935 crossref_primary_10_1016_j_addma_2024_103974 crossref_primary_10_1016_j_jmapro_2022_12_053 crossref_primary_10_1007_s10033_017_0121_5 crossref_primary_10_1016_j_msea_2019_138845 crossref_primary_10_1016_j_cej_2023_148039 crossref_primary_10_1007_s00170_019_04060_y crossref_primary_10_3390_jmmp8060261 crossref_primary_10_4028_www_scientific_net_MSF_919_84 crossref_primary_10_2351_1_5085206 crossref_primary_10_1007_s10845_018_1412_0 crossref_primary_10_1016_j_proeng_2015_01_510 crossref_primary_10_1063_5_0046771 crossref_primary_10_1016_j_pmatsci_2021_100795 crossref_primary_10_3390_ma11040519 crossref_primary_10_1016_j_compscitech_2011_07_010 crossref_primary_10_1016_j_jmatprotec_2018_02_034 crossref_primary_10_1007_s00170_019_03928_3 crossref_primary_10_1111_jopr_13506 crossref_primary_10_1016_j_ijthermalsci_2021_107011 crossref_primary_10_1007_s41403_021_00256_5 crossref_primary_10_3390_met10081073 crossref_primary_10_1016_j_addma_2020_101802 crossref_primary_10_1016_j_jmapro_2025_02_045 crossref_primary_10_3390_jmmp9010009 crossref_primary_10_1016_j_jallcom_2022_164079 crossref_primary_10_1016_j_matdes_2020_108852 crossref_primary_10_1088_1757_899X_572_1_012071 crossref_primary_10_3390_met10020292 crossref_primary_10_3740_MRSK_2018_28_11_663 crossref_primary_10_1007_s00170_018_2886_9 crossref_primary_10_1051_matecconf_20179501009 crossref_primary_10_1108_RPJ_12_2020_0307 crossref_primary_10_1177_09544089231223020 crossref_primary_10_1016_j_mtcomm_2024_108168 crossref_primary_10_1007_s00339_021_04728_x crossref_primary_10_1080_17452759_2024_2404155 crossref_primary_10_1002_advs_202302479 crossref_primary_10_1007_s00170_024_13611_x crossref_primary_10_1007_s12613_020_2147_4 crossref_primary_10_2351_7_0000169 crossref_primary_10_3390_designs8030045 crossref_primary_10_1007_s11837_023_06187_6 crossref_primary_10_1007_s40830_017_0139_7 crossref_primary_10_1007_s00339_019_3213_5 crossref_primary_10_15407_ufm_24_03_561 crossref_primary_10_2139_ssrn_4160344 crossref_primary_10_1155_2022_5874875 crossref_primary_10_1007_s00170_022_10228_w crossref_primary_10_1016_j_addlet_2024_100224 crossref_primary_10_1016_j_ijfatigue_2016_03_012 crossref_primary_10_1007_s11665_021_05591_w crossref_primary_10_1016_j_addma_2021_102058 crossref_primary_10_1016_j_addma_2023_103705 crossref_primary_10_4028_www_scientific_net_AMR_233_235_2844 crossref_primary_10_1007_s11465_015_0341_2 crossref_primary_10_1115_1_4044419 crossref_primary_10_1007_s11665_018_3446_z crossref_primary_10_1007_s00170_020_06323_5 crossref_primary_10_1179_1743280411Y_0000000014 crossref_primary_10_1080_17452759_2023_2299691 crossref_primary_10_3390_ma13163632 crossref_primary_10_1146_annurev_matsci_070115_031728 crossref_primary_10_1089_3dp_2021_0114 crossref_primary_10_2351_1_5096108 crossref_primary_10_4028_www_scientific_net_AMR_1019_254 crossref_primary_10_1016_j_prosdent_2022_04_003 crossref_primary_10_1007_s00170_024_14951_4 crossref_primary_10_30934_kusbed_636713 crossref_primary_10_3390_met11121883 crossref_primary_10_1016_j_optlastec_2021_106914 crossref_primary_10_1016_j_addma_2021_102147 crossref_primary_10_1016_j_matdes_2016_09_043 crossref_primary_10_1016_j_measurement_2024_116347 crossref_primary_10_1016_j_prosdent_2019_12_020 crossref_primary_10_1080_10667857_2019_1701254 crossref_primary_10_3788_CJL231286 crossref_primary_10_1016_j_msea_2017_04_058 crossref_primary_10_3390_ma15207067 crossref_primary_10_1016_j_jmst_2022_02_015 crossref_primary_10_1038_s41529_019_0086_1 crossref_primary_10_1016_j_matchar_2022_111917 crossref_primary_10_3952_physics_2024_64_2_4 crossref_primary_10_1016_j_jmatprotec_2020_116878 crossref_primary_10_1016_j_matchar_2023_113018 crossref_primary_10_1016_j_addma_2021_102274 crossref_primary_10_3390_app6120401 crossref_primary_10_3390_app7070710 crossref_primary_10_1016_j_precisioneng_2023_05_005 crossref_primary_10_1088_1361_6501_ad824c crossref_primary_10_2139_ssrn_4093625 crossref_primary_10_1080_02670836_2017_1289444 crossref_primary_10_1080_02670836_2016_1172787 crossref_primary_10_1016_j_msec_2020_111789 crossref_primary_10_1016_j_jmrt_2022_07_085 crossref_primary_10_1002_adma_202307586 crossref_primary_10_1007_s10853_020_05370_3 crossref_primary_10_1016_j_msea_2020_140640 crossref_primary_10_1108_RPJ_05_2014_0068 crossref_primary_10_18698_0536_1044_2020_11_26_35 crossref_primary_10_1108_RPJ_04_2016_0068 crossref_primary_10_1016_j_powtec_2017_11_018 crossref_primary_10_1016_j_corsci_2022_110550 crossref_primary_10_1016_j_ndteint_2023_102948 crossref_primary_10_1115_1_4040264 crossref_primary_10_1007_s11663_015_0310_5 crossref_primary_10_1016_j_jallcom_2024_175947 crossref_primary_10_1088_1361_6439_ad2304 crossref_primary_10_1007_s40964_022_00281_y crossref_primary_10_1088_2053_1591_ab18bd crossref_primary_10_1007_s11661_022_06703_4 crossref_primary_10_3390_ma15196783 crossref_primary_10_1016_j_apsusc_2011_06_005 crossref_primary_10_1016_j_jmatprotec_2010_09_003 crossref_primary_10_1007_s00339_024_07299_9 crossref_primary_10_1177_13506501231159447 crossref_primary_10_3390_met11050835 crossref_primary_10_1115_1_4040256 crossref_primary_10_1016_j_ijmachtools_2017_11_012 crossref_primary_10_1016_j_ijrmhm_2017_09_004 crossref_primary_10_1177_0954405418798862 crossref_primary_10_3390_met9070731 crossref_primary_10_1016_j_mtcomm_2022_103778 crossref_primary_10_3390_cryst10100905 crossref_primary_10_1016_j_ceramint_2020_02_178 crossref_primary_10_1007_s40194_021_01205_0 crossref_primary_10_1179_1753555715Y_0000000076 crossref_primary_10_1007_s11661_013_1968_4 crossref_primary_10_1108_RPJ_11_2015_0178 crossref_primary_10_1007_s00170_019_03764_5 crossref_primary_10_1179_1753555712Y_0000000030 crossref_primary_10_1016_j_mfglet_2018_09_006 crossref_primary_10_1016_j_optlastec_2020_106509 crossref_primary_10_3390_ma16031050 crossref_primary_10_3390_met11091391 crossref_primary_10_1007_s11665_024_10354_4 crossref_primary_10_1016_j_jmrt_2025_01_183 crossref_primary_10_1016_j_matdes_2013_10_006 crossref_primary_10_1007_s13369_019_04263_1 crossref_primary_10_1007_s00170_011_3776_6 crossref_primary_10_1016_j_matdes_2013_05_070 crossref_primary_10_1016_j_matdes_2018_04_058 crossref_primary_10_3390_met8070524 crossref_primary_10_1007_s00170_022_09382_y crossref_primary_10_1016_j_optlastec_2023_109686 crossref_primary_10_1016_j_msea_2020_139981 crossref_primary_10_1016_j_msea_2019_138455 crossref_primary_10_3390_ma15114020 crossref_primary_10_1002_adem_201700952 crossref_primary_10_1007_s00170_014_6297_2 crossref_primary_10_1016_j_jmapro_2021_02_043 crossref_primary_10_1007_s40964_017_0026_y crossref_primary_10_3390_cryst10060524 crossref_primary_10_1108_RPJ_11_2017_0226 crossref_primary_10_21062_ujep_241_2019_a_1213_2489_MT_19_1_37 crossref_primary_10_3390_ma10010076 crossref_primary_10_1016_j_jmst_2022_10_050 crossref_primary_10_1016_j_mtla_2024_102041 crossref_primary_10_3390_ma12010176 crossref_primary_10_46519_ij3dptdi_1350367 crossref_primary_10_1007_s40430_022_03666_w crossref_primary_10_1002_adem_202100147 crossref_primary_10_1016_j_heliyon_2024_e40200 crossref_primary_10_1108_RPJ_10_2015_0145 crossref_primary_10_3390_jmmp3030052 crossref_primary_10_29109_gujsc_1130098 crossref_primary_10_1007_s12540_024_01650_8 crossref_primary_10_1007_s11661_021_06405_3 crossref_primary_10_1016_j_msea_2019_138387 crossref_primary_10_1016_j_cma_2016_02_023 crossref_primary_10_47459_cndcgs_2020_39 crossref_primary_10_1371_journal_pone_0147399 crossref_primary_10_1002_adem_202101562 crossref_primary_10_1016_j_cirpj_2020_12_004 crossref_primary_10_1016_j_jmbbm_2012_10_005 crossref_primary_10_1016_j_surfcoat_2016_09_019 crossref_primary_10_1088_1757_899X_285_1_012028 crossref_primary_10_1016_j_prosdent_2018_08_018 crossref_primary_10_1080_17452759_2020_1830346 crossref_primary_10_1016_j_pmatsci_2019_04_006 crossref_primary_10_1016_j_matdes_2011_09_051 crossref_primary_10_1016_j_prosdent_2022_02_005 crossref_primary_10_1007_s10704_022_00641_3 crossref_primary_10_1016_j_matdes_2022_110874 crossref_primary_10_1115_1_4035560 crossref_primary_10_1016_j_msea_2017_07_071 crossref_primary_10_3390_inventions9020045 crossref_primary_10_3390_ma17143568 crossref_primary_10_1007_s00170_024_13489_9 crossref_primary_10_3390_ma13225138 crossref_primary_10_1002_adem_202100245 crossref_primary_10_1038_s41524_023_01058_9 crossref_primary_10_1016_j_optlastec_2020_106262 crossref_primary_10_1016_j_surfin_2024_104595 crossref_primary_10_1039_D3RA08627E crossref_primary_10_1016_j_ijrmhm_2024_106830 crossref_primary_10_1080_09506608_2021_1983351 crossref_primary_10_1016_j_jmapro_2019_06_013 crossref_primary_10_1007_s11665_021_06163_8 crossref_primary_10_1089_pho_2017_4311 crossref_primary_10_3390_ma14206052 crossref_primary_10_1016_j_jmapro_2014_04_001 crossref_primary_10_1016_j_partic_2024_06_013 crossref_primary_10_1108_RPJ_10_2019_0279 crossref_primary_10_1016_j_applthermaleng_2018_12_013 crossref_primary_10_1016_j_addma_2017_03_008 crossref_primary_10_1016_j_addma_2024_104334 crossref_primary_10_1016_j_addma_2020_101188 crossref_primary_10_1016_j_matchar_2024_114386 crossref_primary_10_4028_p_2tysi2 crossref_primary_10_1088_1361_6528_ab79ac crossref_primary_10_1115_1_4047624 crossref_primary_10_1016_j_jmatprotec_2013_03_009 crossref_primary_10_1016_j_surfcoat_2019_124930 crossref_primary_10_3390_met7010002 crossref_primary_10_1557_jmr_2015_403 crossref_primary_10_22312_sdusbed_290849 crossref_primary_10_1016_j_matlet_2023_134635 crossref_primary_10_1108_13552541111138405 crossref_primary_10_1016_j_matdes_2024_113442 crossref_primary_10_1016_j_msea_2021_141077 crossref_primary_10_1007_s00170_021_06810_3 crossref_primary_10_1016_j_jmrt_2021_12_052 crossref_primary_10_1016_j_prosdent_2017_05_009 crossref_primary_10_4028_www_scientific_net_AMR_306_307_481 crossref_primary_10_1016_j_jmrt_2025_03_014 crossref_primary_10_1007_s12540_013_3018_6 crossref_primary_10_1016_j_pmatsci_2015_03_002 crossref_primary_10_1016_j_apsusc_2017_05_033 crossref_primary_10_1016_j_jmatprotec_2017_11_055 crossref_primary_10_1007_s00339_019_3238_9 crossref_primary_10_1007_s11665_019_04423_2 crossref_primary_10_1007_s40964_022_00269_8 crossref_primary_10_1016_j_jmbbm_2013_05_011 crossref_primary_10_1016_j_addma_2020_101147 crossref_primary_10_1016_j_jallcom_2013_09_171 crossref_primary_10_1016_j_addma_2016_10_009 crossref_primary_10_1016_j_matdes_2014_07_006 crossref_primary_10_1002_adem_202200055 crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_037 crossref_primary_10_1016_j_msea_2025_147990 crossref_primary_10_3390_jmmp5040107 crossref_primary_10_1007_s00170_022_10711_4 crossref_primary_10_1007_s12206_017_0516_3 crossref_primary_10_1108_13552541111184206 crossref_primary_10_1016_j_addma_2021_102542 crossref_primary_10_1080_2374068X_2022_2077535 crossref_primary_10_1016_j_ndteint_2021_102495 crossref_primary_10_1016_j_optlastec_2018_10_019 crossref_primary_10_1016_j_jmrt_2020_09_051 crossref_primary_10_1088_0022_3727_49_13_135501 crossref_primary_10_1088_0022_3727_48_3_035303 crossref_primary_10_1016_j_jmapro_2021_05_063 crossref_primary_10_3390_met12101732 crossref_primary_10_3390_ma16196461 crossref_primary_10_1155_2018_7814039 crossref_primary_10_1016_j_jmst_2022_12_053 crossref_primary_10_1007_s40964_024_00591_3 crossref_primary_10_3390_ma17235769 crossref_primary_10_1007_s00170_023_12865_1 crossref_primary_10_1007_s40194_024_01861_y crossref_primary_10_1016_j_addma_2018_03_003 crossref_primary_10_1016_j_addma_2024_104013 crossref_primary_10_1007_s11665_021_06021_7 crossref_primary_10_1016_j_msea_2018_02_051 crossref_primary_10_3390_met10070877 crossref_primary_10_1016_j_msea_2022_142656 crossref_primary_10_1007_s00170_018_2473_0 crossref_primary_10_1016_j_msea_2022_142657 crossref_primary_10_1016_j_optlastec_2021_107621 crossref_primary_10_1007_s12598_018_1019_9 crossref_primary_10_1016_j_jallcom_2020_154350 crossref_primary_10_1016_j_mtcomm_2023_107690 crossref_primary_10_1016_j_pmatsci_2017_10_001 crossref_primary_10_1016_j_jallcom_2019_153538 crossref_primary_10_1016_j_msec_2012_09_008 crossref_primary_10_1016_j_jmapro_2021_11_036 crossref_primary_10_1002_adem_202200364 crossref_primary_10_3390_mi10090595 crossref_primary_10_1108_RPJ_07_2017_0136 crossref_primary_10_3390_ma12142284 crossref_primary_10_1016_j_jmst_2024_03_070 crossref_primary_10_1016_j_heliyon_2023_e16583 crossref_primary_10_1016_j_apsusc_2018_10_150 crossref_primary_10_1016_j_optlaseng_2011_06_016 crossref_primary_10_1007_s40430_024_04917_8 crossref_primary_10_3390_ma16103867 crossref_primary_10_3390_met11071046 crossref_primary_10_3390_met10030304 crossref_primary_10_1007_s10856_019_6292_0 crossref_primary_10_1177_09544089251321236 crossref_primary_10_1007_s11106_011_9311_3 crossref_primary_10_1007_s00170_022_09588_0 crossref_primary_10_1016_j_jmrt_2021_12_039 crossref_primary_10_1016_j_ijthermalsci_2016_01_007 crossref_primary_10_1016_j_powtec_2022_117957 crossref_primary_10_3390_ma15041605 crossref_primary_10_1016_j_jmapro_2021_11_007 crossref_primary_10_1016_j_matdes_2023_112160 crossref_primary_10_1016_j_optlastec_2017_06_006 crossref_primary_10_1016_j_compbiomed_2019_103364 crossref_primary_10_3390_met12122109 crossref_primary_10_1016_j_addma_2020_101689 crossref_primary_10_3390_technologies5010009 crossref_primary_10_1016_j_apsusc_2010_02_030 crossref_primary_10_1007_s00170_020_05584_4 crossref_primary_10_1088_1742_6596_885_1_012004 crossref_primary_10_1007_s40735_024_00894_6 crossref_primary_10_1016_j_hybadv_2024_100311 crossref_primary_10_1016_j_matpr_2019_12_061 crossref_primary_10_1007_s00170_013_4902_4 crossref_primary_10_1007_s12666_022_02687_2 crossref_primary_10_1016_j_jallcom_2022_167264 crossref_primary_10_1016_j_jmatprotec_2017_08_012 crossref_primary_10_1016_j_engfailanal_2024_108920 crossref_primary_10_1007_s00170_024_14704_3 crossref_primary_10_1016_j_addma_2019_101014 crossref_primary_10_1179_1743284715Y_0000000136 crossref_primary_10_1016_j_addma_2014_09_001 crossref_primary_10_1088_2053_1591_ab6dae crossref_primary_10_1108_RPJ_01_2018_0004 crossref_primary_10_1007_s00170_019_04416_4 crossref_primary_10_1016_j_phpro_2013_03_156 crossref_primary_10_1108_RPJ_05_2022_0145 crossref_primary_10_1007_s00170_023_11170_1 crossref_primary_10_1007_s40516_015_0014_3 crossref_primary_10_1016_j_ijleo_2018_09_049 crossref_primary_10_1016_j_jallcom_2019_153576 crossref_primary_10_1108_RPJ_07_2019_0189 crossref_primary_10_1016_j_cirp_2018_04_097 crossref_primary_10_1016_j_addma_2021_101959 crossref_primary_10_1016_j_matdes_2021_109615 crossref_primary_10_1179_003258909X12450768326947 crossref_primary_10_1016_j_addma_2021_101836 crossref_primary_10_1016_j_jallcom_2018_01_098 crossref_primary_10_1016_j_matdes_2018_07_015 crossref_primary_10_1177_16878132241230228 crossref_primary_10_1149_1945_7111_ac6450 crossref_primary_10_3390_met13061064 crossref_primary_10_1007_s13369_021_05658_9 crossref_primary_10_1016_j_addma_2017_10_011 crossref_primary_10_3390_pr8010025 crossref_primary_10_1016_j_addma_2024_104316 crossref_primary_10_3390_ma16165697 crossref_primary_10_1016_j_msea_2014_01_012 crossref_primary_10_3390_ma13225063 crossref_primary_10_1016_j_jallcom_2018_09_153 crossref_primary_10_1155_2023_9481790 crossref_primary_10_1108_13552541111138388 crossref_primary_10_3390_ma15186191 crossref_primary_10_1016_j_apt_2021_03_003 crossref_primary_10_1016_j_matchar_2019_109817 crossref_primary_10_1016_j_jmst_2021_06_011 crossref_primary_10_2351_7_0000932 crossref_primary_10_1016_j_jmst_2020_11_029 crossref_primary_10_3390_ma12132052 crossref_primary_10_1016_j_apsusc_2020_145574 crossref_primary_10_1007_s10854_025_14472_0 crossref_primary_10_1088_2632_959X_abe278 crossref_primary_10_1016_j_jmapro_2021_12_033 crossref_primary_10_1590_S1516_14392012005000031 crossref_primary_10_1080_10407782_2014_923231 crossref_primary_10_1016_j_addma_2020_101532 crossref_primary_10_1088_2053_1591_ac5cac crossref_primary_10_1007_s11661_021_06380_9 crossref_primary_10_1016_j_jmapro_2021_12_018 crossref_primary_10_1080_17452759_2016_1250605 crossref_primary_10_3390_met14111246 crossref_primary_10_1016_j_matdes_2020_109433 crossref_primary_10_1080_17452759_2013_778175 crossref_primary_10_4028_www_scientific_net_AMR_341_342_816 crossref_primary_10_1088_1742_6596_2077_1_012023 crossref_primary_10_1016_j_optlastec_2017_05_006 crossref_primary_10_1007_s11041_021_00697_3 crossref_primary_10_1002_adem_201600635 crossref_primary_10_1016_j_optlastec_2022_107880 crossref_primary_10_1016_j_matdes_2011_06_061 crossref_primary_10_1016_j_jallcom_2023_172939 crossref_primary_10_1016_j_vacuum_2013_02_003 crossref_primary_10_1111_ffe_13967 crossref_primary_10_1016_j_addma_2023_103492 crossref_primary_10_1016_j_apmt_2021_101123 crossref_primary_10_1007_s40430_023_04445_x crossref_primary_10_1007_s10853_023_08541_0 crossref_primary_10_1007_s40194_022_01265_w crossref_primary_10_1007_s40516_019_00094_y |
Cites_doi | 10.1007/s00170-007-1154-1 10.1108/13552549510078113 10.1016/j.matdes.2004.09.012 10.1016/j.msea.2006.04.117 10.1016/j.matlet.2008.01.113 10.1002/adem.200310099 10.1108/13552540510589430 10.1108/13552540410526953 10.1016/S0924-0136(03)00150-X 10.1016/j.matdes.2003.10.004 10.1243/095440505X32995 10.1179/095066001101528411 10.1007/BF02735019 10.1016/j.ijrmhm.2007.09.005 10.1016/S1359-6462(99)00276-6 10.1016/j.apsusc.2007.12.028 10.1016/j.msea.2004.05.070 10.1179/026708304X3944 10.1016/S0924-0136(03)00755-6 10.1016/S0924-0136(03)00283-8 10.1243/095440503772680587 10.1016/j.scriptamat.2008.03.007 10.1108/13552549810222939 10.1016/S1359-6462(98)00126-2 10.1016/j.cirp.2007.10.004 10.1016/S0924-0136(03)00132-8 10.1016/S1359-6454(02)00567-0 10.1016/S1359-6462(99)00089-5 10.1016/j.msea.2003.11.048 10.1002/adem.200800075 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matdes.2009.01.013 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 2910 |
ExternalDocumentID | 10_1016_j_matdes_2009_01_013 S0261306909000181 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c435t-7dc4d8bcd390c9a43c37175715bf16f6ed632e054f68eee2cddebfd09ec632523 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Fri Jul 11 11:34:17 EDT 2025 Mon Jul 21 11:04:10 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Tue Jul 01 01:30:44 EDT 2025 Fri Feb 23 02:16:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Sintering (C) Ferrous metals and alloys (A) Microstructure (F) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-7dc4d8bcd390c9a43c37175715bf16f6ed632e054f68eee2cddebfd09ec632523 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34406390 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_903622708 proquest_miscellaneous_34406390 crossref_primary_10_1016_j_matdes_2009_01_013 crossref_citationtrail_10_1016_j_matdes_2009_01_013 elsevier_sciencedirect_doi_10_1016_j_matdes_2009_01_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Materials in engineering |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Niu, Chang (bib16) 1999; 41 Wu, Sharman, Mei, Voice (bib10) 2004; 25 Das, Beaman, Wohlert, Bourell (bib9) 1998; 4 Fischer, Romano, Weber, Karapatis, Boillat, Glardon (bib26) 2003; 51 Zhu, Lu, Fuh (bib8) 2003; 140 Boccalini, Goldenstein (bib29) 2001; 46 Simchi, Godlinski (bib12) 2008; 59 Kruth, Levy, Klocke, Childs (bib6) 2007; 56 Dewidar, Dalgarno, Wright (bib14) 2003; 217 Simchi (bib2) 2006; 428 Deng (bib33) 1979 Simchi, Pohl (bib1) 2004; 383 Kumar, Kruth (bib5) 2008; 10 Dingal, Pradhan, Sundar, Choudhury, Roy (bib25) 2007; 38 Agarwala, Bourell, Beaman, Marcus, Barlow (bib27) 1995; 1 Niu, Chang (bib17) 1999; 41 Simchi, Asgharzadeh (bib30) 2004; 20 Tolochko, Mozzharov, Yadroitsev, Laoui, Froyen, Titov, Ignatiev (bib19) 2004; 10 Simchi (bib11) 2008; 62 Zhu, Lu, Fuh, Wu (bib13) 2006; 27 Gu, Shen (bib15) 2006; 37 Niu, Chang (bib18) 1998; 39 Gu, Shen (bib31) 2008; 254 Bunnell DE. Fundamentals of selective laser sintering of metals. PhD thesis, University of Texas at Austin; 1995. Chatterjee, Kumar, Saha, Mishra, Choudhury (bib23) 2003; 136 Simchi, Petzoldt, Pohl (bib21) 2001; 37 Das (bib20) 2003; 5 Zhu, Lu, Fuh (bib22) 2006; 220 Zhu, Fuh, Lu (bib4) 2005; 11 Zhu, Lu, Fuh (bib3) 2004; 371 Murali, Chatterjee, Saha, Palai, Kumar, Roy, Mishra, Choudhury (bib24) 2003; 136 Simchi, Petzoldt, Pohl (bib7) 2003; 141 Gu, Shen, Xiao (bib28) 2008; 26 Simchi (10.1016/j.matdes.2009.01.013_bib7) 2003; 141 Gu (10.1016/j.matdes.2009.01.013_bib31) 2008; 254 Zhu (10.1016/j.matdes.2009.01.013_bib13) 2006; 27 Kruth (10.1016/j.matdes.2009.01.013_bib6) 2007; 56 Simchi (10.1016/j.matdes.2009.01.013_bib21) 2001; 37 Zhu (10.1016/j.matdes.2009.01.013_bib3) 2004; 371 Agarwala (10.1016/j.matdes.2009.01.013_bib27) 1995; 1 Zhu (10.1016/j.matdes.2009.01.013_bib4) 2005; 11 Das (10.1016/j.matdes.2009.01.013_bib20) 2003; 5 Niu (10.1016/j.matdes.2009.01.013_bib16) 1999; 41 Gu (10.1016/j.matdes.2009.01.013_bib15) 2006; 37 Gu (10.1016/j.matdes.2009.01.013_bib28) 2008; 26 Simchi (10.1016/j.matdes.2009.01.013_bib30) 2004; 20 Simchi (10.1016/j.matdes.2009.01.013_bib11) 2008; 62 Dingal (10.1016/j.matdes.2009.01.013_bib25) 2007; 38 Deng (10.1016/j.matdes.2009.01.013_bib33) 1979 Fischer (10.1016/j.matdes.2009.01.013_bib26) 2003; 51 Simchi (10.1016/j.matdes.2009.01.013_bib1) 2004; 383 Niu (10.1016/j.matdes.2009.01.013_bib17) 1999; 41 Simchi (10.1016/j.matdes.2009.01.013_bib2) 2006; 428 Chatterjee (10.1016/j.matdes.2009.01.013_bib23) 2003; 136 Simchi (10.1016/j.matdes.2009.01.013_bib12) 2008; 59 Kumar (10.1016/j.matdes.2009.01.013_bib5) 2008; 10 Das (10.1016/j.matdes.2009.01.013_bib9) 1998; 4 Boccalini (10.1016/j.matdes.2009.01.013_bib29) 2001; 46 Niu (10.1016/j.matdes.2009.01.013_bib18) 1998; 39 Zhu (10.1016/j.matdes.2009.01.013_bib8) 2003; 140 Tolochko (10.1016/j.matdes.2009.01.013_bib19) 2004; 10 Zhu (10.1016/j.matdes.2009.01.013_bib22) 2006; 220 Murali (10.1016/j.matdes.2009.01.013_bib24) 2003; 136 10.1016/j.matdes.2009.01.013_bib32 Wu (10.1016/j.matdes.2009.01.013_bib10) 2004; 25 Dewidar (10.1016/j.matdes.2009.01.013_bib14) 2003; 217 |
References_xml | – volume: 1 start-page: 26 year: 1995 end-page: 36 ident: bib27 article-title: Direct selective laser sintering of metals publication-title: Rapid Prototyping J – volume: 39 start-page: 67 year: 1998 end-page: 72 ident: bib18 article-title: Liquid phase sintering of M3/2 high speed steel by selective laser sintering publication-title: Scripta Mater – volume: 20 start-page: 1462 year: 2004 end-page: 1468 ident: bib30 article-title: Densification and microstructural evaluation during laser sintering of M2 high speed steel powder publication-title: Mater Sci Technol – volume: 41 start-page: 1229 year: 1999 end-page: 1234 ident: bib16 article-title: Instability of scan tracks of selective laser sintering of high speed steel powder publication-title: Scripta Mater – reference: Bunnell DE. Fundamentals of selective laser sintering of metals. PhD thesis, University of Texas at Austin; 1995. – volume: 220 start-page: 183 year: 2006 end-page: 190 ident: bib22 article-title: Study on shrinkage behaviour of direct laser sintering metallic powder publication-title: Proc Inst Mech Eng B: J Eng Manuf – volume: 141 start-page: 319 year: 2003 end-page: 328 ident: bib7 article-title: On the development of direct metal laser sintering for rapid tooling publication-title: J Mater Process Technol – volume: 5 start-page: 701 year: 2003 end-page: 711 ident: bib20 article-title: Physical aspects of process control in selective laser sintering of metals publication-title: Adv Eng Mater – volume: 383 start-page: 191 year: 2004 end-page: 200 ident: bib1 article-title: Direct laser sintering of iron–graphite powder mixture publication-title: Mater Sci Eng A – volume: 428 start-page: 148 year: 2006 end-page: 158 ident: bib2 article-title: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features publication-title: Mater Sci Eng A – volume: 10 start-page: 750 year: 2008 end-page: 753 ident: bib5 article-title: Wear performance of SLS/SLM materials publication-title: Adv Eng Mater – volume: 136 start-page: 151 year: 2003 end-page: 157 ident: bib23 article-title: An experimental design approach to selective laser sintering of low carbon steel publication-title: J Mater Process Technol – volume: 46 start-page: 92 year: 2001 end-page: 115 ident: bib29 article-title: Solidification of high speed steels publication-title: Int Mater Rev – volume: 371 start-page: 170 year: 2004 end-page: 177 ident: bib3 article-title: Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder publication-title: Mater Sci Eng A – volume: 56 start-page: 730 year: 2007 end-page: 759 ident: bib6 article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann Manuf Technol – volume: 217 start-page: 1651 year: 2003 end-page: 1663 ident: bib14 article-title: Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering publication-title: Proc Inst Mech Eng B: J Eng Manuf – volume: 27 start-page: 166 year: 2006 end-page: 170 ident: bib13 article-title: Effect of braze flux on direct laser sintering Cu-based metal powder publication-title: Mater Des – volume: 140 start-page: 314 year: 2003 end-page: 317 ident: bib8 article-title: Development and characterisation of direct laser sintering Cu-based metal powder publication-title: J Mater Process Technol – volume: 38 start-page: 904 year: 2007 end-page: 914 ident: bib25 article-title: The application of Taguchi’s method in the experimental investigation of the laser sintering process publication-title: Int J Adv Manuf Technol – volume: 4 start-page: 112 year: 1998 end-page: 117 ident: bib9 article-title: Direct laser freeform fabrication of high performance metal components publication-title: Rapid Prototyping J – volume: 11 start-page: 74 year: 2005 end-page: 81 ident: bib4 article-title: Microstructural evolution in direct laser sintering of Cu-based metal powder publication-title: Rapid Prototyping J – year: 1979 ident: bib33 article-title: Brazing – volume: 37 start-page: 49 year: 2001 end-page: 61 ident: bib21 article-title: Direct metal laser sintering: material considerations and mechanisms of particle bonding publication-title: Int J Powder Metall – volume: 10 start-page: 78 year: 2004 end-page: 87 ident: bib19 article-title: Balling processes during selective laser treatment of powders publication-title: Rapid Prototyping J – volume: 62 start-page: 2840 year: 2008 end-page: 2843 ident: bib11 article-title: Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process publication-title: Mater Lett – volume: 51 start-page: 1651 year: 2003 end-page: 1662 ident: bib26 article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source publication-title: Acta Mater – volume: 254 start-page: 3971 year: 2008 end-page: 3978 ident: bib31 article-title: Direct laser sintered WC–10Co/Cu nanocomposites publication-title: Appl Surf Sci – volume: 136 start-page: 179 year: 2003 end-page: 185 ident: bib24 article-title: Direct selective laser sintering of iron–graphite powder mixture publication-title: J Mater Process Technol – volume: 25 start-page: 103 year: 2004 end-page: 109 ident: bib10 article-title: Microstructure and properties of a laser fabricated burn-resistant Ti alloy publication-title: Mater Des – volume: 37 start-page: 967 year: 2006 end-page: 977 ident: bib15 article-title: Influence of phosphorus element on direct laser sintering of multicomponent Cu-based metal powder publication-title: Metall Mater Trans B – volume: 26 start-page: 411 year: 2008 end-page: 422 ident: bib28 article-title: Influence of processing parameters on particulate dispersion in direct laser sintered WC–Co publication-title: Int J Refract Met Hard Mater – volume: 59 start-page: 199 year: 2008 end-page: 202 ident: bib12 article-title: Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy publication-title: Scripta Mater – volume: 41 start-page: 25 year: 1999 end-page: 30 ident: bib17 article-title: Selective laser sintering of gas and water atomized high speed steel powders publication-title: Scripta Mater – volume: 38 start-page: 904 year: 2007 ident: 10.1016/j.matdes.2009.01.013_bib25 article-title: The application of Taguchi’s method in the experimental investigation of the laser sintering process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-007-1154-1 – volume: 1 start-page: 26 year: 1995 ident: 10.1016/j.matdes.2009.01.013_bib27 article-title: Direct selective laser sintering of metals publication-title: Rapid Prototyping J doi: 10.1108/13552549510078113 – volume: 27 start-page: 166 year: 2006 ident: 10.1016/j.matdes.2009.01.013_bib13 article-title: Effect of braze flux on direct laser sintering Cu-based metal powder publication-title: Mater Des doi: 10.1016/j.matdes.2004.09.012 – volume: 428 start-page: 148 year: 2006 ident: 10.1016/j.matdes.2009.01.013_bib2 article-title: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.04.117 – volume: 62 start-page: 2840 year: 2008 ident: 10.1016/j.matdes.2009.01.013_bib11 article-title: Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process publication-title: Mater Lett doi: 10.1016/j.matlet.2008.01.113 – volume: 5 start-page: 701 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib20 article-title: Physical aspects of process control in selective laser sintering of metals publication-title: Adv Eng Mater doi: 10.1002/adem.200310099 – volume: 11 start-page: 74 year: 2005 ident: 10.1016/j.matdes.2009.01.013_bib4 article-title: Microstructural evolution in direct laser sintering of Cu-based metal powder publication-title: Rapid Prototyping J doi: 10.1108/13552540510589430 – volume: 10 start-page: 78 year: 2004 ident: 10.1016/j.matdes.2009.01.013_bib19 article-title: Balling processes during selective laser treatment of powders publication-title: Rapid Prototyping J doi: 10.1108/13552540410526953 – volume: 136 start-page: 179 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib24 article-title: Direct selective laser sintering of iron–graphite powder mixture publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00150-X – volume: 25 start-page: 103 year: 2004 ident: 10.1016/j.matdes.2009.01.013_bib10 article-title: Microstructure and properties of a laser fabricated burn-resistant Ti alloy publication-title: Mater Des doi: 10.1016/j.matdes.2003.10.004 – year: 1979 ident: 10.1016/j.matdes.2009.01.013_bib33 – volume: 220 start-page: 183 year: 2006 ident: 10.1016/j.matdes.2009.01.013_bib22 article-title: Study on shrinkage behaviour of direct laser sintering metallic powder publication-title: Proc Inst Mech Eng B: J Eng Manuf doi: 10.1243/095440505X32995 – volume: 46 start-page: 92 year: 2001 ident: 10.1016/j.matdes.2009.01.013_bib29 article-title: Solidification of high speed steels publication-title: Int Mater Rev doi: 10.1179/095066001101528411 – volume: 37 start-page: 967 year: 2006 ident: 10.1016/j.matdes.2009.01.013_bib15 article-title: Influence of phosphorus element on direct laser sintering of multicomponent Cu-based metal powder publication-title: Metall Mater Trans B doi: 10.1007/BF02735019 – volume: 26 start-page: 411 year: 2008 ident: 10.1016/j.matdes.2009.01.013_bib28 article-title: Influence of processing parameters on particulate dispersion in direct laser sintered WC–Cop/Cu MMCs publication-title: Int J Refract Met Hard Mater doi: 10.1016/j.ijrmhm.2007.09.005 – volume: 41 start-page: 1229 year: 1999 ident: 10.1016/j.matdes.2009.01.013_bib16 article-title: Instability of scan tracks of selective laser sintering of high speed steel powder publication-title: Scripta Mater doi: 10.1016/S1359-6462(99)00276-6 – volume: 254 start-page: 3971 year: 2008 ident: 10.1016/j.matdes.2009.01.013_bib31 article-title: Direct laser sintered WC–10Co/Cu nanocomposites publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2007.12.028 – volume: 383 start-page: 191 year: 2004 ident: 10.1016/j.matdes.2009.01.013_bib1 article-title: Direct laser sintering of iron–graphite powder mixture publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.05.070 – volume: 20 start-page: 1462 year: 2004 ident: 10.1016/j.matdes.2009.01.013_bib30 article-title: Densification and microstructural evaluation during laser sintering of M2 high speed steel powder publication-title: Mater Sci Technol doi: 10.1179/026708304X3944 – volume: 140 start-page: 314 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib8 article-title: Development and characterisation of direct laser sintering Cu-based metal powder publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00755-6 – volume: 141 start-page: 319 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib7 article-title: On the development of direct metal laser sintering for rapid tooling publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00283-8 – volume: 217 start-page: 1651 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib14 article-title: Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering publication-title: Proc Inst Mech Eng B: J Eng Manuf doi: 10.1243/095440503772680587 – volume: 59 start-page: 199 year: 2008 ident: 10.1016/j.matdes.2009.01.013_bib12 article-title: Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2008.03.007 – volume: 37 start-page: 49 year: 2001 ident: 10.1016/j.matdes.2009.01.013_bib21 article-title: Direct metal laser sintering: material considerations and mechanisms of particle bonding publication-title: Int J Powder Metall – volume: 4 start-page: 112 year: 1998 ident: 10.1016/j.matdes.2009.01.013_bib9 article-title: Direct laser freeform fabrication of high performance metal components publication-title: Rapid Prototyping J doi: 10.1108/13552549810222939 – volume: 39 start-page: 67 year: 1998 ident: 10.1016/j.matdes.2009.01.013_bib18 article-title: Liquid phase sintering of M3/2 high speed steel by selective laser sintering publication-title: Scripta Mater doi: 10.1016/S1359-6462(98)00126-2 – volume: 56 start-page: 730 year: 2007 ident: 10.1016/j.matdes.2009.01.013_bib6 article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2007.10.004 – volume: 136 start-page: 151 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib23 article-title: An experimental design approach to selective laser sintering of low carbon steel publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00132-8 – volume: 51 start-page: 1651 year: 2003 ident: 10.1016/j.matdes.2009.01.013_bib26 article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00567-0 – volume: 41 start-page: 25 year: 1999 ident: 10.1016/j.matdes.2009.01.013_bib17 article-title: Selective laser sintering of gas and water atomized high speed steel powders publication-title: Scripta Mater doi: 10.1016/S1359-6462(99)00089-5 – volume: 371 start-page: 170 year: 2004 ident: 10.1016/j.matdes.2009.01.013_bib3 article-title: Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.11.048 – volume: 10 start-page: 750 year: 2008 ident: 10.1016/j.matdes.2009.01.013_bib5 article-title: Wear performance of SLS/SLM materials publication-title: Adv Eng Mater doi: 10.1002/adem.200800075 – ident: 10.1016/j.matdes.2009.01.013_bib32 |
SSID | ssj0017112 |
Score | 2.475585 |
Snippet | Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2903 |
SubjectTerms | Ferrous metals and alloys (A) Microstructure (F) Sintering (C) |
Title | Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods |
URI | https://dx.doi.org/10.1016/j.matdes.2009.01.013 https://www.proquest.com/docview/34406390 https://www.proquest.com/docview/903622708 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1yfOXgt2zZt2nhbF2VV9KILeyttMoVK7S7bXfz7zrTposIiCDmUNqHNo5NvMjPfMHadp8oPQRtHunHmBJmKndSE0klRY5HKyDzI6Lzj-UWOxsHjJJxssGEXC0NulVb2tzK9kdb2Tt-OZn9WFP1X0h4EEe1S3kuPwq-3fKEkLu2twcPT6GVlTIi8xuhpj1qk6iLoGjcvxIUGaktc6WER63aoX7K62YDu99iuRY580H7cPtuA6oDtfOMTPGT1bdpQbHNy3CJqhZQXFW97yBEmw5zXxA9Btfk0503sVImyDq8ASj6bfhqY3_BnQEheLueNVOQfQNHBRf1R87Qy3Dq38zb3dH3Exvd3b8ORY7MqOBqh0cKJjA5MnGkjlKtVGggtUKULIy_Mck_mEowUPiCSy2UMAL5GAZjlxlWg8QHqrcdss5pWcMK4H8U5tnGVbzI6oVMKlRmcb0pfH8We22OiG8lEW8pxynxRJp1v2XvSjj9lw1SJ62ERPeasWs1ayo0_6kfdJCU_lk6Cu8IfLa-6OU3wryJTSVrBdFknIggIu2EP-JoairZ-P3Lj03-__oxtt7Yp8lg7Z5uL-RIuEOIssku7hL8AChv8lQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MS3OXgt2zZt2nhTcVkfuxcVvIU2mcLK2l22u_j3nWnTRQURhBxKm9Dm0ck3mZlvGLsoMhXGYKwn_TT3olylXmZj6WWosUhlZRHldN4xGMr-S3T_Gr-usJs2FobcKp3sb2R6La3dna4bze50NOo-kfYgiGiX8l4GFH69SuxUcYetXt099IdLY0IS1EZPd9QiVRtBV7t5IS60UDniygCL-G2H-iGr6w2ot8U2HXLkV83HbbMVKHfYxhc-wV1WXWc1xTYnxy2iVsj4qORNDznCZJjxivghqDafFLyOnRqjrMMrgDGfTj4szC75ABCSjxezWiryd6Do4FH1XvGstNw5t_Mm93S1x156t883fc9lVfAMQqO5l1gT2TQ3VijfqCwSRqBKFydBnBeBLCRYKUJAJFfIFABCgwIwL6yvwOAD1Fv3WaeclHDAeJikBbbxVWhzOqFTCpUZnG9KX5-kgX_IRDuS2jjKccp8Mdatb9mbbsafsmEq7QdYxCHzlq2mDeXGH_WTdpL0t6WjcVf4o-V5O6ca_yoylWQlTBaVFlFE2A17wH-poWjrDxM_Pfr368_ZWv958Kgf74YPx2y9sVOR99oJ68xnCzhFuDPPz9xy_gT1__97 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balling+phenomena+in+direct+laser+sintering+of+stainless+steel+powder%3A+Metallurgical+mechanisms+and+control+methods&rft.jtitle=Materials+in+engineering&rft.au=Gu%2C+D.&rft.au=Shen%2C+Y&rft.date=2009-09-01&rft.issn=0261-3069&rft.volume=30&rft.issue=8&rft.spage=2903&rft.epage=2910&rft_id=info:doi/10.1016%2Fj.matdes.2009.01.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |