Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods

Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucid...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 30; no. 8; pp. 2903 - 2910
Main Authors Gu, Dongdong, Shen, Yifu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (∼10 μm) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H 3BO 3 and KBF 4) in the powder yielded a smooth laser sintered surface free of balling.
AbstractList Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (~10km) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H@d3BO@d3 and KBF@d4) in the powder yielded a smooth laser sintered surface free of balling.
Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two kinds of balling phenomena during DMLS of 316L stainless steel powder were investigated and the metallurgical mechanisms of balling were elucidated. It was found that using a low laser power gave rise to the first kind of balling characterized by highly coarsened balls possessing an interrupted dendritic structure in the surface layer of balls. A limited amount of liquid formation and a low undercooling degree of the melt due to a low laser input was responsible for its initiation. The second kind of balling featured by a large amount of micrometer-scaled (∼10 μm) balls on laser sintered surface occurred at a high scan speed. Its formation was ascribed to laser-induced melt splashes caused by a high capillary instability of the melt. Feasible control methods were proposed to alleviate balling phenomena. It showed that increasing the volumetric density of energy input, which was realized by increasing laser power, lowering scan speed, or decreasing powder layer thickness, decreased the tendency of balling. The addition of a trace amount of deoxidant (H 3BO 3 and KBF 4) in the powder yielded a smooth laser sintered surface free of balling.
Author Gu, Dongdong
Shen, Yifu
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Gu
  fullname: Gu, Dongdong
  email: dongdonggu@nuaa.edu.cn, dongdonggu@hotmail.com
– sequence: 2
  givenname: Yifu
  surname: Shen
  fullname: Shen, Yifu
BookMark eNqFkb1uHCEURikcKf7JG6SgSqrdXIYZZsdFJNuyY0uO0iQ1YuGOlxUDGy4bK28fRpPKhS1dCQTn-4QOZ-wkpoiMfRSwFiDUl_16MsUhrRuAYQ2ijjxhp9AosZKghvfsjGgPIHohmlNG1yYEH5_4YYcxTRgN95E7n9EWHgxh5uRjwTwzaeRUjI8BieoOMfBDenaYL_l3LLXomJ-8NYFPaHcmepqIm-i4TbHkNB-XXXJ0wd6NJhB--L-es193tz9v7lePP7493Fw9rmwru7LqnW3dZmudHMAOppVW9qLvetFtR6FGhU7JBqFrR7VBxMY6h9vRwYC2XnSNPGefl95DTr-PSEVPniyGYCKmI-kBpGqaHjaV_PQqKdsWVH1GBdsFtDkRZRz1IfvJ5L9agJ79671e_OvZvwZRR9bY5YuY9cUUP3sxPrwV_rqEsbr64zFrsh6jxeWXtEv-9YJ_euOq1A
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_109151
crossref_primary_10_1016_j_jclepro_2020_122218
crossref_primary_10_1016_j_addma_2023_103658
crossref_primary_10_1016_j_prosdent_2021_04_021
crossref_primary_10_4028_www_scientific_net_KEM_839_7
crossref_primary_10_1007_s11665_021_05861_7
crossref_primary_10_1016_j_matpr_2019_12_012
crossref_primary_10_1016_j_jmatprotec_2021_117384
crossref_primary_10_1088_2631_7990_ad54a4
crossref_primary_10_1007_s40964_024_00739_1
crossref_primary_10_1108_RPJ_04_2023_0128
crossref_primary_10_4047_jap_2014_6_4_266
crossref_primary_10_1016_j_matchar_2020_110567
crossref_primary_10_1016_j_msec_2017_03_066
crossref_primary_10_1016_j_prosdent_2020_10_006
crossref_primary_10_1002_srin_201800473
crossref_primary_10_1007_s00170_011_3566_1
crossref_primary_10_1007_s40195_023_01551_6
crossref_primary_10_1016_j_addma_2020_101500
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1016_j_eng_2021_03_032
crossref_primary_10_1016_j_rineng_2024_103708
crossref_primary_10_1016_j_addma_2022_103128
crossref_primary_10_1016_j_msea_2014_12_018
crossref_primary_10_4028_www_scientific_net_AMM_518_12
crossref_primary_10_1007_s10800_022_01843_2
crossref_primary_10_1016_j_prosdent_2018_12_016
crossref_primary_10_1007_s12046_021_01770_6
crossref_primary_10_1007_s40195_017_0670_8
crossref_primary_10_1080_14786435_2010_526650
crossref_primary_10_1016_j_cjmeam_2022_100037
crossref_primary_10_1088_1402_4896_acdf8f
crossref_primary_10_1007_s00170_023_12489_5
crossref_primary_10_1016_j_matdes_2016_01_099
crossref_primary_10_1016_j_matpr_2017_07_207
crossref_primary_10_1007_s00170_013_5106_7
crossref_primary_10_4028_www_scientific_net_KEM_520_226
crossref_primary_10_3788_LOP220476
crossref_primary_10_1016_j_ijrmhm_2018_10_004
crossref_primary_10_3389_femat_2022_1046694
crossref_primary_10_3390_met7030105
crossref_primary_10_1007_s40964_023_00457_0
crossref_primary_10_1016_j_electacta_2018_04_188
crossref_primary_10_1007_s00170_023_12139_w
crossref_primary_10_1088_2053_1591_aaf2d3
crossref_primary_10_1007_s10853_025_10775_z
crossref_primary_10_1007_s00170_017_1172_6
crossref_primary_10_1016_j_ceramint_2023_01_030
crossref_primary_10_1016_j_cja_2017_08_019
crossref_primary_10_1016_j_ijleo_2021_168193
crossref_primary_10_1108_RPJ_07_2013_0076
crossref_primary_10_1016_j_ijmachtools_2012_06_002
crossref_primary_10_1016_j_msea_2016_01_028
crossref_primary_10_1016_j_msea_2019_05_108
crossref_primary_10_2320_matertrans_M2016284
crossref_primary_10_1016_j_ces_2020_115583
crossref_primary_10_1016_j_jmrt_2023_09_011
crossref_primary_10_1016_j_jmrt_2024_04_130
crossref_primary_10_1016_j_jmrt_2022_07_121
crossref_primary_10_1016_j_jmatprotec_2020_116802
crossref_primary_10_1016_j_jmapro_2021_09_018
crossref_primary_10_1115_1_4040543
crossref_primary_10_1007_s40194_020_00885_4
crossref_primary_10_3390_met12010106
crossref_primary_10_1016_j_matdes_2017_10_039
crossref_primary_10_1007_s00170_020_05243_8
crossref_primary_10_2351_7_0000888
crossref_primary_10_4047_jap_2020_12_3_124
crossref_primary_10_1557_jmr_2014_194
crossref_primary_10_1016_j_msea_2021_140957
crossref_primary_10_1016_j_precisioneng_2016_06_001
crossref_primary_10_1016_j_ijleo_2016_06_115
crossref_primary_10_2351_1_5086982
crossref_primary_10_4047_jap_2018_10_4_321
crossref_primary_10_1142_S0217979217440155
crossref_primary_10_1016_j_msea_2019_138512
crossref_primary_10_1016_j_jascer_2014_01_009
crossref_primary_10_1016_j_jmrt_2023_10_042
crossref_primary_10_1115_1_4054935
crossref_primary_10_1016_j_addma_2024_103974
crossref_primary_10_1016_j_jmapro_2022_12_053
crossref_primary_10_1007_s10033_017_0121_5
crossref_primary_10_1016_j_msea_2019_138845
crossref_primary_10_1016_j_cej_2023_148039
crossref_primary_10_1007_s00170_019_04060_y
crossref_primary_10_3390_jmmp8060261
crossref_primary_10_4028_www_scientific_net_MSF_919_84
crossref_primary_10_2351_1_5085206
crossref_primary_10_1007_s10845_018_1412_0
crossref_primary_10_1016_j_proeng_2015_01_510
crossref_primary_10_1063_5_0046771
crossref_primary_10_1016_j_pmatsci_2021_100795
crossref_primary_10_3390_ma11040519
crossref_primary_10_1016_j_compscitech_2011_07_010
crossref_primary_10_1016_j_jmatprotec_2018_02_034
crossref_primary_10_1007_s00170_019_03928_3
crossref_primary_10_1111_jopr_13506
crossref_primary_10_1016_j_ijthermalsci_2021_107011
crossref_primary_10_1007_s41403_021_00256_5
crossref_primary_10_3390_met10081073
crossref_primary_10_1016_j_addma_2020_101802
crossref_primary_10_1016_j_jmapro_2025_02_045
crossref_primary_10_3390_jmmp9010009
crossref_primary_10_1016_j_jallcom_2022_164079
crossref_primary_10_1016_j_matdes_2020_108852
crossref_primary_10_1088_1757_899X_572_1_012071
crossref_primary_10_3390_met10020292
crossref_primary_10_3740_MRSK_2018_28_11_663
crossref_primary_10_1007_s00170_018_2886_9
crossref_primary_10_1051_matecconf_20179501009
crossref_primary_10_1108_RPJ_12_2020_0307
crossref_primary_10_1177_09544089231223020
crossref_primary_10_1016_j_mtcomm_2024_108168
crossref_primary_10_1007_s00339_021_04728_x
crossref_primary_10_1080_17452759_2024_2404155
crossref_primary_10_1002_advs_202302479
crossref_primary_10_1007_s00170_024_13611_x
crossref_primary_10_1007_s12613_020_2147_4
crossref_primary_10_2351_7_0000169
crossref_primary_10_3390_designs8030045
crossref_primary_10_1007_s11837_023_06187_6
crossref_primary_10_1007_s40830_017_0139_7
crossref_primary_10_1007_s00339_019_3213_5
crossref_primary_10_15407_ufm_24_03_561
crossref_primary_10_2139_ssrn_4160344
crossref_primary_10_1155_2022_5874875
crossref_primary_10_1007_s00170_022_10228_w
crossref_primary_10_1016_j_addlet_2024_100224
crossref_primary_10_1016_j_ijfatigue_2016_03_012
crossref_primary_10_1007_s11665_021_05591_w
crossref_primary_10_1016_j_addma_2021_102058
crossref_primary_10_1016_j_addma_2023_103705
crossref_primary_10_4028_www_scientific_net_AMR_233_235_2844
crossref_primary_10_1007_s11465_015_0341_2
crossref_primary_10_1115_1_4044419
crossref_primary_10_1007_s11665_018_3446_z
crossref_primary_10_1007_s00170_020_06323_5
crossref_primary_10_1179_1743280411Y_0000000014
crossref_primary_10_1080_17452759_2023_2299691
crossref_primary_10_3390_ma13163632
crossref_primary_10_1146_annurev_matsci_070115_031728
crossref_primary_10_1089_3dp_2021_0114
crossref_primary_10_2351_1_5096108
crossref_primary_10_4028_www_scientific_net_AMR_1019_254
crossref_primary_10_1016_j_prosdent_2022_04_003
crossref_primary_10_1007_s00170_024_14951_4
crossref_primary_10_30934_kusbed_636713
crossref_primary_10_3390_met11121883
crossref_primary_10_1016_j_optlastec_2021_106914
crossref_primary_10_1016_j_addma_2021_102147
crossref_primary_10_1016_j_matdes_2016_09_043
crossref_primary_10_1016_j_measurement_2024_116347
crossref_primary_10_1016_j_prosdent_2019_12_020
crossref_primary_10_1080_10667857_2019_1701254
crossref_primary_10_3788_CJL231286
crossref_primary_10_1016_j_msea_2017_04_058
crossref_primary_10_3390_ma15207067
crossref_primary_10_1016_j_jmst_2022_02_015
crossref_primary_10_1038_s41529_019_0086_1
crossref_primary_10_1016_j_matchar_2022_111917
crossref_primary_10_3952_physics_2024_64_2_4
crossref_primary_10_1016_j_jmatprotec_2020_116878
crossref_primary_10_1016_j_matchar_2023_113018
crossref_primary_10_1016_j_addma_2021_102274
crossref_primary_10_3390_app6120401
crossref_primary_10_3390_app7070710
crossref_primary_10_1016_j_precisioneng_2023_05_005
crossref_primary_10_1088_1361_6501_ad824c
crossref_primary_10_2139_ssrn_4093625
crossref_primary_10_1080_02670836_2017_1289444
crossref_primary_10_1080_02670836_2016_1172787
crossref_primary_10_1016_j_msec_2020_111789
crossref_primary_10_1016_j_jmrt_2022_07_085
crossref_primary_10_1002_adma_202307586
crossref_primary_10_1007_s10853_020_05370_3
crossref_primary_10_1016_j_msea_2020_140640
crossref_primary_10_1108_RPJ_05_2014_0068
crossref_primary_10_18698_0536_1044_2020_11_26_35
crossref_primary_10_1108_RPJ_04_2016_0068
crossref_primary_10_1016_j_powtec_2017_11_018
crossref_primary_10_1016_j_corsci_2022_110550
crossref_primary_10_1016_j_ndteint_2023_102948
crossref_primary_10_1115_1_4040264
crossref_primary_10_1007_s11663_015_0310_5
crossref_primary_10_1016_j_jallcom_2024_175947
crossref_primary_10_1088_1361_6439_ad2304
crossref_primary_10_1007_s40964_022_00281_y
crossref_primary_10_1088_2053_1591_ab18bd
crossref_primary_10_1007_s11661_022_06703_4
crossref_primary_10_3390_ma15196783
crossref_primary_10_1016_j_apsusc_2011_06_005
crossref_primary_10_1016_j_jmatprotec_2010_09_003
crossref_primary_10_1007_s00339_024_07299_9
crossref_primary_10_1177_13506501231159447
crossref_primary_10_3390_met11050835
crossref_primary_10_1115_1_4040256
crossref_primary_10_1016_j_ijmachtools_2017_11_012
crossref_primary_10_1016_j_ijrmhm_2017_09_004
crossref_primary_10_1177_0954405418798862
crossref_primary_10_3390_met9070731
crossref_primary_10_1016_j_mtcomm_2022_103778
crossref_primary_10_3390_cryst10100905
crossref_primary_10_1016_j_ceramint_2020_02_178
crossref_primary_10_1007_s40194_021_01205_0
crossref_primary_10_1179_1753555715Y_0000000076
crossref_primary_10_1007_s11661_013_1968_4
crossref_primary_10_1108_RPJ_11_2015_0178
crossref_primary_10_1007_s00170_019_03764_5
crossref_primary_10_1179_1753555712Y_0000000030
crossref_primary_10_1016_j_mfglet_2018_09_006
crossref_primary_10_1016_j_optlastec_2020_106509
crossref_primary_10_3390_ma16031050
crossref_primary_10_3390_met11091391
crossref_primary_10_1007_s11665_024_10354_4
crossref_primary_10_1016_j_jmrt_2025_01_183
crossref_primary_10_1016_j_matdes_2013_10_006
crossref_primary_10_1007_s13369_019_04263_1
crossref_primary_10_1007_s00170_011_3776_6
crossref_primary_10_1016_j_matdes_2013_05_070
crossref_primary_10_1016_j_matdes_2018_04_058
crossref_primary_10_3390_met8070524
crossref_primary_10_1007_s00170_022_09382_y
crossref_primary_10_1016_j_optlastec_2023_109686
crossref_primary_10_1016_j_msea_2020_139981
crossref_primary_10_1016_j_msea_2019_138455
crossref_primary_10_3390_ma15114020
crossref_primary_10_1002_adem_201700952
crossref_primary_10_1007_s00170_014_6297_2
crossref_primary_10_1016_j_jmapro_2021_02_043
crossref_primary_10_1007_s40964_017_0026_y
crossref_primary_10_3390_cryst10060524
crossref_primary_10_1108_RPJ_11_2017_0226
crossref_primary_10_21062_ujep_241_2019_a_1213_2489_MT_19_1_37
crossref_primary_10_3390_ma10010076
crossref_primary_10_1016_j_jmst_2022_10_050
crossref_primary_10_1016_j_mtla_2024_102041
crossref_primary_10_3390_ma12010176
crossref_primary_10_46519_ij3dptdi_1350367
crossref_primary_10_1007_s40430_022_03666_w
crossref_primary_10_1002_adem_202100147
crossref_primary_10_1016_j_heliyon_2024_e40200
crossref_primary_10_1108_RPJ_10_2015_0145
crossref_primary_10_3390_jmmp3030052
crossref_primary_10_29109_gujsc_1130098
crossref_primary_10_1007_s12540_024_01650_8
crossref_primary_10_1007_s11661_021_06405_3
crossref_primary_10_1016_j_msea_2019_138387
crossref_primary_10_1016_j_cma_2016_02_023
crossref_primary_10_47459_cndcgs_2020_39
crossref_primary_10_1371_journal_pone_0147399
crossref_primary_10_1002_adem_202101562
crossref_primary_10_1016_j_cirpj_2020_12_004
crossref_primary_10_1016_j_jmbbm_2012_10_005
crossref_primary_10_1016_j_surfcoat_2016_09_019
crossref_primary_10_1088_1757_899X_285_1_012028
crossref_primary_10_1016_j_prosdent_2018_08_018
crossref_primary_10_1080_17452759_2020_1830346
crossref_primary_10_1016_j_pmatsci_2019_04_006
crossref_primary_10_1016_j_matdes_2011_09_051
crossref_primary_10_1016_j_prosdent_2022_02_005
crossref_primary_10_1007_s10704_022_00641_3
crossref_primary_10_1016_j_matdes_2022_110874
crossref_primary_10_1115_1_4035560
crossref_primary_10_1016_j_msea_2017_07_071
crossref_primary_10_3390_inventions9020045
crossref_primary_10_3390_ma17143568
crossref_primary_10_1007_s00170_024_13489_9
crossref_primary_10_3390_ma13225138
crossref_primary_10_1002_adem_202100245
crossref_primary_10_1038_s41524_023_01058_9
crossref_primary_10_1016_j_optlastec_2020_106262
crossref_primary_10_1016_j_surfin_2024_104595
crossref_primary_10_1039_D3RA08627E
crossref_primary_10_1016_j_ijrmhm_2024_106830
crossref_primary_10_1080_09506608_2021_1983351
crossref_primary_10_1016_j_jmapro_2019_06_013
crossref_primary_10_1007_s11665_021_06163_8
crossref_primary_10_1089_pho_2017_4311
crossref_primary_10_3390_ma14206052
crossref_primary_10_1016_j_jmapro_2014_04_001
crossref_primary_10_1016_j_partic_2024_06_013
crossref_primary_10_1108_RPJ_10_2019_0279
crossref_primary_10_1016_j_applthermaleng_2018_12_013
crossref_primary_10_1016_j_addma_2017_03_008
crossref_primary_10_1016_j_addma_2024_104334
crossref_primary_10_1016_j_addma_2020_101188
crossref_primary_10_1016_j_matchar_2024_114386
crossref_primary_10_4028_p_2tysi2
crossref_primary_10_1088_1361_6528_ab79ac
crossref_primary_10_1115_1_4047624
crossref_primary_10_1016_j_jmatprotec_2013_03_009
crossref_primary_10_1016_j_surfcoat_2019_124930
crossref_primary_10_3390_met7010002
crossref_primary_10_1557_jmr_2015_403
crossref_primary_10_22312_sdusbed_290849
crossref_primary_10_1016_j_matlet_2023_134635
crossref_primary_10_1108_13552541111138405
crossref_primary_10_1016_j_matdes_2024_113442
crossref_primary_10_1016_j_msea_2021_141077
crossref_primary_10_1007_s00170_021_06810_3
crossref_primary_10_1016_j_jmrt_2021_12_052
crossref_primary_10_1016_j_prosdent_2017_05_009
crossref_primary_10_4028_www_scientific_net_AMR_306_307_481
crossref_primary_10_1016_j_jmrt_2025_03_014
crossref_primary_10_1007_s12540_013_3018_6
crossref_primary_10_1016_j_pmatsci_2015_03_002
crossref_primary_10_1016_j_apsusc_2017_05_033
crossref_primary_10_1016_j_jmatprotec_2017_11_055
crossref_primary_10_1007_s00339_019_3238_9
crossref_primary_10_1007_s11665_019_04423_2
crossref_primary_10_1007_s40964_022_00269_8
crossref_primary_10_1016_j_jmbbm_2013_05_011
crossref_primary_10_1016_j_addma_2020_101147
crossref_primary_10_1016_j_jallcom_2013_09_171
crossref_primary_10_1016_j_addma_2016_10_009
crossref_primary_10_1016_j_matdes_2014_07_006
crossref_primary_10_1002_adem_202200055
crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_037
crossref_primary_10_1016_j_msea_2025_147990
crossref_primary_10_3390_jmmp5040107
crossref_primary_10_1007_s00170_022_10711_4
crossref_primary_10_1007_s12206_017_0516_3
crossref_primary_10_1108_13552541111184206
crossref_primary_10_1016_j_addma_2021_102542
crossref_primary_10_1080_2374068X_2022_2077535
crossref_primary_10_1016_j_ndteint_2021_102495
crossref_primary_10_1016_j_optlastec_2018_10_019
crossref_primary_10_1016_j_jmrt_2020_09_051
crossref_primary_10_1088_0022_3727_49_13_135501
crossref_primary_10_1088_0022_3727_48_3_035303
crossref_primary_10_1016_j_jmapro_2021_05_063
crossref_primary_10_3390_met12101732
crossref_primary_10_3390_ma16196461
crossref_primary_10_1155_2018_7814039
crossref_primary_10_1016_j_jmst_2022_12_053
crossref_primary_10_1007_s40964_024_00591_3
crossref_primary_10_3390_ma17235769
crossref_primary_10_1007_s00170_023_12865_1
crossref_primary_10_1007_s40194_024_01861_y
crossref_primary_10_1016_j_addma_2018_03_003
crossref_primary_10_1016_j_addma_2024_104013
crossref_primary_10_1007_s11665_021_06021_7
crossref_primary_10_1016_j_msea_2018_02_051
crossref_primary_10_3390_met10070877
crossref_primary_10_1016_j_msea_2022_142656
crossref_primary_10_1007_s00170_018_2473_0
crossref_primary_10_1016_j_msea_2022_142657
crossref_primary_10_1016_j_optlastec_2021_107621
crossref_primary_10_1007_s12598_018_1019_9
crossref_primary_10_1016_j_jallcom_2020_154350
crossref_primary_10_1016_j_mtcomm_2023_107690
crossref_primary_10_1016_j_pmatsci_2017_10_001
crossref_primary_10_1016_j_jallcom_2019_153538
crossref_primary_10_1016_j_msec_2012_09_008
crossref_primary_10_1016_j_jmapro_2021_11_036
crossref_primary_10_1002_adem_202200364
crossref_primary_10_3390_mi10090595
crossref_primary_10_1108_RPJ_07_2017_0136
crossref_primary_10_3390_ma12142284
crossref_primary_10_1016_j_jmst_2024_03_070
crossref_primary_10_1016_j_heliyon_2023_e16583
crossref_primary_10_1016_j_apsusc_2018_10_150
crossref_primary_10_1016_j_optlaseng_2011_06_016
crossref_primary_10_1007_s40430_024_04917_8
crossref_primary_10_3390_ma16103867
crossref_primary_10_3390_met11071046
crossref_primary_10_3390_met10030304
crossref_primary_10_1007_s10856_019_6292_0
crossref_primary_10_1177_09544089251321236
crossref_primary_10_1007_s11106_011_9311_3
crossref_primary_10_1007_s00170_022_09588_0
crossref_primary_10_1016_j_jmrt_2021_12_039
crossref_primary_10_1016_j_ijthermalsci_2016_01_007
crossref_primary_10_1016_j_powtec_2022_117957
crossref_primary_10_3390_ma15041605
crossref_primary_10_1016_j_jmapro_2021_11_007
crossref_primary_10_1016_j_matdes_2023_112160
crossref_primary_10_1016_j_optlastec_2017_06_006
crossref_primary_10_1016_j_compbiomed_2019_103364
crossref_primary_10_3390_met12122109
crossref_primary_10_1016_j_addma_2020_101689
crossref_primary_10_3390_technologies5010009
crossref_primary_10_1016_j_apsusc_2010_02_030
crossref_primary_10_1007_s00170_020_05584_4
crossref_primary_10_1088_1742_6596_885_1_012004
crossref_primary_10_1007_s40735_024_00894_6
crossref_primary_10_1016_j_hybadv_2024_100311
crossref_primary_10_1016_j_matpr_2019_12_061
crossref_primary_10_1007_s00170_013_4902_4
crossref_primary_10_1007_s12666_022_02687_2
crossref_primary_10_1016_j_jallcom_2022_167264
crossref_primary_10_1016_j_jmatprotec_2017_08_012
crossref_primary_10_1016_j_engfailanal_2024_108920
crossref_primary_10_1007_s00170_024_14704_3
crossref_primary_10_1016_j_addma_2019_101014
crossref_primary_10_1179_1743284715Y_0000000136
crossref_primary_10_1016_j_addma_2014_09_001
crossref_primary_10_1088_2053_1591_ab6dae
crossref_primary_10_1108_RPJ_01_2018_0004
crossref_primary_10_1007_s00170_019_04416_4
crossref_primary_10_1016_j_phpro_2013_03_156
crossref_primary_10_1108_RPJ_05_2022_0145
crossref_primary_10_1007_s00170_023_11170_1
crossref_primary_10_1007_s40516_015_0014_3
crossref_primary_10_1016_j_ijleo_2018_09_049
crossref_primary_10_1016_j_jallcom_2019_153576
crossref_primary_10_1108_RPJ_07_2019_0189
crossref_primary_10_1016_j_cirp_2018_04_097
crossref_primary_10_1016_j_addma_2021_101959
crossref_primary_10_1016_j_matdes_2021_109615
crossref_primary_10_1179_003258909X12450768326947
crossref_primary_10_1016_j_addma_2021_101836
crossref_primary_10_1016_j_jallcom_2018_01_098
crossref_primary_10_1016_j_matdes_2018_07_015
crossref_primary_10_1177_16878132241230228
crossref_primary_10_1149_1945_7111_ac6450
crossref_primary_10_3390_met13061064
crossref_primary_10_1007_s13369_021_05658_9
crossref_primary_10_1016_j_addma_2017_10_011
crossref_primary_10_3390_pr8010025
crossref_primary_10_1016_j_addma_2024_104316
crossref_primary_10_3390_ma16165697
crossref_primary_10_1016_j_msea_2014_01_012
crossref_primary_10_3390_ma13225063
crossref_primary_10_1016_j_jallcom_2018_09_153
crossref_primary_10_1155_2023_9481790
crossref_primary_10_1108_13552541111138388
crossref_primary_10_3390_ma15186191
crossref_primary_10_1016_j_apt_2021_03_003
crossref_primary_10_1016_j_matchar_2019_109817
crossref_primary_10_1016_j_jmst_2021_06_011
crossref_primary_10_2351_7_0000932
crossref_primary_10_1016_j_jmst_2020_11_029
crossref_primary_10_3390_ma12132052
crossref_primary_10_1016_j_apsusc_2020_145574
crossref_primary_10_1007_s10854_025_14472_0
crossref_primary_10_1088_2632_959X_abe278
crossref_primary_10_1016_j_jmapro_2021_12_033
crossref_primary_10_1590_S1516_14392012005000031
crossref_primary_10_1080_10407782_2014_923231
crossref_primary_10_1016_j_addma_2020_101532
crossref_primary_10_1088_2053_1591_ac5cac
crossref_primary_10_1007_s11661_021_06380_9
crossref_primary_10_1016_j_jmapro_2021_12_018
crossref_primary_10_1080_17452759_2016_1250605
crossref_primary_10_3390_met14111246
crossref_primary_10_1016_j_matdes_2020_109433
crossref_primary_10_1080_17452759_2013_778175
crossref_primary_10_4028_www_scientific_net_AMR_341_342_816
crossref_primary_10_1088_1742_6596_2077_1_012023
crossref_primary_10_1016_j_optlastec_2017_05_006
crossref_primary_10_1007_s11041_021_00697_3
crossref_primary_10_1002_adem_201600635
crossref_primary_10_1016_j_optlastec_2022_107880
crossref_primary_10_1016_j_matdes_2011_06_061
crossref_primary_10_1016_j_jallcom_2023_172939
crossref_primary_10_1016_j_vacuum_2013_02_003
crossref_primary_10_1111_ffe_13967
crossref_primary_10_1016_j_addma_2023_103492
crossref_primary_10_1016_j_apmt_2021_101123
crossref_primary_10_1007_s40430_023_04445_x
crossref_primary_10_1007_s10853_023_08541_0
crossref_primary_10_1007_s40194_022_01265_w
crossref_primary_10_1007_s40516_019_00094_y
Cites_doi 10.1007/s00170-007-1154-1
10.1108/13552549510078113
10.1016/j.matdes.2004.09.012
10.1016/j.msea.2006.04.117
10.1016/j.matlet.2008.01.113
10.1002/adem.200310099
10.1108/13552540510589430
10.1108/13552540410526953
10.1016/S0924-0136(03)00150-X
10.1016/j.matdes.2003.10.004
10.1243/095440505X32995
10.1179/095066001101528411
10.1007/BF02735019
10.1016/j.ijrmhm.2007.09.005
10.1016/S1359-6462(99)00276-6
10.1016/j.apsusc.2007.12.028
10.1016/j.msea.2004.05.070
10.1179/026708304X3944
10.1016/S0924-0136(03)00755-6
10.1016/S0924-0136(03)00283-8
10.1243/095440503772680587
10.1016/j.scriptamat.2008.03.007
10.1108/13552549810222939
10.1016/S1359-6462(98)00126-2
10.1016/j.cirp.2007.10.004
10.1016/S0924-0136(03)00132-8
10.1016/S1359-6454(02)00567-0
10.1016/S1359-6462(99)00089-5
10.1016/j.msea.2003.11.048
10.1002/adem.200800075
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2009.01.013
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 2910
ExternalDocumentID 10_1016_j_matdes_2009_01_013
S0261306909000181
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c435t-7dc4d8bcd390c9a43c37175715bf16f6ed632e054f68eee2cddebfd09ec632523
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Fri Jul 11 11:34:17 EDT 2025
Mon Jul 21 11:04:10 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Tue Jul 01 01:30:44 EDT 2025
Fri Feb 23 02:16:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Sintering (C)
Ferrous metals and alloys (A)
Microstructure (F)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-7dc4d8bcd390c9a43c37175715bf16f6ed632e054f68eee2cddebfd09ec632523
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34406390
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_903622708
proquest_miscellaneous_34406390
crossref_primary_10_1016_j_matdes_2009_01_013
crossref_citationtrail_10_1016_j_matdes_2009_01_013
elsevier_sciencedirect_doi_10_1016_j_matdes_2009_01_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Materials in engineering
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Niu, Chang (bib16) 1999; 41
Wu, Sharman, Mei, Voice (bib10) 2004; 25
Das, Beaman, Wohlert, Bourell (bib9) 1998; 4
Fischer, Romano, Weber, Karapatis, Boillat, Glardon (bib26) 2003; 51
Zhu, Lu, Fuh (bib8) 2003; 140
Boccalini, Goldenstein (bib29) 2001; 46
Simchi, Godlinski (bib12) 2008; 59
Kruth, Levy, Klocke, Childs (bib6) 2007; 56
Dewidar, Dalgarno, Wright (bib14) 2003; 217
Simchi (bib2) 2006; 428
Deng (bib33) 1979
Simchi, Pohl (bib1) 2004; 383
Kumar, Kruth (bib5) 2008; 10
Dingal, Pradhan, Sundar, Choudhury, Roy (bib25) 2007; 38
Agarwala, Bourell, Beaman, Marcus, Barlow (bib27) 1995; 1
Niu, Chang (bib17) 1999; 41
Simchi, Asgharzadeh (bib30) 2004; 20
Tolochko, Mozzharov, Yadroitsev, Laoui, Froyen, Titov, Ignatiev (bib19) 2004; 10
Simchi (bib11) 2008; 62
Zhu, Lu, Fuh, Wu (bib13) 2006; 27
Gu, Shen (bib15) 2006; 37
Niu, Chang (bib18) 1998; 39
Gu, Shen (bib31) 2008; 254
Bunnell DE. Fundamentals of selective laser sintering of metals. PhD thesis, University of Texas at Austin; 1995.
Chatterjee, Kumar, Saha, Mishra, Choudhury (bib23) 2003; 136
Simchi, Petzoldt, Pohl (bib21) 2001; 37
Das (bib20) 2003; 5
Zhu, Lu, Fuh (bib22) 2006; 220
Zhu, Fuh, Lu (bib4) 2005; 11
Zhu, Lu, Fuh (bib3) 2004; 371
Murali, Chatterjee, Saha, Palai, Kumar, Roy, Mishra, Choudhury (bib24) 2003; 136
Simchi, Petzoldt, Pohl (bib7) 2003; 141
Gu, Shen, Xiao (bib28) 2008; 26
Simchi (10.1016/j.matdes.2009.01.013_bib7) 2003; 141
Gu (10.1016/j.matdes.2009.01.013_bib31) 2008; 254
Zhu (10.1016/j.matdes.2009.01.013_bib13) 2006; 27
Kruth (10.1016/j.matdes.2009.01.013_bib6) 2007; 56
Simchi (10.1016/j.matdes.2009.01.013_bib21) 2001; 37
Zhu (10.1016/j.matdes.2009.01.013_bib3) 2004; 371
Agarwala (10.1016/j.matdes.2009.01.013_bib27) 1995; 1
Zhu (10.1016/j.matdes.2009.01.013_bib4) 2005; 11
Das (10.1016/j.matdes.2009.01.013_bib20) 2003; 5
Niu (10.1016/j.matdes.2009.01.013_bib16) 1999; 41
Gu (10.1016/j.matdes.2009.01.013_bib15) 2006; 37
Gu (10.1016/j.matdes.2009.01.013_bib28) 2008; 26
Simchi (10.1016/j.matdes.2009.01.013_bib30) 2004; 20
Simchi (10.1016/j.matdes.2009.01.013_bib11) 2008; 62
Dingal (10.1016/j.matdes.2009.01.013_bib25) 2007; 38
Deng (10.1016/j.matdes.2009.01.013_bib33) 1979
Fischer (10.1016/j.matdes.2009.01.013_bib26) 2003; 51
Simchi (10.1016/j.matdes.2009.01.013_bib1) 2004; 383
Niu (10.1016/j.matdes.2009.01.013_bib17) 1999; 41
Simchi (10.1016/j.matdes.2009.01.013_bib2) 2006; 428
Chatterjee (10.1016/j.matdes.2009.01.013_bib23) 2003; 136
Simchi (10.1016/j.matdes.2009.01.013_bib12) 2008; 59
Kumar (10.1016/j.matdes.2009.01.013_bib5) 2008; 10
Das (10.1016/j.matdes.2009.01.013_bib9) 1998; 4
Boccalini (10.1016/j.matdes.2009.01.013_bib29) 2001; 46
Niu (10.1016/j.matdes.2009.01.013_bib18) 1998; 39
Zhu (10.1016/j.matdes.2009.01.013_bib8) 2003; 140
Tolochko (10.1016/j.matdes.2009.01.013_bib19) 2004; 10
Zhu (10.1016/j.matdes.2009.01.013_bib22) 2006; 220
Murali (10.1016/j.matdes.2009.01.013_bib24) 2003; 136
10.1016/j.matdes.2009.01.013_bib32
Wu (10.1016/j.matdes.2009.01.013_bib10) 2004; 25
Dewidar (10.1016/j.matdes.2009.01.013_bib14) 2003; 217
References_xml – volume: 1
  start-page: 26
  year: 1995
  end-page: 36
  ident: bib27
  article-title: Direct selective laser sintering of metals
  publication-title: Rapid Prototyping J
– volume: 39
  start-page: 67
  year: 1998
  end-page: 72
  ident: bib18
  article-title: Liquid phase sintering of M3/2 high speed steel by selective laser sintering
  publication-title: Scripta Mater
– volume: 20
  start-page: 1462
  year: 2004
  end-page: 1468
  ident: bib30
  article-title: Densification and microstructural evaluation during laser sintering of M2 high speed steel powder
  publication-title: Mater Sci Technol
– volume: 41
  start-page: 1229
  year: 1999
  end-page: 1234
  ident: bib16
  article-title: Instability of scan tracks of selective laser sintering of high speed steel powder
  publication-title: Scripta Mater
– reference: Bunnell DE. Fundamentals of selective laser sintering of metals. PhD thesis, University of Texas at Austin; 1995.
– volume: 220
  start-page: 183
  year: 2006
  end-page: 190
  ident: bib22
  article-title: Study on shrinkage behaviour of direct laser sintering metallic powder
  publication-title: Proc Inst Mech Eng B: J Eng Manuf
– volume: 141
  start-page: 319
  year: 2003
  end-page: 328
  ident: bib7
  article-title: On the development of direct metal laser sintering for rapid tooling
  publication-title: J Mater Process Technol
– volume: 5
  start-page: 701
  year: 2003
  end-page: 711
  ident: bib20
  article-title: Physical aspects of process control in selective laser sintering of metals
  publication-title: Adv Eng Mater
– volume: 383
  start-page: 191
  year: 2004
  end-page: 200
  ident: bib1
  article-title: Direct laser sintering of iron–graphite powder mixture
  publication-title: Mater Sci Eng A
– volume: 428
  start-page: 148
  year: 2006
  end-page: 158
  ident: bib2
  article-title: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features
  publication-title: Mater Sci Eng A
– volume: 10
  start-page: 750
  year: 2008
  end-page: 753
  ident: bib5
  article-title: Wear performance of SLS/SLM materials
  publication-title: Adv Eng Mater
– volume: 136
  start-page: 151
  year: 2003
  end-page: 157
  ident: bib23
  article-title: An experimental design approach to selective laser sintering of low carbon steel
  publication-title: J Mater Process Technol
– volume: 46
  start-page: 92
  year: 2001
  end-page: 115
  ident: bib29
  article-title: Solidification of high speed steels
  publication-title: Int Mater Rev
– volume: 371
  start-page: 170
  year: 2004
  end-page: 177
  ident: bib3
  article-title: Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder
  publication-title: Mater Sci Eng A
– volume: 56
  start-page: 730
  year: 2007
  end-page: 759
  ident: bib6
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann Manuf Technol
– volume: 217
  start-page: 1651
  year: 2003
  end-page: 1663
  ident: bib14
  article-title: Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering
  publication-title: Proc Inst Mech Eng B: J Eng Manuf
– volume: 27
  start-page: 166
  year: 2006
  end-page: 170
  ident: bib13
  article-title: Effect of braze flux on direct laser sintering Cu-based metal powder
  publication-title: Mater Des
– volume: 140
  start-page: 314
  year: 2003
  end-page: 317
  ident: bib8
  article-title: Development and characterisation of direct laser sintering Cu-based metal powder
  publication-title: J Mater Process Technol
– volume: 38
  start-page: 904
  year: 2007
  end-page: 914
  ident: bib25
  article-title: The application of Taguchi’s method in the experimental investigation of the laser sintering process
  publication-title: Int J Adv Manuf Technol
– volume: 4
  start-page: 112
  year: 1998
  end-page: 117
  ident: bib9
  article-title: Direct laser freeform fabrication of high performance metal components
  publication-title: Rapid Prototyping J
– volume: 11
  start-page: 74
  year: 2005
  end-page: 81
  ident: bib4
  article-title: Microstructural evolution in direct laser sintering of Cu-based metal powder
  publication-title: Rapid Prototyping J
– year: 1979
  ident: bib33
  article-title: Brazing
– volume: 37
  start-page: 49
  year: 2001
  end-page: 61
  ident: bib21
  article-title: Direct metal laser sintering: material considerations and mechanisms of particle bonding
  publication-title: Int J Powder Metall
– volume: 10
  start-page: 78
  year: 2004
  end-page: 87
  ident: bib19
  article-title: Balling processes during selective laser treatment of powders
  publication-title: Rapid Prototyping J
– volume: 62
  start-page: 2840
  year: 2008
  end-page: 2843
  ident: bib11
  article-title: Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process
  publication-title: Mater Lett
– volume: 51
  start-page: 1651
  year: 2003
  end-page: 1662
  ident: bib26
  article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source
  publication-title: Acta Mater
– volume: 254
  start-page: 3971
  year: 2008
  end-page: 3978
  ident: bib31
  article-title: Direct laser sintered WC–10Co/Cu nanocomposites
  publication-title: Appl Surf Sci
– volume: 136
  start-page: 179
  year: 2003
  end-page: 185
  ident: bib24
  article-title: Direct selective laser sintering of iron–graphite powder mixture
  publication-title: J Mater Process Technol
– volume: 25
  start-page: 103
  year: 2004
  end-page: 109
  ident: bib10
  article-title: Microstructure and properties of a laser fabricated burn-resistant Ti alloy
  publication-title: Mater Des
– volume: 37
  start-page: 967
  year: 2006
  end-page: 977
  ident: bib15
  article-title: Influence of phosphorus element on direct laser sintering of multicomponent Cu-based metal powder
  publication-title: Metall Mater Trans B
– volume: 26
  start-page: 411
  year: 2008
  end-page: 422
  ident: bib28
  article-title: Influence of processing parameters on particulate dispersion in direct laser sintered WC–Co
  publication-title: Int J Refract Met Hard Mater
– volume: 59
  start-page: 199
  year: 2008
  end-page: 202
  ident: bib12
  article-title: Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy
  publication-title: Scripta Mater
– volume: 41
  start-page: 25
  year: 1999
  end-page: 30
  ident: bib17
  article-title: Selective laser sintering of gas and water atomized high speed steel powders
  publication-title: Scripta Mater
– volume: 38
  start-page: 904
  year: 2007
  ident: 10.1016/j.matdes.2009.01.013_bib25
  article-title: The application of Taguchi’s method in the experimental investigation of the laser sintering process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-007-1154-1
– volume: 1
  start-page: 26
  year: 1995
  ident: 10.1016/j.matdes.2009.01.013_bib27
  article-title: Direct selective laser sintering of metals
  publication-title: Rapid Prototyping J
  doi: 10.1108/13552549510078113
– volume: 27
  start-page: 166
  year: 2006
  ident: 10.1016/j.matdes.2009.01.013_bib13
  article-title: Effect of braze flux on direct laser sintering Cu-based metal powder
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2004.09.012
– volume: 428
  start-page: 148
  year: 2006
  ident: 10.1016/j.matdes.2009.01.013_bib2
  article-title: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.04.117
– volume: 62
  start-page: 2840
  year: 2008
  ident: 10.1016/j.matdes.2009.01.013_bib11
  article-title: Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2008.01.113
– volume: 5
  start-page: 701
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib20
  article-title: Physical aspects of process control in selective laser sintering of metals
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200310099
– volume: 11
  start-page: 74
  year: 2005
  ident: 10.1016/j.matdes.2009.01.013_bib4
  article-title: Microstructural evolution in direct laser sintering of Cu-based metal powder
  publication-title: Rapid Prototyping J
  doi: 10.1108/13552540510589430
– volume: 10
  start-page: 78
  year: 2004
  ident: 10.1016/j.matdes.2009.01.013_bib19
  article-title: Balling processes during selective laser treatment of powders
  publication-title: Rapid Prototyping J
  doi: 10.1108/13552540410526953
– volume: 136
  start-page: 179
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib24
  article-title: Direct selective laser sintering of iron–graphite powder mixture
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00150-X
– volume: 25
  start-page: 103
  year: 2004
  ident: 10.1016/j.matdes.2009.01.013_bib10
  article-title: Microstructure and properties of a laser fabricated burn-resistant Ti alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2003.10.004
– year: 1979
  ident: 10.1016/j.matdes.2009.01.013_bib33
– volume: 220
  start-page: 183
  year: 2006
  ident: 10.1016/j.matdes.2009.01.013_bib22
  article-title: Study on shrinkage behaviour of direct laser sintering metallic powder
  publication-title: Proc Inst Mech Eng B: J Eng Manuf
  doi: 10.1243/095440505X32995
– volume: 46
  start-page: 92
  year: 2001
  ident: 10.1016/j.matdes.2009.01.013_bib29
  article-title: Solidification of high speed steels
  publication-title: Int Mater Rev
  doi: 10.1179/095066001101528411
– volume: 37
  start-page: 967
  year: 2006
  ident: 10.1016/j.matdes.2009.01.013_bib15
  article-title: Influence of phosphorus element on direct laser sintering of multicomponent Cu-based metal powder
  publication-title: Metall Mater Trans B
  doi: 10.1007/BF02735019
– volume: 26
  start-page: 411
  year: 2008
  ident: 10.1016/j.matdes.2009.01.013_bib28
  article-title: Influence of processing parameters on particulate dispersion in direct laser sintered WC–Cop/Cu MMCs
  publication-title: Int J Refract Met Hard Mater
  doi: 10.1016/j.ijrmhm.2007.09.005
– volume: 41
  start-page: 1229
  year: 1999
  ident: 10.1016/j.matdes.2009.01.013_bib16
  article-title: Instability of scan tracks of selective laser sintering of high speed steel powder
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(99)00276-6
– volume: 254
  start-page: 3971
  year: 2008
  ident: 10.1016/j.matdes.2009.01.013_bib31
  article-title: Direct laser sintered WC–10Co/Cu nanocomposites
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2007.12.028
– volume: 383
  start-page: 191
  year: 2004
  ident: 10.1016/j.matdes.2009.01.013_bib1
  article-title: Direct laser sintering of iron–graphite powder mixture
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.05.070
– volume: 20
  start-page: 1462
  year: 2004
  ident: 10.1016/j.matdes.2009.01.013_bib30
  article-title: Densification and microstructural evaluation during laser sintering of M2 high speed steel powder
  publication-title: Mater Sci Technol
  doi: 10.1179/026708304X3944
– volume: 140
  start-page: 314
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib8
  article-title: Development and characterisation of direct laser sintering Cu-based metal powder
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00755-6
– volume: 141
  start-page: 319
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib7
  article-title: On the development of direct metal laser sintering for rapid tooling
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00283-8
– volume: 217
  start-page: 1651
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib14
  article-title: Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering
  publication-title: Proc Inst Mech Eng B: J Eng Manuf
  doi: 10.1243/095440503772680587
– volume: 59
  start-page: 199
  year: 2008
  ident: 10.1016/j.matdes.2009.01.013_bib12
  article-title: Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2008.03.007
– volume: 37
  start-page: 49
  year: 2001
  ident: 10.1016/j.matdes.2009.01.013_bib21
  article-title: Direct metal laser sintering: material considerations and mechanisms of particle bonding
  publication-title: Int J Powder Metall
– volume: 4
  start-page: 112
  year: 1998
  ident: 10.1016/j.matdes.2009.01.013_bib9
  article-title: Direct laser freeform fabrication of high performance metal components
  publication-title: Rapid Prototyping J
  doi: 10.1108/13552549810222939
– volume: 39
  start-page: 67
  year: 1998
  ident: 10.1016/j.matdes.2009.01.013_bib18
  article-title: Liquid phase sintering of M3/2 high speed steel by selective laser sintering
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(98)00126-2
– volume: 56
  start-page: 730
  year: 2007
  ident: 10.1016/j.matdes.2009.01.013_bib6
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2007.10.004
– volume: 136
  start-page: 151
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib23
  article-title: An experimental design approach to selective laser sintering of low carbon steel
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00132-8
– volume: 51
  start-page: 1651
  year: 2003
  ident: 10.1016/j.matdes.2009.01.013_bib26
  article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00567-0
– volume: 41
  start-page: 25
  year: 1999
  ident: 10.1016/j.matdes.2009.01.013_bib17
  article-title: Selective laser sintering of gas and water atomized high speed steel powders
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(99)00089-5
– volume: 371
  start-page: 170
  year: 2004
  ident: 10.1016/j.matdes.2009.01.013_bib3
  article-title: Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2003.11.048
– volume: 10
  start-page: 750
  year: 2008
  ident: 10.1016/j.matdes.2009.01.013_bib5
  article-title: Wear performance of SLS/SLM materials
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200800075
– ident: 10.1016/j.matdes.2009.01.013_bib32
SSID ssj0017112
Score 2.475585
Snippet Balling effect, as an unfavorable defect associated with direct metal laser sintering (DMLS), is a complex physical metallurgical process. In this work, two...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2903
SubjectTerms Ferrous metals and alloys (A)
Microstructure (F)
Sintering (C)
Title Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
URI https://dx.doi.org/10.1016/j.matdes.2009.01.013
https://www.proquest.com/docview/34406390
https://www.proquest.com/docview/903622708
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1yfOXgt2zZt2nhbF2VV9KILeyttMoVK7S7bXfz7zrTposIiCDmUNqHNo5NvMjPfMHadp8oPQRtHunHmBJmKndSE0klRY5HKyDzI6Lzj-UWOxsHjJJxssGEXC0NulVb2tzK9kdb2Tt-OZn9WFP1X0h4EEe1S3kuPwq-3fKEkLu2twcPT6GVlTIi8xuhpj1qk6iLoGjcvxIUGaktc6WER63aoX7K62YDu99iuRY580H7cPtuA6oDtfOMTPGT1bdpQbHNy3CJqhZQXFW97yBEmw5zXxA9Btfk0503sVImyDq8ASj6bfhqY3_BnQEheLueNVOQfQNHBRf1R87Qy3Dq38zb3dH3Exvd3b8ORY7MqOBqh0cKJjA5MnGkjlKtVGggtUKULIy_Mck_mEowUPiCSy2UMAL5GAZjlxlWg8QHqrcdss5pWcMK4H8U5tnGVbzI6oVMKlRmcb0pfH8We22OiG8lEW8pxynxRJp1v2XvSjj9lw1SJ62ERPeasWs1ayo0_6kfdJCU_lk6Cu8IfLa-6OU3wryJTSVrBdFknIggIu2EP-JoairZ-P3Lj03-__oxtt7Yp8lg7Z5uL-RIuEOIssku7hL8AChv8lQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MS3OXgt2zZt2nhTcVkfuxcVvIU2mcLK2l22u_j3nWnTRQURhBxKm9Dm0ck3mZlvGLsoMhXGYKwn_TT3olylXmZj6WWosUhlZRHldN4xGMr-S3T_Gr-usJs2FobcKp3sb2R6La3dna4bze50NOo-kfYgiGiX8l4GFH69SuxUcYetXt099IdLY0IS1EZPd9QiVRtBV7t5IS60UDniygCL-G2H-iGr6w2ot8U2HXLkV83HbbMVKHfYxhc-wV1WXWc1xTYnxy2iVsj4qORNDznCZJjxivghqDafFLyOnRqjrMMrgDGfTj4szC75ABCSjxezWiryd6Do4FH1XvGstNw5t_Mm93S1x156t883fc9lVfAMQqO5l1gT2TQ3VijfqCwSRqBKFydBnBeBLCRYKUJAJFfIFABCgwIwL6yvwOAD1Fv3WaeclHDAeJikBbbxVWhzOqFTCpUZnG9KX5-kgX_IRDuS2jjKccp8Mdatb9mbbsafsmEq7QdYxCHzlq2mDeXGH_WTdpL0t6WjcVf4o-V5O6ca_yoylWQlTBaVFlFE2A17wH-poWjrDxM_Pfr368_ZWv958Kgf74YPx2y9sVOR99oJ68xnCzhFuDPPz9xy_gT1__97
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balling+phenomena+in+direct+laser+sintering+of+stainless+steel+powder%3A+Metallurgical+mechanisms+and+control+methods&rft.jtitle=Materials+in+engineering&rft.au=Gu%2C+D.&rft.au=Shen%2C+Y&rft.date=2009-09-01&rft.issn=0261-3069&rft.volume=30&rft.issue=8&rft.spage=2903&rft.epage=2910&rft_id=info:doi/10.1016%2Fj.matdes.2009.01.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon