The effects of pH on phosphorus utilisation by chickpea (Cicer arietinum)
Chickpea ( Cicer arietinum ) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. Methods We grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We meas...
Saved in:
Published in | Plant and soil Vol. 495; no. 1-2; pp. 663 - 673 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chickpea (
Cicer arietinum
) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values.
Methods
We grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We measured plant weight, P concentration in the tops, and rhizosphere pH. We compared the results with those previously obtained for lucerne (
Medicago sativa
), mustard (
Brassica campestris
) and rice (
Oryza sativa
).
Results
Above an initial pH
CaCl2
, of about 5, rhizosphere pH decreased; below this value it increased. The changes in pH were proportional to the amounts of P applied. They were greatest at high levels of applied P. Best growth occurred when the initial pH
CaCl2
was 5.9 and when the rhizosphere pH
CaCl2
was close to 5. Plots of growth against plant shoot P concentration showed little effect of low pH suggesting that aluminium toxicity was only of minor importance. Nevertheless, plant weight was severely depressed by low pH.
Conclusions
The mechanism of P uptake for chickpea seems to differ from that for lucerne, mustard and rice. The way that the charge on the phosphate ions is balanced seems to depend on the soil pH. Further, uptake is much more markedly depressed by at low pH. |
---|---|
AbstractList | Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. METHODS: We grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We measured plant weight, P concentration in the tops, and rhizosphere pH. We compared the results with those previously obtained for lucerne (Medicago sativa), mustard (Brassica campestris) and rice (Oryza sativa). RESULTS: Above an initial pHCₐCₗ₂, of about 5, rhizosphere pH decreased; below this value it increased. The changes in pH were proportional to the amounts of P applied. They were greatest at high levels of applied P. Best growth occurred when the initial pHCₐCₗ₂ was 5.9 and when the rhizosphere pHCₐCₗ₂ was close to 5. Plots of growth against plant shoot P concentration showed little effect of low pH suggesting that aluminium toxicity was only of minor importance. Nevertheless, plant weight was severely depressed by low pH. CONCLUSIONS: The mechanism of P uptake for chickpea seems to differ from that for lucerne, mustard and rice. The way that the charge on the phosphate ions is balanced seems to depend on the soil pH. Further, uptake is much more markedly depressed by at low pH. Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. Methods We grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We measured plant weight, P concentration in the tops, and rhizosphere pH. We compared the results with those previously obtained for lucerne (Medicago sativa), mustard (Brassica campestris) and rice (Oryza sativa). Results Above an initial pH.sub.CaCl2, of about 5, rhizosphere pH decreased; below this value it increased. The changes in pH were proportional to the amounts of P applied. They were greatest at high levels of applied P. Best growth occurred when the initial pH.sub.CaCl2 was 5.9 and when the rhizosphere pH.sub.CaCl2 was close to 5. Plots of growth against plant shoot P concentration showed little effect of low pH suggesting that aluminium toxicity was only of minor importance. Nevertheless, plant weight was severely depressed by low pH. Conclusions The mechanism of P uptake for chickpea seems to differ from that for lucerne, mustard and rice. The way that the charge on the phosphate ions is balanced seems to depend on the soil pH. Further, uptake is much more markedly depressed by at low pH. Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values.MethodsWe grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We measured plant weight, P concentration in the tops, and rhizosphere pH. We compared the results with those previously obtained for lucerne (Medicago sativa), mustard (Brassica campestris) and rice (Oryza sativa).ResultsAbove an initial pHCaCl2, of about 5, rhizosphere pH decreased; below this value it increased. The changes in pH were proportional to the amounts of P applied. They were greatest at high levels of applied P. Best growth occurred when the initial pHCaCl2 was 5.9 and when the rhizosphere pHCaCl2 was close to 5. Plots of growth against plant shoot P concentration showed little effect of low pH suggesting that aluminium toxicity was only of minor importance. Nevertheless, plant weight was severely depressed by low pH.ConclusionsThe mechanism of P uptake for chickpea seems to differ from that for lucerne, mustard and rice. The way that the charge on the phosphate ions is balanced seems to depend on the soil pH. Further, uptake is much more markedly depressed by at low pH. Chickpea ( Cicer arietinum ) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. Methods We grew two cultivars of chickpea, supplied with either ammonium or nitrate nitrogen, at 10 levels of applied P, and at four initial pH values. We measured plant weight, P concentration in the tops, and rhizosphere pH. We compared the results with those previously obtained for lucerne ( Medicago sativa ), mustard ( Brassica campestris ) and rice ( Oryza sativa ). Results Above an initial pH CaCl2 , of about 5, rhizosphere pH decreased; below this value it increased. The changes in pH were proportional to the amounts of P applied. They were greatest at high levels of applied P. Best growth occurred when the initial pH CaCl2 was 5.9 and when the rhizosphere pH CaCl2 was close to 5. Plots of growth against plant shoot P concentration showed little effect of low pH suggesting that aluminium toxicity was only of minor importance. Nevertheless, plant weight was severely depressed by low pH. Conclusions The mechanism of P uptake for chickpea seems to differ from that for lucerne, mustard and rice. The way that the charge on the phosphate ions is balanced seems to depend on the soil pH. Further, uptake is much more markedly depressed by at low pH. |
Audience | Academic |
Author | Barrow, N. J. Debnath, Abhijit Parvin, Subhechhya Ali |
Author_xml | – sequence: 1 givenname: N. J. orcidid: 0000-0002-7695-5351 surname: Barrow fullname: Barrow, N. J. email: jim.barrow@uwa.edu.au organization: Faculty of Science, School of Biological Sciences, University of Western Australia – sequence: 2 givenname: Subhechhya Ali surname: Parvin fullname: Parvin, Subhechhya Ali organization: Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya – sequence: 3 givenname: Abhijit surname: Debnath fullname: Debnath, Abhijit organization: Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya |
BookMark | eNp9kUFr3DAQhUVJoZtt_0BPgl7Sg9MZybLkY1jaJhDoJYXehFY7yir1Wq5kH_Lvq8SFQg5BCKHhfTPSe-fsbEwjMfYR4RIB9JeCiNA2IGQDnVS6gTdsg0rLRoHsztgGQIoGdP_rHTsv5QGe7tht2M3dkTiFQH4uPAU-XfM08umYSt15KXyZ4xCLm2Mt7x-5P0b_eyLHL3bRU-YuR5rjuJw-v2dvgxsKffh3btnPb1_vdtfN7Y_vN7ur28a3Us2NPkBQSvToZY8tOqM7AeSE2oMxet-2tO-FdH3wwQlzQOpAovZtewA0uvVyyy7WvlNOfxYqsz3F4mkY3EhpKVaiksoY1LJKP72QPqQlj_V1VvQCZSdMdWzLLlfVvRvIxjGkOTtf14FO0VefQ6z1K21QiE6IvgJiBXxOpWQKdsrx5PKjRbBPcdg1Dlub2-c4LFTIvIB8nJ9trdPi8DoqV7TUOeM95f_feIX6C9sLngs |
CitedBy_id | crossref_primary_10_1007_s42729_024_01738_5 crossref_primary_10_1080_00103624_2025_2478613 |
Cites_doi | 10.3390/agriculture9060120 10.1080/00380768.2015.1007025 10.1007/s11104-017-3490-8 10.1007/s11104-016-3008-9 10.1016/S0003-2670(00)88444-5 10.1007/s00425-002-0921-3 10.1016/j.envexpbot.2009.04.004 10.1071/EA9630190 10.1097/00010694-194501000-00006 10.1007/BF02280176 10.1007/s11104-004-2725-7 10.3390/su15076203 10.1111/ejss.13172 10.1080/00380768.1989.10434779 10.1071/SR9900685 10.1023/A:1022367312851 10.1104/pp.94.4.1561 10.1023/B:PLSO.0000030174.09138.76 10.1097/00010694-193401000-00003 10.1007/s11104-020-04647-5 10.1007/s11104-017-3214-0 10.1007/BF02376789 10.1023/A:1004380832118 10.1111/nph.15200 10.1080/00380768.1992.10416486 10.1111/j.1469-8137.2004.01070.x 10.1023/B:PLSO.0000035568.28893.f6 10.1104/pp.93.2.479 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2024 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-023-06357-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 673 |
ExternalDocumentID | A781226229 10_1007_s11104_023_06357_0 |
GeographicLocations | Australia India |
GeographicLocations_xml | – name: India – name: Australia |
GrantInformation_xml | – fundername: University of Western Australia |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-7d0f55291c39141a87620ea25b0887b44eb923a9fcfa28d1e60317c44d01874c3 |
IEDL.DBID | C6C |
ISSN | 0032-079X |
IngestDate | Tue Jul 22 02:11:32 EDT 2025 Tue Aug 12 22:17:56 EDT 2025 Tue Jun 10 20:59:38 EDT 2025 Tue Jul 01 01:47:25 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Chickpea Soil reaction Phosphorus uptake Aluminium toxicity Phosphorus uptake mechanism Rhizosphere pH |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-7d0f55291c39141a87620ea25b0887b44eb923a9fcfa28d1e60317c44d01874c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7695-5351 |
OpenAccessLink | https://doi.org/10.1007/s11104-023-06357-0 |
PQID | 2921362802 |
PQPubID | 54098 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3153588173 proquest_journals_2921362802 gale_infotracacademiconefile_A781226229 crossref_primary_10_1007_s11104_023_06357_0 crossref_citationtrail_10_1007_s11104_023_06357_0 springer_journals_10_1007_s11104_023_06357_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240200 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Barrow, Cox (CR3) 1990; 28 Murphy, Riley (CR14) 1962; 27 Piper (CR19) 1966 Walkley, Black (CR29) 1934; 37 Tang, Drevon, Jailard, Souche, Hinsinger (CR24) 2004; 260 (CR9) 2006 Tang, Han, Qiao, Zheng (CR25) 2009; 67 Baccari, Krouma (CR1) 2023; 15 Ma, Liu, Shen, Kuzyakov (CR12) 2021; 167 Neumann, Römheld (CR15) 1999; 211 Moorby, White, Nye (CR13) 1988; 105 Penn, Camberato (CR18) 2019; 9 Wouterlood, Cawthray, Turner, Lambers, Veneklaas (CR32) 2004; 261 Shane, Lambers (CR22) 2005; 274 Ulrich, Novacky (CR26) 1990; 94 Veneklaas, Stevens, Cawthray, Turner, Grigg, Lambers (CR28) 2003; 248 Barrow, Debnath, Sen (CR4) 2017; 423 Rausch, Bucher (CR20) 2002; 216 Barrow, Debnath, Sen (CR5) 2020; 454 Hoffland, Findenegg, Nelemans (CR10) 1989; 113 Lei, Xie, Zhu, Song, An (CR11) 2015; 61 CR27 Wen, Li, Shen, Rengel (CR30) 2017; 416 Barrow (CR2) 2017; 410 Pang, Bansal, Zhao, Bohuon, Lambers, Ryan, Ranathunge, Siddique (CR17) 2018; 219 Youssef, Chino (CR33) 1989; 35 CR21 Ohwaki, Hirata (CR16) 1992; 38 Bray, Kurtz (CR7) 1945; 59 Colwell (CR8) 1963; 3 Barrow, Debnath, Sen (CR6) 2021 Sinha, Mondal, Hembramm (CR23) 2018; 7 Wouterlood, Cawthray, Scanlon, Lambers, Veneklaas (CR31) 2004; 162 JD Colwell (6357_CR8) 1963; 3 NJ Barrow (6357_CR2) 2017; 410 AJ Walkley (6357_CR29) 1934; 37 X Ma (6357_CR12) 2021; 167 FAO WRB (6357_CR9) 2006 NJ Barrow (6357_CR5) 2020; 454 CJ Penn (6357_CR18) 2019; 9 CI Ulrich (6357_CR26) 1990; 94 RA Youssef (6357_CR33) 1989; 35 G Neumann (6357_CR15) 1999; 211 C Rausch (6357_CR20) 2002; 216 E Hoffland (6357_CR10) 1989; 113 J Murphy (6357_CR14) 1962; 27 MW Shane (6357_CR22) 2005; 274 Y Ohwaki (6357_CR16) 1992; 38 M Wouterlood (6357_CR32) 2004; 261 6357_CR21 Z Wen (6357_CR30) 2017; 416 KJ Lei (6357_CR11) 2015; 61 H Moorby (6357_CR13) 1988; 105 CS Piper (6357_CR19) 1966 C Tang (6357_CR24) 2004; 260 M Wouterlood (6357_CR31) 2004; 162 B Baccari (6357_CR1) 2023; 15 T Sinha (6357_CR23) 2018; 7 J Pang (6357_CR17) 2018; 219 EJ Veneklaas (6357_CR28) 2003; 248 NJ Barrow (6357_CR6) 2021 NJ Barrow (6357_CR3) 1990; 28 NJ Barrow (6357_CR4) 2017; 423 6357_CR27 RH Bray (6357_CR7) 1945; 59 C Tang (6357_CR25) 2009; 67 |
References_xml | – volume: 9 start-page: 120 year: 2019 end-page: 138 ident: CR18 article-title: A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants publication-title: Agriculture doi: 10.3390/agriculture9060120 – volume: 7 start-page: 3888 year: 2018 end-page: 3895 ident: CR23 article-title: Evaluation of chickpea genotypes on the basis of their physiological growth parameters publication-title: Int J Curr Microbiol App Sci – volume: 61 start-page: 493 year: 2015 end-page: 500 ident: CR11 article-title: Screening and analysis of rhizosphere acidification deficiency mutants in under low phosphorus publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2015.1007025 – volume: 423 start-page: 193 year: 2017 end-page: 204 ident: CR4 article-title: Mechanisms by which citric acid increases phosphate availability publication-title: Plant Soil doi: 10.1007/s11104-017-3490-8 – volume: 410 start-page: 401 year: 2017 end-page: 410 ident: CR2 article-title: The effects of pH on phosphate uptake from the soil publication-title: Plant Soil doi: 10.1007/s11104-016-3008-9 – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR14 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 216 start-page: 23 year: 2002 end-page: 37 ident: CR20 article-title: Molecular mechanisms of phosphate transport in plants publication-title: Planta doi: 10.1007/s00425-002-0921-3 – start-page: 80 year: 1966 end-page: 111 ident: CR19 publication-title: Single value physical constants in: soil and plant analysis – volume: 67 start-page: 228 year: 2009 end-page: 234 ident: CR25 article-title: Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L.) Murr] publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2009.04.004 – volume: 3 start-page: 190 year: 1963 end-page: 197 ident: CR8 article-title: The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis publication-title: Aust J Exp Agric Anim Husb doi: 10.1071/EA9630190 – volume: 59 start-page: 39 year: 1945 end-page: 46 ident: CR7 article-title: Determination of total, organic and available forms of phosphorus in soils publication-title: Soil Sci doi: 10.1097/00010694-194501000-00006 – volume: 113 start-page: 161 year: 1989 end-page: 165 ident: CR10 article-title: Solubilization of rock phosphate by Rape. 2. Local root exudation of organic acids as a response to P Starvation publication-title: Plant Soil doi: 10.1007/BF02280176 – volume: 274 start-page: 101 year: 2005 end-page: 125 ident: CR22 article-title: Cluster roots: a curiosity in context publication-title: Plant Soil doi: 10.1007/s11104-004-2725-7 – volume: 15 year: 2023 ident: CR1 article-title: Rhizosphere acidification determines phosphorus availability in calcareous soil and influences Faba bean (Vicia faba) tolerance to P deficiency publication-title: Sustainability doi: 10.3390/su15076203 – year: 2021 ident: CR6 article-title: Effect of phosphate sorption on soil pH publication-title: Europ J Soil Sci doi: 10.1111/ejss.13172 – volume: 35 start-page: 461 year: 1989 end-page: 468 ident: CR33 article-title: Root-induced changes in the rhizosphere of plants. I. pH changes in relation to the bulk soil publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1989.10434779 – ident: CR27 – volume: 28 start-page: 685 year: 1990 end-page: 694 ident: CR3 article-title: A quick and simple method for determining the titration curve and estimating the lime requirement of soil publication-title: Aust J Soil Res doi: 10.1071/SR9900685 – volume: 248 start-page: 187 year: 2003 end-page: 197 ident: CR28 article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake publication-title: Plant Soil doi: 10.1023/A:1022367312851 – ident: CR21 – volume: 94 start-page: 1561 year: 1990 end-page: 1567 ident: CR26 article-title: Extra- and intracellular pH and membrane potential changes induced by K , Cl , H PO , and N0 uptake and fusicoccin in root hairs of publication-title: Limnobium Stoloniferum Plant Physoil doi: 10.1104/pp.94.4.1561 – volume: 167 start-page: 0929 issue: 104029 year: 2021 end-page: 1393 ident: CR12 article-title: Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: coupling zymography with planar optodes publication-title: Appl Soil Ecol – volume: 260 start-page: 59 year: 2004 end-page: 68 ident: CR24 article-title: Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition and P deficiency publication-title: Plant Soil doi: 10.1023/B:PLSO.0000030174.09138.76 – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: CR29 article-title: Estimation of soil organic carbon by the chromic acid titration method publication-title: Soil Sci doi: 10.1097/00010694-193401000-00003 – volume: 454 start-page: 217 year: 2020 end-page: 224 ident: CR5 article-title: Measurement of the effects of pH on phosphate availability publication-title: Plant Soil doi: 10.1007/s11104-020-04647-5 – volume: 416 start-page: 377 year: 2017 end-page: 389 ident: CR30 article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation publication-title: Plant Soil doi: 10.1007/s11104-017-3214-0 – volume: 105 start-page: 247 year: 1988 end-page: 256 ident: CR13 article-title: The influence of phosphate nutrition on H ion efflux from the roots of young Rape plants publication-title: Plant Soil doi: 10.1007/BF02376789 – volume: 211 start-page: 121 year: 1999 end-page: 130 ident: CR15 article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants publication-title: Plant Soil doi: 10.1023/A:1004380832118 – year: 2006 ident: CR9 publication-title: IUSS working group, world reference base for soil resources: a framework for international classification, correlation and communication. World soil resources. Report 103 – volume: 219 start-page: 518 year: 2018 end-page: 529 ident: CR17 article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytol doi: 10.1111/nph.15200 – volume: 38 start-page: 235 year: 1992 end-page: 243 ident: CR16 article-title: Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1992.10416486 – volume: 162 start-page: 745 year: 2004 end-page: 753 ident: CR31 article-title: Carboxylate concentrations in the rhizosphere of lateral roots of chickpea Cicer arietinum increase during plant development, but are not correlated with phosphorus status of soil or plants publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01070.x – volume: 261 start-page: 1 year: 2004 end-page: 10 ident: CR32 article-title: Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type publication-title: Plant Soil doi: 10.1023/B:PLSO.0000035568.28893.f6 – volume: 416 start-page: 377 year: 2017 ident: 6357_CR30 publication-title: Plant Soil doi: 10.1007/s11104-017-3214-0 – volume: 9 start-page: 120 year: 2019 ident: 6357_CR18 publication-title: Agriculture doi: 10.3390/agriculture9060120 – volume: 113 start-page: 161 year: 1989 ident: 6357_CR10 publication-title: Plant Soil doi: 10.1007/BF02280176 – volume: 35 start-page: 461 year: 1989 ident: 6357_CR33 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1989.10434779 – volume: 37 start-page: 29 year: 1934 ident: 6357_CR29 publication-title: Soil Sci doi: 10.1097/00010694-193401000-00003 – volume-title: IUSS working group, world reference base for soil resources: a framework for international classification, correlation and communication. World soil resources. Report 103 year: 2006 ident: 6357_CR9 – volume: 167 start-page: 0929 issue: 104029 year: 2021 ident: 6357_CR12 publication-title: Appl Soil Ecol – volume: 3 start-page: 190 year: 1963 ident: 6357_CR8 publication-title: Aust J Exp Agric Anim Husb doi: 10.1071/EA9630190 – volume: 410 start-page: 401 year: 2017 ident: 6357_CR2 publication-title: Plant Soil doi: 10.1007/s11104-016-3008-9 – volume: 211 start-page: 121 year: 1999 ident: 6357_CR15 publication-title: Plant Soil doi: 10.1023/A:1004380832118 – volume: 27 start-page: 31 year: 1962 ident: 6357_CR14 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 67 start-page: 228 year: 2009 ident: 6357_CR25 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2009.04.004 – volume: 94 start-page: 1561 year: 1990 ident: 6357_CR26 publication-title: Limnobium Stoloniferum Plant Physoil doi: 10.1104/pp.94.4.1561 – volume: 423 start-page: 193 year: 2017 ident: 6357_CR4 publication-title: Plant Soil doi: 10.1007/s11104-017-3490-8 – ident: 6357_CR27 – volume: 28 start-page: 685 year: 1990 ident: 6357_CR3 publication-title: Aust J Soil Res doi: 10.1071/SR9900685 – volume: 59 start-page: 39 year: 1945 ident: 6357_CR7 publication-title: Soil Sci doi: 10.1097/00010694-194501000-00006 – volume: 261 start-page: 1 year: 2004 ident: 6357_CR32 publication-title: Plant Soil doi: 10.1023/B:PLSO.0000035568.28893.f6 – volume: 61 start-page: 493 year: 2015 ident: 6357_CR11 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2015.1007025 – volume: 454 start-page: 217 year: 2020 ident: 6357_CR5 publication-title: Plant Soil doi: 10.1007/s11104-020-04647-5 – start-page: 80 volume-title: Single value physical constants in: soil and plant analysis year: 1966 ident: 6357_CR19 – volume: 38 start-page: 235 year: 1992 ident: 6357_CR16 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1992.10416486 – volume: 162 start-page: 745 year: 2004 ident: 6357_CR31 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01070.x – volume: 216 start-page: 23 year: 2002 ident: 6357_CR20 publication-title: Planta doi: 10.1007/s00425-002-0921-3 – volume: 15 year: 2023 ident: 6357_CR1 publication-title: Sustainability doi: 10.3390/su15076203 – volume: 7 start-page: 3888 year: 2018 ident: 6357_CR23 publication-title: Int J Curr Microbiol App Sci – volume: 260 start-page: 59 year: 2004 ident: 6357_CR24 publication-title: Plant Soil doi: 10.1023/B:PLSO.0000030174.09138.76 – volume: 248 start-page: 187 year: 2003 ident: 6357_CR28 publication-title: Plant Soil doi: 10.1023/A:1022367312851 – volume: 105 start-page: 247 year: 1988 ident: 6357_CR13 publication-title: Plant Soil doi: 10.1007/BF02376789 – volume: 219 start-page: 518 year: 2018 ident: 6357_CR17 publication-title: New Phytol doi: 10.1111/nph.15200 – year: 2021 ident: 6357_CR6 publication-title: Europ J Soil Sci doi: 10.1111/ejss.13172 – volume: 274 start-page: 101 year: 2005 ident: 6357_CR22 publication-title: Plant Soil doi: 10.1007/s11104-004-2725-7 – ident: 6357_CR21 doi: 10.1104/pp.93.2.479 |
SSID | ssj0003216 |
Score | 2.439041 |
Snippet | Chickpea (
Cicer arietinum
) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values.
Methods
We grew... Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. Methods We grew two... Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values.MethodsWe grew two... Chickpea (Cicer arietinum) is known to secrete organic anions. We investigated its effectiveness in obtaining P over a range of pH values. METHODS: We grew two... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 663 |
SubjectTerms | Acidification Agriculture Alfalfa Aluminum Ammonium Analysis Anions Biomedical and Life Sciences Brassica rapa subsp. oleifera Chickpea Chickpeas Cicer arietinum Cultivars Ecology Growth Hydrogen-ion concentration Legumes Life Sciences Medicago sativa Mustard nitrate nitrogen Nitrogen Oryza sativa phosphates Phosphorus Plant Physiology Plant Sciences Rape plants Research Article Rhizosphere Rice Seeds Soil acidity Soil chemistry Soil pH Soil Science & Conservation Soil sciences Toxicity Varieties |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ri9QwEB50zwfvQfRUrJ4SQVDRYpMmTfske8cdq-Ah4sG-hSRNVbxr63b34f69M93sLireQ6HQNg0zyZcvyWQ-gBfIurUtKOWsdE0qufSpLV1OmRG15Y4HOYpNfDorZufy41zN44LbEMMqN5g4AnXdeVojfycqwRFsy0y873-lpBpFu6tRQuMm7CEEl-UE9o5Ozj5_2WJxLkbxU7pJM13N47GZ9eE5HPmwjoLUDXKl0-yPoelvgP5np3QcgE7vwp3IHNl07ep7cCO0B7A__baI2TPCAdw66pDrXd2HD-h9FkM1WNewfsa6lvXfuwGvxWpg2NwuYiAPc1eMBFF-9sGyV8cIHAtGE-jlj3Z1-foBnJ-efD2epVE0IfXIfJaprrNGKVFxn1dccktolwUrlCM8cVIGh5zOVo1vrChrHkhmWnsp61Gez-cPYdJ2bXgEDKdKKhNOaRkKSfMSp5FeFrbOlEcL2gT4xl7Gx4ziJGxxYXa5kMnGBm1sRhubLIE322_6dT6Na99-SW4w1NmwZG_jmQGsH6WtMlON_EQUQlQJHG48ZWIvHMyuzSTwfPsY-w9titg2dKvB5Aj5qiy5zhN4u_Hwroj_1-3x9X98ArcF8p91gPchTJaLVXiK_GXpnsVG-hvfTOYs priority: 102 providerName: ProQuest |
Title | The effects of pH on phosphorus utilisation by chickpea (Cicer arietinum) |
URI | https://link.springer.com/article/10.1007/s11104-023-06357-0 https://www.proquest.com/docview/2921362802 https://www.proquest.com/docview/3153588173 |
Volume | 495 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEB7kTsF7EK2K1fOIIKjocptsstl93NbWqniIWKhPIdlmVe7cLd32of-9M9u0h-cP8GF_wGZDmMlMvpDk-wCeIurWNiXKWemqSHJZRjZzCTEjassd97ITm_hwlk6m8t1MzQJNDp2FubJ-f9piLNI-CUEaBInSEU7PDxVPNMk0DNPhPusmopM5pZco1vksHJD5cx2_DEJXU_Fva6LdUDO-DbcCRmTF1ql34Jqve3BUfF0Gngzfg-uDBlHdpgc3Rh3t9OYuvEWPs7A9gzUVW0xYU7PFt6bFa7luGXaxi7B5h7kNIxGU84W37PkQk8WS0aR59b1e_3hxD6bj0efhJApCCVGJaGcV6XlcKSVyXiY5l9xShou9FcpRDnFSeoc4zuZVWVmRzbknaWldSjnvJPnK5D4c1E3tHwDD6ZGKhVNa-lTSXMRphJSpnceqRFvaPvCd5UwZWMRJzOLCXPIfk7UNWtt01jZxH17u_1lsOTT-WfoZOcRQgGHNpQ3nBLB9RFVlCo2YRKRC5H043vnMhMhrjcgFx0E5i0Ufnuw_Y8zQQoitfbNuTYJpXmUZ10kfXu18fVnF39v28P-KP4KbAjHQdpP3MRyslmv_GDHMyp3AYTF4PRjT882X9yN8DkZnHz-ddJ0a71NR_ATCv-X4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9RAFL3UraA-iFal0aojKCoamplMMsmDyLa27Np2EWlh38aZZKJiTeJmF9k_5W_0TjLZRcW-9SEQSDIJ9_NMZu49AE8RdQsV25azXBc-pzzzVaJD2xlRKKqp4S3ZxMkkHp3x99NougG_-loYu62yj4ltoM6rzP4j32Upoxhsk4C9rX_4ljXKrq72FBqdWRyZ5U-csjVvxu9Qv88YOzw43R_5jlXAzxAazH2RB0UUsZRmYUo5VTYcBEaxSFuH05wbjaBHpUVWKJbk1FgeZpFxnrf8dVmI416BTR7GARvA5t7B5MPHVewPWUu2ak_8QKRTV6bTFethpkWZMMumEEbCD_5IhX8nhH9WZtuEd3gLbjqkSoadad2GDVNuwY3h55nr1mG24OpehdhyeQfGaG3EbQ0hVUHqEalKUn-pGjxmi4ageZ-7jUNEL4klYPlWG0Ve7GOgmhE7YZ9_LRffX96Fs0sR5z0YlFVptoHg1CwKmI4ENzG38yAtEM7GKg-iDCWoPKC9vGTmOphbIo1zue69bGUsUcaylbEMPHi1eqbu-ndcePdzqwZpnRtHzpSrUcDvs22y5FAgHmIxY6kHO72mpPP6Rq5t1IMnq8vor3YRRpWmWjQyxBQTJQkVoQevew2vh_j_t92_-I2P4dro9ORYHo8nRw_gOkPs1W0u34HBfLYwDxE7zfUjZ7AEPl22j_wGBkQhUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dj5NAEJ-cPWP0weipET11TTRqlBwsCwsPxvQ-mtbT5mK8pG_rAosaT8DSxvRf869zBpY2ary3eyAhARYyOx-_YWfnB_AEUbfUEbWcFWnhCl9kro7TgDojSu2nvhEt2cT7aTQ-FW9n4WwLfvV7YaissveJraPOq4z-ke_xhPvobGOP7xW2LOLkcPSm_uESgxSttPZ0Gp2KHJvVT0zfmteTQ5zrp5yPjj4ejF3LMOBmCBMWrsy9Igx54mdB4gtfk2vwjOZhSsaXCmFSBEA6KbJC8zj3DXEyy0yIvOWyywIc9xJsS8qKBrC9fzQ9-bCOAwFviVfpxPVkMrNbdrqNexh1UT6cmBWCULreH2Hx7-DwzyptG_xGN-C6Ra1s2KnZTdgy5Q5cG36e284dZgcu71eIM1e3YIKax2yZCKsKVo9ZVbL6S9XgMV82DFX9zBYRsXTFiIzlW200e36ATmvOKHlffC2X31_chtMLEecdGJRVae4CwzQt9HgaSmEiQTlRKhHaRjr3wgwlqB3we3mpzHYzJ1KNM7Xpw0wyVihj1cpYeQ68XD9Td708zr37GU2DIkPHkTNt9yvg91HLLDWUiI14xHniwG4_U8p6gEZt9NWBx-vLaLu0IKNLUy0bFWC4CePYl4EDr_oZ3gzx_2-7d_4bH8EVtA31bjI9vg9XOcKwrs58FwaL-dI8QBi1SB9afWXw6aJN5DfivCWF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+pH+on+phosphorus+utilisation+by+chickpea+%28Cicer+arietinum%29&rft.jtitle=Plant+and+soil&rft.au=Barrow%2C+N.+J.&rft.au=Parvin%2C+Subhechhya+Ali&rft.au=Debnath%2C+Abhijit&rft.date=2024-02-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=495&rft.issue=1-2&rft.spage=663&rft.epage=673&rft_id=info:doi/10.1007%2Fs11104-023-06357-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_023_06357_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |