Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation

In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 5; no. 1; pp. 44 - 53
Main Authors Bossetti, Chad A, Birdno, Merrill J, Grill, Warren M
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity.
AbstractList In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity.
Author Bossetti, Chad A
Birdno, Merrill J
Grill, Warren M
Author_xml – sequence: 1
  fullname: Bossetti, Chad A
– sequence: 2
  fullname: Birdno, Merrill J
– sequence: 3
  fullname: Grill, Warren M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18310810$$D View this record in MEDLINE/PubMed
BookMark eNqNkD1PwzAQhi0Eoh_wA1iQJ8RAqB3X-Ririi-pEgvMlmOfS1Bqp7Ej0X-PS4NgYGC6O-u5V-dngo6ts4DQBSW3lBTFjOZzmqQ8IzM-ozNC-BEaD288Pf7Vj9DE-3dCGM1LcopGtGAxgJIxgoWVzc7XHjuDwxvgbS99nfggQ62wbNvOfdSbODiLjeuwko3qmzjbNW5dABtq2Xi8BgudDKBxtcMW-k422Id684U6e4ZOTMTgfKhT9Hp_97J8TFbPD0_LxSpRc8ZDkiutCWOKVLLUMsuMNFmmVJoyyuapLrnSDIgpoeJlUSlJAUhWmnmWa1XSzLApujrkxrO3PfggNrVX0DTSguu9yAnjBS1oBOkBVJ3zvgMj2i5-s9sJSsTerdi7E3u3ggsqotu4czmE99UG9M_GIDMCNwegdu2_8q7_wA8YT78x0WrDPgGwIJLa
CitedBy_id crossref_primary_10_1016_j_brs_2019_10_002
crossref_primary_10_1109_TNSRE_2017_2748930
crossref_primary_10_1186_s42234_020_00047_3
crossref_primary_10_1088_1741_2552_aaa505
crossref_primary_10_1088_1741_2560_13_3_036023
crossref_primary_10_1088_1741_2560_11_6_065005
crossref_primary_10_2139_ssrn_4010997
crossref_primary_10_1088_1741_2552_aadbb1
crossref_primary_10_1523_JNEUROSCI_1688_13_2013
crossref_primary_10_1016_j_clinph_2023_06_017
crossref_primary_10_1088_2057_1976_ac8c47
crossref_primary_10_1080_09205071_2016_1216807
crossref_primary_10_1109_TBCAS_2011_2171036
crossref_primary_10_1155_2014_489240
crossref_primary_10_1002_adhm_202200075
crossref_primary_10_1038_s41467_020_20703_1
crossref_primary_10_1049_iet_smt_2014_0220
crossref_primary_10_3389_fncom_2020_00013
crossref_primary_10_1088_1741_2552_acbf79
crossref_primary_10_1016_j_brs_2021_09_001
crossref_primary_10_1016_j_neuroimage_2013_01_042
crossref_primary_10_1088_1741_2552_acda64
crossref_primary_10_1109_TBME_2018_2791860
crossref_primary_10_1088_1741_2552_acb14d
crossref_primary_10_1016_j_compbiomed_2024_108556
crossref_primary_10_3390_app13106267
crossref_primary_10_1038_s41593_023_01456_8
crossref_primary_10_1016_j_jneumeth_2019_108446
crossref_primary_10_3389_fnins_2020_00166
crossref_primary_10_1088_1741_2560_11_1_016002
crossref_primary_10_3389_fbioe_2021_796042
crossref_primary_10_1016_j_neuroimage_2011_10_029
crossref_primary_10_1111_ner_12980
crossref_primary_10_1111_ner_13037
crossref_primary_10_1109_TBME_2012_2189885
crossref_primary_10_1038_s41562_024_01820_z
crossref_primary_10_3389_fneng_2015_00002
crossref_primary_10_1088_1741_2560_11_4_046026
crossref_primary_10_1016_j_patter_2022_100615
crossref_primary_10_1111_ner_13065
crossref_primary_10_1038_s41467_024_45898_5
crossref_primary_10_1109_TNSRE_2011_2151878
crossref_primary_10_1097_YCT_0b013e3181e48165
crossref_primary_10_1016_j_brs_2021_07_012
crossref_primary_10_1109_JPROC_2016_2600560
crossref_primary_10_1097_WNP_0000000000000892
crossref_primary_10_1109_TBME_2017_2752258
crossref_primary_10_1109_TBME_2015_2393557
crossref_primary_10_1038_srep43619
crossref_primary_10_1088_0031_9155_57_21_6961
crossref_primary_10_1088_1741_2552_aa6a5f
crossref_primary_10_1088_1741_2552_abe44f
crossref_primary_10_1109_TAP_2022_3161390
crossref_primary_10_1016_j_brs_2010_11_004
crossref_primary_10_1016_j_cels_2020_10_004
crossref_primary_10_1080_09540261_2017_1305949
crossref_primary_10_1371_journal_pcbi_1009285
crossref_primary_10_1016_j_neuron_2023_10_021
crossref_primary_10_1016_j_medengphy_2018_12_018
crossref_primary_10_1016_j_neuroimage_2013_06_079
crossref_primary_10_1109_TBME_2013_2292025
crossref_primary_10_15446_dyna_v83n198_51766
crossref_primary_10_1142_S0129065718500260
crossref_primary_10_1088_1741_2552_aaeb0c
crossref_primary_10_1016_j_bspc_2020_102048
crossref_primary_10_1088_1361_6560_aaf308
crossref_primary_10_1038_s41598_023_49580_6
crossref_primary_10_1016_j_jphysparis_2011_10_003
crossref_primary_10_1088_1741_2560_11_6_066012
crossref_primary_10_1109_TBME_2015_2425406
crossref_primary_10_1088_1741_2560_10_3_036018
crossref_primary_10_1371_journal_pone_0114938
crossref_primary_10_2139_ssrn_4136715
crossref_primary_10_1111_j_1440_1681_2009_05162_x
crossref_primary_10_1016_j_brs_2023_11_018
crossref_primary_10_1111_aor_14323
crossref_primary_10_1016_j_bpj_2018_06_004
crossref_primary_10_12693_APhysPolA_125_145
crossref_primary_10_1152_jn_00538_2018
crossref_primary_10_1038_s41551_019_0446_8
crossref_primary_10_2528_PIER15011404
crossref_primary_10_1109_TBME_2012_2235835
crossref_primary_10_1109_TNSRE_2016_2625312
crossref_primary_10_1088_1741_2560_8_3_036017
crossref_primary_10_1109_TNSRE_2010_2047610
crossref_primary_10_1109_TNSRE_2021_3054551
crossref_primary_10_1088_2057_1976_ace7d7
crossref_primary_10_1038_s41398_019_0540_4
crossref_primary_10_1088_1741_2552_ad1612
crossref_primary_10_1038_s41380_024_02567_9
crossref_primary_10_1016_j_brs_2020_11_007
crossref_primary_10_1016_j_brs_2011_07_004
crossref_primary_10_1016_j_brs_2014_09_017
crossref_primary_10_1016_j_jtbi_2022_111093
crossref_primary_10_1088_1741_2552_aaa87a
crossref_primary_10_1016_j_brs_2023_03_007
crossref_primary_10_1088_1741_2552_aa86c8
crossref_primary_10_1016_j_bspc_2022_104253
crossref_primary_10_3389_fncom_2018_00040
crossref_primary_10_1016_j_jmps_2022_104810
crossref_primary_10_1088_1741_2560_12_4_046030
crossref_primary_10_1038_s41562_024_01901_z
crossref_primary_10_1088_1741_2552_ac6a7c
crossref_primary_10_1088_2057_1976_ac52d8
crossref_primary_10_3389_fncom_2020_00072
crossref_primary_10_1038_s41598_021_84503_3
crossref_primary_10_1109_TBME_2017_2758324
crossref_primary_10_1038_s41596_020_0377_6
crossref_primary_10_1088_1741_2560_7_6_066009
crossref_primary_10_1103_PhysRevE_84_041909
crossref_primary_10_1088_1741_2552_acfabf
crossref_primary_10_1016_j_neuroimage_2023_120184
crossref_primary_10_1088_1741_2552_ab8fc4
crossref_primary_10_1088_1741_2552_acab30
crossref_primary_10_1002_cnm_2992
crossref_primary_10_1088_1741_2552_ad37d9
crossref_primary_10_1109_TBME_2010_2055054
crossref_primary_10_1016_j_neuroscience_2008_07_051
crossref_primary_10_1109_ACCESS_2023_3319742
crossref_primary_10_1109_TBME_2015_2468672
crossref_primary_10_1016_j_neurom_2021_12_013
crossref_primary_10_1088_0031_9155_61_12_4466
crossref_primary_10_1088_1741_2560_12_5_056015
crossref_primary_10_1088_1741_2560_8_1_016007
crossref_primary_10_1016_j_adro_2023_101203
crossref_primary_10_1088_1741_2560_9_3_036004
crossref_primary_10_1038_s42003_020_01299_0
crossref_primary_10_1119_5_0085625
crossref_primary_10_3389_fncom_2015_00002
crossref_primary_10_1371_journal_pcbi_1011833
Cites_doi 10.1162/neco.1997.9.6.1179
10.1007/BF02476917
10.1088/0031-9155/41/11/001
10.1088/0031-9155/32/8/001
10.1016/j.clinph.2005.06.023
10.1016/S0006-3495(04)74250-2
10.1063/1.1750906
10.1007/BF02474537
10.1007/978-1-4757-3152-1
10.1114/1.262
10.1088/0031-9155/41/11/002
10.1007/BF02518873
10.1114/1.1352640
10.1088/0031-9155/41/11/003
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1088/1741-2560/5/1/005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
EndPage 53
ExternalDocumentID 10_1088_1741_2560_5_1_005
18310810
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040894
GroupedDBID -
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AALHV
ABFLS
ABHWH
ABQJV
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UNR
W28
XPP
---
AAJKP
AATNI
ABJNI
ABVAM
ACAFW
ACHIP
AERVB
AKPSB
AOAED
CEBXE
CGR
CRLBU
CUY
CVF
ECM
EIF
IJHAN
JCGBZ
NPM
PJBAE
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c435t-7cdd033c0ba9da66faf66cc2231342d95cd3e0f9eb598bca1ee069f467dc916f3
IEDL.DBID IOP
ISSN 1741-2552
1741-2560
IngestDate Fri Oct 25 08:39:48 EDT 2024
Thu Sep 26 17:17:56 EDT 2024
Sat Sep 28 07:45:09 EDT 2024
Mon May 13 14:07:51 EDT 2019
Tue Nov 10 14:17:13 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-7cdd033c0ba9da66faf66cc2231342d95cd3e0f9eb598bca1ee069f467dc916f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18310810
PQID 70358181
PQPubID 23479
PageCount 10
ParticipantIDs iop_primary_10_1088_1741_2560_5_1_005
proquest_miscellaneous_70358181
crossref_primary_10_1088_1741_2560_5_1_005
pubmed_primary_18310810
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2008
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Duck F A (6) 1990
11
12
14
15
19
Gabriel C (8) 1996; 41
Bedard C (2) 2004; 86
Debye P (5) 1929
Foster K R (7) 1989; 17
3
4
Plonsey R (17) 2000
Johnk C T A (13) 1988
Balanis C A (1) 1989
Pethig R (16) 1987; 32
Gabriel S (9) 1996; 41
Plonsey R (18) 1961
Gabriel S (10) 1996; 41
20
References_xml – ident: 12
  doi: 10.1162/neco.1997.9.6.1179
– ident: 19
  doi: 10.1007/BF02476917
– volume: 41
  start-page: 2231
  issn: 0031-9155
  year: 1996
  ident: 8
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/11/001
  contributor:
    fullname: Gabriel C
– volume: 32
  start-page: 933
  issn: 0031-9155
  year: 1987
  ident: 16
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/8/001
  contributor:
    fullname: Pethig R
– volume: 17
  start-page: 25
  issn: 0278-940X
  year: 1989
  ident: 7
  publication-title: Crit. Rev. Biomed. Eng.
  contributor:
    fullname: Foster K R
– year: 1988
  ident: 13
  publication-title: Engineering Electromagnetic Fields and Waves
  contributor:
    fullname: Johnk C T A
– ident: 3
  doi: 10.1016/j.clinph.2005.06.023
– volume: 86
  start-page: 1829
  issn: 0006-3495
  year: 2004
  ident: 2
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74250-2
  contributor:
    fullname: Bedard C
– ident: 4
  doi: 10.1063/1.1750906
– ident: 11
  doi: 10.1007/BF02474537
– year: 1929
  ident: 5
  publication-title: Polar Molecules
  contributor:
    fullname: Debye P
– year: 2000
  ident: 17
  publication-title: Bioelectricity: A Quantitative Approach
  doi: 10.1007/978-1-4757-3152-1
  contributor:
    fullname: Plonsey R
– ident: 14
  doi: 10.1114/1.262
– year: 1990
  ident: 6
  publication-title: Physical Properties of Tissue: a Comprehensive Reference Book
  contributor:
    fullname: Duck F A
– year: 1989
  ident: 1
  publication-title: Advanced Engineering Electromagnetics
  contributor:
    fullname: Balanis C A
– volume: 41
  start-page: 2251
  issn: 0031-9155
  year: 1996
  ident: 9
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/11/002
  contributor:
    fullname: Gabriel S
– year: 1961
  ident: 18
  publication-title: Principles and Applications of Electromagnetic Fields
  contributor:
    fullname: Plonsey R
– ident: 20
  doi: 10.1007/BF02518873
– ident: 15
  doi: 10.1114/1.1352640
– volume: 41
  start-page: 2271
  issn: 0031-9155
  year: 1996
  ident: 10
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/11/003
  contributor:
    fullname: Gabriel S
SSID ssj0031790
Score 2.3304007
Snippet In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Algorithms
Electric Conductivity
Electric Stimulation - methods
Evoked Potentials - physiology
Humans
Models, Neurological
Models, Statistical
Myelin Sheath - physiology
Nerve Fibers - physiology
Nervous System Physiological Phenomena
Poisson Distribution
Title Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation
URI http://iopscience.iop.org/1741-2552/5/1/005
https://www.ncbi.nlm.nih.gov/pubmed/18310810
https://search.proquest.com/docview/70358181
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7qky_e5mVeI6gPQre26SV9HOKYgpcHhb2FNJcxxHa6Dpy_3pOkRYYIewttSNqc05MvPed8B6GLCLQoJYH2lNTciwS0aJICkNMJz0POqchM7vDDYzJ4je6H8fCXZ3tcTmrL34Gm8-TDnucB8A27cTfoOr5S2ATNQevu6bmxusQwTbnkR9e78WDCAa--lvjNCAt70CpM9D-8tNtMf9Plb08tO6GJLnnrzKq8I77_cjcu8wZbaKOGm7jn9GMbrahiB7V6BRy13-f4CtsAUPtnvYVUQ1CCS40BF-KPGZ-OPZNyNBbYko9_jV2mIwaoi0G6whb_KkZ4UlYm7Ah0GY8skTUAWZzPsaHLhPnBjrzXdcJ20Wv_9uVm4NVVGDwBUKryUiGlT4jwc55JniSa68QEWwMwJFEos1hIonydqTzOaC54oJSfZBoMsBSAPTXZQ2tFWagDhDXNUhEaxhlOIkNJSkOVckKFTAMt8qiNrhu5sIkj22DWSU4pM4vIjBBZzAIGi9hGl7DAy_Q7X-jn7sdhc59NpG6js0b-DD4v4zPhhSpnUwaqHAOmCdpo36nF70CmRBsN_MMln-MIrbtYExO_dozWqs-ZOgFAU-WnVpN_ALhL7Cg
link.rule.ids 314,780,784,1557,27924,27925,53905
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFAvpRRKFwoYqe0BKZuH48Q5ImAFlAKHInGzHD_QCpEskJWAX884TtRStRISN0t2bGc8GX-OZ74B-JqiFuU0toHRVgapwhLPcgRyNpNlIiVXhYsd_nmaHV6kx5fs8o8o_nE96Uz_EIueKNiLsHOI4yFi6DhwO3XIwjhELQon2s7CPMPju3PqOzo7720xdfxTPiTSPcKS_l7zX9282JlmcfT_g8528xktguyn7X1OrofTphyqp78YHd_yXh_gfYdMya5vvwQzpvoIy7sVnspvHsl30vqKtj_hl8H0XCaktgQhJLmdyvtx4KKTxoq0POUPYx8USRAVE1QE1eYJq67IpG6chxKqPblqOa8R85LykThmTRwfTc5Nl1JsBS5GB7_2DoMuYUOgEHU1Qa60jihVUSkLLbPMSps5v2zEkDRNdMGUpiayhSlZwUslY2OirLBoq7VCmGrpJ5ir6sp8BmJ5kavEkdNImjr2Up6YXFKudB5bVaYD2OkXS0w8L4do79M5F06QwglSMBELFOQAvqHQX9Nu-0U7X8-Svl7gggxgq1cKgV-iu16Rlamn9wK1niH8iQew6nXld0cumxuPo7VXzmMLFs73R-Lk6PTHOrzzHirO6-0LzDV3U7OBMKgpN1tNfwZOP_wP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+quasi-static+approximation+for+calculating+potentials+generated+by+neural+stimulation&rft.jtitle=Journal+of+neural+engineering&rft.au=Bossetti%2C+Chad+A&rft.au=Birdno%2C+Merrill+J&rft.au=Grill%2C+Warren+M&rft.date=2008-03-01&rft.pub=IOP+Publishing&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=5&rft.spage=44&rft_id=info:doi/10.1088%2F1741-2560%2F5%2F1%2F005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2560_5_1_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon