Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation
In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the...
Saved in:
Published in | Journal of neural engineering Vol. 5; no. 1; pp. 44 - 53 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.03.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity. |
---|---|
AbstractList | In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The quasi-static approximation allows Maxwell's equations to be simplified by ignoring capacitive, inductive and wave propagation contributions to the potential. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate. We compared the potentials calculated using the quasi-static approximation with those calculated from the exact solution to the inhomogeneous Helmholtz equation. The mean absolute errors between the two potential calculations were limited to 5-13% for pulse widths commonly used for neural stimulation (25 micros-1 ms). We also quantified the excitation properties of extracellular point source stimulation of a myelinated nerve fiber model using potentials calculated from each method. Deviations between the strength-duration curves for potentials calculated using the quasi-static (sigma = 0.105 S m(-1)) and Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 micros pulses. Differences in the threshold-distance curves for the two calculations ranged from 0 to 9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material parameters revealed that the potential was much more strongly dependent on the conductivity than on the permittivity. These results indicate that for commonly used stimulus pulse parameters, the exact solution for the potential can be approximated by quasi-static simplifications only for appropriate values of conductivity. |
Author | Bossetti, Chad A Birdno, Merrill J Grill, Warren M |
Author_xml | – sequence: 1 fullname: Bossetti, Chad A – sequence: 2 fullname: Birdno, Merrill J – sequence: 3 fullname: Grill, Warren M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18310810$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkD1PwzAQhi0Eoh_wA1iQJ8RAqB3X-Ririi-pEgvMlmOfS1Bqp7Ej0X-PS4NgYGC6O-u5V-dngo6ts4DQBSW3lBTFjOZzmqQ8IzM-ozNC-BEaD288Pf7Vj9DE-3dCGM1LcopGtGAxgJIxgoWVzc7XHjuDwxvgbS99nfggQ62wbNvOfdSbODiLjeuwko3qmzjbNW5dABtq2Xi8BgudDKBxtcMW-k422Id684U6e4ZOTMTgfKhT9Hp_97J8TFbPD0_LxSpRc8ZDkiutCWOKVLLUMsuMNFmmVJoyyuapLrnSDIgpoeJlUSlJAUhWmnmWa1XSzLApujrkxrO3PfggNrVX0DTSguu9yAnjBS1oBOkBVJ3zvgMj2i5-s9sJSsTerdi7E3u3ggsqotu4czmE99UG9M_GIDMCNwegdu2_8q7_wA8YT78x0WrDPgGwIJLa |
CitedBy_id | crossref_primary_10_1016_j_brs_2019_10_002 crossref_primary_10_1109_TNSRE_2017_2748930 crossref_primary_10_1186_s42234_020_00047_3 crossref_primary_10_1088_1741_2552_aaa505 crossref_primary_10_1088_1741_2560_13_3_036023 crossref_primary_10_1088_1741_2560_11_6_065005 crossref_primary_10_2139_ssrn_4010997 crossref_primary_10_1088_1741_2552_aadbb1 crossref_primary_10_1523_JNEUROSCI_1688_13_2013 crossref_primary_10_1016_j_clinph_2023_06_017 crossref_primary_10_1088_2057_1976_ac8c47 crossref_primary_10_1080_09205071_2016_1216807 crossref_primary_10_1109_TBCAS_2011_2171036 crossref_primary_10_1155_2014_489240 crossref_primary_10_1002_adhm_202200075 crossref_primary_10_1038_s41467_020_20703_1 crossref_primary_10_1049_iet_smt_2014_0220 crossref_primary_10_3389_fncom_2020_00013 crossref_primary_10_1088_1741_2552_acbf79 crossref_primary_10_1016_j_brs_2021_09_001 crossref_primary_10_1016_j_neuroimage_2013_01_042 crossref_primary_10_1088_1741_2552_acda64 crossref_primary_10_1109_TBME_2018_2791860 crossref_primary_10_1088_1741_2552_acb14d crossref_primary_10_1016_j_compbiomed_2024_108556 crossref_primary_10_3390_app13106267 crossref_primary_10_1038_s41593_023_01456_8 crossref_primary_10_1016_j_jneumeth_2019_108446 crossref_primary_10_3389_fnins_2020_00166 crossref_primary_10_1088_1741_2560_11_1_016002 crossref_primary_10_3389_fbioe_2021_796042 crossref_primary_10_1016_j_neuroimage_2011_10_029 crossref_primary_10_1111_ner_12980 crossref_primary_10_1111_ner_13037 crossref_primary_10_1109_TBME_2012_2189885 crossref_primary_10_1038_s41562_024_01820_z crossref_primary_10_3389_fneng_2015_00002 crossref_primary_10_1088_1741_2560_11_4_046026 crossref_primary_10_1016_j_patter_2022_100615 crossref_primary_10_1111_ner_13065 crossref_primary_10_1038_s41467_024_45898_5 crossref_primary_10_1109_TNSRE_2011_2151878 crossref_primary_10_1097_YCT_0b013e3181e48165 crossref_primary_10_1016_j_brs_2021_07_012 crossref_primary_10_1109_JPROC_2016_2600560 crossref_primary_10_1097_WNP_0000000000000892 crossref_primary_10_1109_TBME_2017_2752258 crossref_primary_10_1109_TBME_2015_2393557 crossref_primary_10_1038_srep43619 crossref_primary_10_1088_0031_9155_57_21_6961 crossref_primary_10_1088_1741_2552_aa6a5f crossref_primary_10_1088_1741_2552_abe44f crossref_primary_10_1109_TAP_2022_3161390 crossref_primary_10_1016_j_brs_2010_11_004 crossref_primary_10_1016_j_cels_2020_10_004 crossref_primary_10_1080_09540261_2017_1305949 crossref_primary_10_1371_journal_pcbi_1009285 crossref_primary_10_1016_j_neuron_2023_10_021 crossref_primary_10_1016_j_medengphy_2018_12_018 crossref_primary_10_1016_j_neuroimage_2013_06_079 crossref_primary_10_1109_TBME_2013_2292025 crossref_primary_10_15446_dyna_v83n198_51766 crossref_primary_10_1142_S0129065718500260 crossref_primary_10_1088_1741_2552_aaeb0c crossref_primary_10_1016_j_bspc_2020_102048 crossref_primary_10_1088_1361_6560_aaf308 crossref_primary_10_1038_s41598_023_49580_6 crossref_primary_10_1016_j_jphysparis_2011_10_003 crossref_primary_10_1088_1741_2560_11_6_066012 crossref_primary_10_1109_TBME_2015_2425406 crossref_primary_10_1088_1741_2560_10_3_036018 crossref_primary_10_1371_journal_pone_0114938 crossref_primary_10_2139_ssrn_4136715 crossref_primary_10_1111_j_1440_1681_2009_05162_x crossref_primary_10_1016_j_brs_2023_11_018 crossref_primary_10_1111_aor_14323 crossref_primary_10_1016_j_bpj_2018_06_004 crossref_primary_10_12693_APhysPolA_125_145 crossref_primary_10_1152_jn_00538_2018 crossref_primary_10_1038_s41551_019_0446_8 crossref_primary_10_2528_PIER15011404 crossref_primary_10_1109_TBME_2012_2235835 crossref_primary_10_1109_TNSRE_2016_2625312 crossref_primary_10_1088_1741_2560_8_3_036017 crossref_primary_10_1109_TNSRE_2010_2047610 crossref_primary_10_1109_TNSRE_2021_3054551 crossref_primary_10_1088_2057_1976_ace7d7 crossref_primary_10_1038_s41398_019_0540_4 crossref_primary_10_1088_1741_2552_ad1612 crossref_primary_10_1038_s41380_024_02567_9 crossref_primary_10_1016_j_brs_2020_11_007 crossref_primary_10_1016_j_brs_2011_07_004 crossref_primary_10_1016_j_brs_2014_09_017 crossref_primary_10_1016_j_jtbi_2022_111093 crossref_primary_10_1088_1741_2552_aaa87a crossref_primary_10_1016_j_brs_2023_03_007 crossref_primary_10_1088_1741_2552_aa86c8 crossref_primary_10_1016_j_bspc_2022_104253 crossref_primary_10_3389_fncom_2018_00040 crossref_primary_10_1016_j_jmps_2022_104810 crossref_primary_10_1088_1741_2560_12_4_046030 crossref_primary_10_1038_s41562_024_01901_z crossref_primary_10_1088_1741_2552_ac6a7c crossref_primary_10_1088_2057_1976_ac52d8 crossref_primary_10_3389_fncom_2020_00072 crossref_primary_10_1038_s41598_021_84503_3 crossref_primary_10_1109_TBME_2017_2758324 crossref_primary_10_1038_s41596_020_0377_6 crossref_primary_10_1088_1741_2560_7_6_066009 crossref_primary_10_1103_PhysRevE_84_041909 crossref_primary_10_1088_1741_2552_acfabf crossref_primary_10_1016_j_neuroimage_2023_120184 crossref_primary_10_1088_1741_2552_ab8fc4 crossref_primary_10_1088_1741_2552_acab30 crossref_primary_10_1002_cnm_2992 crossref_primary_10_1088_1741_2552_ad37d9 crossref_primary_10_1109_TBME_2010_2055054 crossref_primary_10_1016_j_neuroscience_2008_07_051 crossref_primary_10_1109_ACCESS_2023_3319742 crossref_primary_10_1109_TBME_2015_2468672 crossref_primary_10_1016_j_neurom_2021_12_013 crossref_primary_10_1088_0031_9155_61_12_4466 crossref_primary_10_1088_1741_2560_12_5_056015 crossref_primary_10_1088_1741_2560_8_1_016007 crossref_primary_10_1016_j_adro_2023_101203 crossref_primary_10_1088_1741_2560_9_3_036004 crossref_primary_10_1038_s42003_020_01299_0 crossref_primary_10_1119_5_0085625 crossref_primary_10_3389_fncom_2015_00002 crossref_primary_10_1371_journal_pcbi_1011833 |
Cites_doi | 10.1162/neco.1997.9.6.1179 10.1007/BF02476917 10.1088/0031-9155/41/11/001 10.1088/0031-9155/32/8/001 10.1016/j.clinph.2005.06.023 10.1016/S0006-3495(04)74250-2 10.1063/1.1750906 10.1007/BF02474537 10.1007/978-1-4757-3152-1 10.1114/1.262 10.1088/0031-9155/41/11/002 10.1007/BF02518873 10.1114/1.1352640 10.1088/0031-9155/41/11/003 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1088/1741-2560/5/1/005 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
EndPage | 53 |
ExternalDocumentID | 10_1088_1741_2560_5_1_005 18310810 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS040894 |
GroupedDBID | - 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AALHV ABFLS ABHWH ABQJV ACGFS AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 UNR W28 XPP --- AAJKP AATNI ABJNI ABVAM ACAFW ACHIP AERVB AKPSB AOAED CEBXE CGR CRLBU CUY CVF ECM EIF IJHAN JCGBZ NPM PJBAE AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c435t-7cdd033c0ba9da66faf66cc2231342d95cd3e0f9eb598bca1ee069f467dc916f3 |
IEDL.DBID | IOP |
ISSN | 1741-2552 1741-2560 |
IngestDate | Fri Oct 25 08:39:48 EDT 2024 Thu Sep 26 17:17:56 EDT 2024 Sat Sep 28 07:45:09 EDT 2024 Mon May 13 14:07:51 EDT 2019 Tue Nov 10 14:17:13 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-7cdd033c0ba9da66faf66cc2231342d95cd3e0f9eb598bca1ee069f467dc916f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18310810 |
PQID | 70358181 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | iop_primary_10_1088_1741_2560_5_1_005 proquest_miscellaneous_70358181 crossref_primary_10_1088_1741_2560_5_1_005 pubmed_primary_18310810 |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAlternate | J Neural Eng |
PublicationYear | 2008 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Duck F A (6) 1990 11 12 14 15 19 Gabriel C (8) 1996; 41 Bedard C (2) 2004; 86 Debye P (5) 1929 Foster K R (7) 1989; 17 3 4 Plonsey R (17) 2000 Johnk C T A (13) 1988 Balanis C A (1) 1989 Pethig R (16) 1987; 32 Gabriel S (9) 1996; 41 Plonsey R (18) 1961 Gabriel S (10) 1996; 41 20 |
References_xml | – ident: 12 doi: 10.1162/neco.1997.9.6.1179 – ident: 19 doi: 10.1007/BF02476917 – volume: 41 start-page: 2231 issn: 0031-9155 year: 1996 ident: 8 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/001 contributor: fullname: Gabriel C – volume: 32 start-page: 933 issn: 0031-9155 year: 1987 ident: 16 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/8/001 contributor: fullname: Pethig R – volume: 17 start-page: 25 issn: 0278-940X year: 1989 ident: 7 publication-title: Crit. Rev. Biomed. Eng. contributor: fullname: Foster K R – year: 1988 ident: 13 publication-title: Engineering Electromagnetic Fields and Waves contributor: fullname: Johnk C T A – ident: 3 doi: 10.1016/j.clinph.2005.06.023 – volume: 86 start-page: 1829 issn: 0006-3495 year: 2004 ident: 2 publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74250-2 contributor: fullname: Bedard C – ident: 4 doi: 10.1063/1.1750906 – ident: 11 doi: 10.1007/BF02474537 – year: 1929 ident: 5 publication-title: Polar Molecules contributor: fullname: Debye P – year: 2000 ident: 17 publication-title: Bioelectricity: A Quantitative Approach doi: 10.1007/978-1-4757-3152-1 contributor: fullname: Plonsey R – ident: 14 doi: 10.1114/1.262 – year: 1990 ident: 6 publication-title: Physical Properties of Tissue: a Comprehensive Reference Book contributor: fullname: Duck F A – year: 1989 ident: 1 publication-title: Advanced Engineering Electromagnetics contributor: fullname: Balanis C A – volume: 41 start-page: 2251 issn: 0031-9155 year: 1996 ident: 9 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/002 contributor: fullname: Gabriel S – year: 1961 ident: 18 publication-title: Principles and Applications of Electromagnetic Fields contributor: fullname: Plonsey R – ident: 20 doi: 10.1007/BF02518873 – ident: 15 doi: 10.1114/1.1352640 – volume: 41 start-page: 2271 issn: 0031-9155 year: 1996 ident: 10 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/003 contributor: fullname: Gabriel S |
SSID | ssj0031790 |
Score | 2.3304007 |
Snippet | In models of electrical stimulation of the nervous system, the electric potential is typically calculated using the quasi-static approximation. The... |
SourceID | proquest crossref pubmed iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Algorithms Electric Conductivity Electric Stimulation - methods Evoked Potentials - physiology Humans Models, Neurological Models, Statistical Myelin Sheath - physiology Nerve Fibers - physiology Nervous System Physiological Phenomena Poisson Distribution |
Title | Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation |
URI | http://iopscience.iop.org/1741-2552/5/1/005 https://www.ncbi.nlm.nih.gov/pubmed/18310810 https://search.proquest.com/docview/70358181 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7qky_e5mVeI6gPQre26SV9HOKYgpcHhb2FNJcxxHa6Dpy_3pOkRYYIewttSNqc05MvPed8B6GLCLQoJYH2lNTciwS0aJICkNMJz0POqchM7vDDYzJ4je6H8fCXZ3tcTmrL34Gm8-TDnucB8A27cTfoOr5S2ATNQevu6bmxusQwTbnkR9e78WDCAa--lvjNCAt70CpM9D-8tNtMf9Plb08tO6GJLnnrzKq8I77_cjcu8wZbaKOGm7jn9GMbrahiB7V6BRy13-f4CtsAUPtnvYVUQ1CCS40BF-KPGZ-OPZNyNBbYko9_jV2mIwaoi0G6whb_KkZ4UlYm7Ah0GY8skTUAWZzPsaHLhPnBjrzXdcJ20Wv_9uVm4NVVGDwBUKryUiGlT4jwc55JniSa68QEWwMwJFEos1hIonydqTzOaC54oJSfZBoMsBSAPTXZQ2tFWagDhDXNUhEaxhlOIkNJSkOVckKFTAMt8qiNrhu5sIkj22DWSU4pM4vIjBBZzAIGi9hGl7DAy_Q7X-jn7sdhc59NpG6js0b-DD4v4zPhhSpnUwaqHAOmCdpo36nF70CmRBsN_MMln-MIrbtYExO_dozWqs-ZOgFAU-WnVpN_ALhL7Cg |
link.rule.ids | 314,780,784,1557,27924,27925,53905 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFAvpRRKFwoYqe0BKZuH48Q5ImAFlAKHInGzHD_QCpEskJWAX884TtRStRISN0t2bGc8GX-OZ74B-JqiFuU0toHRVgapwhLPcgRyNpNlIiVXhYsd_nmaHV6kx5fs8o8o_nE96Uz_EIueKNiLsHOI4yFi6DhwO3XIwjhELQon2s7CPMPju3PqOzo7720xdfxTPiTSPcKS_l7zX9282JlmcfT_g8528xktguyn7X1OrofTphyqp78YHd_yXh_gfYdMya5vvwQzpvoIy7sVnspvHsl30vqKtj_hl8H0XCaktgQhJLmdyvtx4KKTxoq0POUPYx8USRAVE1QE1eYJq67IpG6chxKqPblqOa8R85LykThmTRwfTc5Nl1JsBS5GB7_2DoMuYUOgEHU1Qa60jihVUSkLLbPMSps5v2zEkDRNdMGUpiayhSlZwUslY2OirLBoq7VCmGrpJ5ir6sp8BmJ5kavEkdNImjr2Up6YXFKudB5bVaYD2OkXS0w8L4do79M5F06QwglSMBELFOQAvqHQX9Nu-0U7X8-Svl7gggxgq1cKgV-iu16Rlamn9wK1niH8iQew6nXld0cumxuPo7VXzmMLFs73R-Lk6PTHOrzzHirO6-0LzDV3U7OBMKgpN1tNfwZOP_wP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+quasi-static+approximation+for+calculating+potentials+generated+by+neural+stimulation&rft.jtitle=Journal+of+neural+engineering&rft.au=Bossetti%2C+Chad+A&rft.au=Birdno%2C+Merrill+J&rft.au=Grill%2C+Warren+M&rft.date=2008-03-01&rft.pub=IOP+Publishing&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=5&rft.spage=44&rft_id=info:doi/10.1088%2F1741-2560%2F5%2F1%2F005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2560_5_1_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |