Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity
Mounting evidence suggests that immunotherapies are a promising new class of anticancer therapies. However, the immunosuppressive tumor microenvironment (TME), poor immunogenicity, and off-target toxicity hinder the broader implementation of immunotherapies. Here, we describe a novel strategy combin...
Saved in:
Published in | Science advances Vol. 6; no. 35; p. eabc3646 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mounting evidence suggests that immunotherapies are a promising new class of anticancer therapies. However, the immunosuppressive tumor microenvironment (TME), poor immunogenicity, and off-target toxicity hinder the broader implementation of immunotherapies. Here, we describe a novel strategy combining chemotherapy and immunotherapy to modulate the TME by systemically and concurrently delivering the chemotherapeutic agent SN38 (7-ethyl-10-hydroxycamptothecin) and the STING agonist DMXAA (5,6-dimethylxanthenone-4-acetic acid) into tumors using triblock copolymer nanoparticles, named PS3D1@DMXAA, which enhances antigen cross-presentation and induces the conversion of the immunosuppressive TME to immunogenic TME through the newly found synergistic function between SN38 and STING activation. PS3D1@DMXAA thus shows potent therapeutic efficacy in three mice tumor models and elicits remarkable therapeutic benefit when combined with anti-PD-1 therapy. Our engineered nanosystem offers a rational design of an effective immunotherapy combination regimen to convert uninflamed "cold" tumors into "hot" tumors, addressing the major challenges immunotherapies faced. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abc3646 |