Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis
Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power dens...
Saved in:
Published in | Renewable energy Vol. 64; pp. 123 - 131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0960-1481 1879-0682 |
DOI | 10.1016/j.renene.2013.11.001 |
Cover
Loading…
Abstract | Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux.
[Display omitted]
•Investigation of effect of feed water concentration on power output in RED.•Membrane resistance and permselectivity limit power output at high salinities.•Highest fuel efficiency for feeds with low concentrations and low salinity gradients.•Power density increases with higher salinity gradients, despite lower permselectivity.•The work identifies directions for further increase in power density. |
---|---|
AbstractList | Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m² is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux. Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 degree C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux. Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux. [Display omitted] •Investigation of effect of feed water concentration on power output in RED.•Membrane resistance and permselectivity limit power output at high salinities.•Highest fuel efficiency for feeds with low concentrations and low salinity gradients.•Power density increases with higher salinity gradients, despite lower permselectivity.•The work identifies directions for further increase in power density. |
Author | Herber, Rien Nijmeijer, Kitty Vermaas, David A. Daniilidis, Alexandros |
Author_xml | – sequence: 1 givenname: Alexandros surname: Daniilidis fullname: Daniilidis, Alexandros email: a.daniilidis@rug.nl organization: Geo-Energy Group, ESRIG, Rijksuniversiteit Groningen, Nijenborgh 4, PO Box 800, 9747 AG Groningen, The Netherlands – sequence: 2 givenname: David A. surname: Vermaas fullname: Vermaas, David A. email: David.Vermaas@Wetsus.nl organization: Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, PO Box 1113, 8900 CC Leeuwarden, The Netherlands – sequence: 3 givenname: Rien surname: Herber fullname: Herber, Rien email: rien.herber@rug.nl organization: Geo-Energy Group, ESRIG, Rijksuniversiteit Groningen, Nijenborgh 4, PO Box 800, 9747 AG Groningen, The Netherlands – sequence: 4 givenname: Kitty surname: Nijmeijer fullname: Nijmeijer, Kitty email: d.c.nijmeijer@utwente.nl organization: Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Meander, ME 325, PO Box 217, 7500 AE Enschede, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28307014$$DView record in Pascal Francis |
BookMark | eNqNkT1vFDEQhi0UJC6X_AMKN0gU7OLxeu1dCiQUBRIpUhpSW17vbPDJZx-283H_HocLDQVBLsbF874azXNMjkIMSMhbYC0wkB83bcJQX8sZdC1Ayxi8IisY1NgwOfAjsmKjZA2IAd6Q45w3FegHJVbEnT_uMLkthmK839M4FeOCmTzSWphu93RJcUu37tGFW5rcPSb6YAqmDzSj-f2jMdEpuYCZPrjygyasUK55j7akODvj99nlE_J6MT7j6fNck5uv59_PLpqr62-XZ1-uGiu6vjRynlGCEDipQS4oRqM4760FznAaubHK9mrGeeGiNwIHsDAtILplNmNvJOvW5P2hd5fizzvMRW9dtui9CRjvsub1ZJ3slRheREEKzpVQw3-gPWNKjh10FX33jJpsjV-SCdZlvatXNmmv-dAxxerGa_LpwNkUc064aOuKKS6GkozzGph-sqs3-mBXP9nVALrKq2HxV_hP_wuxz4cYVgP3DpPO1mGwOLtUbek5un8X_AIpLcRr |
CitedBy_id | crossref_primary_10_1016_j_memsci_2014_07_075 crossref_primary_10_1021_acs_est_6b03720 crossref_primary_10_1021_acs_est_2c03407 crossref_primary_10_1039_C4RA05968A crossref_primary_10_1016_j_desal_2019_01_005 crossref_primary_10_1016_j_jwpe_2023_104548 crossref_primary_10_1007_s11783_021_1480_9 crossref_primary_10_1016_j_desal_2016_11_011 crossref_primary_10_1016_j_electacta_2021_138446 crossref_primary_10_1016_j_nanoen_2023_109004 crossref_primary_10_1016_j_enconman_2018_11_032 crossref_primary_10_1038_s41545_018_0010_1 crossref_primary_10_1021_acs_est_5b03864 crossref_primary_10_1021_es4045456 crossref_primary_10_1016_j_enconman_2023_117433 crossref_primary_10_1039_D0SE00372G crossref_primary_10_1039_C5EE02985F crossref_primary_10_3390_membranes10010007 crossref_primary_10_1016_j_desal_2020_114540 crossref_primary_10_1016_j_memsci_2017_12_016 crossref_primary_10_1016_j_memsci_2017_08_054 crossref_primary_10_1016_j_desal_2018_06_001 crossref_primary_10_1016_j_jclepro_2018_08_269 crossref_primary_10_1016_j_apenergy_2020_115294 crossref_primary_10_1134_S0036024419070288 crossref_primary_10_1016_j_memsci_2018_11_045 crossref_primary_10_1016_j_renene_2019_03_138 crossref_primary_10_1021_acssuschemeng_9b02131 crossref_primary_10_1016_j_renene_2015_03_015 crossref_primary_10_1021_acs_est_5b01317 crossref_primary_10_3390_pr10040745 crossref_primary_10_1016_j_desal_2020_114676 crossref_primary_10_1016_j_memsci_2015_05_058 crossref_primary_10_1016_j_ijhydene_2020_08_111 crossref_primary_10_1016_j_ijhydene_2014_03_134 crossref_primary_10_3390_en13051247 crossref_primary_10_3390_membranes13060566 crossref_primary_10_1021_es5005413 crossref_primary_10_3390_membranes15010002 crossref_primary_10_1016_j_ces_2024_120006 crossref_primary_10_1002_cssc_201601300 crossref_primary_10_1016_j_desal_2020_114562 crossref_primary_10_1016_j_desal_2022_115976 crossref_primary_10_1016_j_rser_2021_110712 crossref_primary_10_1016_j_memsci_2025_123925 crossref_primary_10_1016_j_idairyj_2020_104737 crossref_primary_10_1039_C7EE00188F crossref_primary_10_1115_1_4052095 crossref_primary_10_1016_j_desal_2020_114449 crossref_primary_10_1016_j_desal_2015_01_047 crossref_primary_10_1515_pac_2019_1208 crossref_primary_10_1016_j_memsci_2017_07_038 crossref_primary_10_3390_membranes10080168 crossref_primary_10_1016_j_memsci_2015_10_057 crossref_primary_10_1016_j_ijhydene_2025_03_070 crossref_primary_10_3390_w13060814 crossref_primary_10_1002_tcr_202400098 crossref_primary_10_1016_j_apenergy_2013_12_066 crossref_primary_10_1002_er_6062 crossref_primary_10_1039_D4TA03746D crossref_primary_10_1016_j_enconman_2021_114493 crossref_primary_10_1016_j_memsci_2017_07_030 crossref_primary_10_1016_j_memsci_2016_08_007 crossref_primary_10_1016_j_desal_2016_12_005 crossref_primary_10_1016_j_energy_2018_12_111 crossref_primary_10_1016_j_clet_2021_100091 crossref_primary_10_1016_j_psep_2022_12_034 crossref_primary_10_1088_1757_899X_791_1_012057 crossref_primary_10_1016_j_energy_2019_05_183 crossref_primary_10_1016_j_jwpe_2024_106024 crossref_primary_10_1016_j_desal_2017_10_021 crossref_primary_10_1016_j_energy_2018_09_111 crossref_primary_10_1016_j_seta_2021_101687 crossref_primary_10_1016_j_enconman_2021_114369 crossref_primary_10_1016_j_desal_2015_04_031 crossref_primary_10_1016_j_desal_2020_114505 crossref_primary_10_1049_rpg2_12066 crossref_primary_10_1016_j_desal_2021_115132 crossref_primary_10_1016_j_apenergy_2018_04_111 crossref_primary_10_1039_C3EE43501F crossref_primary_10_1016_j_nexus_2025_100362 crossref_primary_10_1016_j_cherd_2014_05_009 crossref_primary_10_1039_C5TA03571F crossref_primary_10_1016_j_memsci_2023_122156 crossref_primary_10_1016_j_enconman_2021_114475 crossref_primary_10_1016_j_memsci_2017_06_014 crossref_primary_10_3390_su14116752 crossref_primary_10_1016_j_jpowsour_2021_230806 crossref_primary_10_1021_acs_est_5b03523 crossref_primary_10_3390_membranes12111141 crossref_primary_10_3390_en12173206 crossref_primary_10_1016_j_enconman_2022_115974 crossref_primary_10_1016_j_enconman_2019_04_056 crossref_primary_10_1016_j_memsci_2019_05_010 crossref_primary_10_3390_en15092970 crossref_primary_10_1016_j_memsci_2016_09_015 crossref_primary_10_1016_j_enconman_2022_115297 crossref_primary_10_30724_1998_9903_2023_25_4_53_70 crossref_primary_10_1016_j_desal_2019_06_007 crossref_primary_10_1016_j_desal_2018_11_022 crossref_primary_10_1016_j_memsci_2018_09_051 crossref_primary_10_1016_j_chemosphere_2019_124509 crossref_primary_10_1016_j_desal_2024_118184 crossref_primary_10_1016_j_apenergy_2016_11_069 crossref_primary_10_1016_j_memsci_2017_09_006 crossref_primary_10_1021_acs_est_6b03448 crossref_primary_10_3390_membranes10090209 crossref_primary_10_1016_j_watres_2019_115078 crossref_primary_10_1115_1_4054225 crossref_primary_10_1016_j_memsci_2015_09_008 crossref_primary_10_1016_j_memsci_2015_09_006 crossref_primary_10_1016_j_electacta_2023_143090 crossref_primary_10_1016_j_apenergy_2019_113489 crossref_primary_10_1016_j_jpowsour_2016_11_075 crossref_primary_10_1016_j_memsci_2021_119245 crossref_primary_10_1016_j_memsci_2016_05_060 crossref_primary_10_1080_19443994_2014_947781 crossref_primary_10_1016_j_desal_2023_116953 crossref_primary_10_3390_membranes12010048 crossref_primary_10_1016_j_rser_2018_12_003 crossref_primary_10_1016_j_memsci_2019_02_009 crossref_primary_10_1016_j_memsci_2021_120239 crossref_primary_10_1016_j_desal_2018_05_013 crossref_primary_10_1021_acs_iecr_4c02314 crossref_primary_10_1016_j_cherd_2023_12_014 crossref_primary_10_1016_j_rser_2017_07_047 crossref_primary_10_1016_j_cherd_2023_10_060 crossref_primary_10_1016_j_est_2019_04_029 crossref_primary_10_1088_1757_899X_907_1_012069 crossref_primary_10_1002_cssc_201501513 crossref_primary_10_1002_ente_202301215 crossref_primary_10_3390_membranes13020164 crossref_primary_10_5004_dwt_2016_11279 crossref_primary_10_1016_j_memsci_2019_117211 crossref_primary_10_1080_19443994_2016_1186569 crossref_primary_10_1039_D2LC00946C crossref_primary_10_1021_acs_energyfuels_2c00763 crossref_primary_10_1016_j_desal_2020_114389 crossref_primary_10_1016_j_memsci_2015_07_053 crossref_primary_10_3390_en13205510 crossref_primary_10_1016_j_desal_2018_05_005 crossref_primary_10_1021_acs_est_8b06361 crossref_primary_10_1007_s11814_020_0690_3 crossref_primary_10_1016_j_electacta_2018_10_053 crossref_primary_10_1016_j_memsci_2018_01_036 crossref_primary_10_1016_j_memsci_2024_123238 crossref_primary_10_3390_app10207317 crossref_primary_10_1021_es5029316 crossref_primary_10_1016_j_cej_2019_122461 crossref_primary_10_33961_jecst_2019_03160 crossref_primary_10_1016_j_jwpe_2022_102706 crossref_primary_10_2166_wpt_2019_048 crossref_primary_10_1021_acs_jpcc_4c05429 crossref_primary_10_3390_membranes12100985 crossref_primary_10_1002_advs_202100995 crossref_primary_10_1016_j_desal_2020_114711 crossref_primary_10_1016_j_desal_2023_117266 crossref_primary_10_1016_j_watres_2017_08_008 crossref_primary_10_1021_acs_est_7b02213 crossref_primary_10_1016_j_jpowsour_2016_05_130 crossref_primary_10_1016_j_energy_2019_05_161 crossref_primary_10_1016_j_electacta_2018_09_015 crossref_primary_10_1080_19443994_2014_934102 crossref_primary_10_3103_S1063455X23010058 crossref_primary_10_1016_j_jpowsour_2022_231314 crossref_primary_10_1016_j_scitotenv_2023_167154 crossref_primary_10_1039_D4QI01978D crossref_primary_10_1016_j_enconman_2023_117122 crossref_primary_10_1016_j_energy_2024_133484 crossref_primary_10_1016_j_memsci_2018_02_050 crossref_primary_10_1016_j_seppur_2022_121390 crossref_primary_10_23939_chcht13_03_372 crossref_primary_10_1515_revce_2020_0070 crossref_primary_10_1016_j_ces_2016_03_032 crossref_primary_10_1016_j_desal_2020_114450 crossref_primary_10_1016_j_memsci_2016_04_067 crossref_primary_10_1016_j_renene_2016_02_067 crossref_primary_10_1016_j_jenvman_2018_03_110 crossref_primary_10_1016_j_memsci_2015_05_020 crossref_primary_10_1016_j_electacta_2020_136103 crossref_primary_10_1016_j_desal_2020_114699 crossref_primary_10_1007_s10800_019_01303_4 crossref_primary_10_1016_j_enconman_2018_03_014 crossref_primary_10_1016_j_enconman_2019_112284 crossref_primary_10_1016_j_memsci_2017_11_029 crossref_primary_10_1016_j_ijhydene_2023_02_032 crossref_primary_10_1016_j_desal_2017_09_006 crossref_primary_10_2139_ssrn_3974813 crossref_primary_10_3390_membranes11010027 crossref_primary_10_1016_j_scs_2017_12_037 crossref_primary_10_1002_bkcs_10810 crossref_primary_10_1016_j_rser_2022_112283 crossref_primary_10_1016_j_desal_2019_114183 crossref_primary_10_1080_19443994_2015_1126410 crossref_primary_10_1016_j_memsci_2015_06_050 crossref_primary_10_1016_j_desal_2019_04_003 crossref_primary_10_1016_j_memsci_2022_121184 crossref_primary_10_1080_00986445_2022_2042271 crossref_primary_10_1016_j_desal_2019_04_007 crossref_primary_10_1016_j_desal_2020_114356 crossref_primary_10_1016_j_desal_2020_114598 crossref_primary_10_1016_j_memsci_2020_118411 crossref_primary_10_1016_j_seppur_2018_07_065 crossref_primary_10_1016_j_desal_2017_12_044 crossref_primary_10_1016_j_memsci_2018_01_006 crossref_primary_10_1002_cssc_201601220 crossref_primary_10_1016_j_ces_2023_119156 crossref_primary_10_3390_membranes13030293 crossref_primary_10_1016_j_jpowsour_2016_11_043 |
Cites_doi | 10.1126/science.191.4227.557 10.1016/j.memsci.2009.09.033 10.1080/19443994.2012.705084 10.1016/0029-8018(80)90030-X 10.1016/j.memsci.2008.03.037 10.1016/j.cej.2010.10.071 10.1039/c0ee00524j 10.1021/es9009635 10.1016/j.desal.2007.01.106 10.1016/S0376-7388(00)82257-7 10.1021/es8004317 10.1016/j.memsci.2011.09.043 10.1016/j.memsci.2008.12.042 10.1039/c1ee01913a 10.1080/19443994.2012.699355 10.5004/dwt.2010.1090 10.1016/j.memsci.2007.11.032 10.1016/S1871-2711(09)00205-0 10.1016/j.memsci.2008.11.015 10.1021/es2012758 10.1021/sc400150w 10.1080/19438151003680850 10.1016/j.desal.2007.04.056 10.1021/es1009345 10.1021/es100852a 10.1016/j.memsci.2009.05.047 10.1080/00207237308709563 10.1016/S0376-7388(00)82271-1 10.1016/j.desal.2008.10.003 10.1002/cssc.201200298 10.1016/j.memsci.2006.11.018 10.1016/S0376-7388(96)00210-4 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST 7U6 7UA C1K F1W H96 L.G SOI 7SU 7TB 8FD FR3 H8D KR7 L7M 7S9 L.6 |
DOI | 10.1016/j.renene.2013.11.001 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-0682 |
EndPage | 131 |
ExternalDocumentID | 28307014 10_1016_j_renene_2013_11_001 S096014811300579X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7ST 7U6 7UA C1K EFKBS F1W H96 L.G SOI 7SU 7TB 8FD FR3 H8D KR7 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-6dde6144eb786fe49a7225cc120eb92ac7c57dedf245a4e81c1bf143fda95a603 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 08:41:29 EDT 2025 Fri Jul 11 11:49:06 EDT 2025 Sun Aug 24 03:36:02 EDT 2025 Wed Apr 02 07:46:47 EDT 2025 Tue Jul 01 03:20:22 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Fri Feb 23 02:20:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Power density Resistance Temperature Energy efficiency Reverse electrodialysis Brine Mixing Renewable energy Energy conservation Energetic efficiency Seawater Electrodialysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-6dde6144eb786fe49a7225cc120eb92ac7c57dedf245a4e81c1bf143fda95a603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1500769313 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101365748 proquest_miscellaneous_1642274788 proquest_miscellaneous_1500769313 pascalfrancis_primary_28307014 crossref_citationtrail_10_1016_j_renene_2013_11_001 crossref_primary_10_1016_j_renene_2013_11_001 elsevier_sciencedirect_doi_10_1016_j_renene_2013_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Renewable energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Nijmeijer, Metz (bib27) 2010 Post, Veerman, Hamelers, Euverink, Metz, Nymeijer (bib22) 2007; 288 Tamburini, La Barbera, Cipollina, Ciofalo, Micale (bib36) 2012; 48 Dlugolecki, Anet, Metz, Nijmeijer, Wessling (bib35) 2010; 346 Ramon, Feinberg, Hoek (bib20) 2011; 4 Wick (bib3) 1978; 3 Post (bib10) 2009 Brauns (bib25) 2010; 13 Vermaas, Saakes, Nijmeijer (bib17) 2011; 45 Brogioli, Zhao, Biesheuvel (bib5) 2011; 4 Turek, Bandura, Dydo (bib19) 2008; 221 Sales, Saakes, Post, Buisman, Biesheuvel, Hamelers (bib6) 2010; 44 Veerman, Saakes, Metz, Harmsen (bib12) 2010; 44 Wick, Schmitt (bib8) 1977; 11 Vermaas, Saakes, Nijmeijer (bib18) 2011; 385-386 Veerman, de Jong, Saakes, Metz, Harmsen (bib13) 2009; 343 Vermaas, Veerman, Yip, Elimelech, Saakes, Nijmeijer (bib29) 2013; 1 Post, Hamelers, Buisman (bib31) 2008; 42 Loeb, Vanhessen, Shahaf (bib1) 1976; 1 Isaacs, Seymour (bib9) 1973; 4 Dlugolecki, Nymeijer, Metz, Wessling (bib28) 2008; 319 Sistat, Pourcelly (bib32) 1997; 123 Brauns (bib24) 2009; 237 Lacey (bib26) 1980; 7 Post, Hamelers, Buisman (bib15) 2009 Veerman, Post, Saakes, Metz, Harmsen (bib30) 2008; 310 Veerman, Saakes, Metz, Harmsen (bib14) 2009; 327 Dlugolecki, Gambier, Nijmeijer, Wessling (bib16) 2009; 43 Veerman, Saakes, Metz, Harmsen (bib34) 2011; 166 Brogioli (bib4) 2009 Weinstein, Leitz (bib2) 1976; 191 Kuleszo, Kroeze, Post, Fekete (bib11) 2010; 7 Tedesco, Cipollina, Tamburini, van Baak, Micale (bib21) 2012; 49 Guler, Zhang, Saakes, Nijmeijer (bib33) 2012; 5 Loeb (bib7) 1976; 1 Brauns (bib23) 2008; 219 Sistat (10.1016/j.renene.2013.11.001_bib32) 1997; 123 Veerman (10.1016/j.renene.2013.11.001_bib13) 2009; 343 Sales (10.1016/j.renene.2013.11.001_bib6) 2010; 44 Ramon (10.1016/j.renene.2013.11.001_bib20) 2011; 4 Brauns (10.1016/j.renene.2013.11.001_bib25) 2010; 13 Veerman (10.1016/j.renene.2013.11.001_bib34) 2011; 166 Post (10.1016/j.renene.2013.11.001_bib31) 2008; 42 Dlugolecki (10.1016/j.renene.2013.11.001_bib28) 2008; 319 Post (10.1016/j.renene.2013.11.001_bib10) 2009 Loeb (10.1016/j.renene.2013.11.001_bib1) 1976; 1 Veerman (10.1016/j.renene.2013.11.001_bib30) 2008; 310 Nijmeijer (10.1016/j.renene.2013.11.001_bib27) 2010 Brauns (10.1016/j.renene.2013.11.001_bib24) 2009; 237 Veerman (10.1016/j.renene.2013.11.001_bib14) 2009; 327 Post (10.1016/j.renene.2013.11.001_bib15) 2009 Brogioli (10.1016/j.renene.2013.11.001_bib4) 2009 Dlugolecki (10.1016/j.renene.2013.11.001_bib35) 2010; 346 Vermaas (10.1016/j.renene.2013.11.001_bib17) 2011; 45 Tedesco (10.1016/j.renene.2013.11.001_bib21) 2012; 49 Post (10.1016/j.renene.2013.11.001_bib22) 2007; 288 Weinstein (10.1016/j.renene.2013.11.001_bib2) 1976; 191 Turek (10.1016/j.renene.2013.11.001_bib19) 2008; 221 Tamburini (10.1016/j.renene.2013.11.001_bib36) 2012; 48 Vermaas (10.1016/j.renene.2013.11.001_bib29) 2013; 1 Kuleszo (10.1016/j.renene.2013.11.001_bib11) 2010; 7 Wick (10.1016/j.renene.2013.11.001_bib3) 1978; 3 Vermaas (10.1016/j.renene.2013.11.001_bib18) 2011; 385-386 Brauns (10.1016/j.renene.2013.11.001_bib23) 2008; 219 Loeb (10.1016/j.renene.2013.11.001_bib7) 1976; 1 Wick (10.1016/j.renene.2013.11.001_bib8) 1977; 11 Guler (10.1016/j.renene.2013.11.001_bib33) 2012; 5 Lacey (10.1016/j.renene.2013.11.001_bib26) 1980; 7 Veerman (10.1016/j.renene.2013.11.001_bib12) 2010; 44 Dlugolecki (10.1016/j.renene.2013.11.001_bib16) 2009; 43 Isaacs (10.1016/j.renene.2013.11.001_bib9) 1973; 4 Brogioli (10.1016/j.renene.2013.11.001_bib5) 2011; 4 |
References_xml | – volume: 43 start-page: 6888 year: 2009 end-page: 6894 ident: bib16 article-title: Practical potential of reverse electrodialysis as process for sustainable energy generation publication-title: Environ Sci Technol – volume: 48 start-page: 370 year: 2012 end-page: 389 ident: bib36 article-title: CFD simulation of channels for direct and reverse electrodialysis publication-title: Desalin Water Treat – volume: 7 start-page: 89 year: 2010 end-page: 96 ident: bib11 article-title: The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases publication-title: J Integr Environ Sci – volume: 346 start-page: 163 year: 2010 end-page: 171 ident: bib35 article-title: Transport limitations in ion exchange membranes at low salt concentrations publication-title: J Membr Sci – start-page: 103 year: 2009 ident: bib4 article-title: Extracting renewable energy from a salinity difference using a capacitor publication-title: Phys Rev Lett – start-page: 224 year: 2009 ident: bib10 article-title: Blue Energy: electricity production from salinity gradients by reverse electrodialysis publication-title: PhD-thesis – volume: 7 start-page: 1 year: 1980 end-page: 47 ident: bib26 article-title: Energy by reverse electrodialysis publication-title: Ocean Eng – volume: 42 start-page: 5785 year: 2008 end-page: 5790 ident: bib31 article-title: Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system publication-title: Environ Sci Technol – volume: 3 start-page: 96 year: 1978 ident: bib3 article-title: Power from salinity gradients publication-title: Energy (UK) – start-page: 65 year: 2009 end-page: 72 ident: bib15 article-title: Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system publication-title: J Membr Sci – volume: 288 start-page: 218 year: 2007 end-page: 230 ident: bib22 article-title: Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis publication-title: J Membr Sci – volume: 191 start-page: 557 year: 1976 end-page: 559 ident: bib2 article-title: Electric-power from difference in salinity–dialytic battery publication-title: Science – volume: 45 start-page: 7089 year: 2011 end-page: 7095 ident: bib17 article-title: Doubled power density from salinity gradients at reduced intermembrane distance publication-title: Environ Sci Technol – volume: 166 start-page: 256 year: 2011 end-page: 268 ident: bib34 article-title: Reverse electrodialysis: a validated process model for design and optimization publication-title: Chem Eng J – volume: 1 start-page: 1295 year: 2013 end-page: 1302 ident: bib29 article-title: High efficiency in energy generation from salinity gradients with reverse electrodialysis publication-title: ACS Sustain Chem Eng – volume: 4 start-page: 201 year: 1973 end-page: 205 ident: bib9 article-title: Ocean as a power resource publication-title: Int J Environ Stud – volume: 310 start-page: 418 year: 2008 end-page: 430 ident: bib30 article-title: Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model publication-title: J Membr Sci – volume: 11 start-page: 16 year: 1977 end-page: 21 ident: bib8 article-title: Prospects for renewable energy from sea publication-title: Mar Technol Soc J – volume: 4 start-page: 4423 year: 2011 end-page: 4434 ident: bib20 article-title: Membrane-based production of salinity-gradient power publication-title: Energ Environ Sci – volume: 44 start-page: 5661 year: 2010 end-page: 5665 ident: bib6 article-title: Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell publication-title: Environ Sci Technol – volume: 1 start-page: 249 year: 1976 end-page: 269 ident: bib1 article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 2. Experimental results and projected energy costs publication-title: J Membr Sci – volume: 49 start-page: 404 year: 2012 end-page: 424 ident: bib21 article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines publication-title: Desalination Water Treat – volume: 44 start-page: 9207 year: 2010 end-page: 9212 ident: bib12 article-title: Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant publication-title: Environ Sci Technol – volume: 219 start-page: 312 year: 2008 end-page: 323 ident: bib23 article-title: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? publication-title: Desalination – volume: 123 start-page: 121 year: 1997 end-page: 131 ident: bib32 article-title: Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers publication-title: J Membr Sci – volume: 1 start-page: 49 year: 1976 end-page: 63 ident: bib7 article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 1. Preliminary technical and economic correlations publication-title: J Membr Sci – volume: 237 start-page: 378 year: 2009 end-page: 391 ident: bib24 article-title: Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output publication-title: Desalination – start-page: 95 year: 2010 end-page: 139 ident: bib27 article-title: Chapter 5 salinity gradient energy publication-title: Sustainability science and engineering – volume: 5 start-page: 2262 year: 2012 end-page: 2270 ident: bib33 article-title: Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis publication-title: ChemSusChem – volume: 13 start-page: 53 year: 2010 end-page: 62 ident: bib25 article-title: An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy publication-title: Desalin Water Treat – volume: 327 start-page: 136 year: 2009 end-page: 144 ident: bib14 article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water publication-title: J Membr Sci – volume: 385-386 start-page: 234 year: 2011 end-page: 242 ident: bib18 article-title: Power generation using profiled membranes in reverse electrodialysis publication-title: J Membr Sci – volume: 319 start-page: 214 year: 2008 end-page: 222 ident: bib28 article-title: Current status of ion exchange membranes for power generation from salinity gradients publication-title: J Membr Sci – volume: 4 start-page: 772 year: 2011 end-page: 777 ident: bib5 article-title: A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes publication-title: Energ Environ Sci – volume: 343 start-page: 7 year: 2009 end-page: 15 ident: bib13 article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density publication-title: J Membr Sci – volume: 221 start-page: 462 year: 2008 end-page: 466 ident: bib19 article-title: Power production from coal-mine brine utilizing reversed electrodialysis publication-title: Desalination – volume: 191 start-page: 557 year: 1976 ident: 10.1016/j.renene.2013.11.001_bib2 article-title: Electric-power from difference in salinity–dialytic battery publication-title: Science doi: 10.1126/science.191.4227.557 – volume: 346 start-page: 163 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib35 article-title: Transport limitations in ion exchange membranes at low salt concentrations publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.09.033 – volume: 48 start-page: 370 year: 2012 ident: 10.1016/j.renene.2013.11.001_bib36 article-title: CFD simulation of channels for direct and reverse electrodialysis publication-title: Desalin Water Treat doi: 10.1080/19443994.2012.705084 – volume: 7 start-page: 1 year: 1980 ident: 10.1016/j.renene.2013.11.001_bib26 article-title: Energy by reverse electrodialysis publication-title: Ocean Eng doi: 10.1016/0029-8018(80)90030-X – volume: 319 start-page: 214 year: 2008 ident: 10.1016/j.renene.2013.11.001_bib28 article-title: Current status of ion exchange membranes for power generation from salinity gradients publication-title: J Membr Sci doi: 10.1016/j.memsci.2008.03.037 – volume: 166 start-page: 256 year: 2011 ident: 10.1016/j.renene.2013.11.001_bib34 article-title: Reverse electrodialysis: a validated process model for design and optimization publication-title: Chem Eng J doi: 10.1016/j.cej.2010.10.071 – volume: 4 start-page: 772 year: 2011 ident: 10.1016/j.renene.2013.11.001_bib5 article-title: A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes publication-title: Energ Environ Sci doi: 10.1039/c0ee00524j – volume: 43 start-page: 6888 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib16 article-title: Practical potential of reverse electrodialysis as process for sustainable energy generation publication-title: Environ Sci Technol doi: 10.1021/es9009635 – volume: 221 start-page: 462 year: 2008 ident: 10.1016/j.renene.2013.11.001_bib19 article-title: Power production from coal-mine brine utilizing reversed electrodialysis publication-title: Desalination doi: 10.1016/j.desal.2007.01.106 – volume: 1 start-page: 49 year: 1976 ident: 10.1016/j.renene.2013.11.001_bib7 article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 1. Preliminary technical and economic correlations publication-title: J Membr Sci doi: 10.1016/S0376-7388(00)82257-7 – volume: 42 start-page: 5785 year: 2008 ident: 10.1016/j.renene.2013.11.001_bib31 article-title: Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system publication-title: Environ Sci Technol doi: 10.1021/es8004317 – volume: 385-386 start-page: 234 year: 2011 ident: 10.1016/j.renene.2013.11.001_bib18 article-title: Power generation using profiled membranes in reverse electrodialysis publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.09.043 – start-page: 65 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib15 article-title: Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system publication-title: J Membr Sci doi: 10.1016/j.memsci.2008.12.042 – volume: 11 start-page: 16 year: 1977 ident: 10.1016/j.renene.2013.11.001_bib8 article-title: Prospects for renewable energy from sea publication-title: Mar Technol Soc J – volume: 4 start-page: 4423 year: 2011 ident: 10.1016/j.renene.2013.11.001_bib20 article-title: Membrane-based production of salinity-gradient power publication-title: Energ Environ Sci doi: 10.1039/c1ee01913a – volume: 49 start-page: 404 year: 2012 ident: 10.1016/j.renene.2013.11.001_bib21 article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines publication-title: Desalination Water Treat doi: 10.1080/19443994.2012.699355 – volume: 13 start-page: 53 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib25 article-title: An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy publication-title: Desalin Water Treat doi: 10.5004/dwt.2010.1090 – volume: 310 start-page: 418 year: 2008 ident: 10.1016/j.renene.2013.11.001_bib30 article-title: Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model publication-title: J Membr Sci doi: 10.1016/j.memsci.2007.11.032 – start-page: 95 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib27 article-title: Chapter 5 salinity gradient energy doi: 10.1016/S1871-2711(09)00205-0 – volume: 327 start-page: 136 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib14 article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water publication-title: J Membr Sci doi: 10.1016/j.memsci.2008.11.015 – volume: 45 start-page: 7089 year: 2011 ident: 10.1016/j.renene.2013.11.001_bib17 article-title: Doubled power density from salinity gradients at reduced intermembrane distance publication-title: Environ Sci Technol doi: 10.1021/es2012758 – volume: 1 start-page: 1295 year: 2013 ident: 10.1016/j.renene.2013.11.001_bib29 article-title: High efficiency in energy generation from salinity gradients with reverse electrodialysis publication-title: ACS Sustain Chem Eng doi: 10.1021/sc400150w – volume: 7 start-page: 89 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib11 article-title: The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases publication-title: J Integr Environ Sci doi: 10.1080/19438151003680850 – volume: 219 start-page: 312 year: 2008 ident: 10.1016/j.renene.2013.11.001_bib23 article-title: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? publication-title: Desalination doi: 10.1016/j.desal.2007.04.056 – volume: 44 start-page: 9207 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib12 article-title: Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant publication-title: Environ Sci Technol doi: 10.1021/es1009345 – start-page: 103 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib4 article-title: Extracting renewable energy from a salinity difference using a capacitor publication-title: Phys Rev Lett – volume: 3 start-page: 96 year: 1978 ident: 10.1016/j.renene.2013.11.001_bib3 article-title: Power from salinity gradients publication-title: Energy (UK) – volume: 44 start-page: 5661 year: 2010 ident: 10.1016/j.renene.2013.11.001_bib6 article-title: Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell publication-title: Environ Sci Technol doi: 10.1021/es100852a – start-page: 224 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib10 article-title: Blue Energy: electricity production from salinity gradients by reverse electrodialysis – volume: 343 start-page: 7 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib13 article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.05.047 – volume: 4 start-page: 201 year: 1973 ident: 10.1016/j.renene.2013.11.001_bib9 article-title: Ocean as a power resource publication-title: Int J Environ Stud doi: 10.1080/00207237308709563 – volume: 1 start-page: 249 year: 1976 ident: 10.1016/j.renene.2013.11.001_bib1 article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 2. Experimental results and projected energy costs publication-title: J Membr Sci doi: 10.1016/S0376-7388(00)82271-1 – volume: 237 start-page: 378 year: 2009 ident: 10.1016/j.renene.2013.11.001_bib24 article-title: Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output publication-title: Desalination doi: 10.1016/j.desal.2008.10.003 – volume: 5 start-page: 2262 year: 2012 ident: 10.1016/j.renene.2013.11.001_bib33 article-title: Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis publication-title: ChemSusChem doi: 10.1002/cssc.201200298 – volume: 288 start-page: 218 year: 2007 ident: 10.1016/j.renene.2013.11.001_bib22 article-title: Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis publication-title: J Membr Sci doi: 10.1016/j.memsci.2006.11.018 – volume: 123 start-page: 121 year: 1997 ident: 10.1016/j.renene.2013.11.001_bib32 article-title: Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers publication-title: J Membr Sci doi: 10.1016/S0376-7388(96)00210-4 |
SSID | ssj0015874 |
Score | 2.5311444 |
Snippet | Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | Applied sciences Brine Brines Concentration gradient Density Electric power generation electrical resistance Electrodialysis Energy Energy efficiency Energy management Exact sciences and technology ion-exchange membranes Marine Membranes mixing Natural energy Power density renewable energy sources Resistance Reverse electrodialysis river water Salinity salt concentration seawater Temperature |
Title | Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis |
URI | https://dx.doi.org/10.1016/j.renene.2013.11.001 https://www.proquest.com/docview/1500769313 https://www.proquest.com/docview/1642274788 https://www.proquest.com/docview/2101365748 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8IvmiM8TPiB6mJj07Y1tHtkRAMauRFSXhb2q5NMDjIgKgv_u3edRuB-JX4BuSajV57vdt-v98RcpkkvolQ4VIKaRzGlXCkhipFScZ1BDmEsGjCh36rN2B3w2BYIZ2SC4OwyiL25zHdRuvil0Yxm43paNR4xOQbknkXX8gEPBoig51xhPVdfyxhHm4Q5krMYOygdUmfsxgvVI1MUSzT9a9Ry7NoDfPN8bQ9FTOYNJN3u_gSuO1pdLNLdoo0krbzO90jFZ3uk60VccEDMuquiPeP3-lElkwpqi3hjyK1hL6M3sCcZojPoK-QeWZXFJa__UQnGZVID5xRfF5LUe4pm8H4vHcOck5Q0OSQDG66T52eUzRWcBRkR3OnBTENC0EtedgymkWCw7ZWyvWaWkaeUFwFPNGJ8cBXTIeucqWBxMokIkLn-Uekmk5SfUxoGLS4DQM8SBgzfiREFDY9baTWSM6sEb-cz1gVquPY_GIcl_Cy5zj3QoxegIIEUXY14ixHTXPVjT_seemqeG31xHAw_DGyvubZ5eVQGI3D-qqRi9LVMew8fJ0iUj1ZzGJIpZvYSdL1f7GB8s6zLQp-toGiG7GGnIUn__4bp2QTvhWQojNSnWcLfQ7Z0lzW7Xaok4327X2v_wn13BeM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BeYAJTePHtAIDI_FIaJM4dfKIEKgM6Asg9c2yHVsq6tIqLdr477lLnArEAGlvUXKnJL74_F189x3AUZ7HLiOGS620C7gwKtAWoxSjubAZYghVZRPeDHr9e_5rmAyX4KyphaG0Su_7a59eeWt_puNHszMdjTq3BL4RzIe0IZOIbLgMK8ROxVuwcnp51R8sNhOStCZjRvmAFJoKuirNi4gjC-LLDOMTovP03WH-sUKtT9UMx83VDS_e-O5qQbr4Bl89kmSn9cNuwJItNuHLC37BLRidv-DvHz-xiW6KpZitav4YVZew36O_KM5KStFgfxB8lscMZ0B1xCYl01QhOGP0y5YR41M5Q_26fQ6VnRCnyTbcX5zfnfUD31shMAiQ5kEP3RrFglaLtOcsz5TAmW1MGHWtziJlhElEbnMXobm4TUMTaofYyuUqI_vF36FVTAr7A1ia9ETlCUSSc-7iTKks7UbWaWupPrMNcTOe0njicep_MZZNhtmDrK0gyQoYk1CiXRuChda0Jt74RF40ppKvPiCJa8MnmvuvLLu4HXGjCfzE2nDYmFri5KMdFVXYyeNMIpruUjPJMP5ABiO8qOpS8L4Mxt2Ubih4uvPfr3EAq_27m2t5fTm42oU1vOIzjPagNS8f7U8ET3O97yfHM3QGGj0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimentally+obtainable+energy+from+mixing+river+water%2C+seawater+or+brines+with+reverse+electrodialysis&rft.jtitle=Renewable+energy&rft.au=Daniilidis%2C+Alexandros&rft.au=Vermaas%2C+David&rft.au=Herber%2C+Rien&rft.au=Nijmeijer%2C+Kitty&rft.date=2014-04-01&rft.issn=0960-1481&rft.volume=64&rft.spage=123&rft.epage=131&rft_id=info:doi/10.1016%2Fj.renene.2013.11.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |