Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power dens...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 64; pp. 123 - 131
Main Authors Daniilidis, Alexandros, Vermaas, David A., Herber, Rien, Nijmeijer, Kitty
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0960-1481
1879-0682
DOI10.1016/j.renene.2013.11.001

Cover

Loading…
Abstract Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux. [Display omitted] •Investigation of effect of feed water concentration on power output in RED.•Membrane resistance and permselectivity limit power output at high salinities.•Highest fuel efficiency for feeds with low concentrations and low salinity gradients.•Power density increases with higher salinity gradients, despite lower permselectivity.•The work identifies directions for further increase in power density.
AbstractList Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m² is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux.
Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 degree C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux.
Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux. [Display omitted] •Investigation of effect of feed water concentration on power output in RED.•Membrane resistance and permselectivity limit power output at high salinities.•Highest fuel efficiency for feeds with low concentrations and low salinity gradients.•Power density increases with higher salinity gradients, despite lower permselectivity.•The work identifies directions for further increase in power density.
Author Herber, Rien
Nijmeijer, Kitty
Vermaas, David A.
Daniilidis, Alexandros
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Daniilidis
  fullname: Daniilidis, Alexandros
  email: a.daniilidis@rug.nl
  organization: Geo-Energy Group, ESRIG, Rijksuniversiteit Groningen, Nijenborgh 4, PO Box 800, 9747 AG Groningen, The Netherlands
– sequence: 2
  givenname: David A.
  surname: Vermaas
  fullname: Vermaas, David A.
  email: David.Vermaas@Wetsus.nl
  organization: Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, PO Box 1113, 8900 CC Leeuwarden, The Netherlands
– sequence: 3
  givenname: Rien
  surname: Herber
  fullname: Herber, Rien
  email: rien.herber@rug.nl
  organization: Geo-Energy Group, ESRIG, Rijksuniversiteit Groningen, Nijenborgh 4, PO Box 800, 9747 AG Groningen, The Netherlands
– sequence: 4
  givenname: Kitty
  surname: Nijmeijer
  fullname: Nijmeijer, Kitty
  email: d.c.nijmeijer@utwente.nl
  organization: Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Meander, ME 325, PO Box 217, 7500 AE Enschede, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28307014$$DView record in Pascal Francis
BookMark eNqNkT1vFDEQhi0UJC6X_AMKN0gU7OLxeu1dCiQUBRIpUhpSW17vbPDJZx-283H_HocLDQVBLsbF874azXNMjkIMSMhbYC0wkB83bcJQX8sZdC1Ayxi8IisY1NgwOfAjsmKjZA2IAd6Q45w3FegHJVbEnT_uMLkthmK839M4FeOCmTzSWphu93RJcUu37tGFW5rcPSb6YAqmDzSj-f2jMdEpuYCZPrjygyasUK55j7akODvj99nlE_J6MT7j6fNck5uv59_PLpqr62-XZ1-uGiu6vjRynlGCEDipQS4oRqM4760FznAaubHK9mrGeeGiNwIHsDAtILplNmNvJOvW5P2hd5fizzvMRW9dtui9CRjvsub1ZJ3slRheREEKzpVQw3-gPWNKjh10FX33jJpsjV-SCdZlvatXNmmv-dAxxerGa_LpwNkUc064aOuKKS6GkozzGph-sqs3-mBXP9nVALrKq2HxV_hP_wuxz4cYVgP3DpPO1mGwOLtUbek5un8X_AIpLcRr
CitedBy_id crossref_primary_10_1016_j_memsci_2014_07_075
crossref_primary_10_1021_acs_est_6b03720
crossref_primary_10_1021_acs_est_2c03407
crossref_primary_10_1039_C4RA05968A
crossref_primary_10_1016_j_desal_2019_01_005
crossref_primary_10_1016_j_jwpe_2023_104548
crossref_primary_10_1007_s11783_021_1480_9
crossref_primary_10_1016_j_desal_2016_11_011
crossref_primary_10_1016_j_electacta_2021_138446
crossref_primary_10_1016_j_nanoen_2023_109004
crossref_primary_10_1016_j_enconman_2018_11_032
crossref_primary_10_1038_s41545_018_0010_1
crossref_primary_10_1021_acs_est_5b03864
crossref_primary_10_1021_es4045456
crossref_primary_10_1016_j_enconman_2023_117433
crossref_primary_10_1039_D0SE00372G
crossref_primary_10_1039_C5EE02985F
crossref_primary_10_3390_membranes10010007
crossref_primary_10_1016_j_desal_2020_114540
crossref_primary_10_1016_j_memsci_2017_12_016
crossref_primary_10_1016_j_memsci_2017_08_054
crossref_primary_10_1016_j_desal_2018_06_001
crossref_primary_10_1016_j_jclepro_2018_08_269
crossref_primary_10_1016_j_apenergy_2020_115294
crossref_primary_10_1134_S0036024419070288
crossref_primary_10_1016_j_memsci_2018_11_045
crossref_primary_10_1016_j_renene_2019_03_138
crossref_primary_10_1021_acssuschemeng_9b02131
crossref_primary_10_1016_j_renene_2015_03_015
crossref_primary_10_1021_acs_est_5b01317
crossref_primary_10_3390_pr10040745
crossref_primary_10_1016_j_desal_2020_114676
crossref_primary_10_1016_j_memsci_2015_05_058
crossref_primary_10_1016_j_ijhydene_2020_08_111
crossref_primary_10_1016_j_ijhydene_2014_03_134
crossref_primary_10_3390_en13051247
crossref_primary_10_3390_membranes13060566
crossref_primary_10_1021_es5005413
crossref_primary_10_3390_membranes15010002
crossref_primary_10_1016_j_ces_2024_120006
crossref_primary_10_1002_cssc_201601300
crossref_primary_10_1016_j_desal_2020_114562
crossref_primary_10_1016_j_desal_2022_115976
crossref_primary_10_1016_j_rser_2021_110712
crossref_primary_10_1016_j_memsci_2025_123925
crossref_primary_10_1016_j_idairyj_2020_104737
crossref_primary_10_1039_C7EE00188F
crossref_primary_10_1115_1_4052095
crossref_primary_10_1016_j_desal_2020_114449
crossref_primary_10_1016_j_desal_2015_01_047
crossref_primary_10_1515_pac_2019_1208
crossref_primary_10_1016_j_memsci_2017_07_038
crossref_primary_10_3390_membranes10080168
crossref_primary_10_1016_j_memsci_2015_10_057
crossref_primary_10_1016_j_ijhydene_2025_03_070
crossref_primary_10_3390_w13060814
crossref_primary_10_1002_tcr_202400098
crossref_primary_10_1016_j_apenergy_2013_12_066
crossref_primary_10_1002_er_6062
crossref_primary_10_1039_D4TA03746D
crossref_primary_10_1016_j_enconman_2021_114493
crossref_primary_10_1016_j_memsci_2017_07_030
crossref_primary_10_1016_j_memsci_2016_08_007
crossref_primary_10_1016_j_desal_2016_12_005
crossref_primary_10_1016_j_energy_2018_12_111
crossref_primary_10_1016_j_clet_2021_100091
crossref_primary_10_1016_j_psep_2022_12_034
crossref_primary_10_1088_1757_899X_791_1_012057
crossref_primary_10_1016_j_energy_2019_05_183
crossref_primary_10_1016_j_jwpe_2024_106024
crossref_primary_10_1016_j_desal_2017_10_021
crossref_primary_10_1016_j_energy_2018_09_111
crossref_primary_10_1016_j_seta_2021_101687
crossref_primary_10_1016_j_enconman_2021_114369
crossref_primary_10_1016_j_desal_2015_04_031
crossref_primary_10_1016_j_desal_2020_114505
crossref_primary_10_1049_rpg2_12066
crossref_primary_10_1016_j_desal_2021_115132
crossref_primary_10_1016_j_apenergy_2018_04_111
crossref_primary_10_1039_C3EE43501F
crossref_primary_10_1016_j_nexus_2025_100362
crossref_primary_10_1016_j_cherd_2014_05_009
crossref_primary_10_1039_C5TA03571F
crossref_primary_10_1016_j_memsci_2023_122156
crossref_primary_10_1016_j_enconman_2021_114475
crossref_primary_10_1016_j_memsci_2017_06_014
crossref_primary_10_3390_su14116752
crossref_primary_10_1016_j_jpowsour_2021_230806
crossref_primary_10_1021_acs_est_5b03523
crossref_primary_10_3390_membranes12111141
crossref_primary_10_3390_en12173206
crossref_primary_10_1016_j_enconman_2022_115974
crossref_primary_10_1016_j_enconman_2019_04_056
crossref_primary_10_1016_j_memsci_2019_05_010
crossref_primary_10_3390_en15092970
crossref_primary_10_1016_j_memsci_2016_09_015
crossref_primary_10_1016_j_enconman_2022_115297
crossref_primary_10_30724_1998_9903_2023_25_4_53_70
crossref_primary_10_1016_j_desal_2019_06_007
crossref_primary_10_1016_j_desal_2018_11_022
crossref_primary_10_1016_j_memsci_2018_09_051
crossref_primary_10_1016_j_chemosphere_2019_124509
crossref_primary_10_1016_j_desal_2024_118184
crossref_primary_10_1016_j_apenergy_2016_11_069
crossref_primary_10_1016_j_memsci_2017_09_006
crossref_primary_10_1021_acs_est_6b03448
crossref_primary_10_3390_membranes10090209
crossref_primary_10_1016_j_watres_2019_115078
crossref_primary_10_1115_1_4054225
crossref_primary_10_1016_j_memsci_2015_09_008
crossref_primary_10_1016_j_memsci_2015_09_006
crossref_primary_10_1016_j_electacta_2023_143090
crossref_primary_10_1016_j_apenergy_2019_113489
crossref_primary_10_1016_j_jpowsour_2016_11_075
crossref_primary_10_1016_j_memsci_2021_119245
crossref_primary_10_1016_j_memsci_2016_05_060
crossref_primary_10_1080_19443994_2014_947781
crossref_primary_10_1016_j_desal_2023_116953
crossref_primary_10_3390_membranes12010048
crossref_primary_10_1016_j_rser_2018_12_003
crossref_primary_10_1016_j_memsci_2019_02_009
crossref_primary_10_1016_j_memsci_2021_120239
crossref_primary_10_1016_j_desal_2018_05_013
crossref_primary_10_1021_acs_iecr_4c02314
crossref_primary_10_1016_j_cherd_2023_12_014
crossref_primary_10_1016_j_rser_2017_07_047
crossref_primary_10_1016_j_cherd_2023_10_060
crossref_primary_10_1016_j_est_2019_04_029
crossref_primary_10_1088_1757_899X_907_1_012069
crossref_primary_10_1002_cssc_201501513
crossref_primary_10_1002_ente_202301215
crossref_primary_10_3390_membranes13020164
crossref_primary_10_5004_dwt_2016_11279
crossref_primary_10_1016_j_memsci_2019_117211
crossref_primary_10_1080_19443994_2016_1186569
crossref_primary_10_1039_D2LC00946C
crossref_primary_10_1021_acs_energyfuels_2c00763
crossref_primary_10_1016_j_desal_2020_114389
crossref_primary_10_1016_j_memsci_2015_07_053
crossref_primary_10_3390_en13205510
crossref_primary_10_1016_j_desal_2018_05_005
crossref_primary_10_1021_acs_est_8b06361
crossref_primary_10_1007_s11814_020_0690_3
crossref_primary_10_1016_j_electacta_2018_10_053
crossref_primary_10_1016_j_memsci_2018_01_036
crossref_primary_10_1016_j_memsci_2024_123238
crossref_primary_10_3390_app10207317
crossref_primary_10_1021_es5029316
crossref_primary_10_1016_j_cej_2019_122461
crossref_primary_10_33961_jecst_2019_03160
crossref_primary_10_1016_j_jwpe_2022_102706
crossref_primary_10_2166_wpt_2019_048
crossref_primary_10_1021_acs_jpcc_4c05429
crossref_primary_10_3390_membranes12100985
crossref_primary_10_1002_advs_202100995
crossref_primary_10_1016_j_desal_2020_114711
crossref_primary_10_1016_j_desal_2023_117266
crossref_primary_10_1016_j_watres_2017_08_008
crossref_primary_10_1021_acs_est_7b02213
crossref_primary_10_1016_j_jpowsour_2016_05_130
crossref_primary_10_1016_j_energy_2019_05_161
crossref_primary_10_1016_j_electacta_2018_09_015
crossref_primary_10_1080_19443994_2014_934102
crossref_primary_10_3103_S1063455X23010058
crossref_primary_10_1016_j_jpowsour_2022_231314
crossref_primary_10_1016_j_scitotenv_2023_167154
crossref_primary_10_1039_D4QI01978D
crossref_primary_10_1016_j_enconman_2023_117122
crossref_primary_10_1016_j_energy_2024_133484
crossref_primary_10_1016_j_memsci_2018_02_050
crossref_primary_10_1016_j_seppur_2022_121390
crossref_primary_10_23939_chcht13_03_372
crossref_primary_10_1515_revce_2020_0070
crossref_primary_10_1016_j_ces_2016_03_032
crossref_primary_10_1016_j_desal_2020_114450
crossref_primary_10_1016_j_memsci_2016_04_067
crossref_primary_10_1016_j_renene_2016_02_067
crossref_primary_10_1016_j_jenvman_2018_03_110
crossref_primary_10_1016_j_memsci_2015_05_020
crossref_primary_10_1016_j_electacta_2020_136103
crossref_primary_10_1016_j_desal_2020_114699
crossref_primary_10_1007_s10800_019_01303_4
crossref_primary_10_1016_j_enconman_2018_03_014
crossref_primary_10_1016_j_enconman_2019_112284
crossref_primary_10_1016_j_memsci_2017_11_029
crossref_primary_10_1016_j_ijhydene_2023_02_032
crossref_primary_10_1016_j_desal_2017_09_006
crossref_primary_10_2139_ssrn_3974813
crossref_primary_10_3390_membranes11010027
crossref_primary_10_1016_j_scs_2017_12_037
crossref_primary_10_1002_bkcs_10810
crossref_primary_10_1016_j_rser_2022_112283
crossref_primary_10_1016_j_desal_2019_114183
crossref_primary_10_1080_19443994_2015_1126410
crossref_primary_10_1016_j_memsci_2015_06_050
crossref_primary_10_1016_j_desal_2019_04_003
crossref_primary_10_1016_j_memsci_2022_121184
crossref_primary_10_1080_00986445_2022_2042271
crossref_primary_10_1016_j_desal_2019_04_007
crossref_primary_10_1016_j_desal_2020_114356
crossref_primary_10_1016_j_desal_2020_114598
crossref_primary_10_1016_j_memsci_2020_118411
crossref_primary_10_1016_j_seppur_2018_07_065
crossref_primary_10_1016_j_desal_2017_12_044
crossref_primary_10_1016_j_memsci_2018_01_006
crossref_primary_10_1002_cssc_201601220
crossref_primary_10_1016_j_ces_2023_119156
crossref_primary_10_3390_membranes13030293
crossref_primary_10_1016_j_jpowsour_2016_11_043
Cites_doi 10.1126/science.191.4227.557
10.1016/j.memsci.2009.09.033
10.1080/19443994.2012.705084
10.1016/0029-8018(80)90030-X
10.1016/j.memsci.2008.03.037
10.1016/j.cej.2010.10.071
10.1039/c0ee00524j
10.1021/es9009635
10.1016/j.desal.2007.01.106
10.1016/S0376-7388(00)82257-7
10.1021/es8004317
10.1016/j.memsci.2011.09.043
10.1016/j.memsci.2008.12.042
10.1039/c1ee01913a
10.1080/19443994.2012.699355
10.5004/dwt.2010.1090
10.1016/j.memsci.2007.11.032
10.1016/S1871-2711(09)00205-0
10.1016/j.memsci.2008.11.015
10.1021/es2012758
10.1021/sc400150w
10.1080/19438151003680850
10.1016/j.desal.2007.04.056
10.1021/es1009345
10.1021/es100852a
10.1016/j.memsci.2009.05.047
10.1080/00207237308709563
10.1016/S0376-7388(00)82271-1
10.1016/j.desal.2008.10.003
10.1002/cssc.201200298
10.1016/j.memsci.2006.11.018
10.1016/S0376-7388(96)00210-4
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
7U6
7UA
C1K
F1W
H96
L.G
SOI
7SU
7TB
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.renene.2013.11.001
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0682
EndPage 131
ExternalDocumentID 28307014
10_1016_j_renene_2013_11_001
S096014811300579X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7ST
7U6
7UA
C1K
EFKBS
F1W
H96
L.G
SOI
7SU
7TB
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c435t-6dde6144eb786fe49a7225cc120eb92ac7c57dedf245a4e81c1bf143fda95a603
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 08:41:29 EDT 2025
Fri Jul 11 11:49:06 EDT 2025
Sun Aug 24 03:36:02 EDT 2025
Wed Apr 02 07:46:47 EDT 2025
Tue Jul 01 03:20:22 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 23 02:20:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power density
Resistance
Temperature
Energy efficiency
Reverse electrodialysis
Brine
Mixing
Renewable energy
Energy conservation
Energetic efficiency
Seawater
Electrodialysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-6dde6144eb786fe49a7225cc120eb92ac7c57dedf245a4e81c1bf143fda95a603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500769313
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2101365748
proquest_miscellaneous_1642274788
proquest_miscellaneous_1500769313
pascalfrancis_primary_28307014
crossref_citationtrail_10_1016_j_renene_2013_11_001
crossref_primary_10_1016_j_renene_2013_11_001
elsevier_sciencedirect_doi_10_1016_j_renene_2013_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Renewable energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nijmeijer, Metz (bib27) 2010
Post, Veerman, Hamelers, Euverink, Metz, Nymeijer (bib22) 2007; 288
Tamburini, La Barbera, Cipollina, Ciofalo, Micale (bib36) 2012; 48
Dlugolecki, Anet, Metz, Nijmeijer, Wessling (bib35) 2010; 346
Ramon, Feinberg, Hoek (bib20) 2011; 4
Wick (bib3) 1978; 3
Post (bib10) 2009
Brauns (bib25) 2010; 13
Vermaas, Saakes, Nijmeijer (bib17) 2011; 45
Brogioli, Zhao, Biesheuvel (bib5) 2011; 4
Turek, Bandura, Dydo (bib19) 2008; 221
Sales, Saakes, Post, Buisman, Biesheuvel, Hamelers (bib6) 2010; 44
Veerman, Saakes, Metz, Harmsen (bib12) 2010; 44
Wick, Schmitt (bib8) 1977; 11
Vermaas, Saakes, Nijmeijer (bib18) 2011; 385-386
Veerman, de Jong, Saakes, Metz, Harmsen (bib13) 2009; 343
Vermaas, Veerman, Yip, Elimelech, Saakes, Nijmeijer (bib29) 2013; 1
Post, Hamelers, Buisman (bib31) 2008; 42
Loeb, Vanhessen, Shahaf (bib1) 1976; 1
Isaacs, Seymour (bib9) 1973; 4
Dlugolecki, Nymeijer, Metz, Wessling (bib28) 2008; 319
Sistat, Pourcelly (bib32) 1997; 123
Brauns (bib24) 2009; 237
Lacey (bib26) 1980; 7
Post, Hamelers, Buisman (bib15) 2009
Veerman, Post, Saakes, Metz, Harmsen (bib30) 2008; 310
Veerman, Saakes, Metz, Harmsen (bib14) 2009; 327
Dlugolecki, Gambier, Nijmeijer, Wessling (bib16) 2009; 43
Veerman, Saakes, Metz, Harmsen (bib34) 2011; 166
Brogioli (bib4) 2009
Weinstein, Leitz (bib2) 1976; 191
Kuleszo, Kroeze, Post, Fekete (bib11) 2010; 7
Tedesco, Cipollina, Tamburini, van Baak, Micale (bib21) 2012; 49
Guler, Zhang, Saakes, Nijmeijer (bib33) 2012; 5
Loeb (bib7) 1976; 1
Brauns (bib23) 2008; 219
Sistat (10.1016/j.renene.2013.11.001_bib32) 1997; 123
Veerman (10.1016/j.renene.2013.11.001_bib13) 2009; 343
Sales (10.1016/j.renene.2013.11.001_bib6) 2010; 44
Ramon (10.1016/j.renene.2013.11.001_bib20) 2011; 4
Brauns (10.1016/j.renene.2013.11.001_bib25) 2010; 13
Veerman (10.1016/j.renene.2013.11.001_bib34) 2011; 166
Post (10.1016/j.renene.2013.11.001_bib31) 2008; 42
Dlugolecki (10.1016/j.renene.2013.11.001_bib28) 2008; 319
Post (10.1016/j.renene.2013.11.001_bib10) 2009
Loeb (10.1016/j.renene.2013.11.001_bib1) 1976; 1
Veerman (10.1016/j.renene.2013.11.001_bib30) 2008; 310
Nijmeijer (10.1016/j.renene.2013.11.001_bib27) 2010
Brauns (10.1016/j.renene.2013.11.001_bib24) 2009; 237
Veerman (10.1016/j.renene.2013.11.001_bib14) 2009; 327
Post (10.1016/j.renene.2013.11.001_bib15) 2009
Brogioli (10.1016/j.renene.2013.11.001_bib4) 2009
Dlugolecki (10.1016/j.renene.2013.11.001_bib35) 2010; 346
Vermaas (10.1016/j.renene.2013.11.001_bib17) 2011; 45
Tedesco (10.1016/j.renene.2013.11.001_bib21) 2012; 49
Post (10.1016/j.renene.2013.11.001_bib22) 2007; 288
Weinstein (10.1016/j.renene.2013.11.001_bib2) 1976; 191
Turek (10.1016/j.renene.2013.11.001_bib19) 2008; 221
Tamburini (10.1016/j.renene.2013.11.001_bib36) 2012; 48
Vermaas (10.1016/j.renene.2013.11.001_bib29) 2013; 1
Kuleszo (10.1016/j.renene.2013.11.001_bib11) 2010; 7
Wick (10.1016/j.renene.2013.11.001_bib3) 1978; 3
Vermaas (10.1016/j.renene.2013.11.001_bib18) 2011; 385-386
Brauns (10.1016/j.renene.2013.11.001_bib23) 2008; 219
Loeb (10.1016/j.renene.2013.11.001_bib7) 1976; 1
Wick (10.1016/j.renene.2013.11.001_bib8) 1977; 11
Guler (10.1016/j.renene.2013.11.001_bib33) 2012; 5
Lacey (10.1016/j.renene.2013.11.001_bib26) 1980; 7
Veerman (10.1016/j.renene.2013.11.001_bib12) 2010; 44
Dlugolecki (10.1016/j.renene.2013.11.001_bib16) 2009; 43
Isaacs (10.1016/j.renene.2013.11.001_bib9) 1973; 4
Brogioli (10.1016/j.renene.2013.11.001_bib5) 2011; 4
References_xml – volume: 43
  start-page: 6888
  year: 2009
  end-page: 6894
  ident: bib16
  article-title: Practical potential of reverse electrodialysis as process for sustainable energy generation
  publication-title: Environ Sci Technol
– volume: 48
  start-page: 370
  year: 2012
  end-page: 389
  ident: bib36
  article-title: CFD simulation of channels for direct and reverse electrodialysis
  publication-title: Desalin Water Treat
– volume: 7
  start-page: 89
  year: 2010
  end-page: 96
  ident: bib11
  article-title: The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases
  publication-title: J Integr Environ Sci
– volume: 346
  start-page: 163
  year: 2010
  end-page: 171
  ident: bib35
  article-title: Transport limitations in ion exchange membranes at low salt concentrations
  publication-title: J Membr Sci
– start-page: 103
  year: 2009
  ident: bib4
  article-title: Extracting renewable energy from a salinity difference using a capacitor
  publication-title: Phys Rev Lett
– start-page: 224
  year: 2009
  ident: bib10
  article-title: Blue Energy: electricity production from salinity gradients by reverse electrodialysis
  publication-title: PhD-thesis
– volume: 7
  start-page: 1
  year: 1980
  end-page: 47
  ident: bib26
  article-title: Energy by reverse electrodialysis
  publication-title: Ocean Eng
– volume: 42
  start-page: 5785
  year: 2008
  end-page: 5790
  ident: bib31
  article-title: Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system
  publication-title: Environ Sci Technol
– volume: 3
  start-page: 96
  year: 1978
  ident: bib3
  article-title: Power from salinity gradients
  publication-title: Energy (UK)
– start-page: 65
  year: 2009
  end-page: 72
  ident: bib15
  article-title: Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system
  publication-title: J Membr Sci
– volume: 288
  start-page: 218
  year: 2007
  end-page: 230
  ident: bib22
  article-title: Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis
  publication-title: J Membr Sci
– volume: 191
  start-page: 557
  year: 1976
  end-page: 559
  ident: bib2
  article-title: Electric-power from difference in salinity–dialytic battery
  publication-title: Science
– volume: 45
  start-page: 7089
  year: 2011
  end-page: 7095
  ident: bib17
  article-title: Doubled power density from salinity gradients at reduced intermembrane distance
  publication-title: Environ Sci Technol
– volume: 166
  start-page: 256
  year: 2011
  end-page: 268
  ident: bib34
  article-title: Reverse electrodialysis: a validated process model for design and optimization
  publication-title: Chem Eng J
– volume: 1
  start-page: 1295
  year: 2013
  end-page: 1302
  ident: bib29
  article-title: High efficiency in energy generation from salinity gradients with reverse electrodialysis
  publication-title: ACS Sustain Chem Eng
– volume: 4
  start-page: 201
  year: 1973
  end-page: 205
  ident: bib9
  article-title: Ocean as a power resource
  publication-title: Int J Environ Stud
– volume: 310
  start-page: 418
  year: 2008
  end-page: 430
  ident: bib30
  article-title: Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model
  publication-title: J Membr Sci
– volume: 11
  start-page: 16
  year: 1977
  end-page: 21
  ident: bib8
  article-title: Prospects for renewable energy from sea
  publication-title: Mar Technol Soc J
– volume: 4
  start-page: 4423
  year: 2011
  end-page: 4434
  ident: bib20
  article-title: Membrane-based production of salinity-gradient power
  publication-title: Energ Environ Sci
– volume: 44
  start-page: 5661
  year: 2010
  end-page: 5665
  ident: bib6
  article-title: Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell
  publication-title: Environ Sci Technol
– volume: 1
  start-page: 249
  year: 1976
  end-page: 269
  ident: bib1
  article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 2. Experimental results and projected energy costs
  publication-title: J Membr Sci
– volume: 49
  start-page: 404
  year: 2012
  end-page: 424
  ident: bib21
  article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines
  publication-title: Desalination Water Treat
– volume: 44
  start-page: 9207
  year: 2010
  end-page: 9212
  ident: bib12
  article-title: Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant
  publication-title: Environ Sci Technol
– volume: 219
  start-page: 312
  year: 2008
  end-page: 323
  ident: bib23
  article-title: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power?
  publication-title: Desalination
– volume: 123
  start-page: 121
  year: 1997
  end-page: 131
  ident: bib32
  article-title: Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers
  publication-title: J Membr Sci
– volume: 1
  start-page: 49
  year: 1976
  end-page: 63
  ident: bib7
  article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 1. Preliminary technical and economic correlations
  publication-title: J Membr Sci
– volume: 237
  start-page: 378
  year: 2009
  end-page: 391
  ident: bib24
  article-title: Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output
  publication-title: Desalination
– start-page: 95
  year: 2010
  end-page: 139
  ident: bib27
  article-title: Chapter 5 salinity gradient energy
  publication-title: Sustainability science and engineering
– volume: 5
  start-page: 2262
  year: 2012
  end-page: 2270
  ident: bib33
  article-title: Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis
  publication-title: ChemSusChem
– volume: 13
  start-page: 53
  year: 2010
  end-page: 62
  ident: bib25
  article-title: An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy
  publication-title: Desalin Water Treat
– volume: 327
  start-page: 136
  year: 2009
  end-page: 144
  ident: bib14
  article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water
  publication-title: J Membr Sci
– volume: 385-386
  start-page: 234
  year: 2011
  end-page: 242
  ident: bib18
  article-title: Power generation using profiled membranes in reverse electrodialysis
  publication-title: J Membr Sci
– volume: 319
  start-page: 214
  year: 2008
  end-page: 222
  ident: bib28
  article-title: Current status of ion exchange membranes for power generation from salinity gradients
  publication-title: J Membr Sci
– volume: 4
  start-page: 772
  year: 2011
  end-page: 777
  ident: bib5
  article-title: A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes
  publication-title: Energ Environ Sci
– volume: 343
  start-page: 7
  year: 2009
  end-page: 15
  ident: bib13
  article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density
  publication-title: J Membr Sci
– volume: 221
  start-page: 462
  year: 2008
  end-page: 466
  ident: bib19
  article-title: Power production from coal-mine brine utilizing reversed electrodialysis
  publication-title: Desalination
– volume: 191
  start-page: 557
  year: 1976
  ident: 10.1016/j.renene.2013.11.001_bib2
  article-title: Electric-power from difference in salinity–dialytic battery
  publication-title: Science
  doi: 10.1126/science.191.4227.557
– volume: 346
  start-page: 163
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib35
  article-title: Transport limitations in ion exchange membranes at low salt concentrations
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.09.033
– volume: 48
  start-page: 370
  year: 2012
  ident: 10.1016/j.renene.2013.11.001_bib36
  article-title: CFD simulation of channels for direct and reverse electrodialysis
  publication-title: Desalin Water Treat
  doi: 10.1080/19443994.2012.705084
– volume: 7
  start-page: 1
  year: 1980
  ident: 10.1016/j.renene.2013.11.001_bib26
  article-title: Energy by reverse electrodialysis
  publication-title: Ocean Eng
  doi: 10.1016/0029-8018(80)90030-X
– volume: 319
  start-page: 214
  year: 2008
  ident: 10.1016/j.renene.2013.11.001_bib28
  article-title: Current status of ion exchange membranes for power generation from salinity gradients
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.03.037
– volume: 166
  start-page: 256
  year: 2011
  ident: 10.1016/j.renene.2013.11.001_bib34
  article-title: Reverse electrodialysis: a validated process model for design and optimization
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2010.10.071
– volume: 4
  start-page: 772
  year: 2011
  ident: 10.1016/j.renene.2013.11.001_bib5
  article-title: A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes
  publication-title: Energ Environ Sci
  doi: 10.1039/c0ee00524j
– volume: 43
  start-page: 6888
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib16
  article-title: Practical potential of reverse electrodialysis as process for sustainable energy generation
  publication-title: Environ Sci Technol
  doi: 10.1021/es9009635
– volume: 221
  start-page: 462
  year: 2008
  ident: 10.1016/j.renene.2013.11.001_bib19
  article-title: Power production from coal-mine brine utilizing reversed electrodialysis
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.01.106
– volume: 1
  start-page: 49
  year: 1976
  ident: 10.1016/j.renene.2013.11.001_bib7
  article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 1. Preliminary technical and economic correlations
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(00)82257-7
– volume: 42
  start-page: 5785
  year: 2008
  ident: 10.1016/j.renene.2013.11.001_bib31
  article-title: Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system
  publication-title: Environ Sci Technol
  doi: 10.1021/es8004317
– volume: 385-386
  start-page: 234
  year: 2011
  ident: 10.1016/j.renene.2013.11.001_bib18
  article-title: Power generation using profiled membranes in reverse electrodialysis
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2011.09.043
– start-page: 65
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib15
  article-title: Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.12.042
– volume: 11
  start-page: 16
  year: 1977
  ident: 10.1016/j.renene.2013.11.001_bib8
  article-title: Prospects for renewable energy from sea
  publication-title: Mar Technol Soc J
– volume: 4
  start-page: 4423
  year: 2011
  ident: 10.1016/j.renene.2013.11.001_bib20
  article-title: Membrane-based production of salinity-gradient power
  publication-title: Energ Environ Sci
  doi: 10.1039/c1ee01913a
– volume: 49
  start-page: 404
  year: 2012
  ident: 10.1016/j.renene.2013.11.001_bib21
  article-title: Modelling the reverse electrodialysis process with seawater and concentrated brines
  publication-title: Desalination Water Treat
  doi: 10.1080/19443994.2012.699355
– volume: 13
  start-page: 53
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib25
  article-title: An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy
  publication-title: Desalin Water Treat
  doi: 10.5004/dwt.2010.1090
– volume: 310
  start-page: 418
  year: 2008
  ident: 10.1016/j.renene.2013.11.001_bib30
  article-title: Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2007.11.032
– start-page: 95
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib27
  article-title: Chapter 5 salinity gradient energy
  doi: 10.1016/S1871-2711(09)00205-0
– volume: 327
  start-page: 136
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib14
  article-title: Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.11.015
– volume: 45
  start-page: 7089
  year: 2011
  ident: 10.1016/j.renene.2013.11.001_bib17
  article-title: Doubled power density from salinity gradients at reduced intermembrane distance
  publication-title: Environ Sci Technol
  doi: 10.1021/es2012758
– volume: 1
  start-page: 1295
  year: 2013
  ident: 10.1016/j.renene.2013.11.001_bib29
  article-title: High efficiency in energy generation from salinity gradients with reverse electrodialysis
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc400150w
– volume: 7
  start-page: 89
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib11
  article-title: The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases
  publication-title: J Integr Environ Sci
  doi: 10.1080/19438151003680850
– volume: 219
  start-page: 312
  year: 2008
  ident: 10.1016/j.renene.2013.11.001_bib23
  article-title: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power?
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.04.056
– volume: 44
  start-page: 9207
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib12
  article-title: Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant
  publication-title: Environ Sci Technol
  doi: 10.1021/es1009345
– start-page: 103
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib4
  article-title: Extracting renewable energy from a salinity difference using a capacitor
  publication-title: Phys Rev Lett
– volume: 3
  start-page: 96
  year: 1978
  ident: 10.1016/j.renene.2013.11.001_bib3
  article-title: Power from salinity gradients
  publication-title: Energy (UK)
– volume: 44
  start-page: 5661
  year: 2010
  ident: 10.1016/j.renene.2013.11.001_bib6
  article-title: Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell
  publication-title: Environ Sci Technol
  doi: 10.1021/es100852a
– start-page: 224
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib10
  article-title: Blue Energy: electricity production from salinity gradients by reverse electrodialysis
– volume: 343
  start-page: 7
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib13
  article-title: Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.05.047
– volume: 4
  start-page: 201
  year: 1973
  ident: 10.1016/j.renene.2013.11.001_bib9
  article-title: Ocean as a power resource
  publication-title: Int J Environ Stud
  doi: 10.1080/00207237308709563
– volume: 1
  start-page: 249
  year: 1976
  ident: 10.1016/j.renene.2013.11.001_bib1
  article-title: Production of energy from concentrated brines by pressure-retarded osmosis. 2. Experimental results and projected energy costs
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(00)82271-1
– volume: 237
  start-page: 378
  year: 2009
  ident: 10.1016/j.renene.2013.11.001_bib24
  article-title: Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.10.003
– volume: 5
  start-page: 2262
  year: 2012
  ident: 10.1016/j.renene.2013.11.001_bib33
  article-title: Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200298
– volume: 288
  start-page: 218
  year: 2007
  ident: 10.1016/j.renene.2013.11.001_bib22
  article-title: Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2006.11.018
– volume: 123
  start-page: 121
  year: 1997
  ident: 10.1016/j.renene.2013.11.001_bib32
  article-title: Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(96)00210-4
SSID ssj0015874
Score 2.5311444
Snippet Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123
SubjectTerms Applied sciences
Brine
Brines
Concentration gradient
Density
Electric power generation
electrical resistance
Electrodialysis
Energy
Energy efficiency
Energy management
Exact sciences and technology
ion-exchange membranes
Marine
Membranes
mixing
Natural energy
Power density
renewable energy sources
Resistance
Reverse electrodialysis
river water
Salinity
salt concentration
seawater
Temperature
Title Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis
URI https://dx.doi.org/10.1016/j.renene.2013.11.001
https://www.proquest.com/docview/1500769313
https://www.proquest.com/docview/1642274788
https://www.proquest.com/docview/2101365748
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8IvmiM8TPiB6mJj07Y1tHtkRAMauRFSXhb2q5NMDjIgKgv_u3edRuB-JX4BuSajV57vdt-v98RcpkkvolQ4VIKaRzGlXCkhipFScZ1BDmEsGjCh36rN2B3w2BYIZ2SC4OwyiL25zHdRuvil0Yxm43paNR4xOQbknkXX8gEPBoig51xhPVdfyxhHm4Q5krMYOygdUmfsxgvVI1MUSzT9a9Ry7NoDfPN8bQ9FTOYNJN3u_gSuO1pdLNLdoo0krbzO90jFZ3uk60VccEDMuquiPeP3-lElkwpqi3hjyK1hL6M3sCcZojPoK-QeWZXFJa__UQnGZVID5xRfF5LUe4pm8H4vHcOck5Q0OSQDG66T52eUzRWcBRkR3OnBTENC0EtedgymkWCw7ZWyvWaWkaeUFwFPNGJ8cBXTIeucqWBxMokIkLn-Uekmk5SfUxoGLS4DQM8SBgzfiREFDY9baTWSM6sEb-cz1gVquPY_GIcl_Cy5zj3QoxegIIEUXY14ixHTXPVjT_seemqeG31xHAw_DGyvubZ5eVQGI3D-qqRi9LVMew8fJ0iUj1ZzGJIpZvYSdL1f7GB8s6zLQp-toGiG7GGnIUn__4bp2QTvhWQojNSnWcLfQ7Z0lzW7Xaok4327X2v_wn13BeM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BeYAJTePHtAIDI_FIaJM4dfKIEKgM6Asg9c2yHVsq6tIqLdr477lLnArEAGlvUXKnJL74_F189x3AUZ7HLiOGS620C7gwKtAWoxSjubAZYghVZRPeDHr9e_5rmAyX4KyphaG0Su_7a59eeWt_puNHszMdjTq3BL4RzIe0IZOIbLgMK8ROxVuwcnp51R8sNhOStCZjRvmAFJoKuirNi4gjC-LLDOMTovP03WH-sUKtT9UMx83VDS_e-O5qQbr4Bl89kmSn9cNuwJItNuHLC37BLRidv-DvHz-xiW6KpZitav4YVZew36O_KM5KStFgfxB8lscMZ0B1xCYl01QhOGP0y5YR41M5Q_26fQ6VnRCnyTbcX5zfnfUD31shMAiQ5kEP3RrFglaLtOcsz5TAmW1MGHWtziJlhElEbnMXobm4TUMTaofYyuUqI_vF36FVTAr7A1ia9ETlCUSSc-7iTKks7UbWaWupPrMNcTOe0njicep_MZZNhtmDrK0gyQoYk1CiXRuChda0Jt74RF40ppKvPiCJa8MnmvuvLLu4HXGjCfzE2nDYmFri5KMdFVXYyeNMIpruUjPJMP5ABiO8qOpS8L4Mxt2Ubih4uvPfr3EAq_27m2t5fTm42oU1vOIzjPagNS8f7U8ET3O97yfHM3QGGj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimentally+obtainable+energy+from+mixing+river+water%2C+seawater+or+brines+with+reverse+electrodialysis&rft.jtitle=Renewable+energy&rft.au=Daniilidis%2C+Alexandros&rft.au=Vermaas%2C+David&rft.au=Herber%2C+Rien&rft.au=Nijmeijer%2C+Kitty&rft.date=2014-04-01&rft.issn=0960-1481&rft.volume=64&rft.spage=123&rft.epage=131&rft_id=info:doi/10.1016%2Fj.renene.2013.11.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon