Root pressure and beyond: energetically uphill water transport into xylem vessels?
The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of...
Saved in:
Published in | Journal of experimental botany Vol. 65; no. 2; pp. 381 - 393 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press [etc.]
01.02.2014
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0022-0957 1460-2431 1460-2431 |
DOI | 10.1093/jxb/ert391 |
Cover
Loading…
Abstract | The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57–73.). This process could drive volume flow ‘energetically uphill’, against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion–tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects. |
---|---|
AbstractList | The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57–73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion–tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects. The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects. |
Author | Wegner, Lars H |
Author_xml | – sequence: 1 fullname: Wegner, Lars H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24311819$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS3Uim4XLtwBHyuk0HH8kaQXhKpCkSohlXK2nHhSsvLGwXag-9_Xq7QSqpB6msP85s3Me8fkYPQjEvKGwUcGDT_d3LWnGBJv2AuyYkJBUQrODsgKoCwLaGR1RI5j3ACABClfkqN9n9WsWZHra-8TnQLGOAekZrS0xZ0f7RnFEcMtpqEzzu3oPP0anKN_TcJAUzBjnHxIdBiTp3c7h1v6J2ugi59ekcPeuIivH-qa3Hy5uDm_LK6-f_12_vmq6ASXqZBtb7uuVb1gppWdlQC1FZUtpap407OSoagaXmVKYCZtb2shZMOhreq65mtysshOwf-eMSa9HWKHzpkR_Rw1U4qr_KVkz6NSlUrJEvjzqGjKKt8G-wPePaBzu0WrpzBsTdjpR3MzAAvQBR9jwF53QzJp8GP2b3Cagd7np3N-eskvj3x4MvKo-l_47QJvYvLhn_0guMgmrsn7pd8br81tGKL--aMElp0GVlVK8Ht_vq_B |
CitedBy_id | crossref_primary_10_1007_s00344_022_10840_w crossref_primary_10_1093_jxb_erw421 crossref_primary_10_1111_pce_12848 crossref_primary_10_1007_s00425_019_03194_3 crossref_primary_10_1111_nph_16094 crossref_primary_10_3390_genes10121039 crossref_primary_10_7554_eLife_03115 crossref_primary_10_1104_pp_114_246520 crossref_primary_10_1093_aob_mcw145 crossref_primary_10_1007_s00709_016_1009_4 crossref_primary_10_1111_pce_12497 crossref_primary_10_1111_1440_1681_12900 crossref_primary_10_1071_FP15077 crossref_primary_10_3390_ijms22157794 crossref_primary_10_1007_s00425_017_2707_7 crossref_primary_10_1007_s10533_015_0130_3 crossref_primary_10_1093_pcp_pcad066 crossref_primary_10_3390_plants10010038 crossref_primary_10_1007_s12229_016_9165_y crossref_primary_10_1007_s00285_024_02163_z crossref_primary_10_1111_pce_12616 crossref_primary_10_1016_j_tfp_2025_100820 crossref_primary_10_1093_aob_mcv065 crossref_primary_10_1093_treephys_tpz078 crossref_primary_10_1111_plb_12838 crossref_primary_10_3389_fpls_2021_571072 crossref_primary_10_1146_annurev_arplant_081720_013608 crossref_primary_10_1007_s10535_016_0634_2 crossref_primary_10_1007_s44279_024_00138_8 crossref_primary_10_1093_jxb_eru466 crossref_primary_10_1007_s11104_017_3552_y crossref_primary_10_17660_ActaHortic_2016_1130_49 crossref_primary_10_1007_s00468_022_02376_z crossref_primary_10_1007_s12217_018_9644_3 crossref_primary_10_1071_FP16184 crossref_primary_10_1111_nph_17085 crossref_primary_10_1111_pce_12753 crossref_primary_10_17660_ActaHortic_2017_1177_3 crossref_primary_10_1093_treephys_tpw013 crossref_primary_10_1111_pce_14730 crossref_primary_10_1098_rstb_2016_0497 crossref_primary_10_3389_fpls_2016_01146 crossref_primary_10_3934_biophy_2017_2_192 crossref_primary_10_1128_microbiolspec_FUNK_0033_2017 crossref_primary_10_1111_nph_14811 crossref_primary_10_3390_f14091784 crossref_primary_10_1093_jxb_erv324 crossref_primary_10_1016_j_celrep_2024_113987 crossref_primary_10_1016_j_envexpbot_2023_105503 crossref_primary_10_1021_acs_iecr_3c02463 crossref_primary_10_1002_eco_2083 crossref_primary_10_1111_nph_15773 crossref_primary_10_1016_j_agwat_2018_08_013 crossref_primary_10_3390_ijms19020492 crossref_primary_10_1111_nph_19132 crossref_primary_10_17660_eJHS_2019_84_3_1 crossref_primary_10_1080_15592324_2019_1665455 crossref_primary_10_1111_pce_12832 crossref_primary_10_4236_jep_2021_125020 crossref_primary_10_3390_biomimetics9100640 crossref_primary_10_1016_j_plantsci_2021_110873 crossref_primary_10_1152_physrev_00008_2015 crossref_primary_10_1104_pp_16_00136 crossref_primary_10_1093_jxb_eru360 crossref_primary_10_1093_treephys_tpy049 crossref_primary_10_1007_s10265_022_01368_x crossref_primary_10_3389_fpls_2020_00418 crossref_primary_10_1111_pce_13091 crossref_primary_10_17660_ActaHortic_2018_1222_10 |
Cites_doi | 10.1016/j.bpj.2010.10.021 10.1071/FP02035 10.1016/j.plantsci.2010.12.011 10.1023/A:1026439226716 10.1111/j.1365-3040.1992.tb00976.x 10.1111/j.1469-7793.1999.0195r.x 10.1016/0022-5193(63)90088-2 10.1146/annurev.arplant.52.1.847 10.1038/423923a 10.1016/S0006-3495(92)81666-1 10.1529/biophysj.107.107425 10.1093/pcp/pcg168 10.1016/j.jplph.2006.05.004 10.1007/s00709-007-0279-2 10.1007/s00425-013-1889-x 10.1093/oxfordjournals.aob.a090723 10.1104/pp.120.1.11 10.1098/rspb.1970.0004 10.1016/S0006-3495(90)82529-7 10.1111/j.1469-8137.2004.01083.x 10.1007/BF01304486 10.1093/jexbot/49.326.1539 10.1111/j.1365-3040.2010.02147.x 10.1104/pp.112.200824 10.1104/pp.109.145326 10.3389/fpls.2013.00108 10.1104/pp.119.3.1001 10.1098/rstb.1895.0012 10.1104/pp.77.1.162 10.1007/BF00233671 10.1111/j.1365-3040.2010.02259.x 10.1134/S1021443708060113 10.1104/pp.106.082701 10.1007/s10630-005-0108-8 10.1016/0022-5193(71)90142-1 10.1046/j.0140-7791.2003.01082.x 10.1104/pp.115.4.1707 10.1111/j.1438-8677.2008.00124.x 10.1016/j.sbi.2009.06.002 10.1152/physrev.00011.2004 10.1104/pp.126.1.27 10.1111/j.1365-3040.2009.02060.x 10.1139/o02-150 10.1006/anbo.2001.1540 10.1111/j.1469-8137.2010.03240.x 10.1093/jxb/erj022 10.1104/pp.55.5.917 10.1046/j.1365-3040.2003.01039.x 10.1104/pp.120.1.7 10.1023/A:1026179905962 10.1016/B978-012425060-4/50003-6 10.1086/297412 10.1046/j.1469-8137.1998.00101.x 10.1111/j.1469-8137.2008.02662.x 10.1146/annurev.arplant.48.1.399 10.1016/j.tplants.2009.07.002 10.1104/pp.105.3.799 10.1007/s00232-009-9216-y 10.1071/FP02036 10.1111/j.1399-3054.1966.tb07067.x 10.1046/j.1365-3040.1998.00335.x 10.1511/1998.2.152 10.1007/s11103-011-9744-6 10.1085/jgp.50.8.2061 10.1111/j.1365-313X.2007.03048.x 10.1111/j.1438-8677.2008.00062.x 10.1016/j.tplants.2006.09.011 10.1007/BF01637250 10.1016/B978-0-12-387692-8.00005-9 10.1093/jexbot/49.322.775 10.1113/jphysiol.2011.226316 10.1016/j.neuroscience.2009.09.016 10.1007/BF00233442 10.1016/S0981-9428(00)01205-5 10.1111/j.1469-8137.2009.02919.x 10.1104/pp.110.162396 10.1111/j.1365-3040.2007.01678.x 10.1007/BF01075260 10.1073/pnas.93.19.10510 |
ContentType | Journal Article |
Copyright | Society for Experimental Biology 2014 |
Copyright_xml | – notice: Society for Experimental Biology 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QH 7UA C1K F1W H96 L.G 7S9 L.6 |
DOI | 10.1093/jxb/ert391 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 393 |
ExternalDocumentID | 24311819 10_1093_jxb_ert391 24043467 US201500017764 |
Genre | Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AABJS AABMN AAESY AAIMJ AAIYJ AAJKP AAJQQ AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFEDG DFGAJ DIK DILTD DPORF DPPUQ DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FBQ FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HZ~ H~9 IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABPQP ABVGC ABXSQ ABXVV ACHIC ADNBA ADQBN AGORE AJBYB AJNCP AQVQM ATGXG H13 IPSME JXSIZ AAYXX ABDPE ABIME ABNGD ABPIB ABZEO ACUKT ACVCV ACZBC AEHUL AFSHK AGMDO AGQPQ AHGBF AJDVS CITATION CGR CUY CVF ECM EIF NPM 7X8 7QH 7UA C1K F1W H96 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-5bfdccb6f41ab5cd5008d47d256739f121e47937fdc4edccdfd8445930b78883 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Fri Jul 11 07:42:46 EDT 2025 Fri Jul 11 00:52:02 EDT 2025 Fri Jul 11 11:59:06 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Tue Jul 01 03:05:22 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Sun Aug 24 12:10:51 EDT 2025 Wed Dec 27 19:18:15 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cohesion–tension (CT) theory reflection coefficient water co-transport hypothesis xylem refilling CCC transporters embolism repair water ascent Aquaporin root pressure |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c435t-5bfdccb6f41ab5cd5008d47d256739f121e47937fdc4edccdfd8445930b78883 |
Notes | http://dx.doi.org/10.1093/jxb/ert391 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/jxb/article-pdf/65/2/381/18044077/ert391.pdf |
PMID | 24311819 |
PQID | 1492712108 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1663611851 proquest_miscellaneous_1562665203 proquest_miscellaneous_1492712108 pubmed_primary_24311819 crossref_citationtrail_10_1093_jxb_ert391 crossref_primary_10_1093_jxb_ert391 jstor_primary_24043467 fao_agris_US201500017764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2014 |
Publisher | Oxford University Press [etc.] Oxford University Press |
Publisher_xml | – name: Oxford University Press [etc.] – name: Oxford University Press |
References | Gradmann (2016050505272249000_65.2.381.20) 1993; 136 2016050505272249000_65.2.381.80 2016050505272249000_65.2.381.40 2016050505272249000_65.2.381.41 2016050505272249000_65.2.381.31 2016050505272249000_65.2.381.75 2016050505272249000_65.2.381.32 Wegner (2016050505272249000_65.2.381.67) 1994; 142 2016050505272249000_65.2.381.76 2016050505272249000_65.2.381.33 2016050505272249000_65.2.381.34 2016050505272249000_65.2.381.78 2016050505272249000_65.2.381.35 2016050505272249000_65.2.381.79 2016050505272249000_65.2.381.36 2016050505272249000_65.2.381.37 2016050505272249000_65.2.381.38 2016050505272249000_65.2.381.1 2016050505272249000_65.2.381.70 2016050505272249000_65.2.381.71 2016050505272249000_65.2.381.72 2016050505272249000_65.2.381.73 2016050505272249000_65.2.381.30 2016050505272249000_65.2.381.74 2016050505272249000_65.2.381.64 2016050505272249000_65.2.381.21 2016050505272249000_65.2.381.65 2016050505272249000_65.2.381.22 Dixon (2016050505272249000_65.2.381.11) 1894; 8 2016050505272249000_65.2.381.23 2016050505272249000_65.2.381.24 2016050505272249000_65.2.381.25 2016050505272249000_65.2.381.69 2016050505272249000_65.2.381.26 2016050505272249000_65.2.381.27 2016050505272249000_65.2.381.7 2016050505272249000_65.2.381.28 2016050505272249000_65.2.381.6 2016050505272249000_65.2.381.9 2016050505272249000_65.2.381.8 2016050505272249000_65.2.381.3 2016050505272249000_65.2.381.2 2016050505272249000_65.2.381.5 Melcher (2016050505272249000_65.2.381.39) 2013; 4 2016050505272249000_65.2.381.4 Wegner (2016050505272249000_65.2.381.68) 1994; 105 Wegner (2016050505272249000_65.2.381.66) 1997; 115 2016050505272249000_65.2.381.60 2016050505272249000_65.2.381.61 2016050505272249000_65.2.381.62 2016050505272249000_65.2.381.63 2016050505272249000_65.2.381.53 2016050505272249000_65.2.381.10 2016050505272249000_65.2.381.54 2016050505272249000_65.2.381.55 2016050505272249000_65.2.381.12 2016050505272249000_65.2.381.56 2016050505272249000_65.2.381.13 2016050505272249000_65.2.381.57 2016050505272249000_65.2.381.14 2016050505272249000_65.2.381.58 2016050505272249000_65.2.381.15 2016050505272249000_65.2.381.59 2016050505272249000_65.2.381.16 2016050505272249000_65.2.381.17 2016050505272249000_65.2.381.18 2016050505272249000_65.2.381.19 Zwieniecki (2016050505272249000_65.2.381.81) 2009; 14 Zholkevich (2016050505272249000_65.2.381.77) 2003; 392 2016050505272249000_65.2.381.50 2016050505272249000_65.2.381.51 2016050505272249000_65.2.381.52 2016050505272249000_65.2.381.42 2016050505272249000_65.2.381.43 2016050505272249000_65.2.381.44 2016050505272249000_65.2.381.45 2016050505272249000_65.2.381.46 2016050505272249000_65.2.381.47 Lapointe (2016050505272249000_65.2.381.29) 2002; 80 2016050505272249000_65.2.381.48 2016050505272249000_65.2.381.49 |
References_xml | – ident: 2016050505272249000_65.2.381.41 doi: 10.1016/j.bpj.2010.10.021 – ident: 2016050505272249000_65.2.381.45 doi: 10.1071/FP02035 – ident: 2016050505272249000_65.2.381.42 doi: 10.1016/j.plantsci.2010.12.011 – ident: 2016050505272249000_65.2.381.55 doi: 10.1023/A:1026439226716 – ident: 2016050505272249000_65.2.381.49 doi: 10.1111/j.1365-3040.1992.tb00976.x – ident: 2016050505272249000_65.2.381.32 doi: 10.1111/j.1469-7793.1999.0195r.x – ident: 2016050505272249000_65.2.381.44 doi: 10.1016/0022-5193(63)90088-2 – ident: 2016050505272249000_65.2.381.56 doi: 10.1146/annurev.arplant.52.1.847 – ident: 2016050505272249000_65.2.381.63 doi: 10.1038/423923a – ident: 2016050505272249000_65.2.381.23 doi: 10.1016/S0006-3495(92)81666-1 – ident: 2016050505272249000_65.2.381.28 doi: 10.1529/biophysj.107.107425 – ident: 2016050505272249000_65.2.381.33 doi: 10.1093/pcp/pcg168 – ident: 2016050505272249000_65.2.381.30 doi: 10.1016/j.jplph.2006.05.004 – ident: 2016050505272249000_65.2.381.80 doi: 10.1007/s00709-007-0279-2 – ident: 2016050505272249000_65.2.381.31 doi: 10.1007/s00425-013-1889-x – volume: 8 start-page: 468 year: 1894 ident: 2016050505272249000_65.2.381.11 article-title: On the ascent of sap publication-title: Annals of Botany doi: 10.1093/oxfordjournals.aob.a090723 – ident: 2016050505272249000_65.2.381.64 doi: 10.1104/pp.120.1.11 – ident: 2016050505272249000_65.2.381.2 doi: 10.1098/rspb.1970.0004 – ident: 2016050505272249000_65.2.381.62 doi: 10.1016/S0006-3495(90)82529-7 – ident: 2016050505272249000_65.2.381.79 doi: 10.1111/j.1469-8137.2004.01083.x – ident: 2016050505272249000_65.2.381.14 doi: 10.1007/BF01304486 – ident: 2016050505272249000_65.2.381.15 doi: 10.1093/jexbot/49.326.1539 – ident: 2016050505272249000_65.2.381.50 doi: 10.1111/j.1365-3040.2010.02147.x – ident: 2016050505272249000_65.2.381.52 doi: 10.1104/pp.112.200824 – ident: 2016050505272249000_65.2.381.47 doi: 10.1104/pp.109.145326 – ident: 2016050505272249000_65.2.381.5 doi: 10.3389/fpls.2013.00108 – ident: 2016050505272249000_65.2.381.36 doi: 10.1104/pp.119.3.1001 – ident: 2016050505272249000_65.2.381.12 doi: 10.1098/rstb.1895.0012 – ident: 2016050505272249000_65.2.381.40 doi: 10.1104/pp.77.1.162 – volume: 136 start-page: 327 year: 1993 ident: 2016050505272249000_65.2.381.20 article-title: Electrocoupling of ion transporters in plants publication-title: Journal of Membrane Biology doi: 10.1007/BF00233671 – ident: 2016050505272249000_65.2.381.51 doi: 10.1111/j.1365-3040.2010.02259.x – ident: 2016050505272249000_65.2.381.13 doi: 10.1134/S1021443708060113 – ident: 2016050505272249000_65.2.381.59 doi: 10.1104/pp.106.082701 – ident: 2016050505272249000_65.2.381.78 doi: 10.1007/s10630-005-0108-8 – ident: 2016050505272249000_65.2.381.19 doi: 10.1016/0022-5193(71)90142-1 – ident: 2016050505272249000_65.2.381.7 doi: 10.1046/j.0140-7791.2003.01082.x – volume: 115 start-page: 1707 year: 1997 ident: 2016050505272249000_65.2.381.66 article-title: Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling publication-title: Plant Physiology doi: 10.1104/pp.115.4.1707 – ident: 2016050505272249000_65.2.381.72 doi: 10.1111/j.1438-8677.2008.00124.x – ident: 2016050505272249000_65.2.381.1 doi: 10.1016/j.sbi.2009.06.002 – ident: 2016050505272249000_65.2.381.18 doi: 10.1152/physrev.00011.2004 – ident: 2016050505272249000_65.2.381.21 doi: 10.1104/pp.126.1.27 – ident: 2016050505272249000_65.2.381.61 doi: 10.1111/j.1365-3040.2009.02060.x – volume: 80 start-page: 523 year: 2002 ident: 2016050505272249000_65.2.381.29 article-title: Controvery regarding secondary active water transport hypothesis publication-title: Biochemistry and Cell Biology doi: 10.1139/o02-150 – ident: 2016050505272249000_65.2.381.73 doi: 10.1006/anbo.2001.1540 – ident: 2016050505272249000_65.2.381.25 doi: 10.1111/j.1469-8137.2010.03240.x – ident: 2016050505272249000_65.2.381.54 doi: 10.1093/jxb/erj022 – ident: 2016050505272249000_65.2.381.16 doi: 10.1104/pp.55.5.917 – ident: 2016050505272249000_65.2.381.38 doi: 10.1046/j.1365-3040.2003.01039.x – ident: 2016050505272249000_65.2.381.22 doi: 10.1104/pp.120.1.7 – volume: 392 start-page: 138 year: 2003 ident: 2016050505272249000_65.2.381.77 article-title: On the stimulatory effect of neuromediators on the root pumping effect publication-title: Doklady Biological Sciences doi: 10.1023/A:1026179905962 – ident: 2016050505272249000_65.2.381.27 doi: 10.1016/B978-012425060-4/50003-6 – ident: 2016050505272249000_65.2.381.17 doi: 10.1086/297412 – ident: 2016050505272249000_65.2.381.37 doi: 10.1046/j.1469-8137.1998.00101.x – ident: 2016050505272249000_65.2.381.70 doi: 10.1111/j.1469-8137.2008.02662.x – ident: 2016050505272249000_65.2.381.34 doi: 10.1146/annurev.arplant.48.1.399 – volume: 14 start-page: 1360 year: 2009 ident: 2016050505272249000_65.2.381.81 article-title: Confronting Maxwell’s demon: biophysics of xylem embolism repair publication-title: Trends in Plant Sciences doi: 10.1016/j.tplants.2009.07.002 – volume: 105 start-page: 799 year: 1994 ident: 2016050505272249000_65.2.381.68 article-title: Ion channels in the xylem parenchyma of barley roots—a procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels publication-title: Plant Physiology doi: 10.1104/pp.105.3.799 – ident: 2016050505272249000_65.2.381.74 doi: 10.1007/s00232-009-9216-y – ident: 2016050505272249000_65.2.381.46 doi: 10.1071/FP02036 – ident: 2016050505272249000_65.2.381.43 doi: 10.1111/j.1399-3054.1966.tb07067.x – ident: 2016050505272249000_65.2.381.69 doi: 10.1046/j.1365-3040.1998.00335.x – ident: 2016050505272249000_65.2.381.8 doi: 10.1511/1998.2.152 – ident: 2016050505272249000_65.2.381.26 doi: 10.1007/s11103-011-9744-6 – volume: 4 start-page: 368 year: 2013 ident: 2016050505272249000_65.2.381.39 article-title: Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra. publication-title: Frontiers in Plant Biophysics and Modeling – ident: 2016050505272249000_65.2.381.10 doi: 10.1085/jgp.50.8.2061 – ident: 2016050505272249000_65.2.381.9 doi: 10.1111/j.1365-313X.2007.03048.x – ident: 2016050505272249000_65.2.381.71 doi: 10.1111/j.1438-8677.2008.00062.x – ident: 2016050505272249000_65.2.381.4 doi: 10.1016/j.tplants.2006.09.011 – ident: 2016050505272249000_65.2.381.60 doi: 10.1007/BF01637250 – ident: 2016050505272249000_65.2.381.53 doi: 10.1016/B978-0-12-387692-8.00005-9 – ident: 2016050505272249000_65.2.381.58 doi: 10.1093/jexbot/49.322.775 – ident: 2016050505272249000_65.2.381.75 doi: 10.1113/jphysiol.2011.226316 – ident: 2016050505272249000_65.2.381.35 doi: 10.1016/j.neuroscience.2009.09.016 – volume: 142 start-page: 363 year: 1994 ident: 2016050505272249000_65.2.381.67 article-title: Properties of the K+ inward rectifier in the plasma of xylem parenchyma: effects of TEA+, Ca2+, Ba2+ and La3+ publication-title: Journal of Membrane Biology doi: 10.1007/BF00233442 – ident: 2016050505272249000_65.2.381.76 – ident: 2016050505272249000_65.2.381.48 doi: 10.1016/S0981-9428(00)01205-5 – ident: 2016050505272249000_65.2.381.24 doi: 10.1111/j.1469-8137.2009.02919.x – ident: 2016050505272249000_65.2.381.6 doi: 10.1104/pp.110.162396 – ident: 2016050505272249000_65.2.381.3 doi: 10.1111/j.1365-3040.2007.01678.x – ident: 2016050505272249000_65.2.381.57 doi: 10.1007/BF01075260 – ident: 2016050505272249000_65.2.381.65 doi: 10.1073/pnas.93.19.10510 |
SSID | ssj0005055 |
Score | 2.3902187 |
Snippet | The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when... |
SourceID | proquest pubmed crossref jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | Aquaporins Aquaporins - metabolism Arabidopsis Biological Transport Cell membranes energy mammals metabolism Models, Biological OPINION PAPER Parenchyma physiology Plant Roots Plant Roots - physiology plasma membrane Pressure rice Root pressure sap Secretion soil solution solutes Thermodynamics transporters trees Vascular plants Water Water - metabolism Water pressure Water transportation Xylem Xylem - physiology xylem vessels |
Title | Root pressure and beyond: energetically uphill water transport into xylem vessels? |
URI | https://www.jstor.org/stable/24043467 https://www.ncbi.nlm.nih.gov/pubmed/24311819 https://www.proquest.com/docview/1492712108 https://www.proquest.com/docview/1562665203 https://www.proquest.com/docview/1663611851 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfY4MAFMWCswJARXFCULbEdJ-YyDQRUCDiMTuotihNnEirNtKWw8dfznh2n6TamwSWqoueqye_X92G_D0JeGeAFM1EVSlnxUKisDpVhKsQeqIKl2kiNJ7pfvsrxofg0TabLsYq2uqTVO-XvK-tK_gdVuAe4YpXsPyDbfyncgM-AL1wBYbjeCOODpmkDm8nqjwG0LUix43awqM9VKM7Og8Ux7voHvwrsidj6hubYLKIJzs5n5kfwE5uIz04vJPoN_NWVWQC6ab0Wscc6R13dzGeIk4PxznAvIRY-_bge5vaD0-VMoHEqUcgoZKLT1Z3OdPMdOm6wgQLkbgBLZ0u5m354SU27FlbfzzTCdtJyFS_NkT-Cv2Cl-txBd2rOc1idu7Vr5DaDIAHV8sfpIMEnShLfKx6fyTenVXwX1u66tSvuyFpdND4v9e8Rh_U8JvfJvQ4Cuu_w3yC3zPwBufPWIvCQHCAJqCcBBRJQR4I3dIUC1FGAWgrQngIUKUAtBWhHgb1HZPLh_eTdOOwGZYQleLttmOi6KkstaxEXOimrBBy7SqQVuLMpV3XMYoMbqClICQOSVV1lQiSKRxp3QPgmWZ83c7NFaFanWQFOWy14KiIjVVylBTOyMBJCYx2PyGv_uvKyayKPs0xm-WVYRuRlL3vsWqdcKbUFbz0vjsCm5YffGO7AoeuUSjEimxaKfjXDVlBg2UfkhccmB22IR1zF3DSLUwhkFUuxJ152jQy4_FImLOLXyIAjLiH2TuD3PXbgD34Fx2pt9eRGz_eU3F3-056R9fZkYbbBj231c0vXPwW6n4I |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+pressure+and+beyond%3A+energetically+uphill+water+transport+into+xylem+vessels%3F&rft.jtitle=Journal+of+experimental+botany&rft.au=Wegner%2C+Lars+H.&rft.date=2014-02-01&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=65&rft.issue=2&rft.spage=381&rft.epage=393&rft_id=info:doi/10.1093%2Fjxb%2Fert391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jxb_ert391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |