Transpiration response to soil drying and vapor pressure deficit is soil texture specific

Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the rela...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 500; no. 1-2; pp. 129 - 145
Main Authors Cai, Gaochao, König, Maria, Carminati, Andrea, Abdalla, Mohanned, Javaux, Mathieu, Wankmüller, Fabian, Ahmed, Mutez Ali
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize ( Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance ( K sp ) triggers stomatal closure and the latter is soil specific. Methods Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. Results Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in K sp , which was significantly affected by soil texture. Conclusions Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species.
AbstractList Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize ( Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance ( K sp ) triggers stomatal closure and the latter is soil specific. Methods Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. Results Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in K sp , which was significantly affected by soil texture. Conclusions Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species.
AIMS: Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (Kₛₚ) triggers stomatal closure and the latter is soil specific. METHODS: Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. RESULTS: Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in Kₛₚ, which was significantly affected by soil texture. CONCLUSIONS: Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species.
Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil-plant hydraulic conductance (K.sub.sp) triggers stomatal closure and the latter is soil specific. Methods Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. Results Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in K.sub.sp, which was significantly affected by soil texture. Conclusions Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species.
AimsAlthough soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (Ksp) triggers stomatal closure and the latter is soil specific.MethodsPlants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying.ResultsTranspiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in Ksp, which was significantly affected by soil texture.ConclusionsOur results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species.
Audience Academic
Author Cai, Gaochao
König, Maria
Abdalla, Mohanned
Wankmüller, Fabian
Ahmed, Mutez Ali
Carminati, Andrea
Javaux, Mathieu
Author_xml – sequence: 1
  givenname: Gaochao
  surname: Cai
  fullname: Cai, Gaochao
  organization: School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth
– sequence: 2
  givenname: Maria
  surname: König
  fullname: König, Maria
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth
– sequence: 3
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
  organization: Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich
– sequence: 4
  givenname: Mohanned
  surname: Abdalla
  fullname: Abdalla, Mohanned
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth
– sequence: 5
  givenname: Mathieu
  surname: Javaux
  fullname: Javaux, Mathieu
  organization: Earth and Life Institute-Environmental Science, Universite Catholique de Louvain, Agrosphere (IBG-3), Forschungszentrum Juelich GmbH
– sequence: 6
  givenname: Fabian
  surname: Wankmüller
  fullname: Wankmüller, Fabian
  organization: Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich
– sequence: 7
  givenname: Mutez Ali
  orcidid: 0000-0002-7402-1571
  surname: Ahmed
  fullname: Ahmed, Mutez Ali
  email: maaahmed@ucdavis.edu
  organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Department of Land, Air and Water Resources, University of California Davis
BookMark eNp9kU1rGzEQhkVIIXaaP5CToJde1pFWq13t0Zg2KQRycaE9CVkaGYW1tNWsS_3vK3sLhRwiHTSaeR99zLsk1zFFIOSesxVnrHtAzjlrKlbXFZOKq6q-IgsuO1FJJtprsmBMlFLX_7ghS8RXdt7zdkF-brOJOIZsppAizYBjigh0ShRTGKjLpxD31ERHf5sxZToWCR4zUAc-2DDRgLNygj_TOY8j2FBKH8kHbwaEu3_rLfn-9ct281Q9vzx-26yfK9sIOVWN8b2VXkmmfNu3tjdqJyXIWirjnVC7zilhrXNeSGe7xpl-13OhrHRcQIluyef53DGnX0fASR8CWhgGEyEdUQsuRce7pu2K9NMb6Ws65lhepwVTogzJ66Jazaq9GUCH6NOUjS3TwSHY0ncfSn6tWC1Y2_ZNAdQM2JwQM3hd-nLpZwHDoDnTZ5P0bJIuJumLSfp8V_0GHXM4mHx6HxIzhEUc95D_f-Md6i9_JKbj
CitedBy_id crossref_primary_10_1111_pce_15080
crossref_primary_10_1016_j_plaphy_2025_109775
crossref_primary_10_1007_s11104_024_07062_2
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_5194_bg_22_513_2025
crossref_primary_10_1073_pnas_2404034121
crossref_primary_10_1111_pce_14536
crossref_primary_10_5194_bg_21_5495_2024
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1007_s11104_024_06560_7
crossref_primary_10_1111_pce_14587
crossref_primary_10_1111_pce_15343
crossref_primary_10_1038_s41597_024_03535_2
crossref_primary_10_1111_nph_20020
crossref_primary_10_1016_j_eja_2024_127093
crossref_primary_10_1051_e3sconf_202338213001
Cites_doi 10.1093/plphys/kiab154
10.1016/j.agrformet.2020.107930
10.1093/plphys/kiab271
10.1016/S0065-2113(02)77014-4
10.1038/s41467-018-04087-x
10.1016/j.plantsci.2016.05.018
10.1111/nph.13354
10.1093/jxb/erq077
10.1071/FP20392
10.1016/j.tplants.2020.04.003
10.1111/nph.16177
10.1093/jxb/erq013
10.1016/j.envexpbot.2022.104889
10.1111/nph.17404
10.1016/j.plantsci.2017.04.007
10.1111/pce.13722
10.1126/science.148.3668.339
10.1016/S1360-1385(97)82562-9
10.1002/2016GL069416
10.1016/j.envexpbot.2007.05.004
10.1111/pce.14259
10.1038/nclimate1693
10.3389/fpls.2018.01994
10.1046/j.1365-3040.1999.00513.x
10.1016/j.scienta.2021.110797
10.1111/pce.13939
10.1046/j.0016-8025.2001.00799.x
10.1111/jac.12010
10.1093/plphys/kiab207
10.1002/jpln.202000079
10.1097/00010694-196002000-00001
10.3389/fpls.2018.0
10.1007/s11104-022-05656-2
10.1093/jxb/eraa392
10.2134/agronj1964.00021962005600020038x
10.1016/j.envexpbot.2012.04.016
10.1071/FP13149
10.1038/nclimate1633
10.1071/FP02076
10.1016/j.agrformet.2019.107692
10.1104/pp.19.01464
10.1111/nph.12321
10.1093/aob/mcab141
10.1093/jxb/31.1.333
10.1023/A:1014947422468
10.1093/jxb/ery183
10.1104/pp.18.00743
10.1371/journal.pone.0185481
10.1104/pp.114.252940
10.1038/nclimate3114
10.1093/treephys/tpu055
10.1111/j.1365-313X.2008.03459.x
10.1071/pp9860329
10.1016/j.foreco.2008.05.008
10.1111/j.1469-8137.2012.04294.x
10.1093/jxb/erq195
10.1146/annurev.pp.39.060188.001333
10.1038/s41598-022-09611-0
10.1371/journal.pone.0139134
10.1038/d41586-018-07586-5
10.1111/nph.16485
10.1038/s41558-020-0781-5
10.1093/jxb/erv195
10.1104/pp.103.023879
10.1093/treephys/tpaa013
10.1007/BF00378909
10.3390/plants11091126
10.2134/agronj2004.0286
10.1016/S0378-4290(01)00165-4
10.1111/nph.16451
10.1016/j.fcr.2022.108547
10.2134/agronj1991.00021962008300060023x
10.3389/fpls.2014.00086
10.1038/s41467-019-13993-7
10.1051/forest:19890589
10.1038/s41467-019-11006-1
10.2135/cropsci1997.0011183X003700030018x
10.3389/fpls.2019.01695
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-022-05818-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 145
ExternalDocumentID A802306694
10_1007_s11104_022_05818_2
GeographicLocations Switzerland
Germany
GeographicLocations_xml – name: Switzerland
– name: Germany
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: 02WIL1489
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 403670197; 403670197
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c435t-4af9c5f8508f696c9a8b55e5258afd38b7d83ccddf35dc74da9b9138c5d13e913
IEDL.DBID U2A
ISSN 0032-079X
IngestDate Fri Jul 11 11:36:29 EDT 2025
Fri Jul 25 09:08:00 EDT 2025
Tue Jul 08 03:50:55 EDT 2025
Tue Jul 01 01:47:19 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Fri Feb 21 02:40:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Stomatal regulation
Leaf water potential
Maize
VPD
Drought
Canopy conductance
Soil–plant hydraulic conductance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-4af9c5f8508f696c9a8b55e5258afd38b7d83ccddf35dc74da9b9138c5d13e913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7402-1571
OpenAccessLink http://hdl.handle.net/2078.1/269535
PQID 3083333512
PQPubID 54098
PageCount 17
ParticipantIDs proquest_miscellaneous_3153717467
proquest_journals_3083333512
gale_infotracacademiconefile_A802306694
crossref_citationtrail_10_1007_s11104_022_05818_2
crossref_primary_10_1007_s11104_022_05818_2
springer_journals_10_1007_s11104_022_05818_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Ranawana, Siddique, Palta (CR59) 2021; 48
Abdalla, Ahmed, Cai (CR2) 2022; 129
Dai (CR17) 2013; 3
Draye, Kim, Lobet, Javaux (CR21) 2010; 61
Medina, Vicente, Nieto-Taladriz (CR50) 2019; 9
Hochholdinger, Wen, Zimmermann (CR32) 2008; 54
Lamers, van der Meer, Testerink (CR41) 2020; 182
Sinclair (CR68) 2005; 97
Nardini, Pedà, Rocca (CR52) 2012; 196
Attia, Domec, Oren (CR6) 2015; 66
CR35
Muchow, Sinclair (CR51) 1991; 83
Devi, Sinclair, Taliercio (CR18) 2015; 10
Abdalla, Carminati, Cai (CR1) 2021; 44
Carminati, Ahmed, Zarebanadkouki (CR14) 2020; 226
CR31
CR30
Sperry, Love (CR71) 2015; 207
Sulman, Roman, Yi (CR73) 2016; 43
Sinclair, Ludlow (CR69) 1986; 13
Passioura (CR58) 1988; 39
Dodd, Egea, Watts, Whalley (CR20) 2010; 61
Oren, Sperry, Katul (CR54) 1999; 22
Gollan, Turner, Schulze (CR26) 1985; 65
Grossiord, Ulrich, Vilagrosa (CR29) 2020; 40
Xu, Ramanathan, Victor (CR79) 2018; 564
Gholipoor, Choudhary, Sinclair (CR25) 2013; 199
Ahmed, Passioura, Carminati (CR3) 2018; 69
Carminati, Javaux (CR13) 2020; 25
Ben-Ari, Boé, Ciais (CR7) 2018; 9
Scholander, Bradstreet, Hemmingsen, Hammel (CR65) 1965; 148
Grossiord, Buckley, Cernusak (CR28) 2020; 226
Passioura (CR57) 1980; 31
Liu, Kumar, Katul (CR45) 2020; 10
Santini, Noce, Antonelli, Caporaso (CR64) 2022; 12
Park Williams, Allen, Macalady (CR56) 2013; 3
Lendzion, Leuschner (CR42) 2008; 256
Albuquerque, Scoffoni, Brodersen (CR4) 2020; 71
Ryan, Dodd, Rothwell (CR63) 2016; 251
Flo, Martínez-Vilalta, Mencuccini (CR23) 2021; 231
Zhang, Yang, Manevski (CR80) 2022; 11
Gardner (CR24) 1960; 89
Anderegg, Wolf, Arango-Velez (CR5) 2017; 12
Koehler, Moser, Botezatu (CR40) 2022; 478
Vadez, Kholova, Zaman-Allah, Belko (CR75) 2013; 40
Will, Wilson, Zou, Hennessey (CR78) 2013; 200
CR55
Schoppach, Sadok (CR66) 2012; 84
Cai, Carminati, Abdalla, Ahmed (CR11) 2021; 187
Sinclair, Devi, Shekoofa (CR70) 2017; 260
Corso, Delzon, Lamarque (CR16) 2020; 43
Sperry, Hacke, Oren, Comstock (CR72) 2002; 25
Chaves, Maroco, Pereira (CR15) 2003; 30
Hsiao, Swann, Kim (CR34) 2019; 279
Javaux, Carminati (CR37) 2021; 186
Vetterlein, Lippold, Schreiter (CR77) 2021; 184
Cai, Ahmed, Abdalla, Carminati (CR12) 2022; 45
Devi, Reddy (CR19) 2018; 9
Liu, Gudmundsson, Hauser (CR44) 2020; 11
Bray (CR9) 1997; 2
Jarvis, McNaughton, MacFadyen, Ford (CR36) 1986
Li, Liu (CR43) 2022; 199
Liu, Li, Yang (CR46) 2022; 295
Lynch (CR47) 2022; 283
CR27
Kimm, Guan, Gentine (CR39) 2020; 287
Fletcher, Sinclair, Allen (CR22) 2007; 61
Scoffoni, Albuquerque, Cochard (CR67) 2018; 178
Rodriguez-Dominguez, Brodribb (CR62) 2020; 225
Brodribb, Holbrook (CR10) 2003; 132
van Oosterom, Carberry, Hargreaves, O’Leary (CR76) 2001; 72
CR61
Novick, Ficklin, Stoy (CR53) 2016; 6
Ray, Gesch, Sinclair, Hartwell Allen (CR60) 2002; 239
Torres-Ruiz, Diaz-Espejo, Perez-Martin, Hernandez-Santana (CR74) 2015; 35
Bourbia, Pritzkow, Brodribb (CR8) 2021
Hopmans, Bristow (CR33) 2002; 77
Kholová, Hash, Kumar (CR38) 2010; 61
McAdam, Brodribb (CR48) 2015; 167
McKee (CR49) 1964; 56
J Lamers (5818_CR41) 2020; 182
5818_CR55
A Carminati (5818_CR13) 2020; 25
PG Jarvis (5818_CR36) 1986
EJ van Oosterom (5818_CR76) 2001; 72
G Cai (5818_CR12) 2022; 45
MA Ahmed (5818_CR3) 2018; 69
C Grossiord (5818_CR29) 2020; 40
I Bourbia (5818_CR8) 2021
A Nardini (5818_CR52) 2012; 196
J Lendzion (5818_CR42) 2008; 256
5818_CR61
R Schoppach (5818_CR66) 2012; 84
X Draye (5818_CR21) 2010; 61
TR Sinclair (5818_CR69) 1986; 13
C Grossiord (5818_CR28) 2020; 226
T Gollan (5818_CR26) 1985; 65
T Koehler (5818_CR40) 2022; 478
V Flo (5818_CR23) 2021; 231
SRWMCJK Ranawana (5818_CR59) 2021; 48
WR Gardner (5818_CR24) 1960; 89
R Oren (5818_CR54) 1999; 22
S Medina (5818_CR50) 2019; 9
Z Attia (5818_CR6) 2015; 66
MM Chaves (5818_CR15) 2003; 30
JW Hopmans (5818_CR33) 2002; 77
JM Torres-Ruiz (5818_CR74) 2015; 35
M Abdalla (5818_CR1) 2021; 44
PF Scholander (5818_CR65) 1965; 148
D Corso (5818_CR16) 2020; 43
5818_CR35
RC Muchow (5818_CR51) 1991; 83
JP Lynch (5818_CR47) 2022; 283
TR Sinclair (5818_CR68) 2005; 97
M Abdalla (5818_CR2) 2022; 129
G Cai (5818_CR11) 2021; 187
5818_CR31
5818_CR30
MJ Devi (5818_CR19) 2018; 9
RE Will (5818_CR78) 2013; 200
JB Passioura (5818_CR57) 1980; 31
JB Passioura (5818_CR58) 1988; 39
Y Liu (5818_CR45) 2020; 10
H Kimm (5818_CR39) 2020; 287
A Park Williams (5818_CR56) 2013; 3
JS Sperry (5818_CR72) 2002; 25
L Liu (5818_CR44) 2020; 11
J Hsiao (5818_CR34) 2019; 279
AC Ryan (5818_CR63) 2016; 251
CM Rodriguez-Dominguez (5818_CR62) 2020; 225
C Scoffoni (5818_CR67) 2018; 178
GW McKee (5818_CR49) 1964; 56
J Kholová (5818_CR38) 2010; 61
C Albuquerque (5818_CR4) 2020; 71
A Dai (5818_CR17) 2013; 3
JS Sperry (5818_CR71) 2015; 207
D Vetterlein (5818_CR77) 2021; 184
KA Novick (5818_CR53) 2016; 6
Y Xu (5818_CR79) 2018; 564
MJ Devi (5818_CR18) 2015; 10
BN Sulman (5818_CR73) 2016; 43
M Gholipoor (5818_CR25) 2013; 199
V Vadez (5818_CR75) 2013; 40
IC Dodd (5818_CR20) 2010; 61
5818_CR27
EA Bray (5818_CR9) 1997; 2
M Javaux (5818_CR37) 2021; 186
T Ben-Ari (5818_CR7) 2018; 9
AL Fletcher (5818_CR22) 2007; 61
P Zhang (5818_CR80) 2022; 11
WRL Anderegg (5818_CR5) 2017; 12
S Li (5818_CR43) 2022; 199
M Santini (5818_CR64) 2022; 12
F Hochholdinger (5818_CR32) 2008; 54
J Liu (5818_CR46) 2022; 295
SAM McAdam (5818_CR48) 2015; 167
TR Sinclair (5818_CR70) 2017; 260
TJ Brodribb (5818_CR10) 2003; 132
A Carminati (5818_CR14) 2020; 226
JD Ray (5818_CR60) 2002; 239
References_xml – volume: 186
  start-page: 1378
  year: 2021
  end-page: 1381
  ident: CR37
  article-title: Soil hydraulics affect the degree of isohydricity
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab154
– volume: 287
  start-page: 107930
  year: 2020
  ident: CR39
  article-title: Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean
  publication-title: Agric Forest Meteorol
  doi: 10.1016/j.agrformet.2020.107930
– volume: 187
  start-page: 858
  year: 2021
  end-page: 872
  ident: CR11
  article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab271
– volume: 77
  start-page: 103
  year: 2002
  end-page: 183
  ident: CR33
  article-title: Current capabilities and future needs of root water and nutrient uptake modeling
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(02)77014-4
– volume: 9
  start-page: 1627
  year: 2018
  ident: CR7
  article-title: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04087-x
– volume: 251
  start-page: 101
  year: 2016
  end-page: 109
  ident: CR63
  article-title: Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2016.05.018
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  ident: CR71
  article-title: What plant hydraulics can tell us about responses to climate-change droughts
  publication-title: New Phytol
  doi: 10.1111/nph.13354
– volume: 61
  start-page: 2145
  year: 2010
  end-page: 2155
  ident: CR21
  article-title: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq077
– volume: 48
  start-page: 839
  year: 2021
  end-page: 850
  ident: CR59
  article-title: Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat
  publication-title: Functional Plant Biol
  doi: 10.1071/FP20392
– volume: 25
  start-page: 868
  year: 2020
  end-page: 880
  ident: CR13
  article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2020.04.003
– volume: 225
  start-page: 126
  year: 2020
  end-page: 134
  ident: CR62
  article-title: Declining root water transport drives stomatal closure in olive under moderate water stress
  publication-title: New Phytol
  doi: 10.1111/nph.16177
– volume: 61
  start-page: 1431
  year: 2010
  end-page: 1440
  ident: CR38
  article-title: Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq013
– volume: 199
  year: 2022
  ident: CR43
  article-title: Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2022.104889
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR44
  article-title: Soil moisture dominates dryness stress on ecosystem production globally
  publication-title: Nat Commun
– volume: 231
  start-page: 617
  year: 2021
  end-page: 630
  ident: CR23
  article-title: Climate and functional traits jointly mediate tree water-use strategies
  publication-title: New Phytol
  doi: 10.1111/nph.17404
– ident: CR35
– volume: 260
  start-page: 109
  year: 2017
  end-page: 118
  ident: CR70
  article-title: Limited-transpiration response to high vapor pressure deficit in crop species
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2017.04.007
– volume: 43
  start-page: 854
  year: 2020
  end-page: 865
  ident: CR16
  article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13722
– ident: CR61
– volume: 148
  start-page: 339
  year: 1965
  end-page: 346
  ident: CR65
  article-title: Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants
  publication-title: Science
  doi: 10.1126/science.148.3668.339
– start-page: 1
  year: 1986
  end-page: 49
  ident: CR36
  article-title: Stomatal Control of Transpiration: Scaling Up from Leaf to Region
  publication-title: Advances in Ecological Research
– volume: 2
  start-page: 48
  year: 1997
  end-page: 54
  ident: CR9
  article-title: Plant responses to water deficit
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(97)82562-9
– volume: 43
  start-page: 9686
  year: 2016
  end-page: 9695
  ident: CR73
  article-title: High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL069416
– volume: 61
  start-page: 145
  year: 2007
  end-page: 151
  ident: CR22
  article-title: Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2007.05.004
– volume: 45
  start-page: 650
  year: 2022
  end-page: 663
  ident: CR12
  article-title: Root hydraulic phenotypes impacting water uptake in drying soils
  publication-title: Plant, Cell Environ
  doi: 10.1111/pce.14259
– volume: 3
  start-page: 292
  year: 2013
  end-page: 297
  ident: CR56
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate1693
– volume: 9
  start-page: 1994
  year: 2019
  ident: CR50
  article-title: The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated With Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01994
– volume: 22
  start-page: 1515
  year: 1999
  end-page: 1526
  ident: CR54
  article-title: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00513.x
– volume: 295
  start-page: 110797
  year: 2022
  ident: CR46
  article-title: Effects of soil drought and vapour pressure deficit (VPD) on water use efficiency of tomato plants with contrasting endogenous ABA levels
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2021.110797
– volume: 44
  start-page: 425
  year: 2021
  end-page: 431
  ident: CR1
  article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13939
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  ident: CR72
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell Environ
  doi: 10.1046/j.0016-8025.2001.00799.x
– volume: 199
  start-page: 155
  year: 2013
  end-page: 160
  ident: CR25
  article-title: Transpiration Response of Maize Hybrids to Atmospheric Vapour Pressure Deficit
  publication-title: J Agron Crop Sci
  doi: 10.1111/jac.12010
– year: 2021
  ident: CR8
  article-title: Herb and conifer roots show similar high sensitivity to water deficit
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab207
– volume: 184
  start-page: 35
  year: 2021
  end-page: 50
  ident: CR77
  article-title: Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere—laboratory and field scale
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.202000079
– volume: 89
  start-page: 63
  year: 1960
  end-page: 73
  ident: CR24
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Sci
  doi: 10.1097/00010694-196002000-00001
– volume: 9
  start-page: 1572
  year: 2018
  ident: CR19
  article-title: Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.0
– volume: 478
  start-page: 43
  year: 2022
  end-page: 58
  ident: CR40
  article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05656-2
– volume: 71
  start-page: 7286
  year: 2020
  end-page: 7300
  ident: CR4
  article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eraa392
– volume: 56
  start-page: 240
  year: 1964
  end-page: 241
  ident: CR49
  article-title: A Coefficient for Computing Leaf Area in Hybrid Corn1
  publication-title: Agron J
  doi: 10.2134/agronj1964.00021962005600020038x
– volume: 84
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR66
  article-title: Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2012.04.016
– volume: 40
  start-page: 1310
  year: 2013
  ident: CR75
  article-title: Water: the most important ‘molecular’ component of water stress tolerance research
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13149
– volume: 3
  start-page: 52
  year: 2013
  end-page: 58
  ident: CR17
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1633
– volume: 30
  start-page: 239
  year: 2003
  end-page: 264
  ident: CR15
  article-title: Understanding plant responses to drought—from genes to the whole plant
  publication-title: Funct Plant Biol
  doi: 10.1071/FP02076
– volume: 279
  year: 2019
  ident: CR34
  article-title: Maize yield under a changing climate: The hidden role of vapor pressure deficit
  publication-title: Agric for Meteorol
  doi: 10.1016/j.agrformet.2019.107692
– volume: 182
  start-page: 1624
  year: 2020
  end-page: 1635
  ident: CR41
  article-title: How Plants Sense and Respond to Stressful Environments
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01464
– volume: 200
  start-page: 366
  year: 2013
  end-page: 374
  ident: CR78
  article-title: Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone
  publication-title: New Phytol
  doi: 10.1111/nph.12321
– volume: 129
  start-page: 161
  year: 2022
  end-page: 170
  ident: CR2
  article-title: Stomatal closure during water deficit is controlled by below-ground hydraulics
  publication-title: Ann Bot
  doi: 10.1093/aob/mcab141
– volume: 31
  start-page: 333
  year: 1980
  end-page: 345
  ident: CR57
  article-title: The Transport of Water from Soil to Shoot in Wheat Seedlings
  publication-title: J Exp Bot
  doi: 10.1093/jxb/31.1.333
– volume: 239
  start-page: 113
  year: 2002
  end-page: 121
  ident: CR60
  article-title: The effect of vapor pressure deficit on maize transpiration response to a drying soil
  publication-title: Plant Soil
  doi: 10.1023/A:1014947422468
– volume: 69
  start-page: 3255
  year: 2018
  end-page: 3265
  ident: CR3
  article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery183
– ident: CR30
– volume: 178
  start-page: 1584
  year: 2018
  end-page: 1601
  ident: CR67
  article-title: The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00743
– volume: 12
  year: 2017
  ident: CR5
  article-title: Plant water potential improves prediction of empirical stomatal models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185481
– volume: 167
  start-page: 833
  year: 2015
  end-page: 843
  ident: CR48
  article-title: The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.252940
– volume: 6
  start-page: 1023
  year: 2016
  end-page: 1027
  ident: CR53
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate3114
– volume: 35
  start-page: 415
  year: 2015
  end-page: 424
  ident: CR74
  article-title: Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpu055
– volume: 54
  start-page: 888
  year: 2008
  end-page: 898
  ident: CR32
  article-title: The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03459.x
– ident: CR27
– volume: 13
  start-page: 329
  year: 1986
  end-page: 341
  ident: CR69
  article-title: Influence of Soil Water Supply on the Plant Water Balance of Four Tropical Grain Legumes
  publication-title: Functional Plant Biol
  doi: 10.1071/pp9860329
– volume: 256
  start-page: 648
  year: 2008
  end-page: 655
  ident: CR42
  article-title: Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2008.05.008
– volume: 196
  start-page: 788
  year: 2012
  end-page: 798
  ident: CR52
  article-title: Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04294.x
– volume: 61
  start-page: 3543
  year: 2010
  end-page: 3551
  ident: CR20
  article-title: Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq195
– volume: 39
  start-page: 245
  year: 1988
  end-page: 265
  ident: CR58
  article-title: Water transport in and to roots
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.39.060188.001333
– volume: 12
  start-page: 5792
  year: 2022
  ident: CR64
  article-title: Complex drought patterns robustly explain global yield loss for major crops
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09611-0
– volume: 10
  year: 2015
  ident: CR18
  article-title: Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139134
– volume: 564
  start-page: 30
  year: 2018
  end-page: 32
  ident: CR79
  article-title: Global warming will happen faster than we think
  publication-title: Nature
  doi: 10.1038/d41586-018-07586-5
– volume: 226
  start-page: 1550
  year: 2020
  end-page: 1566
  ident: CR28
  article-title: Plant responses to rising vapor pressure deficit
  publication-title: New Phytol
  doi: 10.1111/nph.16485
– volume: 10
  start-page: 691
  year: 2020
  end-page: 695
  ident: CR45
  article-title: Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-020-0781-5
– ident: CR31
– volume: 66
  start-page: 4373
  year: 2015
  end-page: 4381
  ident: CR6
  article-title: Growth and physiological responses of isohydric and anisohydric poplars to drought
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv195
– volume: 132
  start-page: 2166
  year: 2003
  end-page: 2173
  ident: CR10
  article-title: Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.023879
– volume: 40
  start-page: 573
  year: 2020
  end-page: 576
  ident: CR29
  article-title: Controls of the hydraulic safety–efficiency trade-off
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpaa013
– volume: 65
  start-page: 356
  year: 1985
  end-page: 362
  ident: CR26
  article-title: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content
  publication-title: Oecologia
  doi: 10.1007/BF00378909
– volume: 11
  start-page: 1126
  year: 2022
  ident: CR80
  article-title: Physiological and Growth Responses of Potato (Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits
  publication-title: Plants
  doi: 10.3390/plants11091126
– ident: CR55
– volume: 97
  start-page: 1148
  year: 2005
  end-page: 1152
  ident: CR68
  article-title: Theoretical Analysis of Soil and Plant Traits Influencing Daily Plant Water Flux on Drying Soils
  publication-title: Agron J
  doi: 10.2134/agronj2004.0286
– volume: 72
  start-page: 67
  year: 2001
  end-page: 91
  ident: CR76
  article-title: Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00165-4
– volume: 226
  start-page: 1541
  year: 2020
  end-page: 1543
  ident: CR14
  article-title: Stomatal closure prevents the drop in soil water potential around roots
  publication-title: New Phytol
  doi: 10.1111/nph.16451
– volume: 283
  start-page: 108547
  year: 2022
  ident: CR47
  article-title: Edaphic stress interactions: Important yet poorly understood drivers of plant production in future climates
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2022.108547
– volume: 83
  start-page: 1052
  year: 1991
  end-page: 1059
  ident: CR51
  article-title: Water deficit effects on maize yields modeled under current and “greenhouse” climates
  publication-title: Agron J
  doi: 10.2134/agronj1991.00021962008300060023x
– volume: 283
  start-page: 108547
  year: 2022
  ident: 5818_CR47
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2022.108547
– volume: 83
  start-page: 1052
  year: 1991
  ident: 5818_CR51
  publication-title: Agron J
  doi: 10.2134/agronj1991.00021962008300060023x
– volume: 187
  start-page: 858
  year: 2021
  ident: 5818_CR11
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab271
– ident: 5818_CR55
  doi: 10.3389/fpls.2014.00086
– volume: 2
  start-page: 48
  year: 1997
  ident: 5818_CR9
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(97)82562-9
– volume: 3
  start-page: 292
  year: 2013
  ident: 5818_CR56
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate1693
– volume: 84
  start-page: 1
  year: 2012
  ident: 5818_CR66
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2012.04.016
– volume: 13
  start-page: 329
  year: 1986
  ident: 5818_CR69
  publication-title: Functional Plant Biol
  doi: 10.1071/pp9860329
– volume: 196
  start-page: 788
  year: 2012
  ident: 5818_CR52
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04294.x
– volume: 61
  start-page: 3543
  year: 2010
  ident: 5818_CR20
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq195
– volume: 11
  start-page: 1
  year: 2020
  ident: 5818_CR44
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13993-7
– volume: 6
  start-page: 1023
  year: 2016
  ident: 5818_CR53
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate3114
– volume: 12
  start-page: 5792
  year: 2022
  ident: 5818_CR64
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-09611-0
– volume: 3
  start-page: 52
  year: 2013
  ident: 5818_CR17
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1633
– volume: 279
  year: 2019
  ident: 5818_CR34
  publication-title: Agric for Meteorol
  doi: 10.1016/j.agrformet.2019.107692
– volume: 10
  start-page: 691
  year: 2020
  ident: 5818_CR45
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-020-0781-5
– ident: 5818_CR35
– volume: 186
  start-page: 1378
  year: 2021
  ident: 5818_CR37
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab154
– volume: 31
  start-page: 333
  year: 1980
  ident: 5818_CR57
  publication-title: J Exp Bot
  doi: 10.1093/jxb/31.1.333
– volume: 43
  start-page: 9686
  year: 2016
  ident: 5818_CR73
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL069416
– volume: 178
  start-page: 1584
  year: 2018
  ident: 5818_CR67
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00743
– volume: 167
  start-page: 833
  year: 2015
  ident: 5818_CR48
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.252940
– volume: 66
  start-page: 4373
  year: 2015
  ident: 5818_CR6
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv195
– volume: 226
  start-page: 1541
  year: 2020
  ident: 5818_CR14
  publication-title: New Phytol
  doi: 10.1111/nph.16451
– volume: 45
  start-page: 650
  year: 2022
  ident: 5818_CR12
  publication-title: Plant, Cell Environ
  doi: 10.1111/pce.14259
– volume: 71
  start-page: 7286
  year: 2020
  ident: 5818_CR4
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eraa392
– volume: 39
  start-page: 245
  year: 1988
  ident: 5818_CR58
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.39.060188.001333
– volume: 199
  start-page: 155
  year: 2013
  ident: 5818_CR25
  publication-title: J Agron Crop Sci
  doi: 10.1111/jac.12010
– ident: 5818_CR27
  doi: 10.1051/forest:19890589
– volume: 251
  start-page: 101
  year: 2016
  ident: 5818_CR63
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2016.05.018
– volume: 226
  start-page: 1550
  year: 2020
  ident: 5818_CR28
  publication-title: New Phytol
  doi: 10.1111/nph.16485
– volume: 182
  start-page: 1624
  year: 2020
  ident: 5818_CR41
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01464
– volume: 22
  start-page: 1515
  year: 1999
  ident: 5818_CR54
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00513.x
– ident: 5818_CR31
  doi: 10.1038/s41467-019-11006-1
– volume: 231
  start-page: 617
  year: 2021
  ident: 5818_CR23
  publication-title: New Phytol
  doi: 10.1111/nph.17404
– volume: 40
  start-page: 573
  year: 2020
  ident: 5818_CR29
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpaa013
– volume: 44
  start-page: 425
  year: 2021
  ident: 5818_CR1
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13939
– volume: 97
  start-page: 1148
  year: 2005
  ident: 5818_CR68
  publication-title: Agron J
  doi: 10.2134/agronj2004.0286
– volume: 184
  start-page: 35
  year: 2021
  ident: 5818_CR77
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.202000079
– volume: 61
  start-page: 2145
  year: 2010
  ident: 5818_CR21
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq077
– volume: 260
  start-page: 109
  year: 2017
  ident: 5818_CR70
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2017.04.007
– volume: 43
  start-page: 854
  year: 2020
  ident: 5818_CR16
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13722
– volume: 61
  start-page: 145
  year: 2007
  ident: 5818_CR22
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2007.05.004
– volume: 72
  start-page: 67
  year: 2001
  ident: 5818_CR76
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00165-4
– volume: 56
  start-page: 240
  year: 1964
  ident: 5818_CR49
  publication-title: Agron J
  doi: 10.2134/agronj1964.00021962005600020038x
– start-page: 1
  volume-title: Advances in Ecological Research
  year: 1986
  ident: 5818_CR36
– volume: 225
  start-page: 126
  year: 2020
  ident: 5818_CR62
  publication-title: New Phytol
  doi: 10.1111/nph.16177
– volume: 295
  start-page: 110797
  year: 2022
  ident: 5818_CR46
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2021.110797
– volume: 239
  start-page: 113
  year: 2002
  ident: 5818_CR60
  publication-title: Plant Soil
  doi: 10.1023/A:1014947422468
– volume: 9
  start-page: 1572
  year: 2018
  ident: 5818_CR19
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.0
– ident: 5818_CR61
  doi: 10.2135/cropsci1997.0011183X003700030018x
– volume: 12
  year: 2017
  ident: 5818_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185481
– volume: 9
  start-page: 1994
  year: 2019
  ident: 5818_CR50
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01994
– year: 2021
  ident: 5818_CR8
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab207
– volume: 287
  start-page: 107930
  year: 2020
  ident: 5818_CR39
  publication-title: Agric Forest Meteorol
  doi: 10.1016/j.agrformet.2020.107930
– volume: 256
  start-page: 648
  year: 2008
  ident: 5818_CR42
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2008.05.008
– volume: 48
  start-page: 839
  year: 2021
  ident: 5818_CR59
  publication-title: Functional Plant Biol
  doi: 10.1071/FP20392
– ident: 5818_CR30
  doi: 10.3389/fpls.2019.01695
– volume: 148
  start-page: 339
  year: 1965
  ident: 5818_CR65
  publication-title: Science
  doi: 10.1126/science.148.3668.339
– volume: 40
  start-page: 1310
  year: 2013
  ident: 5818_CR75
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13149
– volume: 132
  start-page: 2166
  year: 2003
  ident: 5818_CR10
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.023879
– volume: 65
  start-page: 356
  year: 1985
  ident: 5818_CR26
  publication-title: Oecologia
  doi: 10.1007/BF00378909
– volume: 9
  start-page: 1627
  year: 2018
  ident: 5818_CR7
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04087-x
– volume: 10
  year: 2015
  ident: 5818_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139134
– volume: 89
  start-page: 63
  year: 1960
  ident: 5818_CR24
  publication-title: Soil Sci
  doi: 10.1097/00010694-196002000-00001
– volume: 207
  start-page: 14
  year: 2015
  ident: 5818_CR71
  publication-title: New Phytol
  doi: 10.1111/nph.13354
– volume: 129
  start-page: 161
  year: 2022
  ident: 5818_CR2
  publication-title: Ann Bot
  doi: 10.1093/aob/mcab141
– volume: 199
  year: 2022
  ident: 5818_CR43
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2022.104889
– volume: 35
  start-page: 415
  year: 2015
  ident: 5818_CR74
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpu055
– volume: 77
  start-page: 103
  year: 2002
  ident: 5818_CR33
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(02)77014-4
– volume: 61
  start-page: 1431
  year: 2010
  ident: 5818_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq013
– volume: 69
  start-page: 3255
  year: 2018
  ident: 5818_CR3
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery183
– volume: 25
  start-page: 868
  year: 2020
  ident: 5818_CR13
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2020.04.003
– volume: 478
  start-page: 43
  year: 2022
  ident: 5818_CR40
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05656-2
– volume: 200
  start-page: 366
  year: 2013
  ident: 5818_CR78
  publication-title: New Phytol
  doi: 10.1111/nph.12321
– volume: 54
  start-page: 888
  year: 2008
  ident: 5818_CR32
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03459.x
– volume: 30
  start-page: 239
  year: 2003
  ident: 5818_CR15
  publication-title: Funct Plant Biol
  doi: 10.1071/FP02076
– volume: 564
  start-page: 30
  year: 2018
  ident: 5818_CR79
  publication-title: Nature
  doi: 10.1038/d41586-018-07586-5
– volume: 25
  start-page: 251
  year: 2002
  ident: 5818_CR72
  publication-title: Plant, Cell Environ
  doi: 10.1046/j.0016-8025.2001.00799.x
– volume: 11
  start-page: 1126
  year: 2022
  ident: 5818_CR80
  publication-title: Plants
  doi: 10.3390/plants11091126
SSID ssj0003216
Score 2.6628861
Snippet Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact...
Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact...
AimsAlthough soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact...
AIMS: Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Agriculture
Analysis
Biomedical and Life Sciences
Canopies
canopy
Conductance
Corn
Drying
Ecology
Fluid flow
fluid mechanics
Growth
hydraulic conductivity
Hydraulics
leaf water potential
Leaves
Life Sciences
Loam
Moisture content
Plant Physiology
Plant Sciences
Plants
Research Article
Sand
Soil conductivity
Soil investigations
soil matric potential
Soil moisture
Soil properties
Soil Science & Conservation
Soil texture
Soil water
soil water deficit
species
Stomata
stomatal movement
Terrestrial ecosystems
Texture
Transpiration
Vapor pressure
vapor pressure deficit
Vapors
Water
Water deficit
Water potential
Water shortages
Zea mays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aTQ_NoSRpS908UKHQQytqW5Itn8omJIQeQikNbE9CluSyEOx01wn032fG1u6ShsQn2ZZlMSPNfJLmAfBRKFfUklYnQwozaVOusyLn3rsmlLIqSjtE-7wozi_l95maxQ23ZTSrXMnEQVD7ztEe-VeBWAEv1E_frv9yyhpFp6sxhcZz2EIRrPUEto5PL378XMtikQ_JT6nA07KaRbeZ0XkONZ_kZM2eKlRbPL-nmv4X0A9OSgcFdLYDryJyZNOR1bvwLLR7sD39s4jRM8IevDjuEOv9ew2_x5jl85G9bDEawgbWd2zZza-YX5B3E7OtZ7cWETgbzGGxDeYDhZTo2Xw51iTDEHpOHplkVfQGLs9Of52c85hEgTtEQj2XtqmcajQCsaaoCldZXSsVVK60bbzQdem1cM77RijvSultVVeZ0E75TAQsvYVJ27XhHbCgMqsybeu6ELK2SO9ShoC3WjVpo9MEshX9jIsRxinRxZXZxEYmmhukuRlobvIEPq-_uR7jazxZ-xOxxdDkw5adjT4E2D8KY2WmelhSFZVM4GDFORNn5dJsxlACH9avcT7RIYltQ3eDdVAF4BIX9UcCX1Yc3zTxeN_eP_3HfXiZIx4aLX0PYNIvbsIh4pm-PoqD9g75FfBz
  priority: 102
  providerName: ProQuest
Title Transpiration response to soil drying and vapor pressure deficit is soil texture specific
URI https://link.springer.com/article/10.1007/s11104-022-05818-2
https://www.proquest.com/docview/3083333512
https://www.proquest.com/docview/3153717467
Volume 500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_kTkEfRFfF6nlEEHzQQtskbfrY1V0PhUPEhb2nkCbpsXC0stsT7r93Jm138RPsS_oxDSGTzAeZ-Q3AKy5tXgvyTkIJM2GSWKV5FjtnG1-IMi9MQPs8z89W4uNarseksN0U7T4dSQZJfUh2Q00lYoo-TySqmRgF77FE350CuVZZtZe_PAsFT-kmTopyPabK_LmPn9TRr0L5t9PRoHSWD-D-aC2yamDvQ7jl2xncqy63I2KGn8HteYf23c0M7iwCAPXNI7gYEMs3A3PZdgiD9azv2K7bXDG3pdwmZlrHvhu0v1kIhsXemPMEKNGzzW6gpLAQek_5mBRT9BhWy8XXd2fxWEIhtmgH9bEwTWllo9AMa_Iyt6VRtZReZlKZxnFVF05xa51ruHS2EM6UdZlyZaVLuce7J3DUdq1_CszL1MhUmbrOuahNhtJJeI-PSjZJo5II0mkmtR3xxanMxZU-ICPT7GucfR1mX2cRvNn_821A1_gn9WtikKathz1bM2YQ4PgIxEpXKjhUeSkiOJl4qMc9udMcrU280MKJ4OX-M-4mOiIxre-ukQYVADq4qD0ieDvx_tDF38f27P_In8NdXLliiPs9gaN-e-1foHXT16dwXM3fz5fUfrj4tMB2vjj__OU0LPIfydDzhg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2SMABQQERKGAkEAeISPyKc0BoC622tKwQaqXlZBzbQStVSdlNQf0pvpFxHrsCRG_NKQ9nYs2M5xHPA-AZE1YWPHgnbQszbpJYpZLGztnSZzyXmWmrfU7l5Jh_mInZBvwacmFCWOUgE1tB7Wob_pG_Zmgr4IH66e3p9zh0jQq7q0MLjY4tDvz5T3TZlm_23yN9n1O6t3v0bhL3XQVii6ZBE3NT5laUCi2TUubS5kYVQnhBhTKlY6rInGLWOlcy4WzGncmLPGXKCpcyj2cI9wpsciYTOoLNnd3pp88r2c9o22w1nMRJls_6NJ0uWQ81LY9D9HwiUE3G9A9V-LdC-GdntlV4e7fgZm-pknHHWrdhw1dbcGP8bdFX6_BbcHWnRtvy_A586Wqkzzt2Iosu8NaTpibLen5C3CJkUxFTOfLDoMVP2vBbhEGcDyUsGjJfdiNDIEq4HzJAQxTTXTi-FPTeg1FVV_4-EC9SI1JlikIyXhiK8pB7j5dKlEmpkgjSAX_a9hXNQ2ONE72uxRxwrhHnusW5phG8XL1z2tXzuHD0i0AWHRY7Qramz1nA-YWyWXqsWhdO5jyC7YFyupcCS73m2Qierh7j-g2bMqby9RmOQZWDLjXqqwheDRRfg_j_3B5c_MUncG1y9PFQH-5PDx7CdYq2WBdlvA2jZnHmH6Et1RSPewYm8PWy18xv0_8ukw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLUJwQFBABAoYCcQBoiaxnTgHhLa0q5aiVYWotJyMYztopSopuymof41fx0weuwJEb80pD2dijcf-ZuJ5ALzg0qaFIOukLWEmTBSqOE1C52zpM5GnmWmzfU7TgxPxYSZnG_BriIUht8phTWwXaldb-ke-w1FXwAPxaafs3SKO9ybvzr6HVEGKdlqHchqdiBz5i59ovi3fHu7hWL9Mksn-5_cHYV9hILSoJjShMGVuZalQSynTPLW5UYWUXiZSmdJxVWROcWudK7l0NhPO5EUec2Wli7nHM6R7DTYzsopGsLm7Pz3-tMIBnrSFV-kkjLJ81ofsdIF7iLoiJE_6SCJkhskfsPg3OPyzS9uC3-QO3O61VjbuxOwubPhqC26Nvy36zB1-C67v1qhnXtyDL12-9HknWmzROeF61tRsWc9PmVtQZBUzlWM_DGr_rHXFRRrMeUpn0bD5smtJ3Kf7FA1KHk334eRK2PsARlVd-YfAvIyNjJUpipSLwiS4Ngrv8VLJMipVFEA88E_bPrs5Fdk41eu8zMRzjTzXLc91EsDr1TtnXW6PS1u_omHRNPGRsjV9_AL2j1Jo6bFqzbk0FwFsDyOn-xVhqdfyG8Dz1WOcy7RBYypfn2MbhB80rxG7AngzjPiaxP_79ujyLz6DGzhX9MfD6dFjuJmgWtY5HG_DqFmc-yeoVjXF015-GXy96inzG-7eMsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transpiration+response+to+soil+drying+and+vapor+pressure+deficit+is+soil+texture+specific&rft.jtitle=Plant+and+soil&rft.au=Cai%2C+Gaochao&rft.au=K%C3%B6nig%2C+Maria&rft.au=Carminati%2C+Andrea&rft.au=Abdalla%2C+Mohanned&rft.date=2024-07-01&rft.pub=Springer+International+Publishing&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=500&rft.issue=1-2&rft.spage=129&rft.epage=145&rft_id=info:doi/10.1007%2Fs11104-022-05818-2&rft.externalDocID=10_1007_s11104_022_05818_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon