Transpiration response to soil drying and vapor pressure deficit is soil texture specific
Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the rela...
Saved in:
Published in | Plant and soil Vol. 500; no. 1-2; pp. 129 - 145 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (
Zea mays
L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (
K
sp
) triggers stomatal closure and the latter is soil specific.
Methods
Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying.
Results
Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in
K
sp
, which was significantly affected by soil texture.
Conclusions
Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species. |
---|---|
AbstractList | Aims
Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (
Zea mays
L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (
K
sp
) triggers stomatal closure and the latter is soil specific.
Methods
Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying.
Results
Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in
K
sp
, which was significantly affected by soil texture.
Conclusions
Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species. AIMS: Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (Kₛₚ) triggers stomatal closure and the latter is soil specific. METHODS: Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. RESULTS: Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in Kₛₚ, which was significantly affected by soil texture. CONCLUSIONS: Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species. Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil-plant hydraulic conductance (K.sub.sp) triggers stomatal closure and the latter is soil specific. Methods Plants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying. Results Transpiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in K.sub.sp, which was significantly affected by soil texture. Conclusions Our results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species. AimsAlthough soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact transpiration and stomatal regulation remain elusive. This work aimed to investigate how soil textures and vapor pressure deficit (VPD) impact the relationship between transpiration rate, canopy conductance, and leaf water potential of maize (Zea mays L.) during soil drying. We hypothesize that the decrease in soil–plant hydraulic conductance (Ksp) triggers stomatal closure and the latter is soil specific.MethodsPlants were grown in two contrasting soil textures (sand and loam) and exposed to two consecutive VPD levels (1.8 and 2.8 kPa). We measured transpiration rate, canopy conductance, soil and leaf water potentials during soil drying.ResultsTranspiration rate decreased at higher soil matric potential in sand than in loam at both VPD levels. In sand, high VPD generated a steeper drop in canopy conductance with decreasing leaf water potential. The decrease in canopy conductance was well correlated with the drop in Ksp, which was significantly affected by soil texture.ConclusionsOur results demonstrated that variations in canopy conductance were not simply a function of leaf water potential but largely affected by soil hydraulics. These results reinforce a model of stomatal closure driven by a loss in soil hydraulic conductivity. Further studies will determine if soil-specific stomatal regulation exists among species. |
Audience | Academic |
Author | Cai, Gaochao König, Maria Abdalla, Mohanned Wankmüller, Fabian Ahmed, Mutez Ali Carminati, Andrea Javaux, Mathieu |
Author_xml | – sequence: 1 givenname: Gaochao surname: Cai fullname: Cai, Gaochao organization: School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth – sequence: 2 givenname: Maria surname: König fullname: König, Maria organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth – sequence: 3 givenname: Andrea surname: Carminati fullname: Carminati, Andrea organization: Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich – sequence: 4 givenname: Mohanned surname: Abdalla fullname: Abdalla, Mohanned organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth – sequence: 5 givenname: Mathieu surname: Javaux fullname: Javaux, Mathieu organization: Earth and Life Institute-Environmental Science, Universite Catholique de Louvain, Agrosphere (IBG-3), Forschungszentrum Juelich GmbH – sequence: 6 givenname: Fabian surname: Wankmüller fullname: Wankmüller, Fabian organization: Physics of Soils and Terrestrial Ecosystems, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich – sequence: 7 givenname: Mutez Ali orcidid: 0000-0002-7402-1571 surname: Ahmed fullname: Ahmed, Mutez Ali email: maaahmed@ucdavis.edu organization: Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Department of Land, Air and Water Resources, University of California Davis |
BookMark | eNp9kU1rGzEQhkVIIXaaP5CToJde1pFWq13t0Zg2KQRycaE9CVkaGYW1tNWsS_3vK3sLhRwiHTSaeR99zLsk1zFFIOSesxVnrHtAzjlrKlbXFZOKq6q-IgsuO1FJJtprsmBMlFLX_7ghS8RXdt7zdkF-brOJOIZsppAizYBjigh0ShRTGKjLpxD31ERHf5sxZToWCR4zUAc-2DDRgLNygj_TOY8j2FBKH8kHbwaEu3_rLfn-9ct281Q9vzx-26yfK9sIOVWN8b2VXkmmfNu3tjdqJyXIWirjnVC7zilhrXNeSGe7xpl-13OhrHRcQIluyef53DGnX0fASR8CWhgGEyEdUQsuRce7pu2K9NMb6Ws65lhepwVTogzJ66Jazaq9GUCH6NOUjS3TwSHY0ncfSn6tWC1Y2_ZNAdQM2JwQM3hd-nLpZwHDoDnTZ5P0bJIuJumLSfp8V_0GHXM4mHx6HxIzhEUc95D_f-Md6i9_JKbj |
CitedBy_id | crossref_primary_10_1111_pce_15080 crossref_primary_10_1016_j_plaphy_2025_109775 crossref_primary_10_1007_s11104_024_07062_2 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_5194_bg_22_513_2025 crossref_primary_10_1073_pnas_2404034121 crossref_primary_10_1111_pce_14536 crossref_primary_10_5194_bg_21_5495_2024 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1007_s11104_024_06560_7 crossref_primary_10_1111_pce_14587 crossref_primary_10_1111_pce_15343 crossref_primary_10_1038_s41597_024_03535_2 crossref_primary_10_1111_nph_20020 crossref_primary_10_1016_j_eja_2024_127093 crossref_primary_10_1051_e3sconf_202338213001 |
Cites_doi | 10.1093/plphys/kiab154 10.1016/j.agrformet.2020.107930 10.1093/plphys/kiab271 10.1016/S0065-2113(02)77014-4 10.1038/s41467-018-04087-x 10.1016/j.plantsci.2016.05.018 10.1111/nph.13354 10.1093/jxb/erq077 10.1071/FP20392 10.1016/j.tplants.2020.04.003 10.1111/nph.16177 10.1093/jxb/erq013 10.1016/j.envexpbot.2022.104889 10.1111/nph.17404 10.1016/j.plantsci.2017.04.007 10.1111/pce.13722 10.1126/science.148.3668.339 10.1016/S1360-1385(97)82562-9 10.1002/2016GL069416 10.1016/j.envexpbot.2007.05.004 10.1111/pce.14259 10.1038/nclimate1693 10.3389/fpls.2018.01994 10.1046/j.1365-3040.1999.00513.x 10.1016/j.scienta.2021.110797 10.1111/pce.13939 10.1046/j.0016-8025.2001.00799.x 10.1111/jac.12010 10.1093/plphys/kiab207 10.1002/jpln.202000079 10.1097/00010694-196002000-00001 10.3389/fpls.2018.0 10.1007/s11104-022-05656-2 10.1093/jxb/eraa392 10.2134/agronj1964.00021962005600020038x 10.1016/j.envexpbot.2012.04.016 10.1071/FP13149 10.1038/nclimate1633 10.1071/FP02076 10.1016/j.agrformet.2019.107692 10.1104/pp.19.01464 10.1111/nph.12321 10.1093/aob/mcab141 10.1093/jxb/31.1.333 10.1023/A:1014947422468 10.1093/jxb/ery183 10.1104/pp.18.00743 10.1371/journal.pone.0185481 10.1104/pp.114.252940 10.1038/nclimate3114 10.1093/treephys/tpu055 10.1111/j.1365-313X.2008.03459.x 10.1071/pp9860329 10.1016/j.foreco.2008.05.008 10.1111/j.1469-8137.2012.04294.x 10.1093/jxb/erq195 10.1146/annurev.pp.39.060188.001333 10.1038/s41598-022-09611-0 10.1371/journal.pone.0139134 10.1038/d41586-018-07586-5 10.1111/nph.16485 10.1038/s41558-020-0781-5 10.1093/jxb/erv195 10.1104/pp.103.023879 10.1093/treephys/tpaa013 10.1007/BF00378909 10.3390/plants11091126 10.2134/agronj2004.0286 10.1016/S0378-4290(01)00165-4 10.1111/nph.16451 10.1016/j.fcr.2022.108547 10.2134/agronj1991.00021962008300060023x 10.3389/fpls.2014.00086 10.1038/s41467-019-13993-7 10.1051/forest:19890589 10.1038/s41467-019-11006-1 10.2135/cropsci1997.0011183X003700030018x 10.3389/fpls.2019.01695 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-022-05818-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 145 |
ExternalDocumentID | A802306694 10_1007_s11104_022_05818_2 |
GeographicLocations | Switzerland Germany |
GeographicLocations_xml | – name: Switzerland – name: Germany |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung grantid: 02WIL1489 funderid: http://dx.doi.org/10.13039/501100002347 – fundername: Deutsche Forschungsgemeinschaft grantid: 403670197; 403670197 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-4af9c5f8508f696c9a8b55e5258afd38b7d83ccddf35dc74da9b9138c5d13e913 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 11:36:29 EDT 2025 Fri Jul 25 09:08:00 EDT 2025 Tue Jul 08 03:50:55 EDT 2025 Tue Jul 01 01:47:19 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Stomatal regulation Leaf water potential Maize VPD Drought Canopy conductance Soil–plant hydraulic conductance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-4af9c5f8508f696c9a8b55e5258afd38b7d83ccddf35dc74da9b9138c5d13e913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7402-1571 |
OpenAccessLink | http://hdl.handle.net/2078.1/269535 |
PQID | 3083333512 |
PQPubID | 54098 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3153717467 proquest_journals_3083333512 gale_infotracacademiconefile_A802306694 crossref_citationtrail_10_1007_s11104_022_05818_2 crossref_primary_10_1007_s11104_022_05818_2 springer_journals_10_1007_s11104_022_05818_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240700 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Ranawana, Siddique, Palta (CR59) 2021; 48 Abdalla, Ahmed, Cai (CR2) 2022; 129 Dai (CR17) 2013; 3 Draye, Kim, Lobet, Javaux (CR21) 2010; 61 Medina, Vicente, Nieto-Taladriz (CR50) 2019; 9 Hochholdinger, Wen, Zimmermann (CR32) 2008; 54 Lamers, van der Meer, Testerink (CR41) 2020; 182 Sinclair (CR68) 2005; 97 Nardini, Pedà, Rocca (CR52) 2012; 196 Attia, Domec, Oren (CR6) 2015; 66 CR35 Muchow, Sinclair (CR51) 1991; 83 Devi, Sinclair, Taliercio (CR18) 2015; 10 Abdalla, Carminati, Cai (CR1) 2021; 44 Carminati, Ahmed, Zarebanadkouki (CR14) 2020; 226 CR31 CR30 Sperry, Love (CR71) 2015; 207 Sulman, Roman, Yi (CR73) 2016; 43 Sinclair, Ludlow (CR69) 1986; 13 Passioura (CR58) 1988; 39 Dodd, Egea, Watts, Whalley (CR20) 2010; 61 Oren, Sperry, Katul (CR54) 1999; 22 Gollan, Turner, Schulze (CR26) 1985; 65 Grossiord, Ulrich, Vilagrosa (CR29) 2020; 40 Xu, Ramanathan, Victor (CR79) 2018; 564 Gholipoor, Choudhary, Sinclair (CR25) 2013; 199 Ahmed, Passioura, Carminati (CR3) 2018; 69 Carminati, Javaux (CR13) 2020; 25 Ben-Ari, Boé, Ciais (CR7) 2018; 9 Scholander, Bradstreet, Hemmingsen, Hammel (CR65) 1965; 148 Grossiord, Buckley, Cernusak (CR28) 2020; 226 Passioura (CR57) 1980; 31 Liu, Kumar, Katul (CR45) 2020; 10 Santini, Noce, Antonelli, Caporaso (CR64) 2022; 12 Park Williams, Allen, Macalady (CR56) 2013; 3 Lendzion, Leuschner (CR42) 2008; 256 Albuquerque, Scoffoni, Brodersen (CR4) 2020; 71 Ryan, Dodd, Rothwell (CR63) 2016; 251 Flo, Martínez-Vilalta, Mencuccini (CR23) 2021; 231 Zhang, Yang, Manevski (CR80) 2022; 11 Gardner (CR24) 1960; 89 Anderegg, Wolf, Arango-Velez (CR5) 2017; 12 Koehler, Moser, Botezatu (CR40) 2022; 478 Vadez, Kholova, Zaman-Allah, Belko (CR75) 2013; 40 Will, Wilson, Zou, Hennessey (CR78) 2013; 200 CR55 Schoppach, Sadok (CR66) 2012; 84 Cai, Carminati, Abdalla, Ahmed (CR11) 2021; 187 Sinclair, Devi, Shekoofa (CR70) 2017; 260 Corso, Delzon, Lamarque (CR16) 2020; 43 Sperry, Hacke, Oren, Comstock (CR72) 2002; 25 Chaves, Maroco, Pereira (CR15) 2003; 30 Hsiao, Swann, Kim (CR34) 2019; 279 Javaux, Carminati (CR37) 2021; 186 Vetterlein, Lippold, Schreiter (CR77) 2021; 184 Cai, Ahmed, Abdalla, Carminati (CR12) 2022; 45 Devi, Reddy (CR19) 2018; 9 Liu, Gudmundsson, Hauser (CR44) 2020; 11 Bray (CR9) 1997; 2 Jarvis, McNaughton, MacFadyen, Ford (CR36) 1986 Li, Liu (CR43) 2022; 199 Liu, Li, Yang (CR46) 2022; 295 Lynch (CR47) 2022; 283 CR27 Kimm, Guan, Gentine (CR39) 2020; 287 Fletcher, Sinclair, Allen (CR22) 2007; 61 Scoffoni, Albuquerque, Cochard (CR67) 2018; 178 Rodriguez-Dominguez, Brodribb (CR62) 2020; 225 Brodribb, Holbrook (CR10) 2003; 132 van Oosterom, Carberry, Hargreaves, O’Leary (CR76) 2001; 72 CR61 Novick, Ficklin, Stoy (CR53) 2016; 6 Ray, Gesch, Sinclair, Hartwell Allen (CR60) 2002; 239 Torres-Ruiz, Diaz-Espejo, Perez-Martin, Hernandez-Santana (CR74) 2015; 35 Bourbia, Pritzkow, Brodribb (CR8) 2021 Hopmans, Bristow (CR33) 2002; 77 Kholová, Hash, Kumar (CR38) 2010; 61 McAdam, Brodribb (CR48) 2015; 167 McKee (CR49) 1964; 56 J Lamers (5818_CR41) 2020; 182 5818_CR55 A Carminati (5818_CR13) 2020; 25 PG Jarvis (5818_CR36) 1986 EJ van Oosterom (5818_CR76) 2001; 72 G Cai (5818_CR12) 2022; 45 MA Ahmed (5818_CR3) 2018; 69 C Grossiord (5818_CR29) 2020; 40 I Bourbia (5818_CR8) 2021 A Nardini (5818_CR52) 2012; 196 J Lendzion (5818_CR42) 2008; 256 5818_CR61 R Schoppach (5818_CR66) 2012; 84 X Draye (5818_CR21) 2010; 61 TR Sinclair (5818_CR69) 1986; 13 C Grossiord (5818_CR28) 2020; 226 T Gollan (5818_CR26) 1985; 65 T Koehler (5818_CR40) 2022; 478 V Flo (5818_CR23) 2021; 231 SRWMCJK Ranawana (5818_CR59) 2021; 48 WR Gardner (5818_CR24) 1960; 89 R Oren (5818_CR54) 1999; 22 S Medina (5818_CR50) 2019; 9 Z Attia (5818_CR6) 2015; 66 MM Chaves (5818_CR15) 2003; 30 JW Hopmans (5818_CR33) 2002; 77 JM Torres-Ruiz (5818_CR74) 2015; 35 M Abdalla (5818_CR1) 2021; 44 PF Scholander (5818_CR65) 1965; 148 D Corso (5818_CR16) 2020; 43 5818_CR35 RC Muchow (5818_CR51) 1991; 83 JP Lynch (5818_CR47) 2022; 283 TR Sinclair (5818_CR68) 2005; 97 M Abdalla (5818_CR2) 2022; 129 G Cai (5818_CR11) 2021; 187 5818_CR31 5818_CR30 MJ Devi (5818_CR19) 2018; 9 RE Will (5818_CR78) 2013; 200 JB Passioura (5818_CR57) 1980; 31 JB Passioura (5818_CR58) 1988; 39 Y Liu (5818_CR45) 2020; 10 H Kimm (5818_CR39) 2020; 287 A Park Williams (5818_CR56) 2013; 3 JS Sperry (5818_CR72) 2002; 25 L Liu (5818_CR44) 2020; 11 J Hsiao (5818_CR34) 2019; 279 AC Ryan (5818_CR63) 2016; 251 CM Rodriguez-Dominguez (5818_CR62) 2020; 225 C Scoffoni (5818_CR67) 2018; 178 GW McKee (5818_CR49) 1964; 56 J Kholová (5818_CR38) 2010; 61 C Albuquerque (5818_CR4) 2020; 71 A Dai (5818_CR17) 2013; 3 JS Sperry (5818_CR71) 2015; 207 D Vetterlein (5818_CR77) 2021; 184 KA Novick (5818_CR53) 2016; 6 Y Xu (5818_CR79) 2018; 564 MJ Devi (5818_CR18) 2015; 10 BN Sulman (5818_CR73) 2016; 43 M Gholipoor (5818_CR25) 2013; 199 V Vadez (5818_CR75) 2013; 40 IC Dodd (5818_CR20) 2010; 61 5818_CR27 EA Bray (5818_CR9) 1997; 2 M Javaux (5818_CR37) 2021; 186 T Ben-Ari (5818_CR7) 2018; 9 AL Fletcher (5818_CR22) 2007; 61 P Zhang (5818_CR80) 2022; 11 WRL Anderegg (5818_CR5) 2017; 12 S Li (5818_CR43) 2022; 199 M Santini (5818_CR64) 2022; 12 F Hochholdinger (5818_CR32) 2008; 54 J Liu (5818_CR46) 2022; 295 SAM McAdam (5818_CR48) 2015; 167 TR Sinclair (5818_CR70) 2017; 260 TJ Brodribb (5818_CR10) 2003; 132 A Carminati (5818_CR14) 2020; 226 JD Ray (5818_CR60) 2002; 239 |
References_xml | – volume: 186 start-page: 1378 year: 2021 end-page: 1381 ident: CR37 article-title: Soil hydraulics affect the degree of isohydricity publication-title: Plant Physiol doi: 10.1093/plphys/kiab154 – volume: 287 start-page: 107930 year: 2020 ident: CR39 article-title: Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean publication-title: Agric Forest Meteorol doi: 10.1016/j.agrformet.2020.107930 – volume: 187 start-page: 858 year: 2021 end-page: 872 ident: CR11 article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought publication-title: Plant Physiol doi: 10.1093/plphys/kiab271 – volume: 77 start-page: 103 year: 2002 end-page: 183 ident: CR33 article-title: Current capabilities and future needs of root water and nutrient uptake modeling publication-title: Adv Agron doi: 10.1016/S0065-2113(02)77014-4 – volume: 9 start-page: 1627 year: 2018 ident: CR7 article-title: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France publication-title: Nat Commun doi: 10.1038/s41467-018-04087-x – volume: 251 start-page: 101 year: 2016 end-page: 109 ident: CR63 article-title: Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.05.018 – volume: 207 start-page: 14 year: 2015 end-page: 27 ident: CR71 article-title: What plant hydraulics can tell us about responses to climate-change droughts publication-title: New Phytol doi: 10.1111/nph.13354 – volume: 61 start-page: 2145 year: 2010 end-page: 2155 ident: CR21 article-title: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils publication-title: J Exp Bot doi: 10.1093/jxb/erq077 – volume: 48 start-page: 839 year: 2021 end-page: 850 ident: CR59 article-title: Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat publication-title: Functional Plant Biol doi: 10.1071/FP20392 – volume: 25 start-page: 868 year: 2020 end-page: 880 ident: CR13 article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2020.04.003 – volume: 225 start-page: 126 year: 2020 end-page: 134 ident: CR62 article-title: Declining root water transport drives stomatal closure in olive under moderate water stress publication-title: New Phytol doi: 10.1111/nph.16177 – volume: 61 start-page: 1431 year: 2010 end-page: 1440 ident: CR38 article-title: Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit publication-title: J Exp Bot doi: 10.1093/jxb/erq013 – volume: 199 year: 2022 ident: CR43 article-title: Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2022.104889 – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: CR44 article-title: Soil moisture dominates dryness stress on ecosystem production globally publication-title: Nat Commun – volume: 231 start-page: 617 year: 2021 end-page: 630 ident: CR23 article-title: Climate and functional traits jointly mediate tree water-use strategies publication-title: New Phytol doi: 10.1111/nph.17404 – ident: CR35 – volume: 260 start-page: 109 year: 2017 end-page: 118 ident: CR70 article-title: Limited-transpiration response to high vapor pressure deficit in crop species publication-title: Plant Sci doi: 10.1016/j.plantsci.2017.04.007 – volume: 43 start-page: 854 year: 2020 end-page: 865 ident: CR16 article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat publication-title: Plant Cell Environ doi: 10.1111/pce.13722 – ident: CR61 – volume: 148 start-page: 339 year: 1965 end-page: 346 ident: CR65 article-title: Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants publication-title: Science doi: 10.1126/science.148.3668.339 – start-page: 1 year: 1986 end-page: 49 ident: CR36 article-title: Stomatal Control of Transpiration: Scaling Up from Leaf to Region publication-title: Advances in Ecological Research – volume: 2 start-page: 48 year: 1997 end-page: 54 ident: CR9 article-title: Plant responses to water deficit publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(97)82562-9 – volume: 43 start-page: 9686 year: 2016 end-page: 9695 ident: CR73 article-title: High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil publication-title: Geophys Res Lett doi: 10.1002/2016GL069416 – volume: 61 start-page: 145 year: 2007 end-page: 151 ident: CR22 article-title: Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2007.05.004 – volume: 45 start-page: 650 year: 2022 end-page: 663 ident: CR12 article-title: Root hydraulic phenotypes impacting water uptake in drying soils publication-title: Plant, Cell Environ doi: 10.1111/pce.14259 – volume: 3 start-page: 292 year: 2013 end-page: 297 ident: CR56 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nature Clim Change doi: 10.1038/nclimate1693 – volume: 9 start-page: 1994 year: 2019 ident: CR50 article-title: The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated With Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01994 – volume: 22 start-page: 1515 year: 1999 end-page: 1526 ident: CR54 article-title: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00513.x – volume: 295 start-page: 110797 year: 2022 ident: CR46 article-title: Effects of soil drought and vapour pressure deficit (VPD) on water use efficiency of tomato plants with contrasting endogenous ABA levels publication-title: Sci Hortic doi: 10.1016/j.scienta.2021.110797 – volume: 44 start-page: 425 year: 2021 end-page: 431 ident: CR1 article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance publication-title: Plant Cell Environ doi: 10.1111/pce.13939 – volume: 25 start-page: 251 year: 2002 end-page: 263 ident: CR72 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell Environ doi: 10.1046/j.0016-8025.2001.00799.x – volume: 199 start-page: 155 year: 2013 end-page: 160 ident: CR25 article-title: Transpiration Response of Maize Hybrids to Atmospheric Vapour Pressure Deficit publication-title: J Agron Crop Sci doi: 10.1111/jac.12010 – year: 2021 ident: CR8 article-title: Herb and conifer roots show similar high sensitivity to water deficit publication-title: Plant Physiol doi: 10.1093/plphys/kiab207 – volume: 184 start-page: 35 year: 2021 end-page: 50 ident: CR77 article-title: Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere—laboratory and field scale publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.202000079 – volume: 89 start-page: 63 year: 1960 end-page: 73 ident: CR24 article-title: Dynamic aspects of water availability to plants publication-title: Soil Sci doi: 10.1097/00010694-196002000-00001 – volume: 9 start-page: 1572 year: 2018 ident: CR19 article-title: Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits publication-title: Front Plant Sci doi: 10.3389/fpls.2018.0 – volume: 478 start-page: 43 year: 2022 end-page: 58 ident: CR40 article-title: Going underground: soil hydraulic properties impacting maize responsiveness to water deficit publication-title: Plant Soil doi: 10.1007/s11104-022-05656-2 – volume: 71 start-page: 7286 year: 2020 end-page: 7300 ident: CR4 article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars publication-title: J Exp Bot doi: 10.1093/jxb/eraa392 – volume: 56 start-page: 240 year: 1964 end-page: 241 ident: CR49 article-title: A Coefficient for Computing Leaf Area in Hybrid Corn1 publication-title: Agron J doi: 10.2134/agronj1964.00021962005600020038x – volume: 84 start-page: 1 year: 2012 end-page: 10 ident: CR66 article-title: Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2012.04.016 – volume: 40 start-page: 1310 year: 2013 ident: CR75 article-title: Water: the most important ‘molecular’ component of water stress tolerance research publication-title: Funct Plant Biol doi: 10.1071/FP13149 – volume: 3 start-page: 52 year: 2013 end-page: 58 ident: CR17 article-title: Increasing drought under global warming in observations and models publication-title: Nat Clim Chang doi: 10.1038/nclimate1633 – volume: 30 start-page: 239 year: 2003 end-page: 264 ident: CR15 article-title: Understanding plant responses to drought—from genes to the whole plant publication-title: Funct Plant Biol doi: 10.1071/FP02076 – volume: 279 year: 2019 ident: CR34 article-title: Maize yield under a changing climate: The hidden role of vapor pressure deficit publication-title: Agric for Meteorol doi: 10.1016/j.agrformet.2019.107692 – volume: 182 start-page: 1624 year: 2020 end-page: 1635 ident: CR41 article-title: How Plants Sense and Respond to Stressful Environments publication-title: Plant Physiol doi: 10.1104/pp.19.01464 – volume: 200 start-page: 366 year: 2013 end-page: 374 ident: CR78 article-title: Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone publication-title: New Phytol doi: 10.1111/nph.12321 – volume: 129 start-page: 161 year: 2022 end-page: 170 ident: CR2 article-title: Stomatal closure during water deficit is controlled by below-ground hydraulics publication-title: Ann Bot doi: 10.1093/aob/mcab141 – volume: 31 start-page: 333 year: 1980 end-page: 345 ident: CR57 article-title: The Transport of Water from Soil to Shoot in Wheat Seedlings publication-title: J Exp Bot doi: 10.1093/jxb/31.1.333 – volume: 239 start-page: 113 year: 2002 end-page: 121 ident: CR60 article-title: The effect of vapor pressure deficit on maize transpiration response to a drying soil publication-title: Plant Soil doi: 10.1023/A:1014947422468 – volume: 69 start-page: 3255 year: 2018 end-page: 3265 ident: CR3 article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review publication-title: J Exp Bot doi: 10.1093/jxb/ery183 – ident: CR30 – volume: 178 start-page: 1584 year: 2018 end-page: 1601 ident: CR67 article-title: The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana publication-title: Plant Physiol doi: 10.1104/pp.18.00743 – volume: 12 year: 2017 ident: CR5 article-title: Plant water potential improves prediction of empirical stomatal models publication-title: PLoS ONE doi: 10.1371/journal.pone.0185481 – volume: 167 start-page: 833 year: 2015 end-page: 843 ident: CR48 article-title: The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit publication-title: Plant Physiol doi: 10.1104/pp.114.252940 – volume: 6 start-page: 1023 year: 2016 end-page: 1027 ident: CR53 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Clim Change doi: 10.1038/nclimate3114 – volume: 35 start-page: 415 year: 2015 end-page: 424 ident: CR74 article-title: Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions publication-title: Tree Physiol doi: 10.1093/treephys/tpu055 – volume: 54 start-page: 888 year: 2008 end-page: 898 ident: CR32 article-title: The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03459.x – ident: CR27 – volume: 13 start-page: 329 year: 1986 end-page: 341 ident: CR69 article-title: Influence of Soil Water Supply on the Plant Water Balance of Four Tropical Grain Legumes publication-title: Functional Plant Biol doi: 10.1071/pp9860329 – volume: 256 start-page: 648 year: 2008 end-page: 655 ident: CR42 article-title: Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits publication-title: For Ecol Manage doi: 10.1016/j.foreco.2008.05.008 – volume: 196 start-page: 788 year: 2012 end-page: 798 ident: CR52 article-title: Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04294.x – volume: 61 start-page: 3543 year: 2010 end-page: 3551 ident: CR20 article-title: Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying publication-title: J Exp Bot doi: 10.1093/jxb/erq195 – volume: 39 start-page: 245 year: 1988 end-page: 265 ident: CR58 article-title: Water transport in and to roots publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.39.060188.001333 – volume: 12 start-page: 5792 year: 2022 ident: CR64 article-title: Complex drought patterns robustly explain global yield loss for major crops publication-title: Sci Rep doi: 10.1038/s41598-022-09611-0 – volume: 10 year: 2015 ident: CR18 article-title: Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean publication-title: PLoS ONE doi: 10.1371/journal.pone.0139134 – volume: 564 start-page: 30 year: 2018 end-page: 32 ident: CR79 article-title: Global warming will happen faster than we think publication-title: Nature doi: 10.1038/d41586-018-07586-5 – volume: 226 start-page: 1550 year: 2020 end-page: 1566 ident: CR28 article-title: Plant responses to rising vapor pressure deficit publication-title: New Phytol doi: 10.1111/nph.16485 – volume: 10 start-page: 691 year: 2020 end-page: 695 ident: CR45 article-title: Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration publication-title: Nat Clim Chang doi: 10.1038/s41558-020-0781-5 – ident: CR31 – volume: 66 start-page: 4373 year: 2015 end-page: 4381 ident: CR6 article-title: Growth and physiological responses of isohydric and anisohydric poplars to drought publication-title: J Exp Bot doi: 10.1093/jxb/erv195 – volume: 132 start-page: 2166 year: 2003 end-page: 2173 ident: CR10 article-title: Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits publication-title: Plant Physiol doi: 10.1104/pp.103.023879 – volume: 40 start-page: 573 year: 2020 end-page: 576 ident: CR29 article-title: Controls of the hydraulic safety–efficiency trade-off publication-title: Tree Physiol doi: 10.1093/treephys/tpaa013 – volume: 65 start-page: 356 year: 1985 end-page: 362 ident: CR26 article-title: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content publication-title: Oecologia doi: 10.1007/BF00378909 – volume: 11 start-page: 1126 year: 2022 ident: CR80 article-title: Physiological and Growth Responses of Potato (Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits publication-title: Plants doi: 10.3390/plants11091126 – ident: CR55 – volume: 97 start-page: 1148 year: 2005 end-page: 1152 ident: CR68 article-title: Theoretical Analysis of Soil and Plant Traits Influencing Daily Plant Water Flux on Drying Soils publication-title: Agron J doi: 10.2134/agronj2004.0286 – volume: 72 start-page: 67 year: 2001 end-page: 91 ident: CR76 article-title: Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00165-4 – volume: 226 start-page: 1541 year: 2020 end-page: 1543 ident: CR14 article-title: Stomatal closure prevents the drop in soil water potential around roots publication-title: New Phytol doi: 10.1111/nph.16451 – volume: 283 start-page: 108547 year: 2022 ident: CR47 article-title: Edaphic stress interactions: Important yet poorly understood drivers of plant production in future climates publication-title: Field Crop Res doi: 10.1016/j.fcr.2022.108547 – volume: 83 start-page: 1052 year: 1991 end-page: 1059 ident: CR51 article-title: Water deficit effects on maize yields modeled under current and “greenhouse” climates publication-title: Agron J doi: 10.2134/agronj1991.00021962008300060023x – volume: 283 start-page: 108547 year: 2022 ident: 5818_CR47 publication-title: Field Crop Res doi: 10.1016/j.fcr.2022.108547 – volume: 83 start-page: 1052 year: 1991 ident: 5818_CR51 publication-title: Agron J doi: 10.2134/agronj1991.00021962008300060023x – volume: 187 start-page: 858 year: 2021 ident: 5818_CR11 publication-title: Plant Physiol doi: 10.1093/plphys/kiab271 – ident: 5818_CR55 doi: 10.3389/fpls.2014.00086 – volume: 2 start-page: 48 year: 1997 ident: 5818_CR9 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(97)82562-9 – volume: 3 start-page: 292 year: 2013 ident: 5818_CR56 publication-title: Nature Clim Change doi: 10.1038/nclimate1693 – volume: 84 start-page: 1 year: 2012 ident: 5818_CR66 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2012.04.016 – volume: 13 start-page: 329 year: 1986 ident: 5818_CR69 publication-title: Functional Plant Biol doi: 10.1071/pp9860329 – volume: 196 start-page: 788 year: 2012 ident: 5818_CR52 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04294.x – volume: 61 start-page: 3543 year: 2010 ident: 5818_CR20 publication-title: J Exp Bot doi: 10.1093/jxb/erq195 – volume: 11 start-page: 1 year: 2020 ident: 5818_CR44 publication-title: Nat Commun doi: 10.1038/s41467-019-13993-7 – volume: 6 start-page: 1023 year: 2016 ident: 5818_CR53 publication-title: Nature Clim Change doi: 10.1038/nclimate3114 – volume: 12 start-page: 5792 year: 2022 ident: 5818_CR64 publication-title: Sci Rep doi: 10.1038/s41598-022-09611-0 – volume: 3 start-page: 52 year: 2013 ident: 5818_CR17 publication-title: Nat Clim Chang doi: 10.1038/nclimate1633 – volume: 279 year: 2019 ident: 5818_CR34 publication-title: Agric for Meteorol doi: 10.1016/j.agrformet.2019.107692 – volume: 10 start-page: 691 year: 2020 ident: 5818_CR45 publication-title: Nat Clim Chang doi: 10.1038/s41558-020-0781-5 – ident: 5818_CR35 – volume: 186 start-page: 1378 year: 2021 ident: 5818_CR37 publication-title: Plant Physiol doi: 10.1093/plphys/kiab154 – volume: 31 start-page: 333 year: 1980 ident: 5818_CR57 publication-title: J Exp Bot doi: 10.1093/jxb/31.1.333 – volume: 43 start-page: 9686 year: 2016 ident: 5818_CR73 publication-title: Geophys Res Lett doi: 10.1002/2016GL069416 – volume: 178 start-page: 1584 year: 2018 ident: 5818_CR67 publication-title: Plant Physiol doi: 10.1104/pp.18.00743 – volume: 167 start-page: 833 year: 2015 ident: 5818_CR48 publication-title: Plant Physiol doi: 10.1104/pp.114.252940 – volume: 66 start-page: 4373 year: 2015 ident: 5818_CR6 publication-title: J Exp Bot doi: 10.1093/jxb/erv195 – volume: 226 start-page: 1541 year: 2020 ident: 5818_CR14 publication-title: New Phytol doi: 10.1111/nph.16451 – volume: 45 start-page: 650 year: 2022 ident: 5818_CR12 publication-title: Plant, Cell Environ doi: 10.1111/pce.14259 – volume: 71 start-page: 7286 year: 2020 ident: 5818_CR4 publication-title: J Exp Bot doi: 10.1093/jxb/eraa392 – volume: 39 start-page: 245 year: 1988 ident: 5818_CR58 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.39.060188.001333 – volume: 199 start-page: 155 year: 2013 ident: 5818_CR25 publication-title: J Agron Crop Sci doi: 10.1111/jac.12010 – ident: 5818_CR27 doi: 10.1051/forest:19890589 – volume: 251 start-page: 101 year: 2016 ident: 5818_CR63 publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.05.018 – volume: 226 start-page: 1550 year: 2020 ident: 5818_CR28 publication-title: New Phytol doi: 10.1111/nph.16485 – volume: 182 start-page: 1624 year: 2020 ident: 5818_CR41 publication-title: Plant Physiol doi: 10.1104/pp.19.01464 – volume: 22 start-page: 1515 year: 1999 ident: 5818_CR54 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00513.x – ident: 5818_CR31 doi: 10.1038/s41467-019-11006-1 – volume: 231 start-page: 617 year: 2021 ident: 5818_CR23 publication-title: New Phytol doi: 10.1111/nph.17404 – volume: 40 start-page: 573 year: 2020 ident: 5818_CR29 publication-title: Tree Physiol doi: 10.1093/treephys/tpaa013 – volume: 44 start-page: 425 year: 2021 ident: 5818_CR1 publication-title: Plant Cell Environ doi: 10.1111/pce.13939 – volume: 97 start-page: 1148 year: 2005 ident: 5818_CR68 publication-title: Agron J doi: 10.2134/agronj2004.0286 – volume: 184 start-page: 35 year: 2021 ident: 5818_CR77 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.202000079 – volume: 61 start-page: 2145 year: 2010 ident: 5818_CR21 publication-title: J Exp Bot doi: 10.1093/jxb/erq077 – volume: 260 start-page: 109 year: 2017 ident: 5818_CR70 publication-title: Plant Sci doi: 10.1016/j.plantsci.2017.04.007 – volume: 43 start-page: 854 year: 2020 ident: 5818_CR16 publication-title: Plant Cell Environ doi: 10.1111/pce.13722 – volume: 61 start-page: 145 year: 2007 ident: 5818_CR22 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2007.05.004 – volume: 72 start-page: 67 year: 2001 ident: 5818_CR76 publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00165-4 – volume: 56 start-page: 240 year: 1964 ident: 5818_CR49 publication-title: Agron J doi: 10.2134/agronj1964.00021962005600020038x – start-page: 1 volume-title: Advances in Ecological Research year: 1986 ident: 5818_CR36 – volume: 225 start-page: 126 year: 2020 ident: 5818_CR62 publication-title: New Phytol doi: 10.1111/nph.16177 – volume: 295 start-page: 110797 year: 2022 ident: 5818_CR46 publication-title: Sci Hortic doi: 10.1016/j.scienta.2021.110797 – volume: 239 start-page: 113 year: 2002 ident: 5818_CR60 publication-title: Plant Soil doi: 10.1023/A:1014947422468 – volume: 9 start-page: 1572 year: 2018 ident: 5818_CR19 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.0 – ident: 5818_CR61 doi: 10.2135/cropsci1997.0011183X003700030018x – volume: 12 year: 2017 ident: 5818_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0185481 – volume: 9 start-page: 1994 year: 2019 ident: 5818_CR50 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01994 – year: 2021 ident: 5818_CR8 publication-title: Plant Physiol doi: 10.1093/plphys/kiab207 – volume: 287 start-page: 107930 year: 2020 ident: 5818_CR39 publication-title: Agric Forest Meteorol doi: 10.1016/j.agrformet.2020.107930 – volume: 256 start-page: 648 year: 2008 ident: 5818_CR42 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2008.05.008 – volume: 48 start-page: 839 year: 2021 ident: 5818_CR59 publication-title: Functional Plant Biol doi: 10.1071/FP20392 – ident: 5818_CR30 doi: 10.3389/fpls.2019.01695 – volume: 148 start-page: 339 year: 1965 ident: 5818_CR65 publication-title: Science doi: 10.1126/science.148.3668.339 – volume: 40 start-page: 1310 year: 2013 ident: 5818_CR75 publication-title: Funct Plant Biol doi: 10.1071/FP13149 – volume: 132 start-page: 2166 year: 2003 ident: 5818_CR10 publication-title: Plant Physiol doi: 10.1104/pp.103.023879 – volume: 65 start-page: 356 year: 1985 ident: 5818_CR26 publication-title: Oecologia doi: 10.1007/BF00378909 – volume: 9 start-page: 1627 year: 2018 ident: 5818_CR7 publication-title: Nat Commun doi: 10.1038/s41467-018-04087-x – volume: 10 year: 2015 ident: 5818_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0139134 – volume: 89 start-page: 63 year: 1960 ident: 5818_CR24 publication-title: Soil Sci doi: 10.1097/00010694-196002000-00001 – volume: 207 start-page: 14 year: 2015 ident: 5818_CR71 publication-title: New Phytol doi: 10.1111/nph.13354 – volume: 129 start-page: 161 year: 2022 ident: 5818_CR2 publication-title: Ann Bot doi: 10.1093/aob/mcab141 – volume: 199 year: 2022 ident: 5818_CR43 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2022.104889 – volume: 35 start-page: 415 year: 2015 ident: 5818_CR74 publication-title: Tree Physiol doi: 10.1093/treephys/tpu055 – volume: 77 start-page: 103 year: 2002 ident: 5818_CR33 publication-title: Adv Agron doi: 10.1016/S0065-2113(02)77014-4 – volume: 61 start-page: 1431 year: 2010 ident: 5818_CR38 publication-title: J Exp Bot doi: 10.1093/jxb/erq013 – volume: 69 start-page: 3255 year: 2018 ident: 5818_CR3 publication-title: J Exp Bot doi: 10.1093/jxb/ery183 – volume: 25 start-page: 868 year: 2020 ident: 5818_CR13 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2020.04.003 – volume: 478 start-page: 43 year: 2022 ident: 5818_CR40 publication-title: Plant Soil doi: 10.1007/s11104-022-05656-2 – volume: 200 start-page: 366 year: 2013 ident: 5818_CR78 publication-title: New Phytol doi: 10.1111/nph.12321 – volume: 54 start-page: 888 year: 2008 ident: 5818_CR32 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03459.x – volume: 30 start-page: 239 year: 2003 ident: 5818_CR15 publication-title: Funct Plant Biol doi: 10.1071/FP02076 – volume: 564 start-page: 30 year: 2018 ident: 5818_CR79 publication-title: Nature doi: 10.1038/d41586-018-07586-5 – volume: 25 start-page: 251 year: 2002 ident: 5818_CR72 publication-title: Plant, Cell Environ doi: 10.1046/j.0016-8025.2001.00799.x – volume: 11 start-page: 1126 year: 2022 ident: 5818_CR80 publication-title: Plants doi: 10.3390/plants11091126 |
SSID | ssj0003216 |
Score | 2.6628861 |
Snippet | Aims
Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact... Aims Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact... AimsAlthough soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact... AIMS: Although soil water deficit is the primary constraint on transpiration globally, the mechanisms by which soil drying and soil properties impact... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129 |
SubjectTerms | Agriculture Analysis Biomedical and Life Sciences Canopies canopy Conductance Corn Drying Ecology Fluid flow fluid mechanics Growth hydraulic conductivity Hydraulics leaf water potential Leaves Life Sciences Loam Moisture content Plant Physiology Plant Sciences Plants Research Article Sand Soil conductivity Soil investigations soil matric potential Soil moisture Soil properties Soil Science & Conservation Soil texture Soil water soil water deficit species Stomata stomatal movement Terrestrial ecosystems Texture Transpiration Vapor pressure vapor pressure deficit Vapors Water Water deficit Water potential Water shortages Zea mays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aTQ_NoSRpS908UKHQQytqW5Itn8omJIQeQikNbE9CluSyEOx01wn032fG1u6ShsQn2ZZlMSPNfJLmAfBRKFfUklYnQwozaVOusyLn3rsmlLIqSjtE-7wozi_l95maxQ23ZTSrXMnEQVD7ztEe-VeBWAEv1E_frv9yyhpFp6sxhcZz2EIRrPUEto5PL378XMtikQ_JT6nA07KaRbeZ0XkONZ_kZM2eKlRbPL-nmv4X0A9OSgcFdLYDryJyZNOR1bvwLLR7sD39s4jRM8IevDjuEOv9ew2_x5jl85G9bDEawgbWd2zZza-YX5B3E7OtZ7cWETgbzGGxDeYDhZTo2Xw51iTDEHpOHplkVfQGLs9Of52c85hEgTtEQj2XtqmcajQCsaaoCldZXSsVVK60bbzQdem1cM77RijvSultVVeZ0E75TAQsvYVJ27XhHbCgMqsybeu6ELK2SO9ShoC3WjVpo9MEshX9jIsRxinRxZXZxEYmmhukuRlobvIEPq-_uR7jazxZ-xOxxdDkw5adjT4E2D8KY2WmelhSFZVM4GDFORNn5dJsxlACH9avcT7RIYltQ3eDdVAF4BIX9UcCX1Yc3zTxeN_eP_3HfXiZIx4aLX0PYNIvbsIh4pm-PoqD9g75FfBz priority: 102 providerName: ProQuest |
Title | Transpiration response to soil drying and vapor pressure deficit is soil texture specific |
URI | https://link.springer.com/article/10.1007/s11104-022-05818-2 https://www.proquest.com/docview/3083333512 https://www.proquest.com/docview/3153717467 |
Volume | 500 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_kTkEfRFfF6nlEEHzQQtskbfrY1V0PhUPEhb2nkCbpsXC0stsT7r93Jm138RPsS_oxDSGTzAeZ-Q3AKy5tXgvyTkIJM2GSWKV5FjtnG1-IMi9MQPs8z89W4uNarseksN0U7T4dSQZJfUh2Q00lYoo-TySqmRgF77FE350CuVZZtZe_PAsFT-kmTopyPabK_LmPn9TRr0L5t9PRoHSWD-D-aC2yamDvQ7jl2xncqy63I2KGn8HteYf23c0M7iwCAPXNI7gYEMs3A3PZdgiD9azv2K7bXDG3pdwmZlrHvhu0v1kIhsXemPMEKNGzzW6gpLAQek_5mBRT9BhWy8XXd2fxWEIhtmgH9bEwTWllo9AMa_Iyt6VRtZReZlKZxnFVF05xa51ruHS2EM6UdZlyZaVLuce7J3DUdq1_CszL1MhUmbrOuahNhtJJeI-PSjZJo5II0mkmtR3xxanMxZU-ICPT7GucfR1mX2cRvNn_821A1_gn9WtikKathz1bM2YQ4PgIxEpXKjhUeSkiOJl4qMc9udMcrU280MKJ4OX-M-4mOiIxre-ukQYVADq4qD0ieDvx_tDF38f27P_In8NdXLliiPs9gaN-e-1foHXT16dwXM3fz5fUfrj4tMB2vjj__OU0LPIfydDzhg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2SMABQQERKGAkEAeISPyKc0BoC622tKwQaqXlZBzbQStVSdlNQf0pvpFxHrsCRG_NKQ9nYs2M5xHPA-AZE1YWPHgnbQszbpJYpZLGztnSZzyXmWmrfU7l5Jh_mInZBvwacmFCWOUgE1tB7Wob_pG_Zmgr4IH66e3p9zh0jQq7q0MLjY4tDvz5T3TZlm_23yN9n1O6t3v0bhL3XQVii6ZBE3NT5laUCi2TUubS5kYVQnhBhTKlY6rInGLWOlcy4WzGncmLPGXKCpcyj2cI9wpsciYTOoLNnd3pp88r2c9o22w1nMRJls_6NJ0uWQ81LY9D9HwiUE3G9A9V-LdC-GdntlV4e7fgZm-pknHHWrdhw1dbcGP8bdFX6_BbcHWnRtvy_A586Wqkzzt2Iosu8NaTpibLen5C3CJkUxFTOfLDoMVP2vBbhEGcDyUsGjJfdiNDIEq4HzJAQxTTXTi-FPTeg1FVV_4-EC9SI1JlikIyXhiK8pB7j5dKlEmpkgjSAX_a9hXNQ2ONE72uxRxwrhHnusW5phG8XL1z2tXzuHD0i0AWHRY7Qramz1nA-YWyWXqsWhdO5jyC7YFyupcCS73m2Qierh7j-g2bMqby9RmOQZWDLjXqqwheDRRfg_j_3B5c_MUncG1y9PFQH-5PDx7CdYq2WBdlvA2jZnHmH6Et1RSPewYm8PWy18xv0_8ukw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLUJwQFBABAoYCcQBoiaxnTgHhLa0q5aiVYWotJyMYztopSopuymof41fx0weuwJEb80pD2dijcf-ZuJ5ALzg0qaFIOukLWEmTBSqOE1C52zpM5GnmWmzfU7TgxPxYSZnG_BriIUht8phTWwXaldb-ke-w1FXwAPxaafs3SKO9ybvzr6HVEGKdlqHchqdiBz5i59ovi3fHu7hWL9Mksn-5_cHYV9hILSoJjShMGVuZalQSynTPLW5UYWUXiZSmdJxVWROcWudK7l0NhPO5EUec2Wli7nHM6R7DTYzsopGsLm7Pz3-tMIBnrSFV-kkjLJ81ofsdIF7iLoiJE_6SCJkhskfsPg3OPyzS9uC3-QO3O61VjbuxOwubPhqC26Nvy36zB1-C67v1qhnXtyDL12-9HknWmzROeF61tRsWc9PmVtQZBUzlWM_DGr_rHXFRRrMeUpn0bD5smtJ3Kf7FA1KHk334eRK2PsARlVd-YfAvIyNjJUpipSLwiS4Ngrv8VLJMipVFEA88E_bPrs5Fdk41eu8zMRzjTzXLc91EsDr1TtnXW6PS1u_omHRNPGRsjV9_AL2j1Jo6bFqzbk0FwFsDyOn-xVhqdfyG8Dz1WOcy7RBYypfn2MbhB80rxG7AngzjPiaxP_79ujyLz6DGzhX9MfD6dFjuJmgWtY5HG_DqFmc-yeoVjXF015-GXy96inzG-7eMsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transpiration+response+to+soil+drying+and+vapor+pressure+deficit+is+soil+texture+specific&rft.jtitle=Plant+and+soil&rft.au=Cai%2C+Gaochao&rft.au=K%C3%B6nig%2C+Maria&rft.au=Carminati%2C+Andrea&rft.au=Abdalla%2C+Mohanned&rft.date=2024-07-01&rft.pub=Springer+International+Publishing&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=500&rft.issue=1-2&rft.spage=129&rft.epage=145&rft_id=info:doi/10.1007%2Fs11104-022-05818-2&rft.externalDocID=10_1007_s11104_022_05818_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |