Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization
[Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS b...
Saved in:
Published in | Journal of hazardous materials Vol. 384; p. 121359 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS bio-treatment.
The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites. |
---|---|
AbstractList | The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites. [Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS bio-treatment. The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites. The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S⁰) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites. The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S ) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites. |
ArticleNumber | 121359 |
Author | Liu, Hong-chang Chen, Hong-rui Zhang, Li-juan Yang, Hong-ying Zhang, Duo-rui Nie, Zhen-yuan Fan, Xiao-lu Zheng, Lei Xia, Jin-lan |
Author_xml | – sequence: 1 givenname: Duo-rui surname: Zhang fullname: Zhang, Duo-rui organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Hong-rui surname: Chen fullname: Chen, Hong-rui organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Jin-lan orcidid: 0000-0001-7584-0686 surname: Xia fullname: Xia, Jin-lan email: jlxia@csu.edu.cn organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 4 givenname: Zhen-yuan surname: Nie fullname: Nie, Zhen-yuan organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 5 givenname: Xiao-lu surname: Fan fullname: Fan, Xiao-lu organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 6 givenname: Hong-chang surname: Liu fullname: Liu, Hong-chang organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 7 givenname: Lei surname: Zheng fullname: Zheng, Lei organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 8 givenname: Li-juan surname: Zhang fullname: Zhang, Li-juan organization: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China – sequence: 9 givenname: Hong-ying surname: Yang fullname: Yang, Hong-ying organization: School of Metallurgy, Northeastern University, Shenyang 110819, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31635821$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1P3DAQhq2Kqiy0P6FVjr1kseOvRBxQhfiSkHqBs-XYE3VWSby1vVXh12PIcuECp9Fonne-3iNyMIcZCPnO6JpRpk42680f-zjZvG4o69asYVx2n8iKtZrXnHN1QFaUU1HzthOH5CilDaWUaSm-kEPOFJdtw1bk5no3oausQ19tY5hChlTZmGAO24eIGaoeQx3-o7cZw1zZ2S_lIsJpCj2O-PhS-ko-D3ZM8G0fj8n95cXd-XV9-_vq5vzXbe0El7kWrWdWiUFx1Q2dl0PbOS59SQZwGkSrBGg9DK3otRDaKisaSjlYqpTuy97H5OfSt6z7dwcpmwmTg3G0M4RdMg2XjRBN1_EPoFRrXsbIgv7Yo7t-Am-2EScbH8zrpwpwugAuhpQiDMZhfjk8R4ujYdQ8-2I2Zu-LefbFLL4UtXyjfh3wnu5s0UH56D-EaJJDmB14jOCy8QHf6fAE24ip1A |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_155116 crossref_primary_10_3389_fmicb_2021_819804 crossref_primary_10_1007_s11368_020_02606_2 crossref_primary_10_1016_j_jclepro_2020_120391 crossref_primary_10_3390_min13050657 crossref_primary_10_1016_j_mineng_2021_107133 crossref_primary_10_1016_j_bej_2024_109329 crossref_primary_10_1007_s11356_022_19442_1 crossref_primary_10_3390_ijerph191811247 crossref_primary_10_1007_s10653_021_01155_y crossref_primary_10_1016_j_scitotenv_2021_150234 crossref_primary_10_1080_01490451_2021_1977431 crossref_primary_10_1016_j_apsusc_2024_162127 crossref_primary_10_3390_min10110968 crossref_primary_10_3390_min14030255 crossref_primary_10_1016_j_cej_2022_135753 crossref_primary_10_1016_j_chemosphere_2023_138128 crossref_primary_10_1039_D4VA00293H crossref_primary_10_1007_s11771_025_5862_1 crossref_primary_10_2139_ssrn_4092924 crossref_primary_10_1016_j_watres_2022_118957 crossref_primary_10_1016_j_watres_2021_116917 crossref_primary_10_1016_j_jclepro_2024_141117 crossref_primary_10_1016_j_jhazmat_2021_126612 crossref_primary_10_1016_j_watres_2023_119595 crossref_primary_10_1016_j_jclepro_2022_134580 crossref_primary_10_1016_j_mineng_2022_107757 crossref_primary_10_1016_j_cej_2023_142259 crossref_primary_10_1016_j_cej_2020_125914 crossref_primary_10_1134_S1061934823120213 crossref_primary_10_1007_s11356_022_21745_2 crossref_primary_10_1016_j_watres_2024_122241 crossref_primary_10_1038_s41598_023_39266_4 crossref_primary_10_1007_s00449_020_02369_7 crossref_primary_10_1016_S1003_6326_23_66401_5 crossref_primary_10_1016_j_scitotenv_2021_145660 crossref_primary_10_1016_j_biortech_2023_130193 crossref_primary_10_1016_j_jhazmat_2020_122502 crossref_primary_10_1016_j_chemosphere_2021_133373 crossref_primary_10_1016_j_jhazmat_2022_130151 crossref_primary_10_1016_j_chemosphere_2022_134368 crossref_primary_10_3390_toxics12120845 crossref_primary_10_1016_j_scitotenv_2020_139005 crossref_primary_10_1007_s11104_023_06156_7 crossref_primary_10_2139_ssrn_4167624 crossref_primary_10_1016_j_chemosphere_2022_137198 crossref_primary_10_1007_s12613_020_2231_9 crossref_primary_10_1016_j_jenvman_2021_113715 crossref_primary_10_1016_j_chemosphere_2022_136388 crossref_primary_10_1021_acs_est_2c09874 crossref_primary_10_31857_S0044450223120228 |
Cites_doi | 10.1007/s00269-004-0436-5 10.1016/j.jhazmat.2012.05.043 10.1016/j.scitotenv.2018.01.099 10.1007/s00216-011-5300-0 10.1016/0016-7037(87)90093-7 10.1111/j.1574-6968.1985.tb00795.x 10.1007/s00248-003-2028-1 10.1016/j.hydromet.2006.03.035 10.1016/0016-7037(95)00081-A 10.1016/j.apgeochem.2007.10.009 10.1016/j.jhazmat.2010.08.028 10.1007/s00253-003-1448-7 10.1016/j.jhazmat.2017.12.038 10.1007/s00253-013-4954-2 10.1107/S0909049505012719 10.1016/j.mineng.2012.06.012 10.1016/j.biortech.2008.02.019 10.2138/am-2000-11-1219 10.1021/acs.jpcc.7b12438 10.1016/j.watres.2016.10.052 10.1016/j.jhazmat.2014.09.022 10.1016/j.gca.2008.02.008 10.1016/S0892-6875(02)00026-2 10.1016/j.biortech.2015.06.102 10.1016/j.envint.2009.01.005 10.1016/j.bej.2010.06.009 10.1016/j.hydromet.2017.04.006 10.1016/j.jhazmat.2014.07.039 10.1016/j.jhazmat.2010.10.070 10.1021/es0112801 10.1016/j.gca.2008.09.008 10.1016/S0168-583X(03)01755-5 10.1021/es100066s 10.1016/j.scitotenv.2015.02.047 10.1016/j.resmic.2005.07.012 10.1021/es070788m 10.1016/j.apgeochem.2009.09.008 10.1021/es102931p 10.1016/j.biortech.2010.11.090 10.1016/j.jhazmat.2009.02.090 10.1021/acs.est.5b00028 10.1016/j.gca.2013.11.025 10.1016/j.scitotenv.2016.05.143 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2019.121359 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 31635821 10_1016_j_jhazmat_2019_121359 S0304389419313135 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c435t-48d1a64f6369f9d5f89c35d69ffec7e4864e77ff84b7447a6a42003ea0667b163 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Sun Aug 24 04:03:40 EDT 2025 Fri Jul 11 03:00:30 EDT 2025 Wed Feb 19 02:30:34 EST 2025 Tue Jul 01 00:49:22 EDT 2025 Thu Apr 24 22:55:52 EDT 2025 Fri Feb 23 02:47:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Speciation transformation Bio-oxidation Arsenic immobilization Humic acid Arsenopyrite |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-48d1a64f6369f9d5f89c35d69ffec7e4864e77ff84b7447a6a42003ea0667b163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7584-0686 |
PMID | 31635821 |
PQID | 2307737445 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2352442993 proquest_miscellaneous_2307737445 pubmed_primary_31635821 crossref_citationtrail_10_1016_j_jhazmat_2019_121359 crossref_primary_10_1016_j_jhazmat_2019_121359 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu, Xia, Yang, Nie, Zheng, Ma, Qiu (bib0215) 2011; 102 Vera, Schippers, Sand (bib0175) 2013; 97 Norris, Barr (bib0110) 1985; 28 Ide-Ektessabi, Kawakami, Watt (bib0065) 2004; 213 Zhang, Zhao, Sun, Su, Yang, Li, Zhu (bib0205) 2015; 49 Sand, Gehrke (bib0155) 2006; 157 Coussy, Benzaazoua, Blanc, Moszkowicz, Bussière (bib0035) 2011; 185 Deng, Gu, Xu, Li, Wu (bib0045) 2018; 626 Dave, Gupta, Tipre (bib0040) 2008; 99 Corkhill, Wincott, Lloyd, Vaughan (bib0025) 2008; 72 Liu, Fernandez, Cai (bib0080) 2011; 45 Xu, Yang, Li, Jiang, Zhang, Li (bib0190) 2017; 171 Ramírez-Aldaba, Valles, Vazquez-Arenas, Rojas-Contreras, Valdez-Pérez, Ruiz-Baca, Lara (bib0125) 2016; 566 Schaufuss, Nesbitt, Scaini, Hoechst, Bancroft, Szargan (bib0160) 2000; 85 Sharma, Ofner, Kappler (bib0165) 2010; 44 Wang, Jiao, Zhang, Zhang, Wang, Jia (bib0180) 2018; 346 Karamanev, Nikolov, Mamatarkova (bib0070) 2002; 15 Ravel, Newville (bib0135) 2010; 12 Rashid, Sterbinsky, Pinilla, Cai, O’Shea (bib0130) 2018; 122 Ren, Fan, Wang, Ma, Li, Xu, Wei (bib0145) 2016; 108 Corkhill, Vaughan (bib0020) 2009; 24 Wiertz, Mateo, Escobar (bib0185) 2006; 83 Zhu, Lu, Liu, Li, Zhu, Lu, Wang (bib0210) 2014; 127 Alsidcheikh, Dia, Guenet, Vantelon, Davranche, Delhaye (bib0005) 2015; 515 Dopson, Lindström (bib0050) 2004; 48 Rohwerder, Gehrke, Kinzler, Sand (bib0150) 2003; 63 Millero, Sotolongo, Izaguirre (bib0100) 1987; 51 Liu, Cai (bib0075) 2013; 262 Márquez, Ospina, Morales (bib0085) 2012; 39 Yu, Zhu, Gao, Gammons, Li (bib0195) 2007; 41 Brigante, Zanini, Avena (bib0010) 2010; 184 Mikhlin, Tomashevich (bib0095) 2005; 32 Qi, Zhang, Li (bib0120) 2015; 193 Cornejo-Garrido, Fernández-Lomelín, Guzmán, Cervini-Silva (bib0030) 2008; 72 Fakour, Lin (bib0055) 2014; 279 Pina, Oliveira, Cruz, Leão (bib0115) 2010; 51 Celebi, Kilikli, Erten (bib0015) 2009; 168 Fantauzzi, Licheri, Atzei, Loi, Elsener, Rossi, Rossi (bib0060) 2011; 401 Mckibben, Tallant, Del Angel (bib0090) 2008; 23 Redman, Macalady, Ahmann (bib0140) 2002; 36 Nesbitt, Muir, Prarr (bib0105) 1995; 59 Sharma, Sohn (bib0170) 2009; 35 Zhang, Chao, Guo, Cao, Yang (bib0200) 2015; 283 Zhu (10.1016/j.jhazmat.2019.121359_bib0215) 2011; 102 Ide-Ektessabi (10.1016/j.jhazmat.2019.121359_bib0065) 2004; 213 Xu (10.1016/j.jhazmat.2019.121359_bib0190) 2017; 171 Zhang (10.1016/j.jhazmat.2019.121359_bib0200) 2015; 283 Márquez (10.1016/j.jhazmat.2019.121359_bib0085) 2012; 39 Alsidcheikh (10.1016/j.jhazmat.2019.121359_bib0005) 2015; 515 Liu (10.1016/j.jhazmat.2019.121359_bib0080) 2011; 45 Rohwerder (10.1016/j.jhazmat.2019.121359_bib0150) 2003; 63 Brigante (10.1016/j.jhazmat.2019.121359_bib0010) 2010; 184 Cornejo-Garrido (10.1016/j.jhazmat.2019.121359_bib0030) 2008; 72 Fakour (10.1016/j.jhazmat.2019.121359_bib0055) 2014; 279 Karamanev (10.1016/j.jhazmat.2019.121359_bib0070) 2002; 15 Nesbitt (10.1016/j.jhazmat.2019.121359_bib0105) 1995; 59 Deng (10.1016/j.jhazmat.2019.121359_bib0045) 2018; 626 Celebi (10.1016/j.jhazmat.2019.121359_bib0015) 2009; 168 Redman (10.1016/j.jhazmat.2019.121359_bib0140) 2002; 36 Mikhlin (10.1016/j.jhazmat.2019.121359_bib0095) 2005; 32 Ravel (10.1016/j.jhazmat.2019.121359_bib0135) 2010; 12 Ren (10.1016/j.jhazmat.2019.121359_bib0145) 2016; 108 Rashid (10.1016/j.jhazmat.2019.121359_bib0130) 2018; 122 Fantauzzi (10.1016/j.jhazmat.2019.121359_bib0060) 2011; 401 Wiertz (10.1016/j.jhazmat.2019.121359_bib0185) 2006; 83 Dave (10.1016/j.jhazmat.2019.121359_bib0040) 2008; 99 Zhu (10.1016/j.jhazmat.2019.121359_bib0210) 2014; 127 Schaufuss (10.1016/j.jhazmat.2019.121359_bib0160) 2000; 85 Vera (10.1016/j.jhazmat.2019.121359_bib0175) 2013; 97 Norris (10.1016/j.jhazmat.2019.121359_bib0110) 1985; 28 Zhang (10.1016/j.jhazmat.2019.121359_bib0205) 2015; 49 Sharma (10.1016/j.jhazmat.2019.121359_bib0165) 2010; 44 Corkhill (10.1016/j.jhazmat.2019.121359_bib0025) 2008; 72 Liu (10.1016/j.jhazmat.2019.121359_bib0075) 2013; 262 Sand (10.1016/j.jhazmat.2019.121359_bib0155) 2006; 157 Mckibben (10.1016/j.jhazmat.2019.121359_bib0090) 2008; 23 Pina (10.1016/j.jhazmat.2019.121359_bib0115) 2010; 51 Coussy (10.1016/j.jhazmat.2019.121359_bib0035) 2011; 185 Sharma (10.1016/j.jhazmat.2019.121359_bib0170) 2009; 35 Corkhill (10.1016/j.jhazmat.2019.121359_bib0020) 2009; 24 Qi (10.1016/j.jhazmat.2019.121359_bib0120) 2015; 193 Wang (10.1016/j.jhazmat.2019.121359_bib0180) 2018; 346 Dopson (10.1016/j.jhazmat.2019.121359_bib0050) 2004; 48 Millero (10.1016/j.jhazmat.2019.121359_bib0100) 1987; 51 Ramírez-Aldaba (10.1016/j.jhazmat.2019.121359_bib0125) 2016; 566 Yu (10.1016/j.jhazmat.2019.121359_bib0195) 2007; 41 |
References_xml | – volume: 23 start-page: 121 year: 2008 end-page: 135 ident: bib0090 article-title: Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions publication-title: Appl. Geochem. – volume: 83 start-page: 35 year: 2006 end-page: 39 ident: bib0185 article-title: Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C publication-title: Hydrometallurgy – volume: 401 start-page: 2237 year: 2011 end-page: 2248 ident: bib0060 article-title: Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques publication-title: Anal. Bioanal. Chem. – volume: 48 start-page: 19 year: 2004 end-page: 28 ident: bib0050 article-title: Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite publication-title: Microb. Ecol. – volume: 24 start-page: 2342 year: 2009 end-page: 2361 ident: bib0020 article-title: Arsenopyrite oxidation-a review publication-title: Appl. Geochem. – volume: 15 start-page: 341 year: 2002 end-page: 346 ident: bib0070 article-title: Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage publication-title: Miner. Eng. – volume: 279 start-page: 569 year: 2014 end-page: 578 ident: bib0055 article-title: Experimental determination and modeling of arsenic complexation with humic and fulvic acids publication-title: J. Hazard. Mater. – volume: 39 start-page: 248 year: 2012 end-page: 254 ident: bib0085 article-title: New insights about the bacterial oxidation of arsenopyrite: a mineralogical scope publication-title: Miner. Eng. – volume: 97 start-page: 7529 year: 2013 end-page: 7541 ident: bib0175 article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A publication-title: Appl. Microbiol. Biotechnol. – volume: 566 start-page: 1106 year: 2016 end-page: 1119 ident: bib0125 article-title: Chemical and surface analysis during evolution of arsenopyrite oxidation by publication-title: Sci. Total Environ. – volume: 12 start-page: 537 year: 2010 end-page: 541 ident: bib0135 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. – volume: 108 start-page: 68 year: 2016 end-page: 77 ident: bib0145 article-title: Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna publication-title: Water Res. – volume: 51 start-page: 793 year: 1987 end-page: 801 ident: bib0100 article-title: The oxidation kinetics of Fe(II) in seawater publication-title: Geochim. Cosmochim. Acta – volume: 49 start-page: 4138 year: 2015 end-page: 4146 ident: bib0205 article-title: Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China publication-title: Environ. Sci. Technol. – volume: 346 start-page: 184 year: 2018 end-page: 190 ident: bib0180 article-title: Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O publication-title: J. Hazard. Mater. – volume: 171 start-page: 44 year: 2017 end-page: 52 ident: bib0190 article-title: Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive publication-title: Hydrometallurgy – volume: 72 start-page: 5616 year: 2008 end-page: 5633 ident: bib0025 article-title: The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu publication-title: Geochim. Cosmochim. Acta – volume: 193 start-page: 243 year: 2015 end-page: 249 ident: bib0120 article-title: Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead publication-title: Bioresour. Technol. Rep. – volume: 122 start-page: 13540 year: 2018 end-page: 13547 ident: bib0130 article-title: Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles publication-title: J. Phys. Chem. C. – volume: 35 start-page: 743 year: 2009 end-page: 759 ident: bib0170 article-title: Aquatic arsenic: toxicity, speciation, transformations, and remediation publication-title: Environ. Int. – volume: 213 start-page: 590 year: 2004 end-page: 594 ident: bib0065 article-title: Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams publication-title: Nucl. Instrum. Meth. B – volume: 85 start-page: 1754 year: 2000 end-page: 1766 ident: bib0160 article-title: Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen publication-title: Am. Mineral. – volume: 28 start-page: 221 year: 1985 end-page: 224 ident: bib0110 article-title: Growth and iron oxidation by acidophilic moderate thermophiles publication-title: FEMS Microbiol. Lett. – volume: 41 start-page: 6460 year: 2007 end-page: 6464 ident: bib0195 article-title: Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C publication-title: Environ. Sci. Technol. – volume: 184 start-page: 241 year: 2010 end-page: 247 ident: bib0010 article-title: Effect of humic acids on the adsorption of paraquat by goethite publication-title: J. Hazard. Mater. – volume: 45 start-page: 3210 year: 2011 end-page: 3216 ident: bib0080 article-title: Complexation of arsenite with humic acid in the presence of ferric iron publication-title: Environ. Sci. Technol. – volume: 626 start-page: 349 year: 2018 end-page: 356 ident: bib0045 article-title: Surface characterization of arsenopyrite during chemical and biological oxidation publication-title: Sci. Total Environ. – volume: 59 start-page: 1773 year: 1995 end-page: 1786 ident: bib0105 article-title: Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation publication-title: Geochim. Cosmochim. Acta – volume: 157 start-page: 49 year: 2006 end-page: 56 ident: bib0155 article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria publication-title: Res. Microbiol. – volume: 32 start-page: 19 year: 2005 end-page: 27 ident: bib0095 article-title: Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy publication-title: Phys. Chem. Miner. – volume: 63 start-page: 239 year: 2003 end-page: 248 ident: bib0150 article-title: Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation publication-title: Appl. Microbiol. Biotechnol. – volume: 99 start-page: 7514 year: 2008 end-page: 7520 ident: bib0040 article-title: Characterization of arsenic resistant and arsenopyrite oxidizing publication-title: Bioresour. Technol. Rep. – volume: 51 start-page: 194 year: 2010 end-page: 197 ident: bib0115 article-title: Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans publication-title: Biochem. Eng. J. – volume: 102 start-page: 3877 year: 2011 end-page: 3882 ident: bib0215 article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite publication-title: Bioresour. Technol. Rep. – volume: 515 start-page: 118 year: 2015 end-page: 128 ident: bib0005 article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences publication-title: Sci. Total Environ. – volume: 72 start-page: 2754 year: 2008 end-page: 2766 ident: bib0030 article-title: Dissolution of arsenopyrite (FeAsS) and galena (PbS) in the presence of desferrioxamine-B at pH 5 publication-title: Geochim. Cosmochim. Acta – volume: 127 start-page: 120 year: 2014 end-page: 139 ident: bib0210 article-title: Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans publication-title: Geochim. Cosmochim. Acta – volume: 44 start-page: 4479 year: 2010 end-page: 4485 ident: bib0165 article-title: Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As publication-title: Environ. Sci. Technol. – volume: 283 start-page: 117 year: 2015 end-page: 122 ident: bib0200 article-title: Catalytic effect of Ag publication-title: J. Hazard. Mater. – volume: 168 start-page: 695 year: 2009 end-page: 703 ident: bib0015 article-title: Sorption of radioactive cesium and barium ions onto solid humic acid publication-title: J. Hazard. Mater. – volume: 185 start-page: 1467 year: 2011 end-page: 1476 ident: bib0035 article-title: Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment publication-title: J. Hazard. Mater. – volume: 36 start-page: 2889 year: 2002 end-page: 2896 ident: bib0140 article-title: Natural organic matter affects arsenic speciation and sorption onto hematite publication-title: Environ. Sci. Technol. – volume: 262 start-page: 1223 year: 2013 end-page: 1229 ident: bib0075 article-title: Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry publication-title: J. Hazard. Mater. – volume: 32 start-page: 19 year: 2005 ident: 10.1016/j.jhazmat.2019.121359_bib0095 article-title: Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-004-0436-5 – volume: 262 start-page: 1223 year: 2013 ident: 10.1016/j.jhazmat.2019.121359_bib0075 article-title: Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.05.043 – volume: 626 start-page: 349 year: 2018 ident: 10.1016/j.jhazmat.2019.121359_bib0045 article-title: Surface characterization of arsenopyrite during chemical and biological oxidation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.099 – volume: 401 start-page: 2237 year: 2011 ident: 10.1016/j.jhazmat.2019.121359_bib0060 article-title: Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-5300-0 – volume: 51 start-page: 793 year: 1987 ident: 10.1016/j.jhazmat.2019.121359_bib0100 article-title: The oxidation kinetics of Fe(II) in seawater publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(87)90093-7 – volume: 28 start-page: 221 year: 1985 ident: 10.1016/j.jhazmat.2019.121359_bib0110 article-title: Growth and iron oxidation by acidophilic moderate thermophiles publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1985.tb00795.x – volume: 48 start-page: 19 year: 2004 ident: 10.1016/j.jhazmat.2019.121359_bib0050 article-title: Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite publication-title: Microb. Ecol. doi: 10.1007/s00248-003-2028-1 – volume: 83 start-page: 35 year: 2006 ident: 10.1016/j.jhazmat.2019.121359_bib0185 article-title: Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.035 – volume: 59 start-page: 1773 year: 1995 ident: 10.1016/j.jhazmat.2019.121359_bib0105 article-title: Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00081-A – volume: 23 start-page: 121 year: 2008 ident: 10.1016/j.jhazmat.2019.121359_bib0090 article-title: Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.10.009 – volume: 184 start-page: 241 year: 2010 ident: 10.1016/j.jhazmat.2019.121359_bib0010 article-title: Effect of humic acids on the adsorption of paraquat by goethite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.08.028 – volume: 63 start-page: 239 year: 2003 ident: 10.1016/j.jhazmat.2019.121359_bib0150 article-title: Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-003-1448-7 – volume: 346 start-page: 184 year: 2018 ident: 10.1016/j.jhazmat.2019.121359_bib0180 article-title: Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O2, in the absence and presence of EDTA publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.038 – volume: 97 start-page: 7529 year: 2013 ident: 10.1016/j.jhazmat.2019.121359_bib0175 article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4954-2 – volume: 12 start-page: 537 year: 2010 ident: 10.1016/j.jhazmat.2019.121359_bib0135 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 39 start-page: 248 year: 2012 ident: 10.1016/j.jhazmat.2019.121359_bib0085 article-title: New insights about the bacterial oxidation of arsenopyrite: a mineralogical scope publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.06.012 – volume: 99 start-page: 7514 year: 2008 ident: 10.1016/j.jhazmat.2019.121359_bib0040 article-title: Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biortech.2008.02.019 – volume: 85 start-page: 1754 year: 2000 ident: 10.1016/j.jhazmat.2019.121359_bib0160 article-title: Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen publication-title: Am. Mineral. doi: 10.2138/am-2000-11-1219 – volume: 122 start-page: 13540 year: 2018 ident: 10.1016/j.jhazmat.2019.121359_bib0130 article-title: Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b12438 – volume: 108 start-page: 68 year: 2016 ident: 10.1016/j.jhazmat.2019.121359_bib0145 article-title: Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna publication-title: Water Res. doi: 10.1016/j.watres.2016.10.052 – volume: 283 start-page: 117 year: 2015 ident: 10.1016/j.jhazmat.2019.121359_bib0200 article-title: Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.09.022 – volume: 72 start-page: 2754 year: 2008 ident: 10.1016/j.jhazmat.2019.121359_bib0030 article-title: Dissolution of arsenopyrite (FeAsS) and galena (PbS) in the presence of desferrioxamine-B at pH 5 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.02.008 – volume: 15 start-page: 341 year: 2002 ident: 10.1016/j.jhazmat.2019.121359_bib0070 article-title: Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage publication-title: Miner. Eng. doi: 10.1016/S0892-6875(02)00026-2 – volume: 193 start-page: 243 year: 2015 ident: 10.1016/j.jhazmat.2019.121359_bib0120 article-title: Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biortech.2015.06.102 – volume: 35 start-page: 743 year: 2009 ident: 10.1016/j.jhazmat.2019.121359_bib0170 article-title: Aquatic arsenic: toxicity, speciation, transformations, and remediation publication-title: Environ. Int. doi: 10.1016/j.envint.2009.01.005 – volume: 51 start-page: 194 year: 2010 ident: 10.1016/j.jhazmat.2019.121359_bib0115 article-title: Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2010.06.009 – volume: 171 start-page: 44 year: 2017 ident: 10.1016/j.jhazmat.2019.121359_bib0190 article-title: Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.04.006 – volume: 279 start-page: 569 year: 2014 ident: 10.1016/j.jhazmat.2019.121359_bib0055 article-title: Experimental determination and modeling of arsenic complexation with humic and fulvic acids publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.07.039 – volume: 185 start-page: 1467 year: 2011 ident: 10.1016/j.jhazmat.2019.121359_bib0035 article-title: Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.070 – volume: 36 start-page: 2889 year: 2002 ident: 10.1016/j.jhazmat.2019.121359_bib0140 article-title: Natural organic matter affects arsenic speciation and sorption onto hematite publication-title: Environ. Sci. Technol. doi: 10.1021/es0112801 – volume: 72 start-page: 5616 year: 2008 ident: 10.1016/j.jhazmat.2019.121359_bib0025 article-title: The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.09.008 – volume: 213 start-page: 590 year: 2004 ident: 10.1016/j.jhazmat.2019.121359_bib0065 article-title: Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams publication-title: Nucl. Instrum. Meth. B doi: 10.1016/S0168-583X(03)01755-5 – volume: 44 start-page: 4479 year: 2010 ident: 10.1016/j.jhazmat.2019.121359_bib0165 article-title: Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As publication-title: Environ. Sci. Technol. doi: 10.1021/es100066s – volume: 515 start-page: 118 year: 2015 ident: 10.1016/j.jhazmat.2019.121359_bib0005 article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.02.047 – volume: 157 start-page: 49 year: 2006 ident: 10.1016/j.jhazmat.2019.121359_bib0155 article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2005.07.012 – volume: 41 start-page: 6460 year: 2007 ident: 10.1016/j.jhazmat.2019.121359_bib0195 article-title: Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C publication-title: Environ. Sci. Technol. doi: 10.1021/es070788m – volume: 24 start-page: 2342 year: 2009 ident: 10.1016/j.jhazmat.2019.121359_bib0020 article-title: Arsenopyrite oxidation-a review publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.09.008 – volume: 45 start-page: 3210 year: 2011 ident: 10.1016/j.jhazmat.2019.121359_bib0080 article-title: Complexation of arsenite with humic acid in the presence of ferric iron publication-title: Environ. Sci. Technol. doi: 10.1021/es102931p – volume: 102 start-page: 3877 year: 2011 ident: 10.1016/j.jhazmat.2019.121359_bib0215 article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biortech.2010.11.090 – volume: 168 start-page: 695 year: 2009 ident: 10.1016/j.jhazmat.2019.121359_bib0015 article-title: Sorption of radioactive cesium and barium ions onto solid humic acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.090 – volume: 49 start-page: 4138 year: 2015 ident: 10.1016/j.jhazmat.2019.121359_bib0205 article-title: Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00028 – volume: 127 start-page: 120 year: 2014 ident: 10.1016/j.jhazmat.2019.121359_bib0210 article-title: Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.11.025 – volume: 566 start-page: 1106 year: 2016 ident: 10.1016/j.jhazmat.2019.121359_bib0125 article-title: Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.143 |
SSID | ssj0001754 |
Score | 2.5289116 |
Snippet | [Display omitted]
•The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As... The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121359 |
SubjectTerms | arsenates Arsenates - analysis Arsenates - metabolism arsenic Arsenic immobilization Arsenicals - chemistry Arsenicals - metabolism Arsenites - analysis Arsenites - metabolism Arsenopyrite Bio-oxidation Biodegradation, Environmental bioleaching Clostridiales - metabolism Ferric Compounds - chemistry Humic acid humic acids Humic Substances - analysis iron Iron Compounds - chemistry Iron Compounds - metabolism Minerals - chemistry Minerals - metabolism Models, Theoretical Oxidation-Reduction Solubility Speciation transformation Sulfates - chemistry Sulfides - chemistry Sulfides - metabolism Sulfobacillus thermosulfidooxidans sulfur Surface Properties |
Title | Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization |
URI | https://dx.doi.org/10.1016/j.jhazmat.2019.121359 https://www.ncbi.nlm.nih.gov/pubmed/31635821 https://www.proquest.com/docview/2307737445 https://www.proquest.com/docview/2352442993 |
Volume | 384 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6M40UP4u64UcFrZxybdDkOoowLc1HBW0izYAdph1lwOfjbfa9pXcAFpKe2CYTvveR9Id97ATikikYmMtLXYapxg2KVH8vU-DzSMlZEGGQpkB2E_Vt2ccfvGnBS58KQrLJa-92aXq7W1ZdOhWZnlGWdazrUw3DLkIJ08aFEc8Yi8vL264fMA8OjKyFFJwDY-iOLpzNsD-_lCxJDUnglVGchoJKl38enn_hnGYfOlmGpIpBez41xBRomX4XFT2UFV2HuSj6uwTlaKlOeVJn2RqXozkw83MaavBg9j5FpemlW-MVT5m5V8mSu3W_slKF3kmrW5Wiuw-3Z6c1J368uTvAVsp-pz2LdlSGzYRAmNtHcxokKuMYXa1RkWBwyE0XWxiyNEDIZSkYaNSNJ8ZoiQ9uAZl7kZgs8nqhjnOcBt_aIdWU3xS1kooOjxJiUWcZawGq4hKqqitPlFg-ilo8NRYWyIJSFQ7kF7fduI1dW468OcW0L8cU_BC79f3U9qG0ncO7QgYjMTTGbCBLBRwFCwH9rw5EBYdAOWrDpDP8-4gChokTj7f8PbgcWjmkHT1fM8F1oTsczs4c0Z5rul368D_O988v-4A0eBfvr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8e36rOC1u-426eMooqy6elHBW0jzwC7SLrqLj4O_3Zmm9QE-QHpqm4Ewk8x8Id_MAOxRRSMTGenrMNV4QLHKj2VqfB5pGSsCDLIkyF6EvWt2esNvJuCwzoUhWmXl-51PL7119aVdabM9zLL2JV3qYbhlCEE6-PBJmGK4famNQev1g-eB8dHVkKIrABz-kcbTHrQGt_IFkSFRvBIqtBBQzdLvA9RPALQMRMfzMFchSO_ATXIBJky-CLOf6gouwmRfPi7BCZoqU55UmfaGJevOPHh4jjV5MXy-R6jppVnhF0-Za6vkyVy73yiU4fIk2qxL0lyG6-Ojq8OeX3VO8BXCn5HPYt2RIbNhECY20dzGiQq4xhdrVGRYHDITRdbGLI0Yi2QoGZHUjCTKa4oQbQUaeZGbNfB4orq40QNu7T7ryE6KZ8hEB_uJMSmzjDWB1eoSqiorTt0t7kTNHxuISsuCtCyclpvQehcburoafwnEtS3ElwUi0Pf_Jbpb207g5qEbEZmbYvwgiAUfBagC_tsYjhAIo3bQhFVn-PcZB6gqyjRe___kdmC6d3XeF_2Ti7MNmOnScZ76zfBNaIzux2YLMc8o3S7X9BvXBf15 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humic+acid+promotes+arsenopyrite+bio-oxidation+and+arsenic+immobilization&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Duo-rui&rft.au=Chen%2C+Hong-rui&rft.au=Xia%2C+Jin-lan&rft.au=Nie%2C+Zhen-yuan&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=384&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121359&rft.externalDocID=S0304389419313135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |