Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization

[Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS b...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 384; p. 121359
Main Authors Zhang, Duo-rui, Chen, Hong-rui, Xia, Jin-lan, Nie, Zhen-yuan, Fan, Xiao-lu, Liu, Hong-chang, Zheng, Lei, Zhang, Li-juan, Yang, Hong-ying
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS bio-treatment. The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.
AbstractList The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.
[Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As immobilization.•The flocculent porous structure favors to FeAsS dissolution in the presence of HA.•A new way was provided for As immobilization in FeAsS bio-treatment. The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S0) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.
The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S⁰) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.
The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on this subject are scarce. In this study, the bio-oxidative dissolution of arsenopyrite by Sulfobacillus thermosulfidooxidans and arsenic immobilization were evaluated in the presence of humic acid (HA). The mineral dissolution was monitored through analyses of the parameters in solution, phase and element speciation transformations on the mineral surface, and arsenic immobilization on the surfaces of cells and jarosites-HA. The results show that the presence of HA enhances the dissolution of arsenopyrite, e.g., 7.1% of arsenopyrite was in the residue after 12 d of bio-oxidation compared to 19.3% in the absence of HA. Meanwhile, the presence of HA led to changes of the fates of As and Fe and no accumulation of elemental sulfur (S ) or ferric arsenate on the mineral surface. Moreover, a flocculent porous structure was formed on the surfaces of both microbial cells and jarosites, on which a large amount of arsenic was adsorbed. These results clearly indicate that HA can simultaneously promote the dissolution of arsenopyrite and arsenic immobilization, which may be significant for bioleaching of arsenopyrite-bearing contaminated sites.
ArticleNumber 121359
Author Liu, Hong-chang
Chen, Hong-rui
Zhang, Li-juan
Yang, Hong-ying
Zhang, Duo-rui
Nie, Zhen-yuan
Fan, Xiao-lu
Zheng, Lei
Xia, Jin-lan
Author_xml – sequence: 1
  givenname: Duo-rui
  surname: Zhang
  fullname: Zhang, Duo-rui
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Hong-rui
  surname: Chen
  fullname: Chen, Hong-rui
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Jin-lan
  orcidid: 0000-0001-7584-0686
  surname: Xia
  fullname: Xia, Jin-lan
  email: jlxia@csu.edu.cn
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Zhen-yuan
  surname: Nie
  fullname: Nie, Zhen-yuan
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Xiao-lu
  surname: Fan
  fullname: Fan, Xiao-lu
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 6
  givenname: Hong-chang
  surname: Liu
  fullname: Liu, Hong-chang
  organization: Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 7
  givenname: Lei
  surname: Zheng
  fullname: Zheng, Lei
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 8
  givenname: Li-juan
  surname: Zhang
  fullname: Zhang, Li-juan
  organization: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
– sequence: 9
  givenname: Hong-ying
  surname: Yang
  fullname: Yang, Hong-ying
  organization: School of Metallurgy, Northeastern University, Shenyang 110819, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31635821$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhq2Kqiy0P6FVjr1kseOvRBxQhfiSkHqBs-XYE3VWSby1vVXh12PIcuECp9Fonne-3iNyMIcZCPnO6JpRpk42680f-zjZvG4o69asYVx2n8iKtZrXnHN1QFaUU1HzthOH5CilDaWUaSm-kEPOFJdtw1bk5no3oausQ19tY5hChlTZmGAO24eIGaoeQx3-o7cZw1zZ2S_lIsJpCj2O-PhS-ko-D3ZM8G0fj8n95cXd-XV9-_vq5vzXbe0El7kWrWdWiUFx1Q2dl0PbOS59SQZwGkSrBGg9DK3otRDaKisaSjlYqpTuy97H5OfSt6z7dwcpmwmTg3G0M4RdMg2XjRBN1_EPoFRrXsbIgv7Yo7t-Am-2EScbH8zrpwpwugAuhpQiDMZhfjk8R4ujYdQ8-2I2Zu-LefbFLL4UtXyjfh3wnu5s0UH56D-EaJJDmB14jOCy8QHf6fAE24ip1A
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_155116
crossref_primary_10_3389_fmicb_2021_819804
crossref_primary_10_1007_s11368_020_02606_2
crossref_primary_10_1016_j_jclepro_2020_120391
crossref_primary_10_3390_min13050657
crossref_primary_10_1016_j_mineng_2021_107133
crossref_primary_10_1016_j_bej_2024_109329
crossref_primary_10_1007_s11356_022_19442_1
crossref_primary_10_3390_ijerph191811247
crossref_primary_10_1007_s10653_021_01155_y
crossref_primary_10_1016_j_scitotenv_2021_150234
crossref_primary_10_1080_01490451_2021_1977431
crossref_primary_10_1016_j_apsusc_2024_162127
crossref_primary_10_3390_min10110968
crossref_primary_10_3390_min14030255
crossref_primary_10_1016_j_cej_2022_135753
crossref_primary_10_1016_j_chemosphere_2023_138128
crossref_primary_10_1039_D4VA00293H
crossref_primary_10_1007_s11771_025_5862_1
crossref_primary_10_2139_ssrn_4092924
crossref_primary_10_1016_j_watres_2022_118957
crossref_primary_10_1016_j_watres_2021_116917
crossref_primary_10_1016_j_jclepro_2024_141117
crossref_primary_10_1016_j_jhazmat_2021_126612
crossref_primary_10_1016_j_watres_2023_119595
crossref_primary_10_1016_j_jclepro_2022_134580
crossref_primary_10_1016_j_mineng_2022_107757
crossref_primary_10_1016_j_cej_2023_142259
crossref_primary_10_1016_j_cej_2020_125914
crossref_primary_10_1134_S1061934823120213
crossref_primary_10_1007_s11356_022_21745_2
crossref_primary_10_1016_j_watres_2024_122241
crossref_primary_10_1038_s41598_023_39266_4
crossref_primary_10_1007_s00449_020_02369_7
crossref_primary_10_1016_S1003_6326_23_66401_5
crossref_primary_10_1016_j_scitotenv_2021_145660
crossref_primary_10_1016_j_biortech_2023_130193
crossref_primary_10_1016_j_jhazmat_2020_122502
crossref_primary_10_1016_j_chemosphere_2021_133373
crossref_primary_10_1016_j_jhazmat_2022_130151
crossref_primary_10_1016_j_chemosphere_2022_134368
crossref_primary_10_3390_toxics12120845
crossref_primary_10_1016_j_scitotenv_2020_139005
crossref_primary_10_1007_s11104_023_06156_7
crossref_primary_10_2139_ssrn_4167624
crossref_primary_10_1016_j_chemosphere_2022_137198
crossref_primary_10_1007_s12613_020_2231_9
crossref_primary_10_1016_j_jenvman_2021_113715
crossref_primary_10_1016_j_chemosphere_2022_136388
crossref_primary_10_1021_acs_est_2c09874
crossref_primary_10_31857_S0044450223120228
Cites_doi 10.1007/s00269-004-0436-5
10.1016/j.jhazmat.2012.05.043
10.1016/j.scitotenv.2018.01.099
10.1007/s00216-011-5300-0
10.1016/0016-7037(87)90093-7
10.1111/j.1574-6968.1985.tb00795.x
10.1007/s00248-003-2028-1
10.1016/j.hydromet.2006.03.035
10.1016/0016-7037(95)00081-A
10.1016/j.apgeochem.2007.10.009
10.1016/j.jhazmat.2010.08.028
10.1007/s00253-003-1448-7
10.1016/j.jhazmat.2017.12.038
10.1007/s00253-013-4954-2
10.1107/S0909049505012719
10.1016/j.mineng.2012.06.012
10.1016/j.biortech.2008.02.019
10.2138/am-2000-11-1219
10.1021/acs.jpcc.7b12438
10.1016/j.watres.2016.10.052
10.1016/j.jhazmat.2014.09.022
10.1016/j.gca.2008.02.008
10.1016/S0892-6875(02)00026-2
10.1016/j.biortech.2015.06.102
10.1016/j.envint.2009.01.005
10.1016/j.bej.2010.06.009
10.1016/j.hydromet.2017.04.006
10.1016/j.jhazmat.2014.07.039
10.1016/j.jhazmat.2010.10.070
10.1021/es0112801
10.1016/j.gca.2008.09.008
10.1016/S0168-583X(03)01755-5
10.1021/es100066s
10.1016/j.scitotenv.2015.02.047
10.1016/j.resmic.2005.07.012
10.1021/es070788m
10.1016/j.apgeochem.2009.09.008
10.1021/es102931p
10.1016/j.biortech.2010.11.090
10.1016/j.jhazmat.2009.02.090
10.1021/acs.est.5b00028
10.1016/j.gca.2013.11.025
10.1016/j.scitotenv.2016.05.143
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2019.121359
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 31635821
10_1016_j_jhazmat_2019_121359
S0304389419313135
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c435t-48d1a64f6369f9d5f89c35d69ffec7e4864e77ff84b7447a6a42003ea0667b163
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Sun Aug 24 04:03:40 EDT 2025
Fri Jul 11 03:00:30 EDT 2025
Wed Feb 19 02:30:34 EST 2025
Tue Jul 01 00:49:22 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
Fri Feb 23 02:47:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Speciation transformation
Bio-oxidation
Arsenic immobilization
Humic acid
Arsenopyrite
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-48d1a64f6369f9d5f89c35d69ffec7e4864e77ff84b7447a6a42003ea0667b163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7584-0686
PMID 31635821
PQID 2307737445
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352442993
proquest_miscellaneous_2307737445
pubmed_primary_31635821
crossref_citationtrail_10_1016_j_jhazmat_2019_121359
crossref_primary_10_1016_j_jhazmat_2019_121359
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2019_121359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Xia, Yang, Nie, Zheng, Ma, Qiu (bib0215) 2011; 102
Vera, Schippers, Sand (bib0175) 2013; 97
Norris, Barr (bib0110) 1985; 28
Ide-Ektessabi, Kawakami, Watt (bib0065) 2004; 213
Zhang, Zhao, Sun, Su, Yang, Li, Zhu (bib0205) 2015; 49
Sand, Gehrke (bib0155) 2006; 157
Coussy, Benzaazoua, Blanc, Moszkowicz, Bussière (bib0035) 2011; 185
Deng, Gu, Xu, Li, Wu (bib0045) 2018; 626
Dave, Gupta, Tipre (bib0040) 2008; 99
Corkhill, Wincott, Lloyd, Vaughan (bib0025) 2008; 72
Liu, Fernandez, Cai (bib0080) 2011; 45
Xu, Yang, Li, Jiang, Zhang, Li (bib0190) 2017; 171
Ramírez-Aldaba, Valles, Vazquez-Arenas, Rojas-Contreras, Valdez-Pérez, Ruiz-Baca, Lara (bib0125) 2016; 566
Schaufuss, Nesbitt, Scaini, Hoechst, Bancroft, Szargan (bib0160) 2000; 85
Sharma, Ofner, Kappler (bib0165) 2010; 44
Wang, Jiao, Zhang, Zhang, Wang, Jia (bib0180) 2018; 346
Karamanev, Nikolov, Mamatarkova (bib0070) 2002; 15
Ravel, Newville (bib0135) 2010; 12
Rashid, Sterbinsky, Pinilla, Cai, O’Shea (bib0130) 2018; 122
Ren, Fan, Wang, Ma, Li, Xu, Wei (bib0145) 2016; 108
Corkhill, Vaughan (bib0020) 2009; 24
Wiertz, Mateo, Escobar (bib0185) 2006; 83
Zhu, Lu, Liu, Li, Zhu, Lu, Wang (bib0210) 2014; 127
Alsidcheikh, Dia, Guenet, Vantelon, Davranche, Delhaye (bib0005) 2015; 515
Dopson, Lindström (bib0050) 2004; 48
Rohwerder, Gehrke, Kinzler, Sand (bib0150) 2003; 63
Millero, Sotolongo, Izaguirre (bib0100) 1987; 51
Liu, Cai (bib0075) 2013; 262
Márquez, Ospina, Morales (bib0085) 2012; 39
Yu, Zhu, Gao, Gammons, Li (bib0195) 2007; 41
Brigante, Zanini, Avena (bib0010) 2010; 184
Mikhlin, Tomashevich (bib0095) 2005; 32
Qi, Zhang, Li (bib0120) 2015; 193
Cornejo-Garrido, Fernández-Lomelín, Guzmán, Cervini-Silva (bib0030) 2008; 72
Fakour, Lin (bib0055) 2014; 279
Pina, Oliveira, Cruz, Leão (bib0115) 2010; 51
Celebi, Kilikli, Erten (bib0015) 2009; 168
Fantauzzi, Licheri, Atzei, Loi, Elsener, Rossi, Rossi (bib0060) 2011; 401
Mckibben, Tallant, Del Angel (bib0090) 2008; 23
Redman, Macalady, Ahmann (bib0140) 2002; 36
Nesbitt, Muir, Prarr (bib0105) 1995; 59
Sharma, Sohn (bib0170) 2009; 35
Zhang, Chao, Guo, Cao, Yang (bib0200) 2015; 283
Zhu (10.1016/j.jhazmat.2019.121359_bib0215) 2011; 102
Ide-Ektessabi (10.1016/j.jhazmat.2019.121359_bib0065) 2004; 213
Xu (10.1016/j.jhazmat.2019.121359_bib0190) 2017; 171
Zhang (10.1016/j.jhazmat.2019.121359_bib0200) 2015; 283
Márquez (10.1016/j.jhazmat.2019.121359_bib0085) 2012; 39
Alsidcheikh (10.1016/j.jhazmat.2019.121359_bib0005) 2015; 515
Liu (10.1016/j.jhazmat.2019.121359_bib0080) 2011; 45
Rohwerder (10.1016/j.jhazmat.2019.121359_bib0150) 2003; 63
Brigante (10.1016/j.jhazmat.2019.121359_bib0010) 2010; 184
Cornejo-Garrido (10.1016/j.jhazmat.2019.121359_bib0030) 2008; 72
Fakour (10.1016/j.jhazmat.2019.121359_bib0055) 2014; 279
Karamanev (10.1016/j.jhazmat.2019.121359_bib0070) 2002; 15
Nesbitt (10.1016/j.jhazmat.2019.121359_bib0105) 1995; 59
Deng (10.1016/j.jhazmat.2019.121359_bib0045) 2018; 626
Celebi (10.1016/j.jhazmat.2019.121359_bib0015) 2009; 168
Redman (10.1016/j.jhazmat.2019.121359_bib0140) 2002; 36
Mikhlin (10.1016/j.jhazmat.2019.121359_bib0095) 2005; 32
Ravel (10.1016/j.jhazmat.2019.121359_bib0135) 2010; 12
Ren (10.1016/j.jhazmat.2019.121359_bib0145) 2016; 108
Rashid (10.1016/j.jhazmat.2019.121359_bib0130) 2018; 122
Fantauzzi (10.1016/j.jhazmat.2019.121359_bib0060) 2011; 401
Wiertz (10.1016/j.jhazmat.2019.121359_bib0185) 2006; 83
Dave (10.1016/j.jhazmat.2019.121359_bib0040) 2008; 99
Zhu (10.1016/j.jhazmat.2019.121359_bib0210) 2014; 127
Schaufuss (10.1016/j.jhazmat.2019.121359_bib0160) 2000; 85
Vera (10.1016/j.jhazmat.2019.121359_bib0175) 2013; 97
Norris (10.1016/j.jhazmat.2019.121359_bib0110) 1985; 28
Zhang (10.1016/j.jhazmat.2019.121359_bib0205) 2015; 49
Sharma (10.1016/j.jhazmat.2019.121359_bib0165) 2010; 44
Corkhill (10.1016/j.jhazmat.2019.121359_bib0025) 2008; 72
Liu (10.1016/j.jhazmat.2019.121359_bib0075) 2013; 262
Sand (10.1016/j.jhazmat.2019.121359_bib0155) 2006; 157
Mckibben (10.1016/j.jhazmat.2019.121359_bib0090) 2008; 23
Pina (10.1016/j.jhazmat.2019.121359_bib0115) 2010; 51
Coussy (10.1016/j.jhazmat.2019.121359_bib0035) 2011; 185
Sharma (10.1016/j.jhazmat.2019.121359_bib0170) 2009; 35
Corkhill (10.1016/j.jhazmat.2019.121359_bib0020) 2009; 24
Qi (10.1016/j.jhazmat.2019.121359_bib0120) 2015; 193
Wang (10.1016/j.jhazmat.2019.121359_bib0180) 2018; 346
Dopson (10.1016/j.jhazmat.2019.121359_bib0050) 2004; 48
Millero (10.1016/j.jhazmat.2019.121359_bib0100) 1987; 51
Ramírez-Aldaba (10.1016/j.jhazmat.2019.121359_bib0125) 2016; 566
Yu (10.1016/j.jhazmat.2019.121359_bib0195) 2007; 41
References_xml – volume: 23
  start-page: 121
  year: 2008
  end-page: 135
  ident: bib0090
  article-title: Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions
  publication-title: Appl. Geochem.
– volume: 83
  start-page: 35
  year: 2006
  end-page: 39
  ident: bib0185
  article-title: Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C
  publication-title: Hydrometallurgy
– volume: 401
  start-page: 2237
  year: 2011
  end-page: 2248
  ident: bib0060
  article-title: Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques
  publication-title: Anal. Bioanal. Chem.
– volume: 48
  start-page: 19
  year: 2004
  end-page: 28
  ident: bib0050
  article-title: Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite
  publication-title: Microb. Ecol.
– volume: 24
  start-page: 2342
  year: 2009
  end-page: 2361
  ident: bib0020
  article-title: Arsenopyrite oxidation-a review
  publication-title: Appl. Geochem.
– volume: 15
  start-page: 341
  year: 2002
  end-page: 346
  ident: bib0070
  article-title: Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage
  publication-title: Miner. Eng.
– volume: 279
  start-page: 569
  year: 2014
  end-page: 578
  ident: bib0055
  article-title: Experimental determination and modeling of arsenic complexation with humic and fulvic acids
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 248
  year: 2012
  end-page: 254
  ident: bib0085
  article-title: New insights about the bacterial oxidation of arsenopyrite: a mineralogical scope
  publication-title: Miner. Eng.
– volume: 97
  start-page: 7529
  year: 2013
  end-page: 7541
  ident: bib0175
  article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 566
  start-page: 1106
  year: 2016
  end-page: 1119
  ident: bib0125
  article-title: Chemical and surface analysis during evolution of arsenopyrite oxidation by
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 537
  year: 2010
  end-page: 541
  ident: bib0135
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
– volume: 108
  start-page: 68
  year: 2016
  end-page: 77
  ident: bib0145
  article-title: Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna
  publication-title: Water Res.
– volume: 51
  start-page: 793
  year: 1987
  end-page: 801
  ident: bib0100
  article-title: The oxidation kinetics of Fe(II) in seawater
  publication-title: Geochim. Cosmochim. Acta
– volume: 49
  start-page: 4138
  year: 2015
  end-page: 4146
  ident: bib0205
  article-title: Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China
  publication-title: Environ. Sci. Technol.
– volume: 346
  start-page: 184
  year: 2018
  end-page: 190
  ident: bib0180
  article-title: Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O
  publication-title: J. Hazard. Mater.
– volume: 171
  start-page: 44
  year: 2017
  end-page: 52
  ident: bib0190
  article-title: Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive
  publication-title: Hydrometallurgy
– volume: 72
  start-page: 5616
  year: 2008
  end-page: 5633
  ident: bib0025
  article-title: The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu
  publication-title: Geochim. Cosmochim. Acta
– volume: 193
  start-page: 243
  year: 2015
  end-page: 249
  ident: bib0120
  article-title: Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead
  publication-title: Bioresour. Technol. Rep.
– volume: 122
  start-page: 13540
  year: 2018
  end-page: 13547
  ident: bib0130
  article-title: Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles
  publication-title: J. Phys. Chem. C.
– volume: 35
  start-page: 743
  year: 2009
  end-page: 759
  ident: bib0170
  article-title: Aquatic arsenic: toxicity, speciation, transformations, and remediation
  publication-title: Environ. Int.
– volume: 213
  start-page: 590
  year: 2004
  end-page: 594
  ident: bib0065
  article-title: Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams
  publication-title: Nucl. Instrum. Meth. B
– volume: 85
  start-page: 1754
  year: 2000
  end-page: 1766
  ident: bib0160
  article-title: Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen
  publication-title: Am. Mineral.
– volume: 28
  start-page: 221
  year: 1985
  end-page: 224
  ident: bib0110
  article-title: Growth and iron oxidation by acidophilic moderate thermophiles
  publication-title: FEMS Microbiol. Lett.
– volume: 41
  start-page: 6460
  year: 2007
  end-page: 6464
  ident: bib0195
  article-title: Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C
  publication-title: Environ. Sci. Technol.
– volume: 184
  start-page: 241
  year: 2010
  end-page: 247
  ident: bib0010
  article-title: Effect of humic acids on the adsorption of paraquat by goethite
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 3210
  year: 2011
  end-page: 3216
  ident: bib0080
  article-title: Complexation of arsenite with humic acid in the presence of ferric iron
  publication-title: Environ. Sci. Technol.
– volume: 626
  start-page: 349
  year: 2018
  end-page: 356
  ident: bib0045
  article-title: Surface characterization of arsenopyrite during chemical and biological oxidation
  publication-title: Sci. Total Environ.
– volume: 59
  start-page: 1773
  year: 1995
  end-page: 1786
  ident: bib0105
  article-title: Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation
  publication-title: Geochim. Cosmochim. Acta
– volume: 157
  start-page: 49
  year: 2006
  end-page: 56
  ident: bib0155
  article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria
  publication-title: Res. Microbiol.
– volume: 32
  start-page: 19
  year: 2005
  end-page: 27
  ident: bib0095
  article-title: Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy
  publication-title: Phys. Chem. Miner.
– volume: 63
  start-page: 239
  year: 2003
  end-page: 248
  ident: bib0150
  article-title: Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 99
  start-page: 7514
  year: 2008
  end-page: 7520
  ident: bib0040
  article-title: Characterization of arsenic resistant and arsenopyrite oxidizing
  publication-title: Bioresour. Technol. Rep.
– volume: 51
  start-page: 194
  year: 2010
  end-page: 197
  ident: bib0115
  article-title: Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans
  publication-title: Biochem. Eng. J.
– volume: 102
  start-page: 3877
  year: 2011
  end-page: 3882
  ident: bib0215
  article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Bioresour. Technol. Rep.
– volume: 515
  start-page: 118
  year: 2015
  end-page: 128
  ident: bib0005
  article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences
  publication-title: Sci. Total Environ.
– volume: 72
  start-page: 2754
  year: 2008
  end-page: 2766
  ident: bib0030
  article-title: Dissolution of arsenopyrite (FeAsS) and galena (PbS) in the presence of desferrioxamine-B at pH 5
  publication-title: Geochim. Cosmochim. Acta
– volume: 127
  start-page: 120
  year: 2014
  end-page: 139
  ident: bib0210
  article-title: Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans
  publication-title: Geochim. Cosmochim. Acta
– volume: 44
  start-page: 4479
  year: 2010
  end-page: 4485
  ident: bib0165
  article-title: Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As
  publication-title: Environ. Sci. Technol.
– volume: 283
  start-page: 117
  year: 2015
  end-page: 122
  ident: bib0200
  article-title: Catalytic effect of Ag
  publication-title: J. Hazard. Mater.
– volume: 168
  start-page: 695
  year: 2009
  end-page: 703
  ident: bib0015
  article-title: Sorption of radioactive cesium and barium ions onto solid humic acid
  publication-title: J. Hazard. Mater.
– volume: 185
  start-page: 1467
  year: 2011
  end-page: 1476
  ident: bib0035
  article-title: Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 2889
  year: 2002
  end-page: 2896
  ident: bib0140
  article-title: Natural organic matter affects arsenic speciation and sorption onto hematite
  publication-title: Environ. Sci. Technol.
– volume: 262
  start-page: 1223
  year: 2013
  end-page: 1229
  ident: bib0075
  article-title: Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry
  publication-title: J. Hazard. Mater.
– volume: 32
  start-page: 19
  year: 2005
  ident: 10.1016/j.jhazmat.2019.121359_bib0095
  article-title: Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-004-0436-5
– volume: 262
  start-page: 1223
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121359_bib0075
  article-title: Studying arsenite-humic acid complexation using size exclusion chromatography-inductively coupled plasma mass spectrometry
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.05.043
– volume: 626
  start-page: 349
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121359_bib0045
  article-title: Surface characterization of arsenopyrite during chemical and biological oxidation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.099
– volume: 401
  start-page: 2237
  year: 2011
  ident: 10.1016/j.jhazmat.2019.121359_bib0060
  article-title: Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-5300-0
– volume: 51
  start-page: 793
  year: 1987
  ident: 10.1016/j.jhazmat.2019.121359_bib0100
  article-title: The oxidation kinetics of Fe(II) in seawater
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(87)90093-7
– volume: 28
  start-page: 221
  year: 1985
  ident: 10.1016/j.jhazmat.2019.121359_bib0110
  article-title: Growth and iron oxidation by acidophilic moderate thermophiles
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1985.tb00795.x
– volume: 48
  start-page: 19
  year: 2004
  ident: 10.1016/j.jhazmat.2019.121359_bib0050
  article-title: Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-003-2028-1
– volume: 83
  start-page: 35
  year: 2006
  ident: 10.1016/j.jhazmat.2019.121359_bib0185
  article-title: Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.035
– volume: 59
  start-page: 1773
  year: 1995
  ident: 10.1016/j.jhazmat.2019.121359_bib0105
  article-title: Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00081-A
– volume: 23
  start-page: 121
  year: 2008
  ident: 10.1016/j.jhazmat.2019.121359_bib0090
  article-title: Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.10.009
– volume: 184
  start-page: 241
  year: 2010
  ident: 10.1016/j.jhazmat.2019.121359_bib0010
  article-title: Effect of humic acids on the adsorption of paraquat by goethite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.08.028
– volume: 63
  start-page: 239
  year: 2003
  ident: 10.1016/j.jhazmat.2019.121359_bib0150
  article-title: Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-003-1448-7
– volume: 346
  start-page: 184
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121359_bib0180
  article-title: Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O2, in the absence and presence of EDTA
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.12.038
– volume: 97
  start-page: 7529
  year: 2013
  ident: 10.1016/j.jhazmat.2019.121359_bib0175
  article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4954-2
– volume: 12
  start-page: 537
  year: 2010
  ident: 10.1016/j.jhazmat.2019.121359_bib0135
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 39
  start-page: 248
  year: 2012
  ident: 10.1016/j.jhazmat.2019.121359_bib0085
  article-title: New insights about the bacterial oxidation of arsenopyrite: a mineralogical scope
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.06.012
– volume: 99
  start-page: 7514
  year: 2008
  ident: 10.1016/j.jhazmat.2019.121359_bib0040
  article-title: Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biortech.2008.02.019
– volume: 85
  start-page: 1754
  year: 2000
  ident: 10.1016/j.jhazmat.2019.121359_bib0160
  article-title: Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen
  publication-title: Am. Mineral.
  doi: 10.2138/am-2000-11-1219
– volume: 122
  start-page: 13540
  year: 2018
  ident: 10.1016/j.jhazmat.2019.121359_bib0130
  article-title: Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b12438
– volume: 108
  start-page: 68
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121359_bib0145
  article-title: Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.052
– volume: 283
  start-page: 117
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121359_bib0200
  article-title: Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.09.022
– volume: 72
  start-page: 2754
  year: 2008
  ident: 10.1016/j.jhazmat.2019.121359_bib0030
  article-title: Dissolution of arsenopyrite (FeAsS) and galena (PbS) in the presence of desferrioxamine-B at pH 5
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.02.008
– volume: 15
  start-page: 341
  year: 2002
  ident: 10.1016/j.jhazmat.2019.121359_bib0070
  article-title: Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(02)00026-2
– volume: 193
  start-page: 243
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121359_bib0120
  article-title: Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biortech.2015.06.102
– volume: 35
  start-page: 743
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121359_bib0170
  article-title: Aquatic arsenic: toxicity, speciation, transformations, and remediation
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2009.01.005
– volume: 51
  start-page: 194
  year: 2010
  ident: 10.1016/j.jhazmat.2019.121359_bib0115
  article-title: Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2010.06.009
– volume: 171
  start-page: 44
  year: 2017
  ident: 10.1016/j.jhazmat.2019.121359_bib0190
  article-title: Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.04.006
– volume: 279
  start-page: 569
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121359_bib0055
  article-title: Experimental determination and modeling of arsenic complexation with humic and fulvic acids
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.07.039
– volume: 185
  start-page: 1467
  year: 2011
  ident: 10.1016/j.jhazmat.2019.121359_bib0035
  article-title: Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.070
– volume: 36
  start-page: 2889
  year: 2002
  ident: 10.1016/j.jhazmat.2019.121359_bib0140
  article-title: Natural organic matter affects arsenic speciation and sorption onto hematite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0112801
– volume: 72
  start-page: 5616
  year: 2008
  ident: 10.1016/j.jhazmat.2019.121359_bib0025
  article-title: The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.09.008
– volume: 213
  start-page: 590
  year: 2004
  ident: 10.1016/j.jhazmat.2019.121359_bib0065
  article-title: Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams
  publication-title: Nucl. Instrum. Meth. B
  doi: 10.1016/S0168-583X(03)01755-5
– volume: 44
  start-page: 4479
  year: 2010
  ident: 10.1016/j.jhazmat.2019.121359_bib0165
  article-title: Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100066s
– volume: 515
  start-page: 118
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121359_bib0005
  article-title: Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.047
– volume: 157
  start-page: 49
  year: 2006
  ident: 10.1016/j.jhazmat.2019.121359_bib0155
  article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2005.07.012
– volume: 41
  start-page: 6460
  year: 2007
  ident: 10.1016/j.jhazmat.2019.121359_bib0195
  article-title: Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070788m
– volume: 24
  start-page: 2342
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121359_bib0020
  article-title: Arsenopyrite oxidation-a review
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.09.008
– volume: 45
  start-page: 3210
  year: 2011
  ident: 10.1016/j.jhazmat.2019.121359_bib0080
  article-title: Complexation of arsenite with humic acid in the presence of ferric iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102931p
– volume: 102
  start-page: 3877
  year: 2011
  ident: 10.1016/j.jhazmat.2019.121359_bib0215
  article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biortech.2010.11.090
– volume: 168
  start-page: 695
  year: 2009
  ident: 10.1016/j.jhazmat.2019.121359_bib0015
  article-title: Sorption of radioactive cesium and barium ions onto solid humic acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.090
– volume: 49
  start-page: 4138
  year: 2015
  ident: 10.1016/j.jhazmat.2019.121359_bib0205
  article-title: Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00028
– volume: 127
  start-page: 120
  year: 2014
  ident: 10.1016/j.jhazmat.2019.121359_bib0210
  article-title: Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.11.025
– volume: 566
  start-page: 1106
  year: 2016
  ident: 10.1016/j.jhazmat.2019.121359_bib0125
  article-title: Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.143
SSID ssj0001754
Score 2.5289116
Snippet [Display omitted] •The effect of humic acid (HA) on bio-oxidation of FeAsS was first studied.•HA simultaneously promotes FeAsS dissolution and As...
The bio-oxidative dissolution of arsenopyrite, the most severe arsenic contamination source, can be mediated by organic substances, but pertinent studies on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121359
SubjectTerms arsenates
Arsenates - analysis
Arsenates - metabolism
arsenic
Arsenic immobilization
Arsenicals - chemistry
Arsenicals - metabolism
Arsenites - analysis
Arsenites - metabolism
Arsenopyrite
Bio-oxidation
Biodegradation, Environmental
bioleaching
Clostridiales - metabolism
Ferric Compounds - chemistry
Humic acid
humic acids
Humic Substances - analysis
iron
Iron Compounds - chemistry
Iron Compounds - metabolism
Minerals - chemistry
Minerals - metabolism
Models, Theoretical
Oxidation-Reduction
Solubility
Speciation transformation
Sulfates - chemistry
Sulfides - chemistry
Sulfides - metabolism
Sulfobacillus thermosulfidooxidans
sulfur
Surface Properties
Title Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization
URI https://dx.doi.org/10.1016/j.jhazmat.2019.121359
https://www.ncbi.nlm.nih.gov/pubmed/31635821
https://www.proquest.com/docview/2307737445
https://www.proquest.com/docview/2352442993
Volume 384
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6M40UP4u64UcFrZxybdDkOoowLc1HBW0izYAdph1lwOfjbfa9pXcAFpKe2CYTvveR9Id97ATikikYmMtLXYapxg2KVH8vU-DzSMlZEGGQpkB2E_Vt2ccfvGnBS58KQrLJa-92aXq7W1ZdOhWZnlGWdazrUw3DLkIJ08aFEc8Yi8vL264fMA8OjKyFFJwDY-iOLpzNsD-_lCxJDUnglVGchoJKl38enn_hnGYfOlmGpIpBez41xBRomX4XFT2UFV2HuSj6uwTlaKlOeVJn2RqXozkw83MaavBg9j5FpemlW-MVT5m5V8mSu3W_slKF3kmrW5Wiuw-3Z6c1J368uTvAVsp-pz2LdlSGzYRAmNtHcxokKuMYXa1RkWBwyE0XWxiyNEDIZSkYaNSNJ8ZoiQ9uAZl7kZgs8nqhjnOcBt_aIdWU3xS1kooOjxJiUWcZawGq4hKqqitPlFg-ilo8NRYWyIJSFQ7kF7fduI1dW468OcW0L8cU_BC79f3U9qG0ncO7QgYjMTTGbCBLBRwFCwH9rw5EBYdAOWrDpDP8-4gChokTj7f8PbgcWjmkHT1fM8F1oTsczs4c0Z5rul368D_O988v-4A0eBfvr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8e36rOC1u-426eMooqy6elHBW0jzwC7SLrqLj4O_3Zmm9QE-QHpqm4Ewk8x8Id_MAOxRRSMTGenrMNV4QLHKj2VqfB5pGSsCDLIkyF6EvWt2esNvJuCwzoUhWmXl-51PL7119aVdabM9zLL2JV3qYbhlCEE6-PBJmGK4famNQev1g-eB8dHVkKIrABz-kcbTHrQGt_IFkSFRvBIqtBBQzdLvA9RPALQMRMfzMFchSO_ATXIBJky-CLOf6gouwmRfPi7BCZoqU55UmfaGJevOPHh4jjV5MXy-R6jppVnhF0-Za6vkyVy73yiU4fIk2qxL0lyG6-Ojq8OeX3VO8BXCn5HPYt2RIbNhECY20dzGiQq4xhdrVGRYHDITRdbGLI0Yi2QoGZHUjCTKa4oQbQUaeZGbNfB4orq40QNu7T7ryE6KZ8hEB_uJMSmzjDWB1eoSqiorTt0t7kTNHxuISsuCtCyclpvQehcburoafwnEtS3ElwUi0Pf_Jbpb207g5qEbEZmbYvwgiAUfBagC_tsYjhAIo3bQhFVn-PcZB6gqyjRe___kdmC6d3XeF_2Ti7MNmOnScZ76zfBNaIzux2YLMc8o3S7X9BvXBf15
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humic+acid+promotes+arsenopyrite+bio-oxidation+and+arsenic+immobilization&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Duo-rui&rft.au=Chen%2C+Hong-rui&rft.au=Xia%2C+Jin-lan&rft.au=Nie%2C+Zhen-yuan&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=384&rft_id=info:doi/10.1016%2Fj.jhazmat.2019.121359&rft.externalDocID=S0304389419313135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon