River flow forecasting using artificial neural networks
River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfa...
Saved in:
Published in | Physics and chemistry of the earth. Part B, Hydrology, oceans and atmosphere Vol. 26; no. 1; pp. 1 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the understanding of hydrological processes, there are many practical situations where the main concern is with making accurate predictions at specific locations. In such situation it is preferred to implement a simple “black box” (data-driven, or machine learning) model to identify a direct mapping between the inputs and outputs without detailed consideration of the internal structure of the physical process. Artificial neural networks (ANNs) is probably the most successful machine learning technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach understanding as to the nature of the phenomena. In this study the applicability of ANNs for downstream flow forecasting in the Apure river basin (Venezuela) was investigated. Two types of ANN architectures, namely multi-layer perceptron network (MLP) and a radial basis function network (RBF) were implemented. The performances of these networks were compared with a conceptual rainfall-runoff model and they were found to be slightly better for this river flow-forecasting problem. |
---|---|
AbstractList | River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the understanding of hydrological processes, there are many practical situations where the main concern is with making accurate predictions at specific locations. In such situation it is preferred to implement a simple "black box" (data-driven, or machine learning) model to identify a direct mapping between the inputs and outputs without detailed consideration of the internal structure of the physical process. Artificial neural networks (ANNs) is probably the most successful machine learning technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach understanding as to the nature of the phenomena. In this study the applicability of ANNs for downstream flow forecasting in the Apure river basin (Venezuela) was investigated. Two types of ANN architectures, namely multi-layer perceptron network (MLP) and a radial basis function network (RBF) were implemented. The performances of these networks were compared with a conceptual rainfall-runoff model and they were found to be slightly better for this river flow-forecasting problem. |
Author | Solomatine, D.P. Dibike, Y.B. |
Author_xml | – sequence: 1 givenname: Y.B. surname: Dibike fullname: Dibike, Y.B. – sequence: 2 givenname: D.P. surname: Solomatine fullname: Solomatine, D.P. |
BookMark | eNqFkEtLAzEUhbOoYFv9CcKsRBejec8MLkSKLygIPqC7kMkkEp0mNcm0-O-dacWFm27ugcv5zuKbgJHzTgNwguAFgohfviDKaY4qWJ1BdF4yCFm-GIHx3_sQTGL8gBASgukYFM92rUNmWr_JjA9ayZise8-6OFwZkjVWWdlmTndhG2njw2c8AgdGtlEf_-YUvN3dvs4e8vnT_ePsZp4rSljKCeaQm7KpJea8kKzGDa25JIWkmFBoCtpUJa5MWdS0gaY0BBqqmKyM4bjuN6bgdLe7Cv6r0zGJpY1Kt6102ndRYF6RirFibxGVGBFOh0W2K6rgYwzaiFWwSxm-BYJicCi2DsUgS0Aktg7Foueu_nHKJpmsdylI2-6lr3e07mWtrQ4iKqud0o3tpSfReLtn4QeqLI-L |
CitedBy_id | crossref_primary_10_1016_j_envsoft_2020_104926 crossref_primary_10_1111_j_1752_1688_2011_00587_x crossref_primary_10_1080_02626667_2016_1154151 crossref_primary_10_3390_app10238670 crossref_primary_10_3390_w12051371 crossref_primary_10_1016_j_eswa_2008_09_053 crossref_primary_10_1061__ASCE_HE_1943_5584_0000958 crossref_primary_10_2166_nh_2017_041 crossref_primary_10_1134_S0097807818050135 crossref_primary_10_1038_s41598_024_78012_2 crossref_primary_10_1016_j_ecolmodel_2022_110204 crossref_primary_10_1007_s11269_012_0096_z crossref_primary_10_5194_esurf_8_809_2020 crossref_primary_10_1016_j_jhydrol_2010_06_033 crossref_primary_10_1016_j_jhydrol_2013_10_017 crossref_primary_10_1088_1755_1315_867_1_012006 crossref_primary_10_1007_s00704_021_03817_4 crossref_primary_10_1007_s12665_015_4047_x crossref_primary_10_1016_j_jhydrol_2024_131266 crossref_primary_10_1007_s11600_021_00620_7 crossref_primary_10_1007_s12517_021_08778_6 crossref_primary_10_1002_hyp_6592 crossref_primary_10_5194_nhess_20_1149_2020 crossref_primary_10_1016_j_jhydrol_2024_131383 crossref_primary_10_1080_02705060_2006_9664125 crossref_primary_10_1016_j_advwatres_2019_103471 crossref_primary_10_1029_2020WR028392 crossref_primary_10_1007_s12205_022_0488_4 crossref_primary_10_3390_molecules27185762 crossref_primary_10_2166_nh_2017_108 crossref_primary_10_1016_j_asoc_2013_04_014 crossref_primary_10_1080_23249676_2015_1072851 crossref_primary_10_1007_s11831_017_9224_5 crossref_primary_10_1016_j_advwatres_2005_11_012 crossref_primary_10_26634_jfet_13_4_14434 crossref_primary_10_1186_s40645_023_00550_6 crossref_primary_10_1080_15715124_2014_1003381 crossref_primary_10_3923_jas_2005_368_372 crossref_primary_10_1061__ASCE_HE_1943_5584_0001822 crossref_primary_10_5194_esurf_13_167_2025 crossref_primary_10_3390_hydrology8020087 crossref_primary_10_1016_j_advengsoft_2008_12_001 crossref_primary_10_1016_j_jhydrol_2022_128550 crossref_primary_10_1007_s12145_022_00913_5 crossref_primary_10_17221_90_2020_JFS crossref_primary_10_1016_j_envsoft_2016_08_013 crossref_primary_10_1007_s11069_021_04968_3 crossref_primary_10_5194_hess_17_2827_2013 crossref_primary_10_1029_2019WR025656 crossref_primary_10_1016_j_proeng_2016_11_031 crossref_primary_10_3923_jas_2010_1006_1010 crossref_primary_10_1007_s12205_017_1514_9 crossref_primary_10_1016_j_jenvman_2024_120404 crossref_primary_10_1134_S0097807818030041 crossref_primary_10_1007_s11431_010_4205_z crossref_primary_10_1016_j_agwat_2011_12_005 crossref_primary_10_1029_2006WR005383 crossref_primary_10_3390_su151310543 crossref_primary_10_1007_s11053_014_9235_y crossref_primary_10_1016_j_cageo_2012_02_031 crossref_primary_10_11001_jksww_2012_26_4_547 crossref_primary_10_1016_j_jhydrol_2011_01_017 crossref_primary_10_1680_wama_2010_163_4_175 crossref_primary_10_1029_2005WR004303 crossref_primary_10_1061__ASCE_IR_1943_4774_0000197 crossref_primary_10_17714_gumusfenbil_311188 crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_491 crossref_primary_10_3390_w13121696 crossref_primary_10_1007_s12145_015_0247_x crossref_primary_10_2166_hydro_2019_068 crossref_primary_10_1007_s12665_021_09625_3 crossref_primary_10_1016_j_jhydrol_2018_01_035 crossref_primary_10_5194_hess_25_2997_2021 crossref_primary_10_3390_w11122633 crossref_primary_10_1007_s00521_016_2367_8 crossref_primary_10_5194_hess_12_123_2008 crossref_primary_10_7132_jrcsa_KJ00004364678 crossref_primary_10_1002_hyp_1492 crossref_primary_10_1016_j_pce_2004_12_001 crossref_primary_10_1061__ASCE_1084_0699_2007_12_1_113 crossref_primary_10_5194_hess_14_1931_2010 crossref_primary_10_1061__ASCE_0733_9496_2005_131_2_135 crossref_primary_10_5194_hess_16_4417_2012 crossref_primary_10_1007_s11269_021_02971_8 crossref_primary_10_1111_j_1747_6593_2012_00337_x crossref_primary_10_1016_j_jhydrol_2008_01_023 crossref_primary_10_1007_s40808_017_0323_y crossref_primary_10_1002_hyp_6812 crossref_primary_10_1051_e3sconf_202234704005 crossref_primary_10_5004_dwt_2017_21510 crossref_primary_10_1007_s11269_019_02343_3 crossref_primary_10_1007_s12665_015_4054_y crossref_primary_10_1016_j_csite_2023_103086 crossref_primary_10_1016_j_matcom_2006_09_003 crossref_primary_10_1016_j_acags_2024_100181 crossref_primary_10_1002_ird_1804 crossref_primary_10_3390_w14193012 crossref_primary_10_1007_s00521_013_1469_9 crossref_primary_10_1016_j_asej_2016_01_009 crossref_primary_10_1016_j_scitotenv_2019_07_157 crossref_primary_10_1007_s00704_021_03863_y crossref_primary_10_26833_ijeg_1125412 crossref_primary_10_38016_jista_979285 crossref_primary_10_1016_j_molliq_2022_119901 crossref_primary_10_1007_s00703_019_00679_4 crossref_primary_10_1016_j_asoc_2017_03_015 crossref_primary_10_1007_s11269_015_1103_y crossref_primary_10_1109_ACCESS_2020_3040942 crossref_primary_10_2166_nh_2022_044 crossref_primary_10_1007_s40996_019_00238_2 crossref_primary_10_3923_ajaps_2009_150_159 crossref_primary_10_1016_j_jhydrol_2021_126433 crossref_primary_10_1080_02626667_2014_944525 crossref_primary_10_1623_hysj_52_3_397 crossref_primary_10_1080_02626667_2014_986486 crossref_primary_10_18100_ijamec_1308666 crossref_primary_10_1002_ird_454 crossref_primary_10_1016_j_wsee_2024_09_004 crossref_primary_10_1002_rra_4144 crossref_primary_10_3390_hydrology9010005 crossref_primary_10_3389_frwa_2020_562304 crossref_primary_10_3390_w13010002 crossref_primary_10_3390_su14106319 |
Cites_doi | 10.1080/02626669809492102 10.1029/95WR01955 10.1080/00221689909498303 10.1007/BF00872489 10.1023/A:1008334632441 10.1080/00221689609498476 10.1080/02626667909491876 |
ContentType | Journal Article |
Copyright | 2000 |
Copyright_xml | – notice: 2000 |
DBID | AAYXX CITATION 7TG 7UA C1K KL. 8FD FR3 KR7 |
DOI | 10.1016/S1464-1909(01)85005-X |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EndPage | 7 |
ExternalDocumentID | 10_1016_S1464_1909_01_85005_X S146419090185005X |
GeographicLocations | Venezuela, Apure R |
GeographicLocations_xml | – name: Venezuela, Apure R |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABQYD ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE IMUCA KOM M41 MO0 O-L O9- OAUVE OZT P-9 PC. Q38 R2- ROL RPZ SDF SDG SEW SPC SSE SSZ T5K UHS XPP ZMT ~02 AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7TG 7UA C1K KL. 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c435t-32606f8dba2667a5b2d4b6a37a42340f74d9829f87b4d0f8f30f4c5a9ff62bc43 |
IEDL.DBID | AIKHN |
ISSN | 1464-1909 |
IngestDate | Fri Jul 11 00:10:21 EDT 2025 Fri Jul 11 11:22:20 EDT 2025 Tue Jul 01 00:54:29 EDT 2025 Thu Apr 24 23:12:17 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-32606f8dba2667a5b2d4b6a37a42340f74d9829f87b4d0f8f30f4c5a9ff62bc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 18213644 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_26939557 proquest_miscellaneous_18213644 crossref_primary_10_1016_S1464_1909_01_85005_X crossref_citationtrail_10_1016_S1464_1909_01_85005_X elsevier_sciencedirect_doi_10_1016_S1464_1909_01_85005_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001 2001-1-00 20010101 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – year: 2001 text: 2001 |
PublicationDecade | 2000 |
PublicationTitle | Physics and chemistry of the earth. Part B, Hydrology, oceans and atmosphere |
PublicationYear | 2001 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (BIB11) 1995 Solomatine, Avila Torres (BIB13) 1996 Karayiannis, Venetsanopoulos (BIB7) 1993 Sugawara (BIB15) 1978; 24 Dibike, Solomatine, Abbott (BIB2) 1999; 37 Dibike, Solomatine, Velickov (BIB3) 2000 Grabec (BIB4) 1990; 2 Lorrai, Sechi (BIB8) 1995; 9 Mitchell (BIB10) 1997 (BIB14) 1992 Solomatine (BIB12) 1999; 14 Mason, Price, Tem'me (BIB9) 1996; 34 Hall, Minns (BIB5) 1993 Dawson, Wilby (BIB1) 1998; 43 Hsu, Gupta, Sorooshian (BIB6) 1995; 31 Dibike (10.1016/S1464-1909(01)85005-X_BIB3) 2000 Hsu (10.1016/S1464-1909(01)85005-X_BIB6) 1995; 31 Solomatine (10.1016/S1464-1909(01)85005-X_BIB13) 1996 Dawson (10.1016/S1464-1909(01)85005-X_BIB1) 1998; 43 Grabec (10.1016/S1464-1909(01)85005-X_BIB4) 1990; 2 (10.1016/S1464-1909(01)85005-X_BIB14) 1992 Sugawara (10.1016/S1464-1909(01)85005-X_BIB15) 1978; 24 Solomatine (10.1016/S1464-1909(01)85005-X_BIB12) 1999; 14 Lorrai (10.1016/S1464-1909(01)85005-X_BIB8) 1995; 9 Dibike (10.1016/S1464-1909(01)85005-X_BIB2) 1999; 37 Mason (10.1016/S1464-1909(01)85005-X_BIB9) 1996; 34 Hall (10.1016/S1464-1909(01)85005-X_BIB5) 1993 (10.1016/S1464-1909(01)85005-X_BIB11) 1995 Karayiannis (10.1016/S1464-1909(01)85005-X_BIB7) 1993 Mitchell (10.1016/S1464-1909(01)85005-X_BIB10) 1997 |
References_xml | – volume: 34 start-page: 537 year: 1996 end-page: 548 ident: BIB9 article-title: A neural network model of rainfall-runoff using radial basis functions publication-title: J. of Hydraulic Research – start-page: 5.51 year: 1993 end-page: 5.57 ident: BIB5 article-title: Rainfall-runoff modelling as a problem in artificial intelligence: experience with a neural network publication-title: Proc. BHS 4 – start-page: 201 year: 1996 end-page: 206 ident: BIB13 article-title: Neural network approximation of a hydrodynamic model in optimizing reservoir operation publication-title: Proceedings of the second international conference on hydroinformatics – year: 2000 ident: BIB3 article-title: Support Vector Machines: Review and Applications in Civil Engineering publication-title: Proc. of the 2nd Joint Workshop on Application of AI in Civil Engineering. Cottbus, Germany – year: 1997 ident: BIB10 publication-title: Machine learning – volume: 43 start-page: 47 year: 1998 end-page: 66 ident: BIB1 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrological Sci. J – volume: 37 start-page: 147 year: 1999 end-page: 161 ident: BIB2 article-title: On the encapsulation of numerical-hydraulic models in artificial neural network publication-title: J. of Hydraulic Research – volume: 2 start-page: 529 year: 1990 end-page: 532 ident: BIB4 article-title: Emperical modelling of natural phenomena by a self-organizing system publication-title: Proc. Neural Network Conf. 90 – volume: 31 start-page: 2517 year: 1995 end-page: 2530 ident: BIB6 article-title: Artificial neural network modelling of the rainfall-runoff process publication-title: Water Resources Research – volume: 9 start-page: 299 year: 1995 end-page: 313 ident: BIB8 article-title: Neural Nets for Modelling Rainfall-Runoff Transformations publication-title: Water resources management – volume: 24 year: 1978 ident: BIB15 article-title: Automatic calibration of the tank model publication-title: Hydrologic Sciences Bulletin – year: 1995 ident: BIB11 publication-title: Application of Neural Networks – volume: 14 start-page: 55 year: 1999 end-page: 78 ident: BIB12 article-title: Two strategies of adaptive cluster covering with descent and their comparison to other algorithms publication-title: J. of Global Optimization – start-page: 471 year: 1992 end-page: 500 ident: BIB14 publication-title: Prediction of Chaotic Dynamical Phenomena by a Neural Network – year: 1993 ident: BIB7 publication-title: Artificial Neural Networks: Learning Algorithms. Performance Evaluation, and Applications – volume: 43 start-page: 47 issue: 1 year: 1998 ident: 10.1016/S1464-1909(01)85005-X_BIB1 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrological Sci. J doi: 10.1080/02626669809492102 – start-page: 5.51 year: 1993 ident: 10.1016/S1464-1909(01)85005-X_BIB5 article-title: Rainfall-runoff modelling as a problem in artificial intelligence: experience with a neural network publication-title: Proc. BHS 4th National Hydrology Symposium – volume: 31 start-page: 2517 issue: 10 year: 1995 ident: 10.1016/S1464-1909(01)85005-X_BIB6 article-title: Artificial neural network modelling of the rainfall-runoff process publication-title: Water Resources Research doi: 10.1029/95WR01955 – year: 1997 ident: 10.1016/S1464-1909(01)85005-X_BIB10 – volume: 37 start-page: 147 issue: 2 year: 1999 ident: 10.1016/S1464-1909(01)85005-X_BIB2 article-title: On the encapsulation of numerical-hydraulic models in artificial neural network publication-title: J. of Hydraulic Research doi: 10.1080/00221689909498303 – volume: 9 start-page: 299 year: 1995 ident: 10.1016/S1464-1909(01)85005-X_BIB8 article-title: Neural Nets for Modelling Rainfall-Runoff Transformations publication-title: Water resources management doi: 10.1007/BF00872489 – year: 2000 ident: 10.1016/S1464-1909(01)85005-X_BIB3 article-title: Support Vector Machines: Review and Applications in Civil Engineering publication-title: Proc. of the 2nd Joint Workshop on Application of AI in Civil Engineering. Cottbus, Germany – volume: 14 start-page: 55 issue: 1 year: 1999 ident: 10.1016/S1464-1909(01)85005-X_BIB12 article-title: Two strategies of adaptive cluster covering with descent and their comparison to other algorithms publication-title: J. of Global Optimization doi: 10.1023/A:1008334632441 – start-page: 471 year: 1992 ident: 10.1016/S1464-1909(01)85005-X_BIB14 – year: 1993 ident: 10.1016/S1464-1909(01)85005-X_BIB7 – volume: 34 start-page: 537 year: 1996 ident: 10.1016/S1464-1909(01)85005-X_BIB9 article-title: A neural network model of rainfall-runoff using radial basis functions publication-title: J. of Hydraulic Research doi: 10.1080/00221689609498476 – start-page: 201 year: 1996 ident: 10.1016/S1464-1909(01)85005-X_BIB13 article-title: Neural network approximation of a hydrodynamic model in optimizing reservoir operation publication-title: Proceedings of the second international conference on hydroinformatics – volume: 2 start-page: 529 year: 1990 ident: 10.1016/S1464-1909(01)85005-X_BIB4 article-title: Emperical modelling of natural phenomena by a self-organizing system publication-title: Proc. Neural Network Conf. 90 – year: 1995 ident: 10.1016/S1464-1909(01)85005-X_BIB11 – volume: 24 issue: 3 year: 1978 ident: 10.1016/S1464-1909(01)85005-X_BIB15 article-title: Automatic calibration of the tank model publication-title: Hydrologic Sciences Bulletin doi: 10.1080/02626667909491876 |
SSID | ssj0003324 |
Score | 1.8365682 |
Snippet | River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
Title | River flow forecasting using artificial neural networks |
URI | https://dx.doi.org/10.1016/S1464-1909(01)85005-X https://www.proquest.com/docview/18213644 https://www.proquest.com/docview/26939557 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9uIngRP_HbHjzooVua7xyHOKeiB3XQW0jaRgayDbchXvzbfWm7iYIIQqEQ8tL2JXnvF_p77yF0qnPqM5q7WHFhYya9jm1GRAxIgVupEoFViHe-uxe9PrtJebqELuaxMIFWWdv-yqaX1rpuadfabI8Hg_Yj7HEG7gwcmuKwltIGWiZUC1jay53r2979wiBTWtW2hf5xEPgK5KkGKRvPcHJejhOnv7moH8a69EDddbRWQ8eoU73dBloqhpto5aoszfu-heRDoFhE_mX0FgESLTI7CZTmKDDbn6PwTVWyiCiksCxvJQF8so363cuni15cl0WIM8A206BGLLzKnQXnKi13JGdOWCotQCOGvWS5VkR7JR3LsVeeYs8ybrX3gjgYYwc1h6NhsYsiIQUvEl1IhR0TmFhPiSNYOk8pnOPUHmJzTZiszhkeSle8mAU5LCjQBAUanJhSgSbdQ62F2LhKmvGXgJqr2XybfQOG_S_Rk_m0GNgZ4XeHHRaj2cTAySmhAPd-70GEpppzuf__xx-g1YqVFq5D1Jy-zoojgClTd4warY_kuF6Mnyy93-8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9TEb2Inzg_e_Cgh7q0-exRxDl120En9BaStpHB2IabiBf_dl_SbkNBBKFQCC9p-5L33i_0l_cQOktyYjOSm1AyrkMqbBLqLOYhIAWmhYw4lu68c6fLW8_0PmVpDV3PzsI4WmXl-0uf7r111dKotNkY9_uNJ7BxCuEMAppksJbSJbRCwXyddV5-LngehJSVbUE6dOKLYzzlEL7xHEcXfpQw_S1A_XDVPv40N9FGBRyDq_LdtlCtGG6j1VtfmPdjB4lHR7AI7GD0HgAOLTI9cYTmwPHaXwL3RWWqiMAlsPQ3T_-e7KLn5k3vuhVWRRHCDJDN1CkRcytzoyG0Cs1MnFPDNREagBHFVtA8kXFipTA0x1Zagi3NmE6s5bGBMfbQ8nA0LPZRwAVnRZQUQmJDOY61JbGJsTCWENjFyTqiM02orMoY7gpXDNScGuYUqJwCFY6UV6BK6-hy3m1cpsz4q4OcqVl9m3sFbv2vrqezaVFgF-5nhx4Wo7eJgn1TRADs_S4R84QkjImD_z_-FK21ep22at91Hw7ReslPc9cRWp6-vhXHAFim5sQvyC_xGeCz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+flow+forecasting+using+artificial+neural+networks&rft.jtitle=Physics+and+chemistry+of+the+earth.+Part+B%2C+Hydrology%2C+oceans+and+atmosphere&rft.au=Dibike%2C+Y.B.&rft.au=Solomatine%2C+D.P.&rft.date=2001&rft.pub=Elsevier+Ltd&rft.issn=1464-1909&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2FS1464-1909%2801%2985005-X&rft.externalDocID=S146419090185005X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-1909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-1909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-1909&client=summon |