River flow forecasting using artificial neural networks

River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfa...

Full description

Saved in:
Bibliographic Details
Published inPhysics and chemistry of the earth. Part B, Hydrology, oceans and atmosphere Vol. 26; no. 1; pp. 1 - 7
Main Authors Dibike, Y.B., Solomatine, D.P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the understanding of hydrological processes, there are many practical situations where the main concern is with making accurate predictions at specific locations. In such situation it is preferred to implement a simple “black box” (data-driven, or machine learning) model to identify a direct mapping between the inputs and outputs without detailed consideration of the internal structure of the physical process. Artificial neural networks (ANNs) is probably the most successful machine learning technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach understanding as to the nature of the phenomena. In this study the applicability of ANNs for downstream flow forecasting in the Apure river basin (Venezuela) was investigated. Two types of ANN architectures, namely multi-layer perceptron network (MLP) and a radial basis function network (RBF) were implemented. The performances of these networks were compared with a conceptual rainfall-runoff model and they were found to be slightly better for this river flow-forecasting problem.
AbstractList River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the understanding of hydrological processes, there are many practical situations where the main concern is with making accurate predictions at specific locations. In such situation it is preferred to implement a simple "black box" (data-driven, or machine learning) model to identify a direct mapping between the inputs and outputs without detailed consideration of the internal structure of the physical process. Artificial neural networks (ANNs) is probably the most successful machine learning technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach understanding as to the nature of the phenomena. In this study the applicability of ANNs for downstream flow forecasting in the Apure river basin (Venezuela) was investigated. Two types of ANN architectures, namely multi-layer perceptron network (MLP) and a radial basis function network (RBF) were implemented. The performances of these networks were compared with a conceptual rainfall-runoff model and they were found to be slightly better for this river flow-forecasting problem.
Author Solomatine, D.P.
Dibike, Y.B.
Author_xml – sequence: 1
  givenname: Y.B.
  surname: Dibike
  fullname: Dibike, Y.B.
– sequence: 2
  givenname: D.P.
  surname: Solomatine
  fullname: Solomatine, D.P.
BookMark eNqFkEtLAzEUhbOoYFv9CcKsRBejec8MLkSKLygIPqC7kMkkEp0mNcm0-O-dacWFm27ugcv5zuKbgJHzTgNwguAFgohfviDKaY4qWJ1BdF4yCFm-GIHx3_sQTGL8gBASgukYFM92rUNmWr_JjA9ayZise8-6OFwZkjVWWdlmTndhG2njw2c8AgdGtlEf_-YUvN3dvs4e8vnT_ePsZp4rSljKCeaQm7KpJea8kKzGDa25JIWkmFBoCtpUJa5MWdS0gaY0BBqqmKyM4bjuN6bgdLe7Cv6r0zGJpY1Kt6102ndRYF6RirFibxGVGBFOh0W2K6rgYwzaiFWwSxm-BYJicCi2DsUgS0Aktg7Foueu_nHKJpmsdylI2-6lr3e07mWtrQ4iKqud0o3tpSfReLtn4QeqLI-L
CitedBy_id crossref_primary_10_1016_j_envsoft_2020_104926
crossref_primary_10_1111_j_1752_1688_2011_00587_x
crossref_primary_10_1080_02626667_2016_1154151
crossref_primary_10_3390_app10238670
crossref_primary_10_3390_w12051371
crossref_primary_10_1016_j_eswa_2008_09_053
crossref_primary_10_1061__ASCE_HE_1943_5584_0000958
crossref_primary_10_2166_nh_2017_041
crossref_primary_10_1134_S0097807818050135
crossref_primary_10_1038_s41598_024_78012_2
crossref_primary_10_1016_j_ecolmodel_2022_110204
crossref_primary_10_1007_s11269_012_0096_z
crossref_primary_10_5194_esurf_8_809_2020
crossref_primary_10_1016_j_jhydrol_2010_06_033
crossref_primary_10_1016_j_jhydrol_2013_10_017
crossref_primary_10_1088_1755_1315_867_1_012006
crossref_primary_10_1007_s00704_021_03817_4
crossref_primary_10_1007_s12665_015_4047_x
crossref_primary_10_1016_j_jhydrol_2024_131266
crossref_primary_10_1007_s11600_021_00620_7
crossref_primary_10_1007_s12517_021_08778_6
crossref_primary_10_1002_hyp_6592
crossref_primary_10_5194_nhess_20_1149_2020
crossref_primary_10_1016_j_jhydrol_2024_131383
crossref_primary_10_1080_02705060_2006_9664125
crossref_primary_10_1016_j_advwatres_2019_103471
crossref_primary_10_1029_2020WR028392
crossref_primary_10_1007_s12205_022_0488_4
crossref_primary_10_3390_molecules27185762
crossref_primary_10_2166_nh_2017_108
crossref_primary_10_1016_j_asoc_2013_04_014
crossref_primary_10_1080_23249676_2015_1072851
crossref_primary_10_1007_s11831_017_9224_5
crossref_primary_10_1016_j_advwatres_2005_11_012
crossref_primary_10_26634_jfet_13_4_14434
crossref_primary_10_1186_s40645_023_00550_6
crossref_primary_10_1080_15715124_2014_1003381
crossref_primary_10_3923_jas_2005_368_372
crossref_primary_10_1061__ASCE_HE_1943_5584_0001822
crossref_primary_10_5194_esurf_13_167_2025
crossref_primary_10_3390_hydrology8020087
crossref_primary_10_1016_j_advengsoft_2008_12_001
crossref_primary_10_1016_j_jhydrol_2022_128550
crossref_primary_10_1007_s12145_022_00913_5
crossref_primary_10_17221_90_2020_JFS
crossref_primary_10_1016_j_envsoft_2016_08_013
crossref_primary_10_1007_s11069_021_04968_3
crossref_primary_10_5194_hess_17_2827_2013
crossref_primary_10_1029_2019WR025656
crossref_primary_10_1016_j_proeng_2016_11_031
crossref_primary_10_3923_jas_2010_1006_1010
crossref_primary_10_1007_s12205_017_1514_9
crossref_primary_10_1016_j_jenvman_2024_120404
crossref_primary_10_1134_S0097807818030041
crossref_primary_10_1007_s11431_010_4205_z
crossref_primary_10_1016_j_agwat_2011_12_005
crossref_primary_10_1029_2006WR005383
crossref_primary_10_3390_su151310543
crossref_primary_10_1007_s11053_014_9235_y
crossref_primary_10_1016_j_cageo_2012_02_031
crossref_primary_10_11001_jksww_2012_26_4_547
crossref_primary_10_1016_j_jhydrol_2011_01_017
crossref_primary_10_1680_wama_2010_163_4_175
crossref_primary_10_1029_2005WR004303
crossref_primary_10_1061__ASCE_IR_1943_4774_0000197
crossref_primary_10_17714_gumusfenbil_311188
crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_491
crossref_primary_10_3390_w13121696
crossref_primary_10_1007_s12145_015_0247_x
crossref_primary_10_2166_hydro_2019_068
crossref_primary_10_1007_s12665_021_09625_3
crossref_primary_10_1016_j_jhydrol_2018_01_035
crossref_primary_10_5194_hess_25_2997_2021
crossref_primary_10_3390_w11122633
crossref_primary_10_1007_s00521_016_2367_8
crossref_primary_10_5194_hess_12_123_2008
crossref_primary_10_7132_jrcsa_KJ00004364678
crossref_primary_10_1002_hyp_1492
crossref_primary_10_1016_j_pce_2004_12_001
crossref_primary_10_1061__ASCE_1084_0699_2007_12_1_113
crossref_primary_10_5194_hess_14_1931_2010
crossref_primary_10_1061__ASCE_0733_9496_2005_131_2_135
crossref_primary_10_5194_hess_16_4417_2012
crossref_primary_10_1007_s11269_021_02971_8
crossref_primary_10_1111_j_1747_6593_2012_00337_x
crossref_primary_10_1016_j_jhydrol_2008_01_023
crossref_primary_10_1007_s40808_017_0323_y
crossref_primary_10_1002_hyp_6812
crossref_primary_10_1051_e3sconf_202234704005
crossref_primary_10_5004_dwt_2017_21510
crossref_primary_10_1007_s11269_019_02343_3
crossref_primary_10_1007_s12665_015_4054_y
crossref_primary_10_1016_j_csite_2023_103086
crossref_primary_10_1016_j_matcom_2006_09_003
crossref_primary_10_1016_j_acags_2024_100181
crossref_primary_10_1002_ird_1804
crossref_primary_10_3390_w14193012
crossref_primary_10_1007_s00521_013_1469_9
crossref_primary_10_1016_j_asej_2016_01_009
crossref_primary_10_1016_j_scitotenv_2019_07_157
crossref_primary_10_1007_s00704_021_03863_y
crossref_primary_10_26833_ijeg_1125412
crossref_primary_10_38016_jista_979285
crossref_primary_10_1016_j_molliq_2022_119901
crossref_primary_10_1007_s00703_019_00679_4
crossref_primary_10_1016_j_asoc_2017_03_015
crossref_primary_10_1007_s11269_015_1103_y
crossref_primary_10_1109_ACCESS_2020_3040942
crossref_primary_10_2166_nh_2022_044
crossref_primary_10_1007_s40996_019_00238_2
crossref_primary_10_3923_ajaps_2009_150_159
crossref_primary_10_1016_j_jhydrol_2021_126433
crossref_primary_10_1080_02626667_2014_944525
crossref_primary_10_1623_hysj_52_3_397
crossref_primary_10_1080_02626667_2014_986486
crossref_primary_10_18100_ijamec_1308666
crossref_primary_10_1002_ird_454
crossref_primary_10_1016_j_wsee_2024_09_004
crossref_primary_10_1002_rra_4144
crossref_primary_10_3390_hydrology9010005
crossref_primary_10_3389_frwa_2020_562304
crossref_primary_10_3390_w13010002
crossref_primary_10_3390_su14106319
Cites_doi 10.1080/02626669809492102
10.1029/95WR01955
10.1080/00221689909498303
10.1007/BF00872489
10.1023/A:1008334632441
10.1080/00221689609498476
10.1080/02626667909491876
ContentType Journal Article
Copyright 2000
Copyright_xml – notice: 2000
DBID AAYXX
CITATION
7TG
7UA
C1K
KL.
8FD
FR3
KR7
DOI 10.1016/S1464-1909(01)85005-X
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Meteorological & Geoastrophysical Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EndPage 7
ExternalDocumentID 10_1016_S1464_1909_01_85005_X
S146419090185005X
GeographicLocations Venezuela, Apure R
GeographicLocations_xml – name: Venezuela, Apure R
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
IMUCA
KOM
M41
MO0
O-L
O9-
OAUVE
OZT
P-9
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEW
SPC
SSE
SSZ
T5K
UHS
XPP
ZMT
~02
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7TG
7UA
C1K
KL.
8FD
FR3
KR7
ID FETCH-LOGICAL-c435t-32606f8dba2667a5b2d4b6a37a42340f74d9829f87b4d0f8f30f4c5a9ff62bc43
IEDL.DBID AIKHN
ISSN 1464-1909
IngestDate Fri Jul 11 00:10:21 EDT 2025
Fri Jul 11 11:22:20 EDT 2025
Tue Jul 01 00:54:29 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-32606f8dba2667a5b2d4b6a37a42340f74d9829f87b4d0f8f30f4c5a9ff62bc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 18213644
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_26939557
proquest_miscellaneous_18213644
crossref_primary_10_1016_S1464_1909_01_85005_X
crossref_citationtrail_10_1016_S1464_1909_01_85005_X
elsevier_sciencedirect_doi_10_1016_S1464_1909_01_85005_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001
2001-1-00
20010101
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 2001
PublicationDecade 2000
PublicationTitle Physics and chemistry of the earth. Part B, Hydrology, oceans and atmosphere
PublicationYear 2001
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (BIB11) 1995
Solomatine, Avila Torres (BIB13) 1996
Karayiannis, Venetsanopoulos (BIB7) 1993
Sugawara (BIB15) 1978; 24
Dibike, Solomatine, Abbott (BIB2) 1999; 37
Dibike, Solomatine, Velickov (BIB3) 2000
Grabec (BIB4) 1990; 2
Lorrai, Sechi (BIB8) 1995; 9
Mitchell (BIB10) 1997
(BIB14) 1992
Solomatine (BIB12) 1999; 14
Mason, Price, Tem'me (BIB9) 1996; 34
Hall, Minns (BIB5) 1993
Dawson, Wilby (BIB1) 1998; 43
Hsu, Gupta, Sorooshian (BIB6) 1995; 31
Dibike (10.1016/S1464-1909(01)85005-X_BIB3) 2000
Hsu (10.1016/S1464-1909(01)85005-X_BIB6) 1995; 31
Solomatine (10.1016/S1464-1909(01)85005-X_BIB13) 1996
Dawson (10.1016/S1464-1909(01)85005-X_BIB1) 1998; 43
Grabec (10.1016/S1464-1909(01)85005-X_BIB4) 1990; 2
(10.1016/S1464-1909(01)85005-X_BIB14) 1992
Sugawara (10.1016/S1464-1909(01)85005-X_BIB15) 1978; 24
Solomatine (10.1016/S1464-1909(01)85005-X_BIB12) 1999; 14
Lorrai (10.1016/S1464-1909(01)85005-X_BIB8) 1995; 9
Dibike (10.1016/S1464-1909(01)85005-X_BIB2) 1999; 37
Mason (10.1016/S1464-1909(01)85005-X_BIB9) 1996; 34
Hall (10.1016/S1464-1909(01)85005-X_BIB5) 1993
(10.1016/S1464-1909(01)85005-X_BIB11) 1995
Karayiannis (10.1016/S1464-1909(01)85005-X_BIB7) 1993
Mitchell (10.1016/S1464-1909(01)85005-X_BIB10) 1997
References_xml – volume: 34
  start-page: 537
  year: 1996
  end-page: 548
  ident: BIB9
  article-title: A neural network model of rainfall-runoff using radial basis functions
  publication-title: J. of Hydraulic Research
– start-page: 5.51
  year: 1993
  end-page: 5.57
  ident: BIB5
  article-title: Rainfall-runoff modelling as a problem in artificial intelligence: experience with a neural network
  publication-title: Proc. BHS 4
– start-page: 201
  year: 1996
  end-page: 206
  ident: BIB13
  article-title: Neural network approximation of a hydrodynamic model in optimizing reservoir operation
  publication-title: Proceedings of the second international conference on hydroinformatics
– year: 2000
  ident: BIB3
  article-title: Support Vector Machines: Review and Applications in Civil Engineering
  publication-title: Proc. of the 2nd Joint Workshop on Application of AI in Civil Engineering. Cottbus, Germany
– year: 1997
  ident: BIB10
  publication-title: Machine learning
– volume: 43
  start-page: 47
  year: 1998
  end-page: 66
  ident: BIB1
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrological Sci. J
– volume: 37
  start-page: 147
  year: 1999
  end-page: 161
  ident: BIB2
  article-title: On the encapsulation of numerical-hydraulic models in artificial neural network
  publication-title: J. of Hydraulic Research
– volume: 2
  start-page: 529
  year: 1990
  end-page: 532
  ident: BIB4
  article-title: Emperical modelling of natural phenomena by a self-organizing system
  publication-title: Proc. Neural Network Conf. 90
– volume: 31
  start-page: 2517
  year: 1995
  end-page: 2530
  ident: BIB6
  article-title: Artificial neural network modelling of the rainfall-runoff process
  publication-title: Water Resources Research
– volume: 9
  start-page: 299
  year: 1995
  end-page: 313
  ident: BIB8
  article-title: Neural Nets for Modelling Rainfall-Runoff Transformations
  publication-title: Water resources management
– volume: 24
  year: 1978
  ident: BIB15
  article-title: Automatic calibration of the tank model
  publication-title: Hydrologic Sciences Bulletin
– year: 1995
  ident: BIB11
  publication-title: Application of Neural Networks
– volume: 14
  start-page: 55
  year: 1999
  end-page: 78
  ident: BIB12
  article-title: Two strategies of adaptive cluster covering with descent and their comparison to other algorithms
  publication-title: J. of Global Optimization
– start-page: 471
  year: 1992
  end-page: 500
  ident: BIB14
  publication-title: Prediction of Chaotic Dynamical Phenomena by a Neural Network
– year: 1993
  ident: BIB7
  publication-title: Artificial Neural Networks: Learning Algorithms. Performance Evaluation, and Applications
– volume: 43
  start-page: 47
  issue: 1
  year: 1998
  ident: 10.1016/S1464-1909(01)85005-X_BIB1
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrological Sci. J
  doi: 10.1080/02626669809492102
– start-page: 5.51
  year: 1993
  ident: 10.1016/S1464-1909(01)85005-X_BIB5
  article-title: Rainfall-runoff modelling as a problem in artificial intelligence: experience with a neural network
  publication-title: Proc. BHS 4th National Hydrology Symposium
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  ident: 10.1016/S1464-1909(01)85005-X_BIB6
  article-title: Artificial neural network modelling of the rainfall-runoff process
  publication-title: Water Resources Research
  doi: 10.1029/95WR01955
– year: 1997
  ident: 10.1016/S1464-1909(01)85005-X_BIB10
– volume: 37
  start-page: 147
  issue: 2
  year: 1999
  ident: 10.1016/S1464-1909(01)85005-X_BIB2
  article-title: On the encapsulation of numerical-hydraulic models in artificial neural network
  publication-title: J. of Hydraulic Research
  doi: 10.1080/00221689909498303
– volume: 9
  start-page: 299
  year: 1995
  ident: 10.1016/S1464-1909(01)85005-X_BIB8
  article-title: Neural Nets for Modelling Rainfall-Runoff Transformations
  publication-title: Water resources management
  doi: 10.1007/BF00872489
– year: 2000
  ident: 10.1016/S1464-1909(01)85005-X_BIB3
  article-title: Support Vector Machines: Review and Applications in Civil Engineering
  publication-title: Proc. of the 2nd Joint Workshop on Application of AI in Civil Engineering. Cottbus, Germany
– volume: 14
  start-page: 55
  issue: 1
  year: 1999
  ident: 10.1016/S1464-1909(01)85005-X_BIB12
  article-title: Two strategies of adaptive cluster covering with descent and their comparison to other algorithms
  publication-title: J. of Global Optimization
  doi: 10.1023/A:1008334632441
– start-page: 471
  year: 1992
  ident: 10.1016/S1464-1909(01)85005-X_BIB14
– year: 1993
  ident: 10.1016/S1464-1909(01)85005-X_BIB7
– volume: 34
  start-page: 537
  year: 1996
  ident: 10.1016/S1464-1909(01)85005-X_BIB9
  article-title: A neural network model of rainfall-runoff using radial basis functions
  publication-title: J. of Hydraulic Research
  doi: 10.1080/00221689609498476
– start-page: 201
  year: 1996
  ident: 10.1016/S1464-1909(01)85005-X_BIB13
  article-title: Neural network approximation of a hydrodynamic model in optimizing reservoir operation
  publication-title: Proceedings of the second international conference on hydroinformatics
– volume: 2
  start-page: 529
  year: 1990
  ident: 10.1016/S1464-1909(01)85005-X_BIB4
  article-title: Emperical modelling of natural phenomena by a self-organizing system
  publication-title: Proc. Neural Network Conf. 90
– year: 1995
  ident: 10.1016/S1464-1909(01)85005-X_BIB11
– volume: 24
  issue: 3
  year: 1978
  ident: 10.1016/S1464-1909(01)85005-X_BIB15
  article-title: Automatic calibration of the tank model
  publication-title: Hydrologic Sciences Bulletin
  doi: 10.1080/02626667909491876
SSID ssj0003324
Score 1.8365682
Snippet River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
Title River flow forecasting using artificial neural networks
URI https://dx.doi.org/10.1016/S1464-1909(01)85005-X
https://www.proquest.com/docview/18213644
https://www.proquest.com/docview/26939557
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9uIngRP_HbHjzooVua7xyHOKeiB3XQW0jaRgayDbchXvzbfWm7iYIIQqEQ8tL2JXnvF_p77yF0qnPqM5q7WHFhYya9jm1GRAxIgVupEoFViHe-uxe9PrtJebqELuaxMIFWWdv-yqaX1rpuadfabI8Hg_Yj7HEG7gwcmuKwltIGWiZUC1jay53r2979wiBTWtW2hf5xEPgK5KkGKRvPcHJejhOnv7moH8a69EDddbRWQ8eoU73dBloqhpto5aoszfu-heRDoFhE_mX0FgESLTI7CZTmKDDbn6PwTVWyiCiksCxvJQF8so363cuni15cl0WIM8A206BGLLzKnQXnKi13JGdOWCotQCOGvWS5VkR7JR3LsVeeYs8ybrX3gjgYYwc1h6NhsYsiIQUvEl1IhR0TmFhPiSNYOk8pnOPUHmJzTZiszhkeSle8mAU5LCjQBAUanJhSgSbdQ62F2LhKmvGXgJqr2XybfQOG_S_Rk_m0GNgZ4XeHHRaj2cTAySmhAPd-70GEpppzuf__xx-g1YqVFq5D1Jy-zoojgClTd4warY_kuF6Mnyy93-8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9TEb2Inzg_e_Cgh7q0-exRxDl120En9BaStpHB2IabiBf_dl_SbkNBBKFQCC9p-5L33i_0l_cQOktyYjOSm1AyrkMqbBLqLOYhIAWmhYw4lu68c6fLW8_0PmVpDV3PzsI4WmXl-0uf7r111dKotNkY9_uNJ7BxCuEMAppksJbSJbRCwXyddV5-LngehJSVbUE6dOKLYzzlEL7xHEcXfpQw_S1A_XDVPv40N9FGBRyDq_LdtlCtGG6j1VtfmPdjB4lHR7AI7GD0HgAOLTI9cYTmwPHaXwL3RWWqiMAlsPQ3T_-e7KLn5k3vuhVWRRHCDJDN1CkRcytzoyG0Cs1MnFPDNREagBHFVtA8kXFipTA0x1Zagi3NmE6s5bGBMfbQ8nA0LPZRwAVnRZQUQmJDOY61JbGJsTCWENjFyTqiM02orMoY7gpXDNScGuYUqJwCFY6UV6BK6-hy3m1cpsz4q4OcqVl9m3sFbv2vrqezaVFgF-5nhx4Wo7eJgn1TRADs_S4R84QkjImD_z_-FK21ep22at91Hw7ReslPc9cRWp6-vhXHAFim5sQvyC_xGeCz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=River+flow+forecasting+using+artificial+neural+networks&rft.jtitle=Physics+and+chemistry+of+the+earth.+Part+B%2C+Hydrology%2C+oceans+and+atmosphere&rft.au=Dibike%2C+Y.B.&rft.au=Solomatine%2C+D.P.&rft.date=2001&rft.pub=Elsevier+Ltd&rft.issn=1464-1909&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2FS1464-1909%2801%2985005-X&rft.externalDocID=S146419090185005X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-1909&client=summon