Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study

•Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types. Breast cancer (BC) development is caused by the interaction...

Full description

Saved in:
Bibliographic Details
Published inJournal of biotechnology Vol. 299; pp. 1 - 7
Main Authors Danková, Zuzana, Žúbor, Pavol, Grendár, Marián, Zelinová, Katarína, Jagelková, Marianna, Stastny, Igor, Kapinová, Andrea, Vargová, Daniela, Kasajová, Petra, Dvorská, Dana, Kalman, Michal, Danko, Ján, Lasabová, Zora
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types. Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
AbstractList Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014-3.834, p = 0.049), CT 1.771 (95%CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028-9.566, p = 0.048), AC 1.760 (95%CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014-3.834, p = 0.049), CT 1.771 (95%CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028-9.566, p = 0.048), AC 1.760 (95%CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
•Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types. Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model.The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values.Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity.Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
Author Grendár, Marián
Jagelková, Marianna
Kapinová, Andrea
Zelinová, Katarína
Dvorská, Dana
Vargová, Daniela
Kalman, Michal
Danková, Zuzana
Žúbor, Pavol
Lasabová, Zora
Stastny, Igor
Kasajová, Petra
Danko, Ján
Author_xml – sequence: 1
  givenname: Zuzana
  surname: Danková
  fullname: Danková, Zuzana
  email: dankova@jfmed.uniba.sk
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
– sequence: 2
  givenname: Pavol
  surname: Žúbor
  fullname: Žúbor, Pavol
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
– sequence: 3
  givenname: Marián
  surname: Grendár
  fullname: Grendár, Marián
  organization: Bioinformatic Unit, Biomedical Center Martin, JFMED UK, Slovakia
– sequence: 4
  givenname: Katarína
  surname: Zelinová
  fullname: Zelinová, Katarína
  organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia
– sequence: 5
  givenname: Marianna
  surname: Jagelková
  fullname: Jagelková, Marianna
  organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia
– sequence: 6
  givenname: Igor
  surname: Stastny
  fullname: Stastny, Igor
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
– sequence: 7
  givenname: Andrea
  surname: Kapinová
  fullname: Kapinová, Andrea
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
– sequence: 8
  givenname: Daniela
  surname: Vargová
  fullname: Vargová, Daniela
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
– sequence: 9
  givenname: Petra
  surname: Kasajová
  fullname: Kasajová, Petra
  organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia
– sequence: 10
  givenname: Dana
  surname: Dvorská
  fullname: Dvorská, Dana
  organization: Division of Molecular Medicine, Biomedical Center Martin, JFMED UK, Slovakia
– sequence: 11
  givenname: Michal
  surname: Kalman
  fullname: Kalman, Michal
  organization: Department of Pathology, Martin University Hospital, Slovakia
– sequence: 12
  givenname: Ján
  surname: Danko
  fullname: Danko, Ján
  organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia
– sequence: 13
  givenname: Zora
  surname: Lasabová
  fullname: Lasabová, Zora
  organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31002855$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAYhi00xLrBTwD5yCWZ7cSJAwc0yhiTJoHEOFvO5y-buybebKdS_z2u2l64DPlgWXre19L7nJGTyU9IyHvOSs54c7EqV73zCaEUjHclq0vG61dkwVVbFbVqqhOyyJwqeCObU3IW44oxVneSvyGnFWdMKCkXZPMroHWQ3AapAZiDgS31A00PSPuAJiYKZgIM9B4nTA5ocPGRjt7imvYmoqV-oujuHzLoxzE_juDGBGemFD_Ru1z29XL5-Pvm2xWNabbbt-T1YNYR3x3uc_Ln-9Xd8kdx-_P6Znl5W0BdyVQICy2oToHtrRhaMzTdYBolVWskShAMKtvYwVaVajgfmhqFEQIZWC4USKjOycd971PwzzPGpEcXAddrM6GfoxaiamW1O_-Bct7VeVmZ0Q8HdO5HtPopuNGErT7OmoHPewCCjzHgoMElk5yfUjBurTnTO4l6pQ8S9U6iZrXOEnNa_pM-fvBS7ss-h3nRjcOgIzjM8qwLCElb715o-Au06rmp
CitedBy_id crossref_primary_10_1080_13543784_2019_1672655
crossref_primary_10_1016_j_ejphar_2020_173201
crossref_primary_10_1097_MD_0000000000031548
Cites_doi 10.1016/j.nurpra.2016.07.027
10.1038/bjc.2011.461
10.3892/mmr.2016.5633
10.1016/j.cancergen.2017.09.003
10.1371/journal.pone.0110426
10.3390/cancers10090299
10.1016/j.molonc.2010.04.011
10.4149/gpb_2017033
10.1016/j.arcmed.2013.08.006
10.1200/JCO.2016.69.8944
10.1038/srep12773
10.3389/fonc.2017.00211
10.1007/s13167-017-0086-6
10.1186/s12885-015-2036-9
10.1093/annonc/mdv298
10.1038/onc.2011.408
10.1007/s10549-012-2359-z
10.1001/jama.2017.7112
10.1007/s13167-017-0116-4
10.1007/s00520-017-3902-6
10.1146/annurev-publhealth-040617-014101
10.1007/s40137-018-0204-y
10.1007/s10549-012-2234-y
10.1038/s41598-018-28637-x
10.1093/jnci/djq388
10.1093/jnci/djv042
10.1038/nature05887
10.1186/s13058-016-0759-4
10.1038/s41598-017-12703-x
10.1038/ejhg.2008.212
10.1038/ng.3242
10.1038/ng.318
10.1016/j.gde.2015.01.004
10.1007/s10549-013-2610-2
10.1038/srep40963
10.1002/sim.1668
10.1093/aje/kwx250
10.5306/wjco.v5.i3.283
10.1016/j.jacr.2016.10.003
10.1093/annonc/mdv022
10.1038/nrclinonc.2016.90
10.3322/caac.21492
10.1159/000376600
10.1186/s13058-017-0929-z
10.1007/s10549-017-4325-2
10.4103/ijmpo.ijmpo_168_16
10.1023/B:JOMG.0000048770.90334.3b
10.1016/j.ajog.2018.03.032
10.1007/s10549-017-4531-y
10.1093/jpepsy/jst062
10.1016/j.soncn.2015.02.007
10.1007/s10549-017-4247-z
10.1038/bjc.2013.730
10.7326/0003-4819-156-9-201205010-00006
10.1186/bcr1750
10.1159/000488717
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jbiotec.2019.04.014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4863
EndPage 7
ExternalDocumentID 31002855
10_1016_j_jbiotec_2019_04_014
S0168165619301282
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
ZMT
~02
~G-
~KM
.GJ
29K
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLW
HMG
HVGLF
HZ~
R2-
SBG
SEW
SIN
SSH
WUQ
XPP
Y6R
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c435t-2dc7c898cdbd2f7af69fa68587a5e5c20c3d6dfd338611f64e2a22e0cd128c5c3
IEDL.DBID .~1
ISSN 0168-1656
1873-4863
IngestDate Fri Jul 11 06:40:48 EDT 2025
Fri Jul 11 14:54:06 EDT 2025
Mon Jul 21 05:45:50 EDT 2025
Tue Jul 01 04:36:55 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Fri Feb 23 02:19:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Risk model
Random Forest algorithm
Breast cancer
SNP
AUC
breast cancer
risk model
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-2dc7c898cdbd2f7af69fa68587a5e5c20c3d6dfd338611f64e2a22e0cd128c5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31002855
PQID 2211944865
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2237535353
proquest_miscellaneous_2211944865
pubmed_primary_31002855
crossref_citationtrail_10_1016_j_jbiotec_2019_04_014
crossref_primary_10_1016_j_jbiotec_2019_04_014
elsevier_sciencedirect_doi_10_1016_j_jbiotec_2019_04_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-20
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-20
  day: 20
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of biotechnology
PublicationTitleAlternate J Biotechnol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Thompson, Easton (bib0255) 2004; 9
Zheng, Long, Gao, Li, Zheng, Xiang, Wen, Levy, Deming, Haines, Gu, Fair, Cai, Lu, Shu (bib0305) 2009; 41
Li, Rowley, Thompson, McInerny, Devereux, Amarasinghe, Zethoven, Lupat, Goode, Li, Trainer, Gorringe, James, Campbell (bib0140) 2018; 20
Schon, Tischkowitz (bib0220) 2018; 167
Shiovitz, Korde (bib0235) 2015; 26
Tyrer, Duffy, Cuzick (bib0270) 2004; 23
Mealiffe, Stokowski, Rhees, Prentice, Pettinger, Hinds (bib0165) 2010; 102
Rosenthal, Evans, Kidd, Brown, Gorringe, van Orman, Manley (bib0210) 2017; 14
Skol, Sasaki, Onel (bib0245) 2016; 18
Tung, Domchek, Stadler, Nathanson, Couch, Garber, Offit, Robson (bib0265) 2016; 13
Wirtz, Baumann (bib0285) 2018; 13
Evans, Howell (bib0070) 2007; 9
Antoniou, Casadei, Heikkinen (bib0010) 2014; 371
National comprehensive cancer network (bib0185) 2016
Agnoli, Grioni, Pala, Allione, Matullo, Gaetano, Tagliabue, Sieri, Krogh (bib0005) 2017; 7
Ripperger, Gadzicki, Meindl, Schlegelberger (bib0205) 2009; 17
Konieczka, Erb (bib0125) 2017; 8
Mazhar, Jamil, Bashir, Ahmad, Masood, Tanyir, Rashid, Waheed, Afzal, Tariq (bib0160) 2016; 14
Cuzick, Brentnall, Segal, Byers, Reuter, Detre, Lopez-Knowles, Sestak, Howell, Powles, Newman, Dowsett (bib0035) 2017; 35
Kuchenbaecker, Hopper, Barne (bib0130) 2017; 317
Dite, Mahmoodi, Bickerstaffe, Hammet, Macinnis, Tsimiklis, Dowty, Apicella, Phillips, Giles, Southey, Hopper (bib0055) 2013; 139
Chan, Ji, Liaw, Yap, Law, Yoon, Wong, Yong, Wong, Ng, Ong, Madhukumar, Oey, Tan, Li, Ang, Ho, Lee (bib0025) 2012; 136
Michailidou, Beesley, Lindstrom, Canisius, Dennis, Lush, Maranian, Bolla, Wang, Shah (bib0170) 2015; 47
Harlid, Ivarsson, Butt, Grzybowska, Eyfjörd, Lenner, Försti, Hemminki, Manjer, Dillner, Carlson (bib0100) 2012; 106
Shah, Rosso, Nathanson (bib0230) 2014; 5
Westhoff, Pike (bib0280) 2018; 219
Youngstrom (bib0295) 2014; 39
Hoffmann, Mao, Brown-Clay, Moreau, Absi, Wurzer, Sousa, Schmitt, Berchem, Janji, Thomas (bib0115) 2018; 8
Nelson, Zakher, Cantor, Fu, Griffin, O´Meara, Buist, Kerlikowske, van Ravensteyn, Trentham-Dietz (bib0190) 2012; 156
Dibaba, Braithwaite, Akinyemiju (bib0050) 2018; 10
Mavaddat, Antoniou, Easton, Garcia-Closas (bib0155) 2010; 4
Godet, Gilkes (bib0090) 2017; 4
Wani, Aziz, Ganaie, Mir (bib0275) 2017; 38
Deluche, Leobon, Desport, Venat-Bouvet, Usseglio, Tubiana-Mathieu (bib0045) 2017; 26
Golubnitschaja (bib0095) 2017; 8
Nagrani, Mhatre, Rajaraman, Chatterjee, Akbari, Boffetta, Brennan, Badwe, Gupta, Dikshit (bib0180) 2017; 7
Siddiqui, Chattopadhyay, Akhtar, Najm, Deo, Shukla, Husain (bib0240) 2014; 9
Murillo-Zamora, Moreno-Macías, Ziv, Romieu, Lazcano-Ponce, Angeles-Llerenas, Perez-Rodriguez, Vidal-Millán, Fejerman, Torres-Mejía (bib0175) 2013; 44
Rosenthal, Bernhisel, Brown, Kidd, Manley (bib0215) 2017; 218-219
Brewer, Jones, Schoemaker, Ashworth, Swerdlow (bib0020) 2017; 165
Li, Ro, Tchou (bib0145) 2018; 6
Gail (bib0085) 2015; 107
Zhang, Long (bib0300) 2015; 5
Easton, Pooley, Dunning, Pharoah, Thompson, Ponder (bib0060) 2007; 447
Jara, Gonzalez-Hormazabal, Cerceño, Di Capua, Reyes, Blanco, Bravo, Peralta, Gomez, Waugh, Margarit, Ibañez, Romero, Pakomio, Roizen (bib0120) 2013; 137
Lee, Cunningham, Kuchenbaecker, Mavaddat, Easton, Antoniou (bib0135) 2014; 110
Himes, Root, Gammon, Luthy (bib0110) 2016; 12
Fachal, Dunning (bib0075) 2015; 30
Fanale, Amodeo, Corsini, Rizzo, Bazan, Russo (bib0080) 2012; 31
Lynch, Venne, Berse (bib0150) 2015; 31
Park, Ziogas, Chang, Desai, Anton-Culver (bib0195) 2016; 16
Senkus, Kyriakides, Ohno, Penault-Llorca, Poortmans, Rutgers, Zackrisson, Cardoso, ESMO Guidelines Committee (bib0225) 2015; 26
Tobias, Akinkuolie, Chandler, Lawler, Manson, Buring, Ridker, Wang, Lee, Mora (bib0260) 2018; 187
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib0015) 2018; 68
Wu, Abbey, Liu, Ong, Peissig, Onitilo, Fan, Yuan, Burnside (bib0290) 2016; 27
Engel, Fischer (bib0065) 2015; 10
Hiat, Brody (bib0105) 2018; 39
Dankova, Zubor, Grendar, Kapinova, Zelinova, Jagelkova, Gondova, Dokus, Kalman, Lasabova, Danko (bib0040) 2017; 36
Team R: Core. R (bib0250) 2015
Cintolo-Gonzales, Braun, Blackford, Mazzola, Acar, Plichta, Griffin, Hughes (bib0030) 2017; 164
Rausch, Netzer, Hoegel, Pramsohler (bib0200) 2017; 7
Tyrer (10.1016/j.jbiotec.2019.04.014_bib0270) 2004; 23
Team R: Core. R (10.1016/j.jbiotec.2019.04.014_bib0250) 2015
Shah (10.1016/j.jbiotec.2019.04.014_bib0230) 2014; 5
Zheng (10.1016/j.jbiotec.2019.04.014_bib0305) 2009; 41
Shiovitz (10.1016/j.jbiotec.2019.04.014_bib0235) 2015; 26
Mazhar (10.1016/j.jbiotec.2019.04.014_bib0160) 2016; 14
Skol (10.1016/j.jbiotec.2019.04.014_bib0245) 2016; 18
Engel (10.1016/j.jbiotec.2019.04.014_bib0065) 2015; 10
Rausch (10.1016/j.jbiotec.2019.04.014_bib0200) 2017; 7
Tung (10.1016/j.jbiotec.2019.04.014_bib0265) 2016; 13
Cuzick (10.1016/j.jbiotec.2019.04.014_bib0035) 2017; 35
Siddiqui (10.1016/j.jbiotec.2019.04.014_bib0240) 2014; 9
Chan (10.1016/j.jbiotec.2019.04.014_bib0025) 2012; 136
Brewer (10.1016/j.jbiotec.2019.04.014_bib0020) 2017; 165
Antoniou (10.1016/j.jbiotec.2019.04.014_bib0010) 2014; 371
Wirtz (10.1016/j.jbiotec.2019.04.014_bib0285) 2018; 13
Dankova (10.1016/j.jbiotec.2019.04.014_bib0040) 2017; 36
Li (10.1016/j.jbiotec.2019.04.014_bib0145) 2018; 6
Evans (10.1016/j.jbiotec.2019.04.014_bib0070) 2007; 9
Ripperger (10.1016/j.jbiotec.2019.04.014_bib0205) 2009; 17
Zhang (10.1016/j.jbiotec.2019.04.014_bib0300) 2015; 5
Nagrani (10.1016/j.jbiotec.2019.04.014_bib0180) 2017; 7
Cintolo-Gonzales (10.1016/j.jbiotec.2019.04.014_bib0030) 2017; 164
Dibaba (10.1016/j.jbiotec.2019.04.014_bib0050) 2018; 10
Dite (10.1016/j.jbiotec.2019.04.014_bib0055) 2013; 139
Nelson (10.1016/j.jbiotec.2019.04.014_bib0190) 2012; 156
Hoffmann (10.1016/j.jbiotec.2019.04.014_bib0115) 2018; 8
Thompson (10.1016/j.jbiotec.2019.04.014_bib0255) 2004; 9
Deluche (10.1016/j.jbiotec.2019.04.014_bib0045) 2017; 26
National comprehensive cancer network (10.1016/j.jbiotec.2019.04.014_bib0185) 2016
Fachal (10.1016/j.jbiotec.2019.04.014_bib0075) 2015; 30
Gail (10.1016/j.jbiotec.2019.04.014_bib0085) 2015; 107
Hiat (10.1016/j.jbiotec.2019.04.014_bib0105) 2018; 39
Kuchenbaecker (10.1016/j.jbiotec.2019.04.014_bib0130) 2017; 317
Agnoli (10.1016/j.jbiotec.2019.04.014_bib0005) 2017; 7
Tobias (10.1016/j.jbiotec.2019.04.014_bib0260) 2018; 187
Fanale (10.1016/j.jbiotec.2019.04.014_bib0080) 2012; 31
Westhoff (10.1016/j.jbiotec.2019.04.014_bib0280) 2018; 219
Mavaddat (10.1016/j.jbiotec.2019.04.014_bib0155) 2010; 4
Youngstrom (10.1016/j.jbiotec.2019.04.014_bib0295) 2014; 39
Lee (10.1016/j.jbiotec.2019.04.014_bib0135) 2014; 110
Senkus (10.1016/j.jbiotec.2019.04.014_bib0225) 2015; 26
Rosenthal (10.1016/j.jbiotec.2019.04.014_bib0210) 2017; 14
Jara (10.1016/j.jbiotec.2019.04.014_bib0120) 2013; 137
Harlid (10.1016/j.jbiotec.2019.04.014_bib0100) 2012; 106
Lynch (10.1016/j.jbiotec.2019.04.014_bib0150) 2015; 31
Wu (10.1016/j.jbiotec.2019.04.014_bib0290) 2016; 27
Mealiffe (10.1016/j.jbiotec.2019.04.014_bib0165) 2010; 102
Li (10.1016/j.jbiotec.2019.04.014_bib0140) 2018; 20
Wani (10.1016/j.jbiotec.2019.04.014_bib0275) 2017; 38
Park (10.1016/j.jbiotec.2019.04.014_bib0195) 2016; 16
Easton (10.1016/j.jbiotec.2019.04.014_bib0060) 2007; 447
Rosenthal (10.1016/j.jbiotec.2019.04.014_bib0215) 2017; 218-219
Himes (10.1016/j.jbiotec.2019.04.014_bib0110) 2016; 12
Schon (10.1016/j.jbiotec.2019.04.014_bib0220) 2018; 167
Golubnitschaja (10.1016/j.jbiotec.2019.04.014_bib0095) 2017; 8
Michailidou (10.1016/j.jbiotec.2019.04.014_bib0170) 2015; 47
Murillo-Zamora (10.1016/j.jbiotec.2019.04.014_bib0175) 2013; 44
Godet (10.1016/j.jbiotec.2019.04.014_bib0090) 2017; 4
Bray (10.1016/j.jbiotec.2019.04.014_bib0015) 2018; 68
Konieczka (10.1016/j.jbiotec.2019.04.014_bib0125) 2017; 8
References_xml – volume: 187
  start-page: 705
  year: 2018
  end-page: 716
  ident: bib0260
  article-title: Markers of inflammation and incident breast cancer risk in the women’s health study
  publication-title: Am. J. Epidemiol.
– volume: 10
  start-page: E299
  year: 2018
  ident: bib0050
  article-title: Metabolic syndrome and the risk of breast cancer and subtypes by race, menopause and BMI
  publication-title: Cancers (Basel)
– year: 2015
  ident: bib0250
  article-title: A Language and Environment for Statistical Computing
– volume: 139
  start-page: 887
  year: 2013
  end-page: 896
  ident: bib0055
  article-title: Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model
  publication-title: Breast Cancer Res. Treat.
– volume: 26
  start-page: 1291
  year: 2015
  end-page: 1299
  ident: bib0235
  article-title: Genetics of breast cancer: a topic in evolution
  publication-title: Ann. Oncol.
– volume: 447
  start-page: 1087
  year: 2007
  end-page: 1093
  ident: bib0060
  article-title: Genome-wide association study identifies novel breast cancer susceptibility loci
  publication-title: Nature
– volume: 6
  start-page: 7
  year: 2018
  ident: bib0145
  article-title: Obesity, metabolic syndrome, and breast cancer: from prevention to intervention
  publication-title: Curr. Surg. Rep.
– volume: 107
  year: 2015
  ident: bib0085
  article-title: Twenty-five years of breast cancer risk models and their applications
  publication-title: J. Natl. Cancer Inst.
– volume: 9
  start-page: 221
  year: 2004
  end-page: 236
  ident: bib0255
  article-title: The genetic epidemiology of breast cancer genes
  publication-title: J. Mammary Gland Biol. Neoplasia
– volume: 30
  start-page: 32
  year: 2015
  end-page: 41
  ident: bib0075
  article-title: From candidate gene studies to GWAS and post-GWAS analyses in breast cancer
  publication-title: Curr. Opin. Genet. Dev.
– volume: 38
  start-page: 434
  year: 2017
  end-page: 439
  ident: bib0275
  article-title: Metabolic Syndrome and Breast Cancer Risk
  publication-title: Indian J Med Paediatr Oncol.
– volume: 23
  start-page: 1111
  year: 2004
  end-page: 1130
  ident: bib0270
  article-title: A breast cancer prediction model incorporating familial and personal risk factors
  publication-title: Stat. Med.
– volume: 317
  start-page: 2402
  year: 2017
  end-page: 2416
  ident: bib0130
  article-title: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers
  publication-title: JAMA
– volume: 156
  start-page: 635
  year: 2012
  end-page: 648
  ident: bib0190
  article-title: Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis
  publication-title: Ann. Intern. Med.
– volume: 136
  start-page: 209
  year: 2012
  end-page: 220
  ident: bib0025
  article-title: Associaton of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population
  publication-title: Breast Cancer Res. Treat.
– volume: 47
  start-page: 373
  year: 2015
  end-page: 380
  ident: bib0170
  article-title: Genome-wide association analysis of more than 120 000 individuals identifies 15 new susceptibility loci for breast cancer
  publication-title: Nat. Genet.
– year: 2016
  ident: bib0185
  article-title: NCCN Clinical Practice Guidelines in Oncology: genetic/familial High-risk Assessment: Breast and Ovarian
– volume: 16
  start-page: 14
  year: 2016
  ident: bib0195
  article-title: Novel polymorphisms in caspase-8 are associated with breast cancer risk in the California teachers study
  publication-title: BMC Cancer
– volume: 39
  start-page: 113
  year: 2018
  end-page: 133
  ident: bib0105
  article-title: Environmental determinants of breast cancer
  publication-title: Annu. Rev. Public Health
– volume: 13
  start-page: 581
  year: 2016
  end-page: 588
  ident: bib0265
  article-title: Counselling framework for moderate-penetrance cancer-susceptibility mutations
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 31
  start-page: 100
  year: 2015
  end-page: 107
  ident: bib0150
  article-title: Genetic tests to identify risk for breast cancer
  publication-title: Semin. Oncol. Nurs.
– volume: 165
  start-page: 193
  year: 2017
  end-page: 200
  ident: bib0020
  article-title: Family history and risk of breast cancer: an analysis accounting for family structure
  publication-title: Breast Cancer Res. Treat.
– volume: 4
  start-page: 174
  year: 2010
  end-page: 191
  ident: bib0155
  article-title: Genetic susceptibility to breast cancer
  publication-title: Mol. Oncol.
– volume: 218-219
  start-page: 58
  year: 2017
  end-page: 68
  ident: bib0215
  article-title: Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories
  publication-title: Cancer Genet.
– volume: 164
  start-page: 263
  year: 2017
  end-page: 284
  ident: bib0030
  article-title: Breast cancer risk models: a comprehensive overview of existing models, validation and clinical applications
  publication-title: Breast Cancer Res. Treat.
– volume: 102
  start-page: 1618
  year: 2010
  end-page: 1627
  ident: bib0165
  article-title: Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information
  publication-title: J. Natl. Cancer Inst.
– volume: 7
  start-page: 40963
  year: 2017
  ident: bib0180
  article-title: Association of genome-wide association study (GWAS) identified SNPs and risk of breast cancer in Indian population
  publication-title: Sci. Rep.
– volume: 219
  start-page: 169.e1
  year: 2018
  end-page: 169.e4
  ident: bib0280
  article-title: Hormonal contraception and breast cancer
  publication-title: Am. J. Obstet. Gynecol.
– volume: 9
  start-page: 213
  year: 2007
  ident: bib0070
  article-title: Breast cancer risk-assessment models
  publication-title: Breast Cancer Res.
– volume: 12
  start-page: 581
  year: 2016
  end-page: 592
  ident: bib0110
  article-title: Breast cancer risk assessment: calculating lifetime risk using the Tyrer-Cuzick model. Continuing education
  publication-title: J. Nurse Pract.
– volume: 17
  start-page: 722
  year: 2009
  end-page: 731
  ident: bib0205
  article-title: Breast cancer susceptibility: current knowledge and implications for genetic counselling
  publication-title: Eur. J. Hum. Genet.
– volume: 35
  start-page: 743
  year: 2017
  end-page: 750
  ident: bib0035
  article-title: Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: results from two randomized tamoxifen prevention trials
  publication-title: J. Clin. Oncol.
– volume: 7
  start-page: 12708
  year: 2017
  ident: bib0005
  article-title: Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort
  publication-title: Sci. Rep.
– volume: 20
  start-page: 3
  year: 2018
  ident: bib0140
  article-title: Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs
  publication-title: Breast Cancer Res.
– volume: 106
  start-page: 389
  year: 2012
  end-page: 396
  ident: bib0100
  article-title: Combined effect of low-penetrant SNPs on breast cancer risk
  publication-title: Br. J. Cancer
– volume: 26
  start-page: 861
  year: 2017
  end-page: 868
  ident: bib0045
  article-title: Impact of body composition on outcome in patients with early breast cancer
  publication-title: Support. Care Cancer
– volume: 5
  start-page: 12773
  year: 2015
  ident: bib0300
  article-title: Association of three SNPs in TOX3 and breast cancer risk: evidence from 97275 cases and 128686 controls
  publication-title: Sci. Rep.
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib0015
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
– volume: 10
  start-page: 7
  year: 2015
  end-page: 12
  ident: bib0065
  article-title: Breast cancer risks and risk prediction models
  publication-title: Breast Care
– volume: 8
  start-page: 10191
  year: 2018
  ident: bib0115
  article-title: Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2
  publication-title: Sci. Rep.
– volume: 31
  start-page: 2121
  year: 2012
  end-page: 2128
  ident: bib0080
  article-title: Breast cancer genome-wide association studies: there is strength in numbers
  publication-title: Oncogene
– volume: 167
  start-page: 417
  year: 2018
  end-page: 423
  ident: bib0220
  article-title: Clinical implications of germline mutations in breast cancer: TP53
  publication-title: Breast Cancer Res. Treat.
– volume: 5
  start-page: 283
  year: 2014
  end-page: 298
  ident: bib0230
  article-title: Pathogenesis, prevention, diagnosis and treatment of breast cancer
  publication-title: World J. Clin. Oncol.
– volume: 18
  start-page: 99
  year: 2016
  ident: bib0245
  article-title: The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance
  publication-title: Breast Cancer Res.
– volume: 44
  start-page: 459
  year: 2013
  end-page: 466
  ident: bib0175
  article-title: Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women
  publication-title: Arch. Med. Res.
– volume: 4
  start-page: 1
  year: 2017
  ident: bib0090
  article-title: BRCA1 and BRCA2 mutations and treatment strategies for breast cancer
  publication-title: Integr. Cancer Sci. Ther.
– volume: 26
  start-page: 8
  year: 2015
  end-page: 30
  ident: bib0225
  article-title: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up
  publication-title: Ann. Oncol.
– volume: 27
  start-page: 978706
  year: 2016
  ident: bib0290
  article-title: Discriminatory power of common genetic variants in personalized breast cancer diagnosis
  publication-title: Proc. SPIE. Int. Soc. Opt. Eng.
– volume: 9
  year: 2014
  ident: bib0240
  article-title: A study on genetic variants of fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India
  publication-title: PLoS One
– volume: 14
  start-page: 561
  year: 2017
  end-page: 568
  ident: bib0210
  article-title: Increased identification of candidates for high-risk breast cancer screening through expanded genetic testing
  publication-title: J. Am. Coll. Radiol.
– volume: 39
  start-page: 204
  year: 2014
  end-page: 221
  ident: bib0295
  article-title: A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC
  publication-title: J. Pediatr. Psychol.
– volume: 36
  start-page: 565
  year: 2017
  end-page: 5727
  ident: bib0040
  article-title: Association of single nucleotide polymorphism in FGF-RAS/MAP signalling cascade with breast cancer susceptibility
  publication-title: Gen. Physiol. Biophys.
– volume: 110
  start-page: 535
  year: 2014
  end-page: 545
  ident: bib0135
  article-title: BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface
  publication-title: Br. J. Cancer
– volume: 14
  start-page: 3443
  year: 2016
  end-page: 3451
  ident: bib0160
  article-title: Genetic variants in FGFR2 and TNRC9 genes are associated with breast cancer risk in Pakistani women
  publication-title: Mol. Med. Rep.
– volume: 371
  start-page: 1651
  year: 2014
  end-page: 1652
  ident: bib0010
  article-title: Breast-cancer risk in families with mutations in PALB2
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: 17
  year: 2017
  end-page: 22
  ident: bib0095
  article-title: Feeling cold and other underestimated symptoms in breast cancer: anecdotes or individual profiles for advanced patient stratification?
  publication-title: EPMA J.
– volume: 41
  start-page: 324
  year: 2009
  end-page: 328
  ident: bib0305
  article-title: Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1
  publication-title: Nat. Genet.
– volume: 8
  start-page: 327
  year: 2017
  end-page: 332
  ident: bib0125
  article-title: Diseases potentially related to Flammer syndrome
  publication-title: EPMA J.
– volume: 137
  start-page: 559
  year: 2013
  end-page: 569
  ident: bib0120
  article-title: Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population
  publication-title: Breast Cancer Res. Treat.
– volume: 13
  start-page: 93
  year: 2018
  end-page: 101
  ident: bib0285
  article-title: Physical activity, exercise and breast cancer - what is the evidence for rehabilitation, aftercare, and survival a review
  publication-title: Breast Care
– volume: 7
  start-page: 211
  year: 2017
  ident: bib0200
  article-title: The linkage between breast cancer, hypoxia, and adipose tissue
  publication-title: Front. Oncol.
– volume: 12
  start-page: 581
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0110
  article-title: Breast cancer risk assessment: calculating lifetime risk using the Tyrer-Cuzick model. Continuing education
  publication-title: J. Nurse Pract.
  doi: 10.1016/j.nurpra.2016.07.027
– volume: 106
  start-page: 389
  year: 2012
  ident: 10.1016/j.jbiotec.2019.04.014_bib0100
  article-title: Combined effect of low-penetrant SNPs on breast cancer risk
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.461
– volume: 14
  start-page: 3443
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0160
  article-title: Genetic variants in FGFR2 and TNRC9 genes are associated with breast cancer risk in Pakistani women
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2016.5633
– volume: 218-219
  start-page: 58
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0215
  article-title: Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories
  publication-title: Cancer Genet.
  doi: 10.1016/j.cancergen.2017.09.003
– volume: 9
  year: 2014
  ident: 10.1016/j.jbiotec.2019.04.014_bib0240
  article-title: A study on genetic variants of fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110426
– volume: 10
  start-page: E299
  issue: 9
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0050
  article-title: Metabolic syndrome and the risk of breast cancer and subtypes by race, menopause and BMI
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers10090299
– volume: 4
  start-page: 174
  year: 2010
  ident: 10.1016/j.jbiotec.2019.04.014_bib0155
  article-title: Genetic susceptibility to breast cancer
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2010.04.011
– volume: 36
  start-page: 565
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0040
  article-title: Association of single nucleotide polymorphism in FGF-RAS/MAP signalling cascade with breast cancer susceptibility
  publication-title: Gen. Physiol. Biophys.
  doi: 10.4149/gpb_2017033
– volume: 44
  start-page: 459
  year: 2013
  ident: 10.1016/j.jbiotec.2019.04.014_bib0175
  article-title: Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women
  publication-title: Arch. Med. Res.
  doi: 10.1016/j.arcmed.2013.08.006
– volume: 35
  start-page: 743
  issue: 7
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0035
  article-title: Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: results from two randomized tamoxifen prevention trials
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.69.8944
– volume: 5
  start-page: 12773
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0300
  article-title: Association of three SNPs in TOX3 and breast cancer risk: evidence from 97275 cases and 128686 controls
  publication-title: Sci. Rep.
  doi: 10.1038/srep12773
– volume: 7
  start-page: 211
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0200
  article-title: The linkage between breast cancer, hypoxia, and adipose tissue
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2017.00211
– volume: 8
  start-page: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0095
  article-title: Feeling cold and other underestimated symptoms in breast cancer: anecdotes or individual profiles for advanced patient stratification?
  publication-title: EPMA J.
  doi: 10.1007/s13167-017-0086-6
– volume: 16
  start-page: 14
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0195
  article-title: Novel polymorphisms in caspase-8 are associated with breast cancer risk in the California teachers study
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-2036-9
– volume: 26
  start-page: 8
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0225
  article-title: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdv298
– volume: 31
  start-page: 2121
  year: 2012
  ident: 10.1016/j.jbiotec.2019.04.014_bib0080
  article-title: Breast cancer genome-wide association studies: there is strength in numbers
  publication-title: Oncogene
  doi: 10.1038/onc.2011.408
– volume: 137
  start-page: 559
  year: 2013
  ident: 10.1016/j.jbiotec.2019.04.014_bib0120
  article-title: Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-012-2359-z
– volume: 317
  start-page: 2402
  issue: 23
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0130
  article-title: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers
  publication-title: JAMA
  doi: 10.1001/jama.2017.7112
– volume: 8
  start-page: 327
  issue: 4
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0125
  article-title: Diseases potentially related to Flammer syndrome
  publication-title: EPMA J.
  doi: 10.1007/s13167-017-0116-4
– volume: 26
  start-page: 861
  issue: 3
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0045
  article-title: Impact of body composition on outcome in patients with early breast cancer
  publication-title: Support. Care Cancer
  doi: 10.1007/s00520-017-3902-6
– volume: 39
  start-page: 113
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0105
  article-title: Environmental determinants of breast cancer
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-040617-014101
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0090
  article-title: BRCA1 and BRCA2 mutations and treatment strategies for breast cancer
  publication-title: Integr. Cancer Sci. Ther.
– volume: 6
  start-page: 7
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0145
  article-title: Obesity, metabolic syndrome, and breast cancer: from prevention to intervention
  publication-title: Curr. Surg. Rep.
  doi: 10.1007/s40137-018-0204-y
– volume: 136
  start-page: 209
  year: 2012
  ident: 10.1016/j.jbiotec.2019.04.014_bib0025
  article-title: Associaton of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-012-2234-y
– volume: 8
  start-page: 10191
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0115
  article-title: Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28637-x
– volume: 102
  start-page: 1618
  issue: 21
  year: 2010
  ident: 10.1016/j.jbiotec.2019.04.014_bib0165
  article-title: Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djq388
– volume: 107
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0085
  article-title: Twenty-five years of breast cancer risk models and their applications
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djv042
– volume: 447
  start-page: 1087
  year: 2007
  ident: 10.1016/j.jbiotec.2019.04.014_bib0060
  article-title: Genome-wide association study identifies novel breast cancer susceptibility loci
  publication-title: Nature
  doi: 10.1038/nature05887
– year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0185
– volume: 18
  start-page: 99
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0245
  article-title: The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-016-0759-4
– volume: 7
  start-page: 12708
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0005
  article-title: Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12703-x
– volume: 17
  start-page: 722
  year: 2009
  ident: 10.1016/j.jbiotec.2019.04.014_bib0205
  article-title: Breast cancer susceptibility: current knowledge and implications for genetic counselling
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2008.212
– volume: 47
  start-page: 373
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0170
  article-title: Genome-wide association analysis of more than 120 000 individuals identifies 15 new susceptibility loci for breast cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3242
– volume: 27
  start-page: 978706
  issue: 9787
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0290
  article-title: Discriminatory power of common genetic variants in personalized breast cancer diagnosis
  publication-title: Proc. SPIE. Int. Soc. Opt. Eng.
– volume: 41
  start-page: 324
  issue: 3
  year: 2009
  ident: 10.1016/j.jbiotec.2019.04.014_bib0305
  article-title: Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1
  publication-title: Nat. Genet.
  doi: 10.1038/ng.318
– volume: 30
  start-page: 32
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0075
  article-title: From candidate gene studies to GWAS and post-GWAS analyses in breast cancer
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2015.01.004
– volume: 139
  start-page: 887
  issue: 3
  year: 2013
  ident: 10.1016/j.jbiotec.2019.04.014_bib0055
  article-title: Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-013-2610-2
– volume: 7
  start-page: 40963
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0180
  article-title: Association of genome-wide association study (GWAS) identified SNPs and risk of breast cancer in Indian population
  publication-title: Sci. Rep.
  doi: 10.1038/srep40963
– volume: 23
  start-page: 1111
  year: 2004
  ident: 10.1016/j.jbiotec.2019.04.014_bib0270
  article-title: A breast cancer prediction model incorporating familial and personal risk factors
  publication-title: Stat. Med.
  doi: 10.1002/sim.1668
– volume: 187
  start-page: 705
  issue: 4
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0260
  article-title: Markers of inflammation and incident breast cancer risk in the women’s health study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwx250
– volume: 5
  start-page: 283
  year: 2014
  ident: 10.1016/j.jbiotec.2019.04.014_bib0230
  article-title: Pathogenesis, prevention, diagnosis and treatment of breast cancer
  publication-title: World J. Clin. Oncol.
  doi: 10.5306/wjco.v5.i3.283
– volume: 14
  start-page: 561
  issue: 4
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0210
  article-title: Increased identification of candidates for high-risk breast cancer screening through expanded genetic testing
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2016.10.003
– volume: 26
  start-page: 1291
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0235
  article-title: Genetics of breast cancer: a topic in evolution
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdv022
– volume: 13
  start-page: 581
  year: 2016
  ident: 10.1016/j.jbiotec.2019.04.014_bib0265
  article-title: Counselling framework for moderate-penetrance cancer-susceptibility mutations
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.90
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0015
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 10
  start-page: 7
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0065
  article-title: Breast cancer risks and risk prediction models
  publication-title: Breast Care
  doi: 10.1159/000376600
– volume: 20
  start-page: 3
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0140
  article-title: Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-017-0929-z
– volume: 371
  start-page: 1651
  issue: 17
  year: 2014
  ident: 10.1016/j.jbiotec.2019.04.014_bib0010
  article-title: Breast-cancer risk in families with mutations in PALB2
  publication-title: N. Engl. J. Med.
– volume: 165
  start-page: 193
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0020
  article-title: Family history and risk of breast cancer: an analysis accounting for family structure
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-017-4325-2
– volume: 38
  start-page: 434
  issue: 4
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0275
  article-title: Metabolic Syndrome and Breast Cancer Risk
  publication-title: Indian J Med Paediatr Oncol.
  doi: 10.4103/ijmpo.ijmpo_168_16
– volume: 9
  start-page: 221
  year: 2004
  ident: 10.1016/j.jbiotec.2019.04.014_bib0255
  article-title: The genetic epidemiology of breast cancer genes
  publication-title: J. Mammary Gland Biol. Neoplasia
  doi: 10.1023/B:JOMG.0000048770.90334.3b
– volume: 219
  start-page: 169.e1
  issue: 2
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0280
  article-title: Hormonal contraception and breast cancer
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2018.03.032
– volume: 167
  start-page: 417
  issue: 2
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0220
  article-title: Clinical implications of germline mutations in breast cancer: TP53
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-017-4531-y
– volume: 39
  start-page: 204
  year: 2014
  ident: 10.1016/j.jbiotec.2019.04.014_bib0295
  article-title: A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC
  publication-title: J. Pediatr. Psychol.
  doi: 10.1093/jpepsy/jst062
– volume: 31
  start-page: 100
  year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0150
  article-title: Genetic tests to identify risk for breast cancer
  publication-title: Semin. Oncol. Nurs.
  doi: 10.1016/j.soncn.2015.02.007
– volume: 164
  start-page: 263
  year: 2017
  ident: 10.1016/j.jbiotec.2019.04.014_bib0030
  article-title: Breast cancer risk models: a comprehensive overview of existing models, validation and clinical applications
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-017-4247-z
– volume: 110
  start-page: 535
  year: 2014
  ident: 10.1016/j.jbiotec.2019.04.014_bib0135
  article-title: BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.730
– volume: 156
  start-page: 635
  year: 2012
  ident: 10.1016/j.jbiotec.2019.04.014_bib0190
  article-title: Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-156-9-201205010-00006
– year: 2015
  ident: 10.1016/j.jbiotec.2019.04.014_bib0250
– volume: 9
  start-page: 213
  issue: 5
  year: 2007
  ident: 10.1016/j.jbiotec.2019.04.014_bib0070
  article-title: Breast cancer risk-assessment models
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr1750
– volume: 13
  start-page: 93
  year: 2018
  ident: 10.1016/j.jbiotec.2019.04.014_bib0285
  article-title: Physical activity, exercise and breast cancer - what is the evidence for rehabilitation, aftercare, and survival a review
  publication-title: Breast Care
  doi: 10.1159/000488717
SSID ssj0004951
Score 2.298223
Snippet •Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest...
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms algorithms
alleles
AUC
Breast cancer
breast neoplasms
fibroblast growth factor receptor 2
genetic factors
genetic variation
genotyping
heterozygosity
homozygosity
inheritance (genetics)
melting
mutants
odds ratio
patients
Random Forest algorithm
risk
Risk model
single nucleotide polymorphism
SNP
women
Title Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study
URI https://dx.doi.org/10.1016/j.jbiotec.2019.04.014
https://www.ncbi.nlm.nih.gov/pubmed/31002855
https://www.proquest.com/docview/2211944865
https://www.proquest.com/docview/2237535353
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQXMZhYoyxsoHeJK5pE9dxHG6lgAoTCIkhcbMc25HaTWlVWiQu-9t5z0nKdgAklFMiW7Lee34_4s_fY-ywrwKzmI8K3GqRUF5FhZMiSqVIrM9ErkLTvssrOboVF3fp3RobtndhCFbZ-P7apwdv3XzpNdLszcbj3g0mK4q4YzAFIS9LfliIjKy8-_cZ5oEFQN2TUGK1hKOfb_H0Jt1JMSYyBEJ45YHxNBEvxaeX8s8Qh8622McmgYRBvcZPbM1X22zzH1rBz-zhek7HL-TIwFi7nBv7CNMSMNeDgkDoC7Ck7Dmg9dAlRiCAOYSmOEBhzcG0gvDPFFAuaKirgQ9YWhNy5gjQvuB4MPx9c35yCoGkdofdnp3-Go6ipr9CZDFJWkTc2cyqXFlXOF5mppR5aYiPPjOpTy2Pbd9JVzqsYmWSlFJ4bjj3sXUobpva_he2Xk0r_5WBVIV3iohwsL4ySWJK7nMlfGwKZ8s87zDRSlXbhnycemD80S3KbKIbZWhSho6FRmV0WHc1bVazb7w1QbUq0_-ZkcYI8dbUH62KNW4xOjcxlZ8u7zUnFjwsY2X62pg-Fn70dNhubR-rFdMZCldpuvf-xX1jH-iNMGo8_s7WF_Ol38dsaFEcBHM_YBuD85-jqydBPAmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK9LDtMOy97MkBu7qxFUmRd8uyFsnaBgPaAr0JsiQDyQanyJIC-_cj_Ui3Q1dg8M0WAYGk-LDIjwAfh6ZGFotJQUctkSaapAhaJkrLzMeRzE09tO90rqcX8uulutyDSdcLw2WVre1vbHptrds3g5abg6vFYnBGwYph7BgKQdjKkh3eZ3Qq1YP98ex4Or9pj8xVM5ZQU8JEBDeNPIPlwbJYMB4CF3nlNehpJm9zUbeFoLUrOnoED9sYEsfNNh_DXqyewIM_kAWfwvW3Nd_AsC1D5_127fwvXJVI4R4WXIe-Qc_yXiMpEPcxIteYYz0XB9mzBVxVWP82RWIN6epu4TVl11w88wlJxfDzePL9bPblEGuc2mdwcXR4Ppkm7YiFxFOctElE8CNvcuNDEUQ5cqXOS8eQ9COnovIi9cOgQxkokdVZVmoZhRMipj4Qx73yw-fQq1ZVfAmoTRGDYSwcSrFclrlSxNzImLoi-DLP-yA7rlrf4o_zGIwftis0W9pWGJaFYVNpSRh9ONiRXTUAHHcRmE5k9i9NsuQk7iL90InY0injqxNXxdX2pxUMhEeZrFb_WjOk3I-fPrxo9GO3Y75GEUapV_-_ufdwb3p-emJPZvPj13Cfv3DJmkjfQG-z3sa3FBxtinet8v8GTrQMYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+accuracy+of+the+breast+cancer+genetic+risk+model+based+on+eight+common+genetic+variants%3A+The+BACkSIDE+study&rft.jtitle=Journal+of+biotechnology&rft.au=Dankov%C3%A1%2C+Zuzana&rft.au=%C5%BD%C3%BAbor%2C+Pavol&rft.au=Grend%C3%A1r%2C+Mari%C3%A1n&rft.au=Zelinov%C3%A1%2C+Katar%C3%ADna&rft.date=2019-06-20&rft.issn=0168-1656&rft.volume=299&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.jbiotec.2019.04.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiotec_2019_04_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1656&client=summon