Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study
•Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types. Breast cancer (BC) development is caused by the interaction...
Saved in:
Published in | Journal of biotechnology Vol. 299; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types.
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model.
The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values.
Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity.
Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants. |
---|---|
AbstractList | Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014-3.834, p = 0.049), CT 1.771 (95%CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028-9.566, p = 0.048), AC 1.760 (95%CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014-3.834, p = 0.049), CT 1.771 (95%CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028-9.566, p = 0.048), AC 1.760 (95%CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants. •Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest algorithm.•LSP1 gene polymorphism rs3817198 is specific for ER + breast cancer types. Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants. Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model.The study enrolled 171 women with developed breast cancer (57.06 ± 11.60 years) and 146 control subjects (50.24 ± 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values.Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP’s were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95%CI 1.014–3.834, p = 0.049), CT 1.771 (95%CI 1.088–2.899, p = 0.026) and MAP3K1 CC 2.894 (95%CI 1.028–9.566, p = 0.048), AC 1.760 (95%CI 1.108–2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity.Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants. |
Author | Grendár, Marián Jagelková, Marianna Kapinová, Andrea Zelinová, Katarína Dvorská, Dana Vargová, Daniela Kalman, Michal Danková, Zuzana Žúbor, Pavol Lasabová, Zora Stastny, Igor Kasajová, Petra Danko, Ján |
Author_xml | – sequence: 1 givenname: Zuzana surname: Danková fullname: Danková, Zuzana email: dankova@jfmed.uniba.sk organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia – sequence: 2 givenname: Pavol surname: Žúbor fullname: Žúbor, Pavol organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia – sequence: 3 givenname: Marián surname: Grendár fullname: Grendár, Marián organization: Bioinformatic Unit, Biomedical Center Martin, JFMED UK, Slovakia – sequence: 4 givenname: Katarína surname: Zelinová fullname: Zelinová, Katarína organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia – sequence: 5 givenname: Marianna surname: Jagelková fullname: Jagelková, Marianna organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia – sequence: 6 givenname: Igor surname: Stastny fullname: Stastny, Igor organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia – sequence: 7 givenname: Andrea surname: Kapinová fullname: Kapinová, Andrea organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia – sequence: 8 givenname: Daniela surname: Vargová fullname: Vargová, Daniela organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia – sequence: 9 givenname: Petra surname: Kasajová fullname: Kasajová, Petra organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia – sequence: 10 givenname: Dana surname: Dvorská fullname: Dvorská, Dana organization: Division of Molecular Medicine, Biomedical Center Martin, JFMED UK, Slovakia – sequence: 11 givenname: Michal surname: Kalman fullname: Kalman, Michal organization: Department of Pathology, Martin University Hospital, Slovakia – sequence: 12 givenname: Ján surname: Danko fullname: Danko, Ján organization: Clinic of Gynaecology and Obstetrics, Martin University Hospital, Slovakia – sequence: 13 givenname: Zora surname: Lasabová fullname: Lasabová, Zora organization: Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFMED UK), Slovakia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31002855$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAYhi00xLrBTwD5yCWZ7cSJAwc0yhiTJoHEOFvO5y-buybebKdS_z2u2l64DPlgWXre19L7nJGTyU9IyHvOSs54c7EqV73zCaEUjHclq0vG61dkwVVbFbVqqhOyyJwqeCObU3IW44oxVneSvyGnFWdMKCkXZPMroHWQ3AapAZiDgS31A00PSPuAJiYKZgIM9B4nTA5ocPGRjt7imvYmoqV-oujuHzLoxzE_juDGBGemFD_Ru1z29XL5-Pvm2xWNabbbt-T1YNYR3x3uc_Ln-9Xd8kdx-_P6Znl5W0BdyVQICy2oToHtrRhaMzTdYBolVWskShAMKtvYwVaVajgfmhqFEQIZWC4USKjOycd971PwzzPGpEcXAddrM6GfoxaiamW1O_-Bct7VeVmZ0Q8HdO5HtPopuNGErT7OmoHPewCCjzHgoMElk5yfUjBurTnTO4l6pQ8S9U6iZrXOEnNa_pM-fvBS7ss-h3nRjcOgIzjM8qwLCElb715o-Au06rmp |
CitedBy_id | crossref_primary_10_1080_13543784_2019_1672655 crossref_primary_10_1016_j_ejphar_2020_173201 crossref_primary_10_1097_MD_0000000000031548 |
Cites_doi | 10.1016/j.nurpra.2016.07.027 10.1038/bjc.2011.461 10.3892/mmr.2016.5633 10.1016/j.cancergen.2017.09.003 10.1371/journal.pone.0110426 10.3390/cancers10090299 10.1016/j.molonc.2010.04.011 10.4149/gpb_2017033 10.1016/j.arcmed.2013.08.006 10.1200/JCO.2016.69.8944 10.1038/srep12773 10.3389/fonc.2017.00211 10.1007/s13167-017-0086-6 10.1186/s12885-015-2036-9 10.1093/annonc/mdv298 10.1038/onc.2011.408 10.1007/s10549-012-2359-z 10.1001/jama.2017.7112 10.1007/s13167-017-0116-4 10.1007/s00520-017-3902-6 10.1146/annurev-publhealth-040617-014101 10.1007/s40137-018-0204-y 10.1007/s10549-012-2234-y 10.1038/s41598-018-28637-x 10.1093/jnci/djq388 10.1093/jnci/djv042 10.1038/nature05887 10.1186/s13058-016-0759-4 10.1038/s41598-017-12703-x 10.1038/ejhg.2008.212 10.1038/ng.3242 10.1038/ng.318 10.1016/j.gde.2015.01.004 10.1007/s10549-013-2610-2 10.1038/srep40963 10.1002/sim.1668 10.1093/aje/kwx250 10.5306/wjco.v5.i3.283 10.1016/j.jacr.2016.10.003 10.1093/annonc/mdv022 10.1038/nrclinonc.2016.90 10.3322/caac.21492 10.1159/000376600 10.1186/s13058-017-0929-z 10.1007/s10549-017-4325-2 10.4103/ijmpo.ijmpo_168_16 10.1023/B:JOMG.0000048770.90334.3b 10.1016/j.ajog.2018.03.032 10.1007/s10549-017-4531-y 10.1093/jpepsy/jst062 10.1016/j.soncn.2015.02.007 10.1007/s10549-017-4247-z 10.1038/bjc.2013.730 10.7326/0003-4819-156-9-201205010-00006 10.1186/bcr1750 10.1159/000488717 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiotec.2019.04.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4863 |
EndPage | 7 |
ExternalDocumentID | 31002855 10_1016_j_jbiotec_2019_04_014 S0168165619301282 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSI SSU SSZ T5K ZMT ~02 ~G- ~KM .GJ 29K 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HLW HMG HVGLF HZ~ R2- SBG SEW SIN SSH WUQ XPP Y6R EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-2dc7c898cdbd2f7af69fa68587a5e5c20c3d6dfd338611f64e2a22e0cd128c5c3 |
IEDL.DBID | .~1 |
ISSN | 0168-1656 1873-4863 |
IngestDate | Fri Jul 11 06:40:48 EDT 2025 Fri Jul 11 14:54:06 EDT 2025 Mon Jul 21 05:45:50 EDT 2025 Tue Jul 01 04:36:55 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Fri Feb 23 02:19:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Risk model Random Forest algorithm Breast cancer SNP AUC breast cancer risk model |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-2dc7c898cdbd2f7af69fa68587a5e5c20c3d6dfd338611f64e2a22e0cd128c5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31002855 |
PQID | 2211944865 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2237535353 proquest_miscellaneous_2211944865 pubmed_primary_31002855 crossref_citationtrail_10_1016_j_jbiotec_2019_04_014 crossref_primary_10_1016_j_jbiotec_2019_04_014 elsevier_sciencedirect_doi_10_1016_j_jbiotec_2019_04_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-20 |
PublicationDateYYYYMMDD | 2019-06-20 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of biotechnology |
PublicationTitleAlternate | J Biotechnol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Thompson, Easton (bib0255) 2004; 9 Zheng, Long, Gao, Li, Zheng, Xiang, Wen, Levy, Deming, Haines, Gu, Fair, Cai, Lu, Shu (bib0305) 2009; 41 Li, Rowley, Thompson, McInerny, Devereux, Amarasinghe, Zethoven, Lupat, Goode, Li, Trainer, Gorringe, James, Campbell (bib0140) 2018; 20 Schon, Tischkowitz (bib0220) 2018; 167 Shiovitz, Korde (bib0235) 2015; 26 Tyrer, Duffy, Cuzick (bib0270) 2004; 23 Mealiffe, Stokowski, Rhees, Prentice, Pettinger, Hinds (bib0165) 2010; 102 Rosenthal, Evans, Kidd, Brown, Gorringe, van Orman, Manley (bib0210) 2017; 14 Skol, Sasaki, Onel (bib0245) 2016; 18 Tung, Domchek, Stadler, Nathanson, Couch, Garber, Offit, Robson (bib0265) 2016; 13 Wirtz, Baumann (bib0285) 2018; 13 Evans, Howell (bib0070) 2007; 9 Antoniou, Casadei, Heikkinen (bib0010) 2014; 371 National comprehensive cancer network (bib0185) 2016 Agnoli, Grioni, Pala, Allione, Matullo, Gaetano, Tagliabue, Sieri, Krogh (bib0005) 2017; 7 Ripperger, Gadzicki, Meindl, Schlegelberger (bib0205) 2009; 17 Konieczka, Erb (bib0125) 2017; 8 Mazhar, Jamil, Bashir, Ahmad, Masood, Tanyir, Rashid, Waheed, Afzal, Tariq (bib0160) 2016; 14 Cuzick, Brentnall, Segal, Byers, Reuter, Detre, Lopez-Knowles, Sestak, Howell, Powles, Newman, Dowsett (bib0035) 2017; 35 Kuchenbaecker, Hopper, Barne (bib0130) 2017; 317 Dite, Mahmoodi, Bickerstaffe, Hammet, Macinnis, Tsimiklis, Dowty, Apicella, Phillips, Giles, Southey, Hopper (bib0055) 2013; 139 Chan, Ji, Liaw, Yap, Law, Yoon, Wong, Yong, Wong, Ng, Ong, Madhukumar, Oey, Tan, Li, Ang, Ho, Lee (bib0025) 2012; 136 Michailidou, Beesley, Lindstrom, Canisius, Dennis, Lush, Maranian, Bolla, Wang, Shah (bib0170) 2015; 47 Harlid, Ivarsson, Butt, Grzybowska, Eyfjörd, Lenner, Försti, Hemminki, Manjer, Dillner, Carlson (bib0100) 2012; 106 Shah, Rosso, Nathanson (bib0230) 2014; 5 Westhoff, Pike (bib0280) 2018; 219 Youngstrom (bib0295) 2014; 39 Hoffmann, Mao, Brown-Clay, Moreau, Absi, Wurzer, Sousa, Schmitt, Berchem, Janji, Thomas (bib0115) 2018; 8 Nelson, Zakher, Cantor, Fu, Griffin, O´Meara, Buist, Kerlikowske, van Ravensteyn, Trentham-Dietz (bib0190) 2012; 156 Dibaba, Braithwaite, Akinyemiju (bib0050) 2018; 10 Mavaddat, Antoniou, Easton, Garcia-Closas (bib0155) 2010; 4 Godet, Gilkes (bib0090) 2017; 4 Wani, Aziz, Ganaie, Mir (bib0275) 2017; 38 Deluche, Leobon, Desport, Venat-Bouvet, Usseglio, Tubiana-Mathieu (bib0045) 2017; 26 Golubnitschaja (bib0095) 2017; 8 Nagrani, Mhatre, Rajaraman, Chatterjee, Akbari, Boffetta, Brennan, Badwe, Gupta, Dikshit (bib0180) 2017; 7 Siddiqui, Chattopadhyay, Akhtar, Najm, Deo, Shukla, Husain (bib0240) 2014; 9 Murillo-Zamora, Moreno-Macías, Ziv, Romieu, Lazcano-Ponce, Angeles-Llerenas, Perez-Rodriguez, Vidal-Millán, Fejerman, Torres-Mejía (bib0175) 2013; 44 Rosenthal, Bernhisel, Brown, Kidd, Manley (bib0215) 2017; 218-219 Brewer, Jones, Schoemaker, Ashworth, Swerdlow (bib0020) 2017; 165 Li, Ro, Tchou (bib0145) 2018; 6 Gail (bib0085) 2015; 107 Zhang, Long (bib0300) 2015; 5 Easton, Pooley, Dunning, Pharoah, Thompson, Ponder (bib0060) 2007; 447 Jara, Gonzalez-Hormazabal, Cerceño, Di Capua, Reyes, Blanco, Bravo, Peralta, Gomez, Waugh, Margarit, Ibañez, Romero, Pakomio, Roizen (bib0120) 2013; 137 Lee, Cunningham, Kuchenbaecker, Mavaddat, Easton, Antoniou (bib0135) 2014; 110 Himes, Root, Gammon, Luthy (bib0110) 2016; 12 Fachal, Dunning (bib0075) 2015; 30 Fanale, Amodeo, Corsini, Rizzo, Bazan, Russo (bib0080) 2012; 31 Lynch, Venne, Berse (bib0150) 2015; 31 Park, Ziogas, Chang, Desai, Anton-Culver (bib0195) 2016; 16 Senkus, Kyriakides, Ohno, Penault-Llorca, Poortmans, Rutgers, Zackrisson, Cardoso, ESMO Guidelines Committee (bib0225) 2015; 26 Tobias, Akinkuolie, Chandler, Lawler, Manson, Buring, Ridker, Wang, Lee, Mora (bib0260) 2018; 187 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib0015) 2018; 68 Wu, Abbey, Liu, Ong, Peissig, Onitilo, Fan, Yuan, Burnside (bib0290) 2016; 27 Engel, Fischer (bib0065) 2015; 10 Hiat, Brody (bib0105) 2018; 39 Dankova, Zubor, Grendar, Kapinova, Zelinova, Jagelkova, Gondova, Dokus, Kalman, Lasabova, Danko (bib0040) 2017; 36 Team R: Core. R (bib0250) 2015 Cintolo-Gonzales, Braun, Blackford, Mazzola, Acar, Plichta, Griffin, Hughes (bib0030) 2017; 164 Rausch, Netzer, Hoegel, Pramsohler (bib0200) 2017; 7 Tyrer (10.1016/j.jbiotec.2019.04.014_bib0270) 2004; 23 Team R: Core. R (10.1016/j.jbiotec.2019.04.014_bib0250) 2015 Shah (10.1016/j.jbiotec.2019.04.014_bib0230) 2014; 5 Zheng (10.1016/j.jbiotec.2019.04.014_bib0305) 2009; 41 Shiovitz (10.1016/j.jbiotec.2019.04.014_bib0235) 2015; 26 Mazhar (10.1016/j.jbiotec.2019.04.014_bib0160) 2016; 14 Skol (10.1016/j.jbiotec.2019.04.014_bib0245) 2016; 18 Engel (10.1016/j.jbiotec.2019.04.014_bib0065) 2015; 10 Rausch (10.1016/j.jbiotec.2019.04.014_bib0200) 2017; 7 Tung (10.1016/j.jbiotec.2019.04.014_bib0265) 2016; 13 Cuzick (10.1016/j.jbiotec.2019.04.014_bib0035) 2017; 35 Siddiqui (10.1016/j.jbiotec.2019.04.014_bib0240) 2014; 9 Chan (10.1016/j.jbiotec.2019.04.014_bib0025) 2012; 136 Brewer (10.1016/j.jbiotec.2019.04.014_bib0020) 2017; 165 Antoniou (10.1016/j.jbiotec.2019.04.014_bib0010) 2014; 371 Wirtz (10.1016/j.jbiotec.2019.04.014_bib0285) 2018; 13 Dankova (10.1016/j.jbiotec.2019.04.014_bib0040) 2017; 36 Li (10.1016/j.jbiotec.2019.04.014_bib0145) 2018; 6 Evans (10.1016/j.jbiotec.2019.04.014_bib0070) 2007; 9 Ripperger (10.1016/j.jbiotec.2019.04.014_bib0205) 2009; 17 Zhang (10.1016/j.jbiotec.2019.04.014_bib0300) 2015; 5 Nagrani (10.1016/j.jbiotec.2019.04.014_bib0180) 2017; 7 Cintolo-Gonzales (10.1016/j.jbiotec.2019.04.014_bib0030) 2017; 164 Dibaba (10.1016/j.jbiotec.2019.04.014_bib0050) 2018; 10 Dite (10.1016/j.jbiotec.2019.04.014_bib0055) 2013; 139 Nelson (10.1016/j.jbiotec.2019.04.014_bib0190) 2012; 156 Hoffmann (10.1016/j.jbiotec.2019.04.014_bib0115) 2018; 8 Thompson (10.1016/j.jbiotec.2019.04.014_bib0255) 2004; 9 Deluche (10.1016/j.jbiotec.2019.04.014_bib0045) 2017; 26 National comprehensive cancer network (10.1016/j.jbiotec.2019.04.014_bib0185) 2016 Fachal (10.1016/j.jbiotec.2019.04.014_bib0075) 2015; 30 Gail (10.1016/j.jbiotec.2019.04.014_bib0085) 2015; 107 Hiat (10.1016/j.jbiotec.2019.04.014_bib0105) 2018; 39 Kuchenbaecker (10.1016/j.jbiotec.2019.04.014_bib0130) 2017; 317 Agnoli (10.1016/j.jbiotec.2019.04.014_bib0005) 2017; 7 Tobias (10.1016/j.jbiotec.2019.04.014_bib0260) 2018; 187 Fanale (10.1016/j.jbiotec.2019.04.014_bib0080) 2012; 31 Westhoff (10.1016/j.jbiotec.2019.04.014_bib0280) 2018; 219 Mavaddat (10.1016/j.jbiotec.2019.04.014_bib0155) 2010; 4 Youngstrom (10.1016/j.jbiotec.2019.04.014_bib0295) 2014; 39 Lee (10.1016/j.jbiotec.2019.04.014_bib0135) 2014; 110 Senkus (10.1016/j.jbiotec.2019.04.014_bib0225) 2015; 26 Rosenthal (10.1016/j.jbiotec.2019.04.014_bib0210) 2017; 14 Jara (10.1016/j.jbiotec.2019.04.014_bib0120) 2013; 137 Harlid (10.1016/j.jbiotec.2019.04.014_bib0100) 2012; 106 Lynch (10.1016/j.jbiotec.2019.04.014_bib0150) 2015; 31 Wu (10.1016/j.jbiotec.2019.04.014_bib0290) 2016; 27 Mealiffe (10.1016/j.jbiotec.2019.04.014_bib0165) 2010; 102 Li (10.1016/j.jbiotec.2019.04.014_bib0140) 2018; 20 Wani (10.1016/j.jbiotec.2019.04.014_bib0275) 2017; 38 Park (10.1016/j.jbiotec.2019.04.014_bib0195) 2016; 16 Easton (10.1016/j.jbiotec.2019.04.014_bib0060) 2007; 447 Rosenthal (10.1016/j.jbiotec.2019.04.014_bib0215) 2017; 218-219 Himes (10.1016/j.jbiotec.2019.04.014_bib0110) 2016; 12 Schon (10.1016/j.jbiotec.2019.04.014_bib0220) 2018; 167 Golubnitschaja (10.1016/j.jbiotec.2019.04.014_bib0095) 2017; 8 Michailidou (10.1016/j.jbiotec.2019.04.014_bib0170) 2015; 47 Murillo-Zamora (10.1016/j.jbiotec.2019.04.014_bib0175) 2013; 44 Godet (10.1016/j.jbiotec.2019.04.014_bib0090) 2017; 4 Bray (10.1016/j.jbiotec.2019.04.014_bib0015) 2018; 68 Konieczka (10.1016/j.jbiotec.2019.04.014_bib0125) 2017; 8 |
References_xml | – volume: 187 start-page: 705 year: 2018 end-page: 716 ident: bib0260 article-title: Markers of inflammation and incident breast cancer risk in the women’s health study publication-title: Am. J. Epidemiol. – volume: 10 start-page: E299 year: 2018 ident: bib0050 article-title: Metabolic syndrome and the risk of breast cancer and subtypes by race, menopause and BMI publication-title: Cancers (Basel) – year: 2015 ident: bib0250 article-title: A Language and Environment for Statistical Computing – volume: 139 start-page: 887 year: 2013 end-page: 896 ident: bib0055 article-title: Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model publication-title: Breast Cancer Res. Treat. – volume: 26 start-page: 1291 year: 2015 end-page: 1299 ident: bib0235 article-title: Genetics of breast cancer: a topic in evolution publication-title: Ann. Oncol. – volume: 447 start-page: 1087 year: 2007 end-page: 1093 ident: bib0060 article-title: Genome-wide association study identifies novel breast cancer susceptibility loci publication-title: Nature – volume: 6 start-page: 7 year: 2018 ident: bib0145 article-title: Obesity, metabolic syndrome, and breast cancer: from prevention to intervention publication-title: Curr. Surg. Rep. – volume: 107 year: 2015 ident: bib0085 article-title: Twenty-five years of breast cancer risk models and their applications publication-title: J. Natl. Cancer Inst. – volume: 9 start-page: 221 year: 2004 end-page: 236 ident: bib0255 article-title: The genetic epidemiology of breast cancer genes publication-title: J. Mammary Gland Biol. Neoplasia – volume: 30 start-page: 32 year: 2015 end-page: 41 ident: bib0075 article-title: From candidate gene studies to GWAS and post-GWAS analyses in breast cancer publication-title: Curr. Opin. Genet. Dev. – volume: 38 start-page: 434 year: 2017 end-page: 439 ident: bib0275 article-title: Metabolic Syndrome and Breast Cancer Risk publication-title: Indian J Med Paediatr Oncol. – volume: 23 start-page: 1111 year: 2004 end-page: 1130 ident: bib0270 article-title: A breast cancer prediction model incorporating familial and personal risk factors publication-title: Stat. Med. – volume: 317 start-page: 2402 year: 2017 end-page: 2416 ident: bib0130 article-title: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers publication-title: JAMA – volume: 156 start-page: 635 year: 2012 end-page: 648 ident: bib0190 article-title: Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis publication-title: Ann. Intern. Med. – volume: 136 start-page: 209 year: 2012 end-page: 220 ident: bib0025 article-title: Associaton of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population publication-title: Breast Cancer Res. Treat. – volume: 47 start-page: 373 year: 2015 end-page: 380 ident: bib0170 article-title: Genome-wide association analysis of more than 120 000 individuals identifies 15 new susceptibility loci for breast cancer publication-title: Nat. Genet. – year: 2016 ident: bib0185 article-title: NCCN Clinical Practice Guidelines in Oncology: genetic/familial High-risk Assessment: Breast and Ovarian – volume: 16 start-page: 14 year: 2016 ident: bib0195 article-title: Novel polymorphisms in caspase-8 are associated with breast cancer risk in the California teachers study publication-title: BMC Cancer – volume: 39 start-page: 113 year: 2018 end-page: 133 ident: bib0105 article-title: Environmental determinants of breast cancer publication-title: Annu. Rev. Public Health – volume: 13 start-page: 581 year: 2016 end-page: 588 ident: bib0265 article-title: Counselling framework for moderate-penetrance cancer-susceptibility mutations publication-title: Nat. Rev. Clin. Oncol. – volume: 31 start-page: 100 year: 2015 end-page: 107 ident: bib0150 article-title: Genetic tests to identify risk for breast cancer publication-title: Semin. Oncol. Nurs. – volume: 165 start-page: 193 year: 2017 end-page: 200 ident: bib0020 article-title: Family history and risk of breast cancer: an analysis accounting for family structure publication-title: Breast Cancer Res. Treat. – volume: 4 start-page: 174 year: 2010 end-page: 191 ident: bib0155 article-title: Genetic susceptibility to breast cancer publication-title: Mol. Oncol. – volume: 218-219 start-page: 58 year: 2017 end-page: 68 ident: bib0215 article-title: Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories publication-title: Cancer Genet. – volume: 164 start-page: 263 year: 2017 end-page: 284 ident: bib0030 article-title: Breast cancer risk models: a comprehensive overview of existing models, validation and clinical applications publication-title: Breast Cancer Res. Treat. – volume: 102 start-page: 1618 year: 2010 end-page: 1627 ident: bib0165 article-title: Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information publication-title: J. Natl. Cancer Inst. – volume: 7 start-page: 40963 year: 2017 ident: bib0180 article-title: Association of genome-wide association study (GWAS) identified SNPs and risk of breast cancer in Indian population publication-title: Sci. Rep. – volume: 219 start-page: 169.e1 year: 2018 end-page: 169.e4 ident: bib0280 article-title: Hormonal contraception and breast cancer publication-title: Am. J. Obstet. Gynecol. – volume: 9 start-page: 213 year: 2007 ident: bib0070 article-title: Breast cancer risk-assessment models publication-title: Breast Cancer Res. – volume: 12 start-page: 581 year: 2016 end-page: 592 ident: bib0110 article-title: Breast cancer risk assessment: calculating lifetime risk using the Tyrer-Cuzick model. Continuing education publication-title: J. Nurse Pract. – volume: 17 start-page: 722 year: 2009 end-page: 731 ident: bib0205 article-title: Breast cancer susceptibility: current knowledge and implications for genetic counselling publication-title: Eur. J. Hum. Genet. – volume: 35 start-page: 743 year: 2017 end-page: 750 ident: bib0035 article-title: Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: results from two randomized tamoxifen prevention trials publication-title: J. Clin. Oncol. – volume: 7 start-page: 12708 year: 2017 ident: bib0005 article-title: Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort publication-title: Sci. Rep. – volume: 20 start-page: 3 year: 2018 ident: bib0140 article-title: Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs publication-title: Breast Cancer Res. – volume: 106 start-page: 389 year: 2012 end-page: 396 ident: bib0100 article-title: Combined effect of low-penetrant SNPs on breast cancer risk publication-title: Br. J. Cancer – volume: 26 start-page: 861 year: 2017 end-page: 868 ident: bib0045 article-title: Impact of body composition on outcome in patients with early breast cancer publication-title: Support. Care Cancer – volume: 5 start-page: 12773 year: 2015 ident: bib0300 article-title: Association of three SNPs in TOX3 and breast cancer risk: evidence from 97275 cases and 128686 controls publication-title: Sci. Rep. – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib0015 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. – volume: 10 start-page: 7 year: 2015 end-page: 12 ident: bib0065 article-title: Breast cancer risks and risk prediction models publication-title: Breast Care – volume: 8 start-page: 10191 year: 2018 ident: bib0115 article-title: Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2 publication-title: Sci. Rep. – volume: 31 start-page: 2121 year: 2012 end-page: 2128 ident: bib0080 article-title: Breast cancer genome-wide association studies: there is strength in numbers publication-title: Oncogene – volume: 167 start-page: 417 year: 2018 end-page: 423 ident: bib0220 article-title: Clinical implications of germline mutations in breast cancer: TP53 publication-title: Breast Cancer Res. Treat. – volume: 5 start-page: 283 year: 2014 end-page: 298 ident: bib0230 article-title: Pathogenesis, prevention, diagnosis and treatment of breast cancer publication-title: World J. Clin. Oncol. – volume: 18 start-page: 99 year: 2016 ident: bib0245 article-title: The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance publication-title: Breast Cancer Res. – volume: 44 start-page: 459 year: 2013 end-page: 466 ident: bib0175 article-title: Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women publication-title: Arch. Med. Res. – volume: 4 start-page: 1 year: 2017 ident: bib0090 article-title: BRCA1 and BRCA2 mutations and treatment strategies for breast cancer publication-title: Integr. Cancer Sci. Ther. – volume: 26 start-page: 8 year: 2015 end-page: 30 ident: bib0225 article-title: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up publication-title: Ann. Oncol. – volume: 27 start-page: 978706 year: 2016 ident: bib0290 article-title: Discriminatory power of common genetic variants in personalized breast cancer diagnosis publication-title: Proc. SPIE. Int. Soc. Opt. Eng. – volume: 9 year: 2014 ident: bib0240 article-title: A study on genetic variants of fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India publication-title: PLoS One – volume: 14 start-page: 561 year: 2017 end-page: 568 ident: bib0210 article-title: Increased identification of candidates for high-risk breast cancer screening through expanded genetic testing publication-title: J. Am. Coll. Radiol. – volume: 39 start-page: 204 year: 2014 end-page: 221 ident: bib0295 article-title: A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC publication-title: J. Pediatr. Psychol. – volume: 36 start-page: 565 year: 2017 end-page: 5727 ident: bib0040 article-title: Association of single nucleotide polymorphism in FGF-RAS/MAP signalling cascade with breast cancer susceptibility publication-title: Gen. Physiol. Biophys. – volume: 110 start-page: 535 year: 2014 end-page: 545 ident: bib0135 article-title: BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface publication-title: Br. J. Cancer – volume: 14 start-page: 3443 year: 2016 end-page: 3451 ident: bib0160 article-title: Genetic variants in FGFR2 and TNRC9 genes are associated with breast cancer risk in Pakistani women publication-title: Mol. Med. Rep. – volume: 371 start-page: 1651 year: 2014 end-page: 1652 ident: bib0010 article-title: Breast-cancer risk in families with mutations in PALB2 publication-title: N. Engl. J. Med. – volume: 8 start-page: 17 year: 2017 end-page: 22 ident: bib0095 article-title: Feeling cold and other underestimated symptoms in breast cancer: anecdotes or individual profiles for advanced patient stratification? publication-title: EPMA J. – volume: 41 start-page: 324 year: 2009 end-page: 328 ident: bib0305 article-title: Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 publication-title: Nat. Genet. – volume: 8 start-page: 327 year: 2017 end-page: 332 ident: bib0125 article-title: Diseases potentially related to Flammer syndrome publication-title: EPMA J. – volume: 137 start-page: 559 year: 2013 end-page: 569 ident: bib0120 article-title: Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population publication-title: Breast Cancer Res. Treat. – volume: 13 start-page: 93 year: 2018 end-page: 101 ident: bib0285 article-title: Physical activity, exercise and breast cancer - what is the evidence for rehabilitation, aftercare, and survival a review publication-title: Breast Care – volume: 7 start-page: 211 year: 2017 ident: bib0200 article-title: The linkage between breast cancer, hypoxia, and adipose tissue publication-title: Front. Oncol. – volume: 12 start-page: 581 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0110 article-title: Breast cancer risk assessment: calculating lifetime risk using the Tyrer-Cuzick model. Continuing education publication-title: J. Nurse Pract. doi: 10.1016/j.nurpra.2016.07.027 – volume: 106 start-page: 389 year: 2012 ident: 10.1016/j.jbiotec.2019.04.014_bib0100 article-title: Combined effect of low-penetrant SNPs on breast cancer risk publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.461 – volume: 14 start-page: 3443 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0160 article-title: Genetic variants in FGFR2 and TNRC9 genes are associated with breast cancer risk in Pakistani women publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2016.5633 – volume: 218-219 start-page: 58 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0215 article-title: Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories publication-title: Cancer Genet. doi: 10.1016/j.cancergen.2017.09.003 – volume: 9 year: 2014 ident: 10.1016/j.jbiotec.2019.04.014_bib0240 article-title: A study on genetic variants of fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India publication-title: PLoS One doi: 10.1371/journal.pone.0110426 – volume: 10 start-page: E299 issue: 9 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0050 article-title: Metabolic syndrome and the risk of breast cancer and subtypes by race, menopause and BMI publication-title: Cancers (Basel) doi: 10.3390/cancers10090299 – volume: 4 start-page: 174 year: 2010 ident: 10.1016/j.jbiotec.2019.04.014_bib0155 article-title: Genetic susceptibility to breast cancer publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2010.04.011 – volume: 36 start-page: 565 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0040 article-title: Association of single nucleotide polymorphism in FGF-RAS/MAP signalling cascade with breast cancer susceptibility publication-title: Gen. Physiol. Biophys. doi: 10.4149/gpb_2017033 – volume: 44 start-page: 459 year: 2013 ident: 10.1016/j.jbiotec.2019.04.014_bib0175 article-title: Association between rs2981582 polymorphism in the FGFR2 gene and the risk of breast cancer in Mexican women publication-title: Arch. Med. Res. doi: 10.1016/j.arcmed.2013.08.006 – volume: 35 start-page: 743 issue: 7 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0035 article-title: Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: results from two randomized tamoxifen prevention trials publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.69.8944 – volume: 5 start-page: 12773 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0300 article-title: Association of three SNPs in TOX3 and breast cancer risk: evidence from 97275 cases and 128686 controls publication-title: Sci. Rep. doi: 10.1038/srep12773 – volume: 7 start-page: 211 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0200 article-title: The linkage between breast cancer, hypoxia, and adipose tissue publication-title: Front. Oncol. doi: 10.3389/fonc.2017.00211 – volume: 8 start-page: 17 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0095 article-title: Feeling cold and other underestimated symptoms in breast cancer: anecdotes or individual profiles for advanced patient stratification? publication-title: EPMA J. doi: 10.1007/s13167-017-0086-6 – volume: 16 start-page: 14 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0195 article-title: Novel polymorphisms in caspase-8 are associated with breast cancer risk in the California teachers study publication-title: BMC Cancer doi: 10.1186/s12885-015-2036-9 – volume: 26 start-page: 8 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0225 article-title: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up publication-title: Ann. Oncol. doi: 10.1093/annonc/mdv298 – volume: 31 start-page: 2121 year: 2012 ident: 10.1016/j.jbiotec.2019.04.014_bib0080 article-title: Breast cancer genome-wide association studies: there is strength in numbers publication-title: Oncogene doi: 10.1038/onc.2011.408 – volume: 137 start-page: 559 year: 2013 ident: 10.1016/j.jbiotec.2019.04.014_bib0120 article-title: Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-012-2359-z – volume: 317 start-page: 2402 issue: 23 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0130 article-title: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers publication-title: JAMA doi: 10.1001/jama.2017.7112 – volume: 8 start-page: 327 issue: 4 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0125 article-title: Diseases potentially related to Flammer syndrome publication-title: EPMA J. doi: 10.1007/s13167-017-0116-4 – volume: 26 start-page: 861 issue: 3 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0045 article-title: Impact of body composition on outcome in patients with early breast cancer publication-title: Support. Care Cancer doi: 10.1007/s00520-017-3902-6 – volume: 39 start-page: 113 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0105 article-title: Environmental determinants of breast cancer publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-040617-014101 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0090 article-title: BRCA1 and BRCA2 mutations and treatment strategies for breast cancer publication-title: Integr. Cancer Sci. Ther. – volume: 6 start-page: 7 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0145 article-title: Obesity, metabolic syndrome, and breast cancer: from prevention to intervention publication-title: Curr. Surg. Rep. doi: 10.1007/s40137-018-0204-y – volume: 136 start-page: 209 year: 2012 ident: 10.1016/j.jbiotec.2019.04.014_bib0025 article-title: Associaton of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-012-2234-y – volume: 8 start-page: 10191 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0115 article-title: Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2 publication-title: Sci. Rep. doi: 10.1038/s41598-018-28637-x – volume: 102 start-page: 1618 issue: 21 year: 2010 ident: 10.1016/j.jbiotec.2019.04.014_bib0165 article-title: Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djq388 – volume: 107 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0085 article-title: Twenty-five years of breast cancer risk models and their applications publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djv042 – volume: 447 start-page: 1087 year: 2007 ident: 10.1016/j.jbiotec.2019.04.014_bib0060 article-title: Genome-wide association study identifies novel breast cancer susceptibility loci publication-title: Nature doi: 10.1038/nature05887 – year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0185 – volume: 18 start-page: 99 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0245 article-title: The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance publication-title: Breast Cancer Res. doi: 10.1186/s13058-016-0759-4 – volume: 7 start-page: 12708 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0005 article-title: Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort publication-title: Sci. Rep. doi: 10.1038/s41598-017-12703-x – volume: 17 start-page: 722 year: 2009 ident: 10.1016/j.jbiotec.2019.04.014_bib0205 article-title: Breast cancer susceptibility: current knowledge and implications for genetic counselling publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2008.212 – volume: 47 start-page: 373 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0170 article-title: Genome-wide association analysis of more than 120 000 individuals identifies 15 new susceptibility loci for breast cancer publication-title: Nat. Genet. doi: 10.1038/ng.3242 – volume: 27 start-page: 978706 issue: 9787 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0290 article-title: Discriminatory power of common genetic variants in personalized breast cancer diagnosis publication-title: Proc. SPIE. Int. Soc. Opt. Eng. – volume: 41 start-page: 324 issue: 3 year: 2009 ident: 10.1016/j.jbiotec.2019.04.014_bib0305 article-title: Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 publication-title: Nat. Genet. doi: 10.1038/ng.318 – volume: 30 start-page: 32 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0075 article-title: From candidate gene studies to GWAS and post-GWAS analyses in breast cancer publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2015.01.004 – volume: 139 start-page: 887 issue: 3 year: 2013 ident: 10.1016/j.jbiotec.2019.04.014_bib0055 article-title: Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-013-2610-2 – volume: 7 start-page: 40963 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0180 article-title: Association of genome-wide association study (GWAS) identified SNPs and risk of breast cancer in Indian population publication-title: Sci. Rep. doi: 10.1038/srep40963 – volume: 23 start-page: 1111 year: 2004 ident: 10.1016/j.jbiotec.2019.04.014_bib0270 article-title: A breast cancer prediction model incorporating familial and personal risk factors publication-title: Stat. Med. doi: 10.1002/sim.1668 – volume: 187 start-page: 705 issue: 4 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0260 article-title: Markers of inflammation and incident breast cancer risk in the women’s health study publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwx250 – volume: 5 start-page: 283 year: 2014 ident: 10.1016/j.jbiotec.2019.04.014_bib0230 article-title: Pathogenesis, prevention, diagnosis and treatment of breast cancer publication-title: World J. Clin. Oncol. doi: 10.5306/wjco.v5.i3.283 – volume: 14 start-page: 561 issue: 4 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0210 article-title: Increased identification of candidates for high-risk breast cancer screening through expanded genetic testing publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2016.10.003 – volume: 26 start-page: 1291 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0235 article-title: Genetics of breast cancer: a topic in evolution publication-title: Ann. Oncol. doi: 10.1093/annonc/mdv022 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.jbiotec.2019.04.014_bib0265 article-title: Counselling framework for moderate-penetrance cancer-susceptibility mutations publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.90 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0015 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 10 start-page: 7 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0065 article-title: Breast cancer risks and risk prediction models publication-title: Breast Care doi: 10.1159/000376600 – volume: 20 start-page: 3 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0140 article-title: Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs publication-title: Breast Cancer Res. doi: 10.1186/s13058-017-0929-z – volume: 371 start-page: 1651 issue: 17 year: 2014 ident: 10.1016/j.jbiotec.2019.04.014_bib0010 article-title: Breast-cancer risk in families with mutations in PALB2 publication-title: N. Engl. J. Med. – volume: 165 start-page: 193 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0020 article-title: Family history and risk of breast cancer: an analysis accounting for family structure publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-017-4325-2 – volume: 38 start-page: 434 issue: 4 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0275 article-title: Metabolic Syndrome and Breast Cancer Risk publication-title: Indian J Med Paediatr Oncol. doi: 10.4103/ijmpo.ijmpo_168_16 – volume: 9 start-page: 221 year: 2004 ident: 10.1016/j.jbiotec.2019.04.014_bib0255 article-title: The genetic epidemiology of breast cancer genes publication-title: J. Mammary Gland Biol. Neoplasia doi: 10.1023/B:JOMG.0000048770.90334.3b – volume: 219 start-page: 169.e1 issue: 2 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0280 article-title: Hormonal contraception and breast cancer publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2018.03.032 – volume: 167 start-page: 417 issue: 2 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0220 article-title: Clinical implications of germline mutations in breast cancer: TP53 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-017-4531-y – volume: 39 start-page: 204 year: 2014 ident: 10.1016/j.jbiotec.2019.04.014_bib0295 article-title: A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC publication-title: J. Pediatr. Psychol. doi: 10.1093/jpepsy/jst062 – volume: 31 start-page: 100 year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0150 article-title: Genetic tests to identify risk for breast cancer publication-title: Semin. Oncol. Nurs. doi: 10.1016/j.soncn.2015.02.007 – volume: 164 start-page: 263 year: 2017 ident: 10.1016/j.jbiotec.2019.04.014_bib0030 article-title: Breast cancer risk models: a comprehensive overview of existing models, validation and clinical applications publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-017-4247-z – volume: 110 start-page: 535 year: 2014 ident: 10.1016/j.jbiotec.2019.04.014_bib0135 article-title: BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.730 – volume: 156 start-page: 635 year: 2012 ident: 10.1016/j.jbiotec.2019.04.014_bib0190 article-title: Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-156-9-201205010-00006 – year: 2015 ident: 10.1016/j.jbiotec.2019.04.014_bib0250 – volume: 9 start-page: 213 issue: 5 year: 2007 ident: 10.1016/j.jbiotec.2019.04.014_bib0070 article-title: Breast cancer risk-assessment models publication-title: Breast Cancer Res. doi: 10.1186/bcr1750 – volume: 13 start-page: 93 year: 2018 ident: 10.1016/j.jbiotec.2019.04.014_bib0285 article-title: Physical activity, exercise and breast cancer - what is the evidence for rehabilitation, aftercare, and survival a review publication-title: Breast Care doi: 10.1159/000488717 |
SSID | ssj0004951 |
Score | 2.298223 |
Snippet | •Predictive performance of genetic risk model combining age had AUC value 0.728.•Age is more important than common genetic variants, showed Random Forest... Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | algorithms alleles AUC Breast cancer breast neoplasms fibroblast growth factor receptor 2 genetic factors genetic variation genotyping heterozygosity homozygosity inheritance (genetics) melting mutants odds ratio patients Random Forest algorithm risk Risk model single nucleotide polymorphism SNP women |
Title | Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study |
URI | https://dx.doi.org/10.1016/j.jbiotec.2019.04.014 https://www.ncbi.nlm.nih.gov/pubmed/31002855 https://www.proquest.com/docview/2211944865 https://www.proquest.com/docview/2237535353 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQXMZhYoyxsoHeJK5pE9dxHG6lgAoTCIkhcbMc25HaTWlVWiQu-9t5z0nKdgAklFMiW7Lee34_4s_fY-ywrwKzmI8K3GqRUF5FhZMiSqVIrM9ErkLTvssrOboVF3fp3RobtndhCFbZ-P7apwdv3XzpNdLszcbj3g0mK4q4YzAFIS9LfliIjKy8-_cZ5oEFQN2TUGK1hKOfb_H0Jt1JMSYyBEJ45YHxNBEvxaeX8s8Qh8622McmgYRBvcZPbM1X22zzH1rBz-zhek7HL-TIwFi7nBv7CNMSMNeDgkDoC7Ck7Dmg9dAlRiCAOYSmOEBhzcG0gvDPFFAuaKirgQ9YWhNy5gjQvuB4MPx9c35yCoGkdofdnp3-Go6ipr9CZDFJWkTc2cyqXFlXOF5mppR5aYiPPjOpTy2Pbd9JVzqsYmWSlFJ4bjj3sXUobpva_he2Xk0r_5WBVIV3iohwsL4ySWJK7nMlfGwKZ8s87zDRSlXbhnycemD80S3KbKIbZWhSho6FRmV0WHc1bVazb7w1QbUq0_-ZkcYI8dbUH62KNW4xOjcxlZ8u7zUnFjwsY2X62pg-Fn70dNhubR-rFdMZCldpuvf-xX1jH-iNMGo8_s7WF_Ol38dsaFEcBHM_YBuD85-jqydBPAmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK9LDtMOy97MkBu7qxFUmRd8uyFsnaBgPaAr0JsiQDyQanyJIC-_cj_Ui3Q1dg8M0WAYGk-LDIjwAfh6ZGFotJQUctkSaapAhaJkrLzMeRzE09tO90rqcX8uulutyDSdcLw2WVre1vbHptrds3g5abg6vFYnBGwYph7BgKQdjKkh3eZ3Qq1YP98ex4Or9pj8xVM5ZQU8JEBDeNPIPlwbJYMB4CF3nlNehpJm9zUbeFoLUrOnoED9sYEsfNNh_DXqyewIM_kAWfwvW3Nd_AsC1D5_127fwvXJVI4R4WXIe-Qc_yXiMpEPcxIteYYz0XB9mzBVxVWP82RWIN6epu4TVl11w88wlJxfDzePL9bPblEGuc2mdwcXR4Ppkm7YiFxFOctElE8CNvcuNDEUQ5cqXOS8eQ9COnovIi9cOgQxkokdVZVmoZhRMipj4Qx73yw-fQq1ZVfAmoTRGDYSwcSrFclrlSxNzImLoi-DLP-yA7rlrf4o_zGIwftis0W9pWGJaFYVNpSRh9ONiRXTUAHHcRmE5k9i9NsuQk7iL90InY0injqxNXxdX2pxUMhEeZrFb_WjOk3I-fPrxo9GO3Y75GEUapV_-_ufdwb3p-emJPZvPj13Cfv3DJmkjfQG-z3sa3FBxtinet8v8GTrQMYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+accuracy+of+the+breast+cancer+genetic+risk+model+based+on+eight+common+genetic+variants%3A+The+BACkSIDE+study&rft.jtitle=Journal+of+biotechnology&rft.au=Dankov%C3%A1%2C+Zuzana&rft.au=%C5%BD%C3%BAbor%2C+Pavol&rft.au=Grend%C3%A1r%2C+Mari%C3%A1n&rft.au=Zelinov%C3%A1%2C+Katar%C3%ADna&rft.date=2019-06-20&rft.issn=0168-1656&rft.volume=299&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.jbiotec.2019.04.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiotec_2019_04_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1656&client=summon |