Agricultural low-cost waste adsorption of methylene blue and modelling linear isotherm method versus nonlinear prediction

This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch proce...

Full description

Saved in:
Bibliographic Details
Published inClean technologies and environmental policy Vol. 27; no. 3; pp. 1205 - 1225
Main Authors Yetgin, Senem, Amlani, Merilyn
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model ( R 2  = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient ( R 2 ) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs ( R 2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. Graphical Abstract
AbstractList This study shows that geographically marked wheat hull, named Siyez, rice hull Sarı Kılçık, and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model (R2 = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient (R2) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs (R2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic.
This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model ( R 2 = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient ( R 2 ) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs ( R 2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. Graphical Abstract
This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model ( R 2  = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient ( R 2 ) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs ( R 2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. Graphical Abstract
Author Yetgin, Senem
Amlani, Merilyn
Author_xml – sequence: 1
  givenname: Senem
  surname: Yetgin
  fullname: Yetgin, Senem
  email: syetgin@kastamonu.edu.tr
  organization: Department of Food Engineering, Kastamonu University
– sequence: 2
  givenname: Merilyn
  surname: Amlani
  fullname: Amlani, Merilyn
  organization: Department of Food Engineering, Kastamonu University, Mindanao State University Tawi-Tawi College of Technology and Oceanography
BookMark eNp9kMtqwzAQRUVJoUnaH-hK0LVbPfxchtAXBLppoTshy-PEQbZcSW7I31eJQwtdZDEzAp07c7kzNOlMBwjdUnJPCckeXOhFHhEWhypYHqUXaEpTmkdFkuST33f8eYVmzm0JYSxjZIr2i7Vt1KD9YKXG2uwiZZzHO-k8YFk5Y3vfmA6bGrfgN3sNHeBSD-Gzq3BrKtC66dY4NJAWN874Ddj2CJsKf4N1g8PB7QnoLVSNOqy8Rpe11A5uTnOOPp4e35cv0ert-XW5WEUq5omPmISaxLGUWUVTJTOmSEFYyUpIOSlrmZcJ5VzxMoU6o5UsWAZlBWUGKeWKZHyO7sa9vTVfAzgvtmawXTgpOC1IwUJeJFD5SClrnLNQC9V4efDprWy0oEQcghZj0CIELY5BizRI2T9pb5tW2v15ER9FLsDdGuyfqzOqH4rollw
CitedBy_id crossref_primary_10_3390_jcs8100402
crossref_primary_10_1016_j_ijbiomac_2025_141695
crossref_primary_10_15826_chimtech_2024_11_4_15
crossref_primary_10_3390_ma17174317
Cites_doi 10.3390/environments10030055
10.1016/j.carbpol.2016.04.053
10.4060/cb4476en
10.1016/j.jiec.2021.01.028
10.1088/1757-899X/983/1/012005
10.1016/B978-0-444-53790-4.00071-0
10.1016/j.eti.2021.101576
10.1007/s13369-023-07968-6
10.1016/j.jtice.2021.11.001
10.1007/s13201-022-01575-w
10.1007/s11270-021-05090-7
10.1016/j.envres.2020.110643
10.3390/ijerph17020526
10.30955/gnj.000560
10.1016/j.seppur.2004.10.010
10.1016/0008-6223(89)90078-X
10.1038/s41598-023-35645-z
10.1016/j.jenvman.2008.11.017
10.1016/J.ENG.2016.01.006
10.1061/(asce)hz.2153-5515.0000191
10.1016/j.jenvman.2018.03.137
10.1080/19443994.2012.734685
10.1155/2017/3039817
10.1016/B978-0-12-813734-5.00058-5
10.1002/admt.202000955
10.1016/j.cej.2022.140171
10.2478/eces-2021-0022
10.3390/membranes11110900
10.1016/j.jenvman.2017.05.045
10.1021/j100003a031
10.3390/membranes12010010
10.1016/j.inpa.2020.02.003
10.1088/1755-1315/514/5/052001
10.1016/B978-0-08-098258-8.00014-6
10.1007/s11356-022-24296-8
10.1007/s13201-015-0322-y
10.1016/j.jaubas.2014.10.001
10.1016/j.matpr.2021.09.422
10.1080/01496395.2011.606865
10.1023/A:1024267704794
10.1016/j.cej.2012.11.081
10.1515/zpch-1907-5723
10.3390/app11146255
10.1016/j.seppur.2020.116997
10.1016/0167-4838(95)00006-G
10.1007/s40097-016-0211-4
10.1016/j.jenvman.2021.113042
10.1088/1742-6596/1973/1/012185
10.1016/j.desal.2010.07.047
10.1016/j.egypro.2017.10.225
10.1016/j.jhazmat.2021.125848
10.21608/ejchem.2020.16008.1970
10.1016/j.cdc.2021.100676
10.1007/s13399-022-02865-8
10.1016/j.scenv.2023.100053
10.3390/ecws-4-06439
10.1155/2021/5314404
10.1016/j.indcrop.2022.115832
10.1016/j.psep.2020.08.022
10.1016/j.inoche.2020.107891
10.1016/j.heliyon.2024.e25813
10.1109/21.256541
10.1016/j.jenvman.2022.114948
10.1007/978-3-319-33892-7_2
10.1021/ja02254a006
10.3390/pr9101833
10.1002/ep.13328
10.1016/j.jece.2021.105578
10.5004/dwt.2018.21775
10.1016/j.chemolab.2018.07.012
10.1016/j.jhazmat.2008.08.084
10.1016/j.heliyon.2023.e15455
10.3390/w12020587
10.1016/j.molliq.2018.11.089
10.1002/vnl.21379
10.1016/j.clet.2020.100032
10.1016/j.jhazmat.2009.12.047
10.1002/jsfa.8931
10.3329/cerb.v15i1.7334
10.5004/dwt.2021.26474
10.1016/j.jece.2021.106289
10.3390/w13111495
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Mar 2025
DBID C6C
AAYXX
CITATION
7ST
7TA
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1007/s10098-024-02928-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Environment Abstracts
Materials Business File
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Materials Business File
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1618-9558
EndPage 1225
ExternalDocumentID 10_1007_s10098_024_02928_6
GrantInformation_xml – fundername: Kastamonu University
GroupedDBID -Y2
-~C
.86
.VR
0-V
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67Z
6NX
7WY
7X2
7XC
88I
8AO
8FE
8FG
8FH
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARALO
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M0K
M2O
M2P
M2R
M4Y
M7S
MA-
ML.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PATMY
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
7ST
7TA
8FD
ABRTQ
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c435t-2aef044aa7d16ca72c0902b2be630bfa8b5133c3b6ef71da927ebdeb7e613c073
IEDL.DBID C6C
ISSN 1618-954X
IngestDate Fri Jul 25 19:24:46 EDT 2025
Tue Jul 01 05:07:19 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Sat Apr 12 01:21:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Methylene blue adsorption
Low-cost agricultural wastes
ANFIS
Water purification
Modeling
Resource efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-2aef044aa7d16ca72c0902b2be630bfa8b5133c3b6ef71da927ebdeb7e613c073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s10098-024-02928-6
PQID 3190922920
PQPubID 43684
PageCount 21
ParticipantIDs proquest_journals_3190922920
crossref_citationtrail_10_1007_s10098_024_02928_6
crossref_primary_10_1007_s10098_024_02928_6
springer_journals_10_1007_s10098_024_02928_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Berlin
PublicationSubtitle Focusing on Technology Research, Innovation, Demonstration, Insights and Policy Issues for Sustainable Technologies
PublicationTitle Clean technologies and environmental policy
PublicationTitleAbbrev Clean Techn Environ Policy
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References D Merino (2928_CR46) 2023; 454
VV Panic (2928_CR103) 2013; 217
M Rafatullah (2928_CR58) 2010; 177
AA Adeyemo (2928_CR3) 2017; 7
AS Yusuff (2928_CR78) 2023; 10
SS Fiyadh (2928_CR22) 2023; 9
Y Kuang (2928_CR39) 2020; 12
CS Patil (2928_CR55) 2020; 247
D Sareen (2928_CR64) 2014; 5
IG Shaikhiev (2928_CR66) 2022; 12
MI Aydin (2928_CR8) 2022; 12
The State of Food and Agriculture 2021 (2928_CR72) 2021
SM Al-Mahmoud (2928_CR6) 2020; 63
NAHM Zaidi (2928_CR81) 2018; 101
V Herbert Freundlich (2928_CR32) 1907; 57
B Tanhaei (2928_CR71) 2017; 7
T Adane (2928_CR2) 2021; 2021
BH Hameed (2928_CR29) 2009; 164
MRR Kooh (2928_CR38) 2022; 132
M Banza (2928_CR10) 2023; 48
B Yuzer (2928_CR79) 2021; 11
MC Holliday (2928_CR34) 2022; 14
RT Gonzalez del Cerro (2928_CR23) 2021; 8
AN Labaran (2928_CR41) 2019; 14
E Oyelude (2928_CR53) 2011; 6
L Bo (2928_CR11) 2021; 23
VK Gupta (2928_CR27) 2009; 90
SH Zahraa (2928_CR80) 2021; 1973
H Park (2928_CR54) 2021; 13
I Romero-Ocaña (2928_CR61) 2022; 189
L Hevira (2928_CR33) 2021; 97
J Marszałek (2928_CR45) 2021; 9
S Yetgin (2928_CR77) 2015; 21
K Ramesh (2928_CR59) 2021; 9
MM Dubinin (2928_CR18) 1989; 27
G Weber (2928_CR76) 1995; 99
I Urruzola (2928_CR73) 2013; 51
D Duranoğlu (2928_CR19) 2024; 10
S Banerjee (2928_CR9) 2014; 18
N Sahu (2928_CR62) 2022; 312
R Abedini (2928_CR1) 2011; 15
JR Jang (2928_CR36) 1993; 23
K Nwosu-Obieogu (2928_CR52) 2022; 12
S Sawasdee (2928_CR65) 2017; 138
S Srinivasan (2928_CR70) 2021; 194
SA Hamoudi (2928_CR31) 2018
TCA Siqueira (2928_CR68) 2020; 17
SA Bokil (2928_CR12) 2020; 983
A El-Maghraby (2928_CR20) 2011; 13
AK Nayak (2928_CR51) 2021; 9
S Kumari (2928_CR40) 2023; 13
ZA Hammood (2928_CR30) 2021; 28
A Mittal (2928_CR47) 2005; 43
B Said (2928_CR63) 2020; 115
RS de Silva (2928_CR67) 2021; 145
A Bhatnagar (2928_CR100) 2015; 23
S Chowdhury (2928_CR14) 2011; 265
I Langmuir (2928_CR42) 1917; 39
XG Chen (2928_CR13) 2012; 47
Q Liu (2928_CR43) 2020; 514
Y Qian (2928_CR57) 2016; 2
AK Nayak (2928_CR50) 2019; 276
S Goudjil (2928_CR24) 2021; 209
A Gunay Gurer (2928_CR25) 2021; 232
AK Nayak (2928_CR49) 2018; 217
2928_CR106
2928_CR105
2928_CR104
FS Wahshi (2928_CR74) 2019; 48
ED Revellame (2928_CR60) 2020; 1
BK Agbaogun (2928_CR4) 2023; 30
2928_CR102
2928_CR101
M Dolatabadi (2928_CR17) 2018; 181
M Makeswari (2928_CR44) 2016; 8
MA Ahmad (2928_CR5) 2021; 32
LF Cusioli (2928_CR16) 2020; 39
A Wasti (2928_CR75) 2016; 20
RD Johnson (2928_CR37) 1995; 1247
A Gürses (2928_CR28) 2016
S Hribernik (2928_CR35) 2016; 148
N Ayawei (2928_CR7) 2017; 2017
L Cseri (2928_CR15) 2021; 6
E Güneş (2928_CR26) 2021; 294
AK Nayak (2928_CR48) 2017; 200
HB Slama (2928_CR69) 2021; 11
F Fadzail (2928_CR21) 2022; 57
I Pavasars (2928_CR56) 2003; 11
References_xml – volume: 10
  start-page: 55
  issue: 3
  year: 2023
  ident: 2928_CR78
  publication-title: Environ—MDPI
  doi: 10.3390/environments10030055
– volume: 148
  start-page: 227
  year: 2016
  ident: 2928_CR35
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2016.04.053
– year: 2021
  ident: 2928_CR72
  publication-title: FAO
  doi: 10.4060/cb4476en
– volume: 97
  start-page: 188
  year: 2021
  ident: 2928_CR33
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2021.01.028
– volume: 983
  start-page: 012005
  issue: 1
  year: 2020
  ident: 2928_CR12
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/983/1/012005
– ident: 2928_CR101
  doi: 10.1016/B978-0-444-53790-4.00071-0
– volume: 23
  start-page: 101576
  year: 2015
  ident: 2928_CR100
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101576
– volume: 48
  start-page: 16067
  issue: 12
  year: 2023
  ident: 2928_CR10
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-023-07968-6
– volume: 132
  start-page: 104134
  year: 2022
  ident: 2928_CR38
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2021.11.001
– volume: 12
  start-page: 52
  issue: 3
  year: 2022
  ident: 2928_CR52
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01575-w
– volume: 232
  start-page: 1
  issue: 4
  year: 2021
  ident: 2928_CR25
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-021-05090-7
– volume: 194
  start-page: 110643
  year: 2021
  ident: 2928_CR70
  publication-title: In Environ Res
  doi: 10.1016/j.envres.2020.110643
– volume: 17
  start-page: 526
  issue: 2
  year: 2020
  ident: 2928_CR68
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17020526
– volume: 13
  start-page: 90
  issue: 1
  year: 2011
  ident: 2928_CR20
  publication-title: Global Nest J
  doi: 10.30955/gnj.000560
– volume: 43
  start-page: 125
  issue: 2
  year: 2005
  ident: 2928_CR47
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2004.10.010
– volume: 27
  start-page: 457
  issue: 3
  year: 1989
  ident: 2928_CR18
  publication-title: Carbon
  doi: 10.1016/0008-6223(89)90078-X
– volume: 13
  start-page: 8574
  issue: 1
  year: 2023
  ident: 2928_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-35645-z
– volume: 90
  start-page: 2313
  issue: 8
  year: 2009
  ident: 2928_CR27
  publication-title: In J Environ Manag
  doi: 10.1016/j.jenvman.2008.11.017
– volume: 2
  start-page: 23
  issue: 1
  year: 2016
  ident: 2928_CR57
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.01.006
– volume: 18
  start-page: 56
  issue: 1
  year: 2014
  ident: 2928_CR9
  publication-title: J Hazard Toxic Radioact Waste
  doi: 10.1061/(asce)hz.2153-5515.0000191
– volume: 217
  start-page: 573
  year: 2018
  ident: 2928_CR49
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2018.03.137
– volume: 51
  start-page: 2153
  issue: 10–12
  year: 2013
  ident: 2928_CR73
  publication-title: Desalin Water Treat
  doi: 10.1080/19443994.2012.734685
– volume: 2017
  start-page: 3039817
  issue: 1
  year: 2017
  ident: 2928_CR7
  publication-title: J Chem
  doi: 10.1155/2017/3039817
– volume-title: Removal of ions Pb2+ and Cd2+ from aqueous solution by containment geomaterials. Exergetic, energetic and environmental dimensions
  year: 2018
  ident: 2928_CR31
  doi: 10.1016/B978-0-12-813734-5.00058-5
– volume: 12
  start-page: 4518
  issue: 4
  year: 2022
  ident: 2928_CR66
  publication-title: Biointerf Res Appl Chem
– volume: 6
  start-page: 2000955
  issue: 10
  year: 2021
  ident: 2928_CR15
  publication-title: In Adv Mater Technol
  doi: 10.1002/admt.202000955
– volume: 454
  issue: P4
  year: 2023
  ident: 2928_CR46
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.140171
– volume: 23
  start-page: 101576
  year: 2021
  ident: 2928_CR11
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101576
– volume: 28
  start-page: 329
  issue: 3
  year: 2021
  ident: 2928_CR30
  publication-title: Ecol Chem Eng S
  doi: 10.2478/eces-2021-0022
– volume: 11
  start-page: 900
  issue: 11
  year: 2021
  ident: 2928_CR79
  publication-title: In Membr
  doi: 10.3390/membranes11110900
– volume: 200
  start-page: 145
  year: 2017
  ident: 2928_CR48
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2017.05.045
– volume: 99
  start-page: 1052
  issue: 3
  year: 1995
  ident: 2928_CR76
  publication-title: In J Phys Chem
  doi: 10.1021/j100003a031
– volume: 12
  start-page: 10
  issue: 1
  year: 2022
  ident: 2928_CR8
  publication-title: In Membr
  doi: 10.3390/membranes12010010
– volume: 8
  start-page: 173
  issue: 1
  year: 2021
  ident: 2928_CR23
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2020.02.003
– volume: 514
  start-page: 052001
  issue: 5
  year: 2020
  ident: 2928_CR43
  publication-title: IOP Conf Ser: Earth Environ Sci
  doi: 10.1088/1755-1315/514/5/052001
– ident: 2928_CR102
  doi: 10.1016/B978-0-08-098258-8.00014-6
– volume: 30
  start-page: 31085
  issue: 11
  year: 2023
  ident: 2928_CR4
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-24296-8
– volume: 7
  start-page: 543
  issue: 2
  year: 2017
  ident: 2928_CR3
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-015-0322-y
– volume: 20
  start-page: 26
  year: 2016
  ident: 2928_CR75
  publication-title: J Assoc Arab Univ Basic Appl Sci
  doi: 10.1016/j.jaubas.2014.10.001
– volume: 57
  start-page: 1108
  year: 2022
  ident: 2928_CR21
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2021.09.422
– volume: 47
  start-page: 147
  issue: 1
  year: 2012
  ident: 2928_CR13
  publication-title: Sep Sci Technol
  doi: 10.1080/01496395.2011.606865
– volume: 11
  start-page: 39
  issue: 2
  year: 2003
  ident: 2928_CR56
  publication-title: J Polym Environ
  doi: 10.1023/A:1024267704794
– volume: 6
  start-page: 477
  issue: 4
  year: 2011
  ident: 2928_CR53
  publication-title: J Appl Sci Environ
– volume: 217
  start-page: 192
  year: 2013
  ident: 2928_CR103
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.11.081
– volume: 57
  start-page: 385
  issue: 1
  year: 1907
  ident: 2928_CR32
  publication-title: Z Phys Chem
  doi: 10.1515/zpch-1907-5723
– volume: 5
  start-page: 610
  issue: 4
  year: 2014
  ident: 2928_CR64
  publication-title: Int J Chem Environ Eng
– volume: 8
  start-page: 452
  issue: 7
  year: 2016
  ident: 2928_CR44
  publication-title: J Chem Pharm Res
– volume: 11
  start-page: 1
  issue: 14
  year: 2021
  ident: 2928_CR69
  publication-title: Appl Sci (switzerland)
  doi: 10.3390/app11146255
– volume: 247
  start-page: 116997
  year: 2020
  ident: 2928_CR55
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2020.116997
– volume: 1247
  start-page: 293
  issue: 2
  year: 1995
  ident: 2928_CR37
  publication-title: Biochimica Et Biophys Acta (BBA)/prot Struct Mol
  doi: 10.1016/0167-4838(95)00006-G
– volume: 7
  start-page: 29
  issue: 1
  year: 2017
  ident: 2928_CR71
  publication-title: J Nanostruct Chem
  doi: 10.1007/s40097-016-0211-4
– volume: 294
  start-page: 113042
  year: 2021
  ident: 2928_CR26
  publication-title: In J Environ Manag
  doi: 10.1016/j.jenvman.2021.113042
– volume: 1973
  start-page: 012185
  issue: 1
  year: 2021
  ident: 2928_CR80
  publication-title: J Phys: Conf Ser
  doi: 10.1088/1742-6596/1973/1/012185
– volume: 265
  start-page: 159
  issue: 1–3
  year: 2011
  ident: 2928_CR14
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.07.047
– volume: 138
  start-page: 1159
  year: 2017
  ident: 2928_CR65
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.10.225
– ident: 2928_CR105
  doi: 10.1016/j.jhazmat.2021.125848
– volume: 63
  start-page: 3381
  issue: 9
  year: 2020
  ident: 2928_CR6
  publication-title: Egypt J Chem
  doi: 10.21608/ejchem.2020.16008.1970
– volume: 32
  start-page: 100676
  year: 2021
  ident: 2928_CR5
  publication-title: Chem Data Collect
  doi: 10.1016/j.cdc.2021.100676
– volume: 14
  start-page: 6671
  issue: 5
  year: 2022
  ident: 2928_CR34
  publication-title: Biomass Convers Bioref
  doi: 10.1007/s13399-022-02865-8
– volume: 14
  start-page: 66
  issue: 2
  year: 2019
  ident: 2928_CR41
  publication-title: Sci World J
– ident: 2928_CR104
  doi: 10.1016/j.scenv.2023.100053
– volume: 48
  start-page: 10
  issue: 1
  year: 2019
  ident: 2928_CR74
  publication-title: Proceedings
  doi: 10.3390/ecws-4-06439
– volume: 2021
  start-page: 5314404
  issue: 1
  year: 2021
  ident: 2928_CR2
  publication-title: J Chem
  doi: 10.1155/2021/5314404
– volume: 189
  start-page: 115832
  year: 2022
  ident: 2928_CR61
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2022.115832
– volume: 145
  start-page: 285
  year: 2021
  ident: 2928_CR67
  publication-title: In Process Saf Environ Prot
  doi: 10.1016/j.psep.2020.08.022
– volume: 115
  start-page: 107891
  year: 2020
  ident: 2928_CR63
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2020.107891
– volume: 10
  start-page: e25813
  issue: 3
  year: 2024
  ident: 2928_CR19
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e25813
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 2928_CR36
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 312
  start-page: 114948
  year: 2022
  ident: 2928_CR62
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2022.114948
– volume-title: Dyes and pigments: their structure and properties
  year: 2016
  ident: 2928_CR28
  doi: 10.1007/978-3-319-33892-7_2
– volume: 39
  start-page: 1848
  year: 1917
  ident: 2928_CR42
  publication-title: JACS
  doi: 10.1021/ja02254a006
– volume: 9
  start-page: 1833
  issue: 10
  year: 2021
  ident: 2928_CR45
  publication-title: In Process
  doi: 10.3390/pr9101833
– volume: 39
  start-page: 1
  issue: 2
  year: 2020
  ident: 2928_CR16
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13328
– volume: 9
  start-page: 105578
  issue: 4
  year: 2021
  ident: 2928_CR51
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.105578
– volume: 101
  start-page: 313
  year: 2018
  ident: 2928_CR81
  publication-title: Desalin Water Treat
  doi: 10.5004/dwt.2018.21775
– volume: 181
  start-page: 72
  year: 2018
  ident: 2928_CR17
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.07.012
– volume: 164
  start-page: 870
  issue: 2–3
  year: 2009
  ident: 2928_CR29
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.08.084
– volume: 9
  start-page: E15455
  issue: 4
  year: 2023
  ident: 2928_CR22
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15455
– volume: 12
  start-page: 1
  issue: 2
  year: 2020
  ident: 2928_CR39
  publication-title: Water (switzerland)
  doi: 10.3390/w12020587
– volume: 276
  start-page: 67
  year: 2019
  ident: 2928_CR50
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2018.11.089
– volume: 21
  start-page: 42
  issue: 1
  year: 2015
  ident: 2928_CR77
  publication-title: J Vinyl Add Tech
  doi: 10.1002/vnl.21379
– volume: 1
  start-page: 100032
  year: 2020
  ident: 2928_CR60
  publication-title: In Clean Eng Technol
  doi: 10.1016/j.clet.2020.100032
– volume: 177
  start-page: 70
  issue: 1–3
  year: 2010
  ident: 2928_CR58
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2009.12.047
– ident: 2928_CR106
  doi: 10.1002/jsfa.8931
– volume: 15
  start-page: 30
  issue: 1
  year: 2011
  ident: 2928_CR1
  publication-title: Chem Eng Res Bull
  doi: 10.3329/cerb.v15i1.7334
– volume: 209
  start-page: 429
  year: 2021
  ident: 2928_CR24
  publication-title: Desalin Water Treat
  doi: 10.5004/dwt.2021.26474
– volume: 9
  start-page: 106289
  issue: 5
  year: 2021
  ident: 2928_CR59
  publication-title: In J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106289
– volume: 13
  start-page: 1495
  issue: 11
  year: 2021
  ident: 2928_CR54
  publication-title: In Water (switzerland).
  doi: 10.3390/w13111495
SSID ssj0022720
Score 2.417277
Snippet This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to...
This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to...
This study shows that geographically marked wheat hull, named Siyez, rice hull Sarı Kılçık, and Taşköprü Garlic stalk were used as agricultural waste to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1205
SubjectTerms Adaptive systems
Adsorbents
Adsorption
Agricultural economics
Agricultural wastes
Algorithms
Aqueous solutions
Diffusion
Dyes
Earth and Environmental Science
Environment
Environmental Economics
Environmental Engineering/Biotechnology
Error functions
Garlic
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Isotherms
Liquid phases
Low cost
Mass transfer
Methylene blue
Monolayers
Original Paper
Parameters
Particle diffusion
Regression coefficients
Regression models
Rice
Rice hulls
Root-mean-square errors
Sustainable Development
Thermodynamics
Water purification
Wheat
Title Agricultural low-cost waste adsorption of methylene blue and modelling linear isotherm method versus nonlinear prediction
URI https://link.springer.com/article/10.1007/s10098-024-02928-6
https://www.proquest.com/docview/3190922920
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66XfQg_sTplBy8aWFN06Q9jrE5FD05mKeSXxVhbqPdGPvvfa_tNh0qeGgvSV4hr8n7wsv7PkJukOsUcLj0mDWhx7lUXiwkptilCpgRJo6wwPnpWfQH_GEYDiuaHKyF2crfY4kbMl5CJIEHzHpil9RDP5Ao09ARnfXhCvOJeLgSPizgkA-rApmfbXwPQhtkuZUMLWJM75AcVOCQtktvHpEdNz4m-18oA0_Isv2Wreky6Giy8Mwkn9GFAm9RZfNJVuwBdJJSFIdeQlBxVI_m0Di2tNC9wQJ0iuhSZfQ9LyqwPmipJE3xksY8p-OSQAM6TDPM5KDJUzLodV86fa-ST_AMYKCZx5RLW5wrJa0vjJLM4B1MzbQTQUunKtKo7WICLVwqfatiJp22TksHId7A0j8jNficOycUMGTEbJjy1E-5CbjSMMAaF9lQcSbjBvFX85mYilscJS5GyYYVGX2QgA-SwgeJaJDb9ZhpyazxZ-_myk1JtcryBLaPVsxQb6tB7lau2zT_bu3if90vyR5D2d_i6lmT1GbZ3F0BFpnpa1Jv378-dq-LnxHeA9b-BEjI2K0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHtSD8RlR1D140yZ02e62R2I0qMAJEm7NvmpMEEgLIfx7Z0oLaNTEQ0_7Sjq7O99mZr6PkFvkOgUcLj1mTeBxLpUXCYkhdqkazAgThVjg3OmKVp-_DIJBURSWldnuZUgyv6k3it2Q-xJ8CnywgCe2yQ6AgRD3cp81V88sjCziM0v4cJQDPihKZX6e46s7WmPMb2HR3Ns8HZKDAibS5tKuR2TLjY7J_gZ54AlZNN_SFXEGHY7nnhlnUzpXYDeqbDZO89uAjhOKMtELcC-O6uEMGkeW5go4WIpOEWeqlL5neS3WB11qSlNM15hldLSk0oAOkxRjOjjlKek_PfYeWl4hpOAZQENTjymX1DlXSlpfGCWZwWxMzbQTjbpOVKhR5cU0tHCJ9K2KmHTaOi0dOHsDl8AZqcBy7pxQQJMhs0HCEz_hpsGVhgHWuNAGijMZVYlf_s_YFCzjKHYxjNf8yGiDGGwQ5zaIRZXcrcZMlhwbf_aulWaKi_OWxXCR1COGyltVcl-abt38-2wX_-t-Q3ZbvU47bj93Xy_JHkMx4DwhrUYq03TmrgChTPV1viE_Aa_W3Uc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h68aWiz3ew2x1ItPosHC72FfUWE2pYkRfz3ziTpQ1HBQ077CGSyOzPMfN9HyDlynUIcLj1mTeBxLpUXCokldqmazAgTthDg_NgTN31-NwgGSyj-vNt9VpIsMA3I0jTK6hMb15eAb8iDCf4FHniZJ1bJGmQqPqZfHdGZp1xYZcSUS_hwrAM-KGEzP-_x1TUt4s1vJdLc83S3yVYZMtJ2YeMdsuJGu2RziUhwj3y0X5I5iQYdjt89M04z-q7AhlTZdJzkNwMdxxQloz_A1Tiqh1MYHFmaq-EgLJ1izKkS-prmuKw3WuhLU2zdmKZ0VNBqwIRJgvUd3HKf9LvXz50brxRV8AxERpnHlIsbnCslrS-MksxgZ6Zm2olmQ8eqpVHxxTS1cLH0rQqZdNo6LR04fgMXwgGpwOvcIaEQWbaYDWIe-zE3Ta40LLDGtWygOJNhlfiz7xmZknEchS-G0YIrGW0QgQ2i3AaRqJKL-ZpJwbfx5-zazExRefbSCC6VRshQhatKLmemWwz_vtvR_6afkfWnq270cNu7PyYbDHWB8960GqlkydSdQLCS6dP8f_wEVZXhbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agricultural+low-cost+waste+adsorption+of+methylene+blue+and+modelling+linear+isotherm+method+versus+nonlinear+prediction&rft.jtitle=Clean+technologies+and+environmental+policy&rft.au=Yetgin%2C+Senem&rft.au=Amlani%2C+Merilyn&rft.date=2025-03-01&rft.issn=1618-954X&rft.eissn=1618-9558&rft.volume=27&rft.issue=3&rft.spage=1205&rft.epage=1225&rft_id=info:doi/10.1007%2Fs10098-024-02928-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10098_024_02928_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-954X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-954X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-954X&client=summon