Agricultural low-cost waste adsorption of methylene blue and modelling linear isotherm method versus nonlinear prediction
This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch proce...
Saved in:
Published in | Clean technologies and environmental policy Vol. 27; no. 3; pp. 1205 - 1225 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study shows that geographically marked wheat hull, named
Siyez
, rice hull
Sarı Kılçık
, and
Taşköprü Garlic
stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model (
R
2
= 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient (
R
2
) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and
Adaptive Neuro-Fuzzy Inference System
algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs (
R
2
about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic.
Graphical Abstract |
---|---|
AbstractList | This study shows that geographically marked wheat hull, named Siyez, rice hull Sarı Kılçık, and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model (R2 = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient (R2) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs (R2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model ( R 2 = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient ( R 2 ) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs ( R 2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. Graphical Abstract This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to potential adsorbent materials for removing methylene blue from aqueous solution. Experimental data were evaluated in both equilibrium batch process and kinetic studies. In addition, the factors that affect the adsorption capacities, such as pH solutions, methylene blue concentration, contact time, and temperatures, were also investigated. Obtained data were subject to two constant adsorption models of Langmuir, Freundlich, Temkin, and Dubinin−Radushkevich. The kinetic models (pseudo-first-order, pseudo-second-order, intra-particle diffusion and film diffusion) and thermodynamic parameters were evaluated. The adsorption isotherms, characterized by an excellent fit with the Langmuir model ( R 2 = 0.99) across all adsorbents, underscore the prevalence of monolayer adsorption of methylene blue, in contrast to the Freundlich equation. Adsorption kinetics of the methylene blue onto the adsorbents followed pseudo-second-order kinetic model. According to high regression coefficient ( R 2 ) and minimal values of nonlinear error functions like RMSE; the maximum monolayer adsorption capacities of wheat hull, rice hull and garlic stalk were found to be 62.50 (mg/g), 54.94 (mg/g), and 370.37 (mg/g), respectively. The results indicated that these proposed adsorbents could be low-cost and effective adsorbents for water purification and have adsorption capacity as much as comparable with the literature. In batch equilibrium studies, the adsorption of methylene blue dye onto the wheat hull, rice hull, and garlic stalk exhibited a significant correlation with temperature, contact time, and initial concentration of methylene blue dye and Adaptive Neuro-Fuzzy Inference System algorithm for forecasting overall the system parameter well fitted with these findings with the accuracy of outputs ( R 2 about 0.99 for each). Consequently, the thermodynamic analysis revealed that the adsorption process takes place in bulk diffusion by liquid phase mass transfer and occurred spontaneously with endothermically except garlic stalk. Adsorption thermodynamic studies show that the adsorption of methylene blue onto the garlic stalk was spontaneous and exothermic. Graphical Abstract |
Author | Yetgin, Senem Amlani, Merilyn |
Author_xml | – sequence: 1 givenname: Senem surname: Yetgin fullname: Yetgin, Senem email: syetgin@kastamonu.edu.tr organization: Department of Food Engineering, Kastamonu University – sequence: 2 givenname: Merilyn surname: Amlani fullname: Amlani, Merilyn organization: Department of Food Engineering, Kastamonu University, Mindanao State University Tawi-Tawi College of Technology and Oceanography |
BookMark | eNp9kMtqwzAQRUVJoUnaH-hK0LVbPfxchtAXBLppoTshy-PEQbZcSW7I31eJQwtdZDEzAp07c7kzNOlMBwjdUnJPCckeXOhFHhEWhypYHqUXaEpTmkdFkuST33f8eYVmzm0JYSxjZIr2i7Vt1KD9YKXG2uwiZZzHO-k8YFk5Y3vfmA6bGrfgN3sNHeBSD-Gzq3BrKtC66dY4NJAWN874Ddj2CJsKf4N1g8PB7QnoLVSNOqy8Rpe11A5uTnOOPp4e35cv0ert-XW5WEUq5omPmISaxLGUWUVTJTOmSEFYyUpIOSlrmZcJ5VzxMoU6o5UsWAZlBWUGKeWKZHyO7sa9vTVfAzgvtmawXTgpOC1IwUJeJFD5SClrnLNQC9V4efDprWy0oEQcghZj0CIELY5BizRI2T9pb5tW2v15ER9FLsDdGuyfqzOqH4rollw |
CitedBy_id | crossref_primary_10_3390_jcs8100402 crossref_primary_10_1016_j_ijbiomac_2025_141695 crossref_primary_10_15826_chimtech_2024_11_4_15 crossref_primary_10_3390_ma17174317 |
Cites_doi | 10.3390/environments10030055 10.1016/j.carbpol.2016.04.053 10.4060/cb4476en 10.1016/j.jiec.2021.01.028 10.1088/1757-899X/983/1/012005 10.1016/B978-0-444-53790-4.00071-0 10.1016/j.eti.2021.101576 10.1007/s13369-023-07968-6 10.1016/j.jtice.2021.11.001 10.1007/s13201-022-01575-w 10.1007/s11270-021-05090-7 10.1016/j.envres.2020.110643 10.3390/ijerph17020526 10.30955/gnj.000560 10.1016/j.seppur.2004.10.010 10.1016/0008-6223(89)90078-X 10.1038/s41598-023-35645-z 10.1016/j.jenvman.2008.11.017 10.1016/J.ENG.2016.01.006 10.1061/(asce)hz.2153-5515.0000191 10.1016/j.jenvman.2018.03.137 10.1080/19443994.2012.734685 10.1155/2017/3039817 10.1016/B978-0-12-813734-5.00058-5 10.1002/admt.202000955 10.1016/j.cej.2022.140171 10.2478/eces-2021-0022 10.3390/membranes11110900 10.1016/j.jenvman.2017.05.045 10.1021/j100003a031 10.3390/membranes12010010 10.1016/j.inpa.2020.02.003 10.1088/1755-1315/514/5/052001 10.1016/B978-0-08-098258-8.00014-6 10.1007/s11356-022-24296-8 10.1007/s13201-015-0322-y 10.1016/j.jaubas.2014.10.001 10.1016/j.matpr.2021.09.422 10.1080/01496395.2011.606865 10.1023/A:1024267704794 10.1016/j.cej.2012.11.081 10.1515/zpch-1907-5723 10.3390/app11146255 10.1016/j.seppur.2020.116997 10.1016/0167-4838(95)00006-G 10.1007/s40097-016-0211-4 10.1016/j.jenvman.2021.113042 10.1088/1742-6596/1973/1/012185 10.1016/j.desal.2010.07.047 10.1016/j.egypro.2017.10.225 10.1016/j.jhazmat.2021.125848 10.21608/ejchem.2020.16008.1970 10.1016/j.cdc.2021.100676 10.1007/s13399-022-02865-8 10.1016/j.scenv.2023.100053 10.3390/ecws-4-06439 10.1155/2021/5314404 10.1016/j.indcrop.2022.115832 10.1016/j.psep.2020.08.022 10.1016/j.inoche.2020.107891 10.1016/j.heliyon.2024.e25813 10.1109/21.256541 10.1016/j.jenvman.2022.114948 10.1007/978-3-319-33892-7_2 10.1021/ja02254a006 10.3390/pr9101833 10.1002/ep.13328 10.1016/j.jece.2021.105578 10.5004/dwt.2018.21775 10.1016/j.chemolab.2018.07.012 10.1016/j.jhazmat.2008.08.084 10.1016/j.heliyon.2023.e15455 10.3390/w12020587 10.1016/j.molliq.2018.11.089 10.1002/vnl.21379 10.1016/j.clet.2020.100032 10.1016/j.jhazmat.2009.12.047 10.1002/jsfa.8931 10.3329/cerb.v15i1.7334 10.5004/dwt.2021.26474 10.1016/j.jece.2021.106289 10.3390/w13111495 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | C6C AAYXX CITATION 7ST 7TA 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1007/s10098-024-02928-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Environment Abstracts Materials Business File Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Engineering Research Database Environment Abstracts Materials Business File Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1618-9558 |
EndPage | 1225 |
ExternalDocumentID | 10_1007_s10098_024_02928_6 |
GrantInformation_xml | – fundername: Kastamonu University |
GroupedDBID | -Y2 -~C .86 .VR 0-V 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67Z 6NX 7WY 7X2 7XC 88I 8AO 8FE 8FG 8FH 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARALO ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L6V LAS LLZTM M0C M0K M2O M2P M2R M4Y M7S MA- ML. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PATMY PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM 7ST 7TA 8FD ABRTQ C1K FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c435t-2aef044aa7d16ca72c0902b2be630bfa8b5133c3b6ef71da927ebdeb7e613c073 |
IEDL.DBID | C6C |
ISSN | 1618-954X |
IngestDate | Fri Jul 25 19:24:46 EDT 2025 Tue Jul 01 05:07:19 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Sat Apr 12 01:21:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Methylene blue adsorption Low-cost agricultural wastes ANFIS Water purification Modeling Resource efficiency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-2aef044aa7d16ca72c0902b2be630bfa8b5133c3b6ef71da927ebdeb7e613c073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s10098-024-02928-6 |
PQID | 3190922920 |
PQPubID | 43684 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3190922920 crossref_citationtrail_10_1007_s10098_024_02928_6 crossref_primary_10_1007_s10098_024_02928_6 springer_journals_10_1007_s10098_024_02928_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin |
PublicationSubtitle | Focusing on Technology Research, Innovation, Demonstration, Insights and Policy Issues for Sustainable Technologies |
PublicationTitle | Clean technologies and environmental policy |
PublicationTitleAbbrev | Clean Techn Environ Policy |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | D Merino (2928_CR46) 2023; 454 VV Panic (2928_CR103) 2013; 217 M Rafatullah (2928_CR58) 2010; 177 AA Adeyemo (2928_CR3) 2017; 7 AS Yusuff (2928_CR78) 2023; 10 SS Fiyadh (2928_CR22) 2023; 9 Y Kuang (2928_CR39) 2020; 12 CS Patil (2928_CR55) 2020; 247 D Sareen (2928_CR64) 2014; 5 IG Shaikhiev (2928_CR66) 2022; 12 MI Aydin (2928_CR8) 2022; 12 The State of Food and Agriculture 2021 (2928_CR72) 2021 SM Al-Mahmoud (2928_CR6) 2020; 63 NAHM Zaidi (2928_CR81) 2018; 101 V Herbert Freundlich (2928_CR32) 1907; 57 B Tanhaei (2928_CR71) 2017; 7 T Adane (2928_CR2) 2021; 2021 BH Hameed (2928_CR29) 2009; 164 MRR Kooh (2928_CR38) 2022; 132 M Banza (2928_CR10) 2023; 48 B Yuzer (2928_CR79) 2021; 11 MC Holliday (2928_CR34) 2022; 14 RT Gonzalez del Cerro (2928_CR23) 2021; 8 AN Labaran (2928_CR41) 2019; 14 E Oyelude (2928_CR53) 2011; 6 L Bo (2928_CR11) 2021; 23 VK Gupta (2928_CR27) 2009; 90 SH Zahraa (2928_CR80) 2021; 1973 H Park (2928_CR54) 2021; 13 I Romero-Ocaña (2928_CR61) 2022; 189 L Hevira (2928_CR33) 2021; 97 J Marszałek (2928_CR45) 2021; 9 S Yetgin (2928_CR77) 2015; 21 K Ramesh (2928_CR59) 2021; 9 MM Dubinin (2928_CR18) 1989; 27 G Weber (2928_CR76) 1995; 99 I Urruzola (2928_CR73) 2013; 51 D Duranoğlu (2928_CR19) 2024; 10 S Banerjee (2928_CR9) 2014; 18 N Sahu (2928_CR62) 2022; 312 R Abedini (2928_CR1) 2011; 15 JR Jang (2928_CR36) 1993; 23 K Nwosu-Obieogu (2928_CR52) 2022; 12 S Sawasdee (2928_CR65) 2017; 138 S Srinivasan (2928_CR70) 2021; 194 SA Hamoudi (2928_CR31) 2018 TCA Siqueira (2928_CR68) 2020; 17 SA Bokil (2928_CR12) 2020; 983 A El-Maghraby (2928_CR20) 2011; 13 AK Nayak (2928_CR51) 2021; 9 S Kumari (2928_CR40) 2023; 13 ZA Hammood (2928_CR30) 2021; 28 A Mittal (2928_CR47) 2005; 43 B Said (2928_CR63) 2020; 115 RS de Silva (2928_CR67) 2021; 145 A Bhatnagar (2928_CR100) 2015; 23 S Chowdhury (2928_CR14) 2011; 265 I Langmuir (2928_CR42) 1917; 39 XG Chen (2928_CR13) 2012; 47 Q Liu (2928_CR43) 2020; 514 Y Qian (2928_CR57) 2016; 2 AK Nayak (2928_CR50) 2019; 276 S Goudjil (2928_CR24) 2021; 209 A Gunay Gurer (2928_CR25) 2021; 232 AK Nayak (2928_CR49) 2018; 217 2928_CR106 2928_CR105 2928_CR104 FS Wahshi (2928_CR74) 2019; 48 ED Revellame (2928_CR60) 2020; 1 BK Agbaogun (2928_CR4) 2023; 30 2928_CR102 2928_CR101 M Dolatabadi (2928_CR17) 2018; 181 M Makeswari (2928_CR44) 2016; 8 MA Ahmad (2928_CR5) 2021; 32 LF Cusioli (2928_CR16) 2020; 39 A Wasti (2928_CR75) 2016; 20 RD Johnson (2928_CR37) 1995; 1247 A Gürses (2928_CR28) 2016 S Hribernik (2928_CR35) 2016; 148 N Ayawei (2928_CR7) 2017; 2017 L Cseri (2928_CR15) 2021; 6 E Güneş (2928_CR26) 2021; 294 AK Nayak (2928_CR48) 2017; 200 HB Slama (2928_CR69) 2021; 11 F Fadzail (2928_CR21) 2022; 57 I Pavasars (2928_CR56) 2003; 11 |
References_xml | – volume: 10 start-page: 55 issue: 3 year: 2023 ident: 2928_CR78 publication-title: Environ—MDPI doi: 10.3390/environments10030055 – volume: 148 start-page: 227 year: 2016 ident: 2928_CR35 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2016.04.053 – year: 2021 ident: 2928_CR72 publication-title: FAO doi: 10.4060/cb4476en – volume: 97 start-page: 188 year: 2021 ident: 2928_CR33 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2021.01.028 – volume: 983 start-page: 012005 issue: 1 year: 2020 ident: 2928_CR12 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/983/1/012005 – ident: 2928_CR101 doi: 10.1016/B978-0-444-53790-4.00071-0 – volume: 23 start-page: 101576 year: 2015 ident: 2928_CR100 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101576 – volume: 48 start-page: 16067 issue: 12 year: 2023 ident: 2928_CR10 publication-title: Arab J Sci Eng doi: 10.1007/s13369-023-07968-6 – volume: 132 start-page: 104134 year: 2022 ident: 2928_CR38 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2021.11.001 – volume: 12 start-page: 52 issue: 3 year: 2022 ident: 2928_CR52 publication-title: Appl Water Sci doi: 10.1007/s13201-022-01575-w – volume: 232 start-page: 1 issue: 4 year: 2021 ident: 2928_CR25 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-021-05090-7 – volume: 194 start-page: 110643 year: 2021 ident: 2928_CR70 publication-title: In Environ Res doi: 10.1016/j.envres.2020.110643 – volume: 17 start-page: 526 issue: 2 year: 2020 ident: 2928_CR68 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17020526 – volume: 13 start-page: 90 issue: 1 year: 2011 ident: 2928_CR20 publication-title: Global Nest J doi: 10.30955/gnj.000560 – volume: 43 start-page: 125 issue: 2 year: 2005 ident: 2928_CR47 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2004.10.010 – volume: 27 start-page: 457 issue: 3 year: 1989 ident: 2928_CR18 publication-title: Carbon doi: 10.1016/0008-6223(89)90078-X – volume: 13 start-page: 8574 issue: 1 year: 2023 ident: 2928_CR40 publication-title: Sci Rep doi: 10.1038/s41598-023-35645-z – volume: 90 start-page: 2313 issue: 8 year: 2009 ident: 2928_CR27 publication-title: In J Environ Manag doi: 10.1016/j.jenvman.2008.11.017 – volume: 2 start-page: 23 issue: 1 year: 2016 ident: 2928_CR57 publication-title: Engineering doi: 10.1016/J.ENG.2016.01.006 – volume: 18 start-page: 56 issue: 1 year: 2014 ident: 2928_CR9 publication-title: J Hazard Toxic Radioact Waste doi: 10.1061/(asce)hz.2153-5515.0000191 – volume: 217 start-page: 573 year: 2018 ident: 2928_CR49 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2018.03.137 – volume: 51 start-page: 2153 issue: 10–12 year: 2013 ident: 2928_CR73 publication-title: Desalin Water Treat doi: 10.1080/19443994.2012.734685 – volume: 2017 start-page: 3039817 issue: 1 year: 2017 ident: 2928_CR7 publication-title: J Chem doi: 10.1155/2017/3039817 – volume-title: Removal of ions Pb2+ and Cd2+ from aqueous solution by containment geomaterials. Exergetic, energetic and environmental dimensions year: 2018 ident: 2928_CR31 doi: 10.1016/B978-0-12-813734-5.00058-5 – volume: 12 start-page: 4518 issue: 4 year: 2022 ident: 2928_CR66 publication-title: Biointerf Res Appl Chem – volume: 6 start-page: 2000955 issue: 10 year: 2021 ident: 2928_CR15 publication-title: In Adv Mater Technol doi: 10.1002/admt.202000955 – volume: 454 issue: P4 year: 2023 ident: 2928_CR46 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140171 – volume: 23 start-page: 101576 year: 2021 ident: 2928_CR11 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101576 – volume: 28 start-page: 329 issue: 3 year: 2021 ident: 2928_CR30 publication-title: Ecol Chem Eng S doi: 10.2478/eces-2021-0022 – volume: 11 start-page: 900 issue: 11 year: 2021 ident: 2928_CR79 publication-title: In Membr doi: 10.3390/membranes11110900 – volume: 200 start-page: 145 year: 2017 ident: 2928_CR48 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2017.05.045 – volume: 99 start-page: 1052 issue: 3 year: 1995 ident: 2928_CR76 publication-title: In J Phys Chem doi: 10.1021/j100003a031 – volume: 12 start-page: 10 issue: 1 year: 2022 ident: 2928_CR8 publication-title: In Membr doi: 10.3390/membranes12010010 – volume: 8 start-page: 173 issue: 1 year: 2021 ident: 2928_CR23 publication-title: Inf Process Agric doi: 10.1016/j.inpa.2020.02.003 – volume: 514 start-page: 052001 issue: 5 year: 2020 ident: 2928_CR43 publication-title: IOP Conf Ser: Earth Environ Sci doi: 10.1088/1755-1315/514/5/052001 – ident: 2928_CR102 doi: 10.1016/B978-0-08-098258-8.00014-6 – volume: 30 start-page: 31085 issue: 11 year: 2023 ident: 2928_CR4 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-24296-8 – volume: 7 start-page: 543 issue: 2 year: 2017 ident: 2928_CR3 publication-title: Appl Water Sci doi: 10.1007/s13201-015-0322-y – volume: 20 start-page: 26 year: 2016 ident: 2928_CR75 publication-title: J Assoc Arab Univ Basic Appl Sci doi: 10.1016/j.jaubas.2014.10.001 – volume: 57 start-page: 1108 year: 2022 ident: 2928_CR21 publication-title: Mater Today: Proc doi: 10.1016/j.matpr.2021.09.422 – volume: 47 start-page: 147 issue: 1 year: 2012 ident: 2928_CR13 publication-title: Sep Sci Technol doi: 10.1080/01496395.2011.606865 – volume: 11 start-page: 39 issue: 2 year: 2003 ident: 2928_CR56 publication-title: J Polym Environ doi: 10.1023/A:1024267704794 – volume: 6 start-page: 477 issue: 4 year: 2011 ident: 2928_CR53 publication-title: J Appl Sci Environ – volume: 217 start-page: 192 year: 2013 ident: 2928_CR103 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.11.081 – volume: 57 start-page: 385 issue: 1 year: 1907 ident: 2928_CR32 publication-title: Z Phys Chem doi: 10.1515/zpch-1907-5723 – volume: 5 start-page: 610 issue: 4 year: 2014 ident: 2928_CR64 publication-title: Int J Chem Environ Eng – volume: 8 start-page: 452 issue: 7 year: 2016 ident: 2928_CR44 publication-title: J Chem Pharm Res – volume: 11 start-page: 1 issue: 14 year: 2021 ident: 2928_CR69 publication-title: Appl Sci (switzerland) doi: 10.3390/app11146255 – volume: 247 start-page: 116997 year: 2020 ident: 2928_CR55 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.116997 – volume: 1247 start-page: 293 issue: 2 year: 1995 ident: 2928_CR37 publication-title: Biochimica Et Biophys Acta (BBA)/prot Struct Mol doi: 10.1016/0167-4838(95)00006-G – volume: 7 start-page: 29 issue: 1 year: 2017 ident: 2928_CR71 publication-title: J Nanostruct Chem doi: 10.1007/s40097-016-0211-4 – volume: 294 start-page: 113042 year: 2021 ident: 2928_CR26 publication-title: In J Environ Manag doi: 10.1016/j.jenvman.2021.113042 – volume: 1973 start-page: 012185 issue: 1 year: 2021 ident: 2928_CR80 publication-title: J Phys: Conf Ser doi: 10.1088/1742-6596/1973/1/012185 – volume: 265 start-page: 159 issue: 1–3 year: 2011 ident: 2928_CR14 publication-title: Desalination doi: 10.1016/j.desal.2010.07.047 – volume: 138 start-page: 1159 year: 2017 ident: 2928_CR65 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.10.225 – ident: 2928_CR105 doi: 10.1016/j.jhazmat.2021.125848 – volume: 63 start-page: 3381 issue: 9 year: 2020 ident: 2928_CR6 publication-title: Egypt J Chem doi: 10.21608/ejchem.2020.16008.1970 – volume: 32 start-page: 100676 year: 2021 ident: 2928_CR5 publication-title: Chem Data Collect doi: 10.1016/j.cdc.2021.100676 – volume: 14 start-page: 6671 issue: 5 year: 2022 ident: 2928_CR34 publication-title: Biomass Convers Bioref doi: 10.1007/s13399-022-02865-8 – volume: 14 start-page: 66 issue: 2 year: 2019 ident: 2928_CR41 publication-title: Sci World J – ident: 2928_CR104 doi: 10.1016/j.scenv.2023.100053 – volume: 48 start-page: 10 issue: 1 year: 2019 ident: 2928_CR74 publication-title: Proceedings doi: 10.3390/ecws-4-06439 – volume: 2021 start-page: 5314404 issue: 1 year: 2021 ident: 2928_CR2 publication-title: J Chem doi: 10.1155/2021/5314404 – volume: 189 start-page: 115832 year: 2022 ident: 2928_CR61 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2022.115832 – volume: 145 start-page: 285 year: 2021 ident: 2928_CR67 publication-title: In Process Saf Environ Prot doi: 10.1016/j.psep.2020.08.022 – volume: 115 start-page: 107891 year: 2020 ident: 2928_CR63 publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2020.107891 – volume: 10 start-page: e25813 issue: 3 year: 2024 ident: 2928_CR19 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e25813 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 2928_CR36 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 312 start-page: 114948 year: 2022 ident: 2928_CR62 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2022.114948 – volume-title: Dyes and pigments: their structure and properties year: 2016 ident: 2928_CR28 doi: 10.1007/978-3-319-33892-7_2 – volume: 39 start-page: 1848 year: 1917 ident: 2928_CR42 publication-title: JACS doi: 10.1021/ja02254a006 – volume: 9 start-page: 1833 issue: 10 year: 2021 ident: 2928_CR45 publication-title: In Process doi: 10.3390/pr9101833 – volume: 39 start-page: 1 issue: 2 year: 2020 ident: 2928_CR16 publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13328 – volume: 9 start-page: 105578 issue: 4 year: 2021 ident: 2928_CR51 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.105578 – volume: 101 start-page: 313 year: 2018 ident: 2928_CR81 publication-title: Desalin Water Treat doi: 10.5004/dwt.2018.21775 – volume: 181 start-page: 72 year: 2018 ident: 2928_CR17 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.07.012 – volume: 164 start-page: 870 issue: 2–3 year: 2009 ident: 2928_CR29 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.08.084 – volume: 9 start-page: E15455 issue: 4 year: 2023 ident: 2928_CR22 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15455 – volume: 12 start-page: 1 issue: 2 year: 2020 ident: 2928_CR39 publication-title: Water (switzerland) doi: 10.3390/w12020587 – volume: 276 start-page: 67 year: 2019 ident: 2928_CR50 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.11.089 – volume: 21 start-page: 42 issue: 1 year: 2015 ident: 2928_CR77 publication-title: J Vinyl Add Tech doi: 10.1002/vnl.21379 – volume: 1 start-page: 100032 year: 2020 ident: 2928_CR60 publication-title: In Clean Eng Technol doi: 10.1016/j.clet.2020.100032 – volume: 177 start-page: 70 issue: 1–3 year: 2010 ident: 2928_CR58 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.12.047 – ident: 2928_CR106 doi: 10.1002/jsfa.8931 – volume: 15 start-page: 30 issue: 1 year: 2011 ident: 2928_CR1 publication-title: Chem Eng Res Bull doi: 10.3329/cerb.v15i1.7334 – volume: 209 start-page: 429 year: 2021 ident: 2928_CR24 publication-title: Desalin Water Treat doi: 10.5004/dwt.2021.26474 – volume: 9 start-page: 106289 issue: 5 year: 2021 ident: 2928_CR59 publication-title: In J Environ Chem Eng doi: 10.1016/j.jece.2021.106289 – volume: 13 start-page: 1495 issue: 11 year: 2021 ident: 2928_CR54 publication-title: In Water (switzerland). doi: 10.3390/w13111495 |
SSID | ssj0022720 |
Score | 2.417277 |
Snippet | This study shows that geographically marked wheat hull, named
Siyez
, rice hull
Sarı Kılçık
, and
Taşköprü Garlic
stalk were used as agricultural waste to... This study shows that geographically marked wheat hull, named Siyez , rice hull Sarı Kılçık , and Taşköprü Garlic stalk were used as agricultural waste to... This study shows that geographically marked wheat hull, named Siyez, rice hull Sarı Kılçık, and Taşköprü Garlic stalk were used as agricultural waste to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1205 |
SubjectTerms | Adaptive systems Adsorbents Adsorption Agricultural economics Agricultural wastes Algorithms Aqueous solutions Diffusion Dyes Earth and Environmental Science Environment Environmental Economics Environmental Engineering/Biotechnology Error functions Garlic Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Isotherms Liquid phases Low cost Mass transfer Methylene blue Monolayers Original Paper Parameters Particle diffusion Regression coefficients Regression models Rice Rice hulls Root-mean-square errors Sustainable Development Thermodynamics Water purification Wheat |
Title | Agricultural low-cost waste adsorption of methylene blue and modelling linear isotherm method versus nonlinear prediction |
URI | https://link.springer.com/article/10.1007/s10098-024-02928-6 https://www.proquest.com/docview/3190922920 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66XfQg_sTplBy8aWFN06Q9jrE5FD05mKeSXxVhbqPdGPvvfa_tNh0qeGgvSV4hr8n7wsv7PkJukOsUcLj0mDWhx7lUXiwkptilCpgRJo6wwPnpWfQH_GEYDiuaHKyF2crfY4kbMl5CJIEHzHpil9RDP5Ao09ARnfXhCvOJeLgSPizgkA-rApmfbXwPQhtkuZUMLWJM75AcVOCQtktvHpEdNz4m-18oA0_Isv2Wreky6Giy8Mwkn9GFAm9RZfNJVuwBdJJSFIdeQlBxVI_m0Di2tNC9wQJ0iuhSZfQ9LyqwPmipJE3xksY8p-OSQAM6TDPM5KDJUzLodV86fa-ST_AMYKCZx5RLW5wrJa0vjJLM4B1MzbQTQUunKtKo7WICLVwqfatiJp22TksHId7A0j8jNficOycUMGTEbJjy1E-5CbjSMMAaF9lQcSbjBvFX85mYilscJS5GyYYVGX2QgA-SwgeJaJDb9ZhpyazxZ-_myk1JtcryBLaPVsxQb6tB7lau2zT_bu3if90vyR5D2d_i6lmT1GbZ3F0BFpnpa1Jv378-dq-LnxHeA9b-BEjI2K0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHtSD8RlR1D140yZ02e62R2I0qMAJEm7NvmpMEEgLIfx7Z0oLaNTEQ0_7Sjq7O99mZr6PkFvkOgUcLj1mTeBxLpUXCYkhdqkazAgThVjg3OmKVp-_DIJBURSWldnuZUgyv6k3it2Q-xJ8CnywgCe2yQ6AgRD3cp81V88sjCziM0v4cJQDPihKZX6e46s7WmPMb2HR3Ns8HZKDAibS5tKuR2TLjY7J_gZ54AlZNN_SFXEGHY7nnhlnUzpXYDeqbDZO89uAjhOKMtELcC-O6uEMGkeW5go4WIpOEWeqlL5neS3WB11qSlNM15hldLSk0oAOkxRjOjjlKek_PfYeWl4hpOAZQENTjymX1DlXSlpfGCWZwWxMzbQTjbpOVKhR5cU0tHCJ9K2KmHTaOi0dOHsDl8AZqcBy7pxQQJMhs0HCEz_hpsGVhgHWuNAGijMZVYlf_s_YFCzjKHYxjNf8yGiDGGwQ5zaIRZXcrcZMlhwbf_aulWaKi_OWxXCR1COGyltVcl-abt38-2wX_-t-Q3ZbvU47bj93Xy_JHkMx4DwhrUYq03TmrgChTPV1viE_Aa_W3Uc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h68aWiz3ew2x1ItPosHC72FfUWE2pYkRfz3ziTpQ1HBQ077CGSyOzPMfN9HyDlynUIcLj1mTeBxLpUXCokldqmazAgTthDg_NgTN31-NwgGSyj-vNt9VpIsMA3I0jTK6hMb15eAb8iDCf4FHniZJ1bJGmQqPqZfHdGZp1xYZcSUS_hwrAM-KGEzP-_x1TUt4s1vJdLc83S3yVYZMtJ2YeMdsuJGu2RziUhwj3y0X5I5iQYdjt89M04z-q7AhlTZdJzkNwMdxxQloz_A1Tiqh1MYHFmaq-EgLJ1izKkS-prmuKw3WuhLU2zdmKZ0VNBqwIRJgvUd3HKf9LvXz50brxRV8AxERpnHlIsbnCslrS-MksxgZ6Zm2olmQ8eqpVHxxTS1cLH0rQqZdNo6LR04fgMXwgGpwOvcIaEQWbaYDWIe-zE3Ta40LLDGtWygOJNhlfiz7xmZknEchS-G0YIrGW0QgQ2i3AaRqJKL-ZpJwbfx5-zazExRefbSCC6VRshQhatKLmemWwz_vtvR_6afkfWnq270cNu7PyYbDHWB8960GqlkydSdQLCS6dP8f_wEVZXhbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agricultural+low-cost+waste+adsorption+of+methylene+blue+and+modelling+linear+isotherm+method+versus+nonlinear+prediction&rft.jtitle=Clean+technologies+and+environmental+policy&rft.au=Yetgin%2C+Senem&rft.au=Amlani%2C+Merilyn&rft.date=2025-03-01&rft.issn=1618-954X&rft.eissn=1618-9558&rft.volume=27&rft.issue=3&rft.spage=1205&rft.epage=1225&rft_id=info:doi/10.1007%2Fs10098-024-02928-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10098_024_02928_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-954X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-954X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-954X&client=summon |