Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon

Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotec...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 312; no. 6; pp. G550 - G558
Main Authors Ward, Joseph B. J., Lajczak, Natalia K., Kelly, Orlaith B., O’Dwyer, Aoife M., Giddam, Ashwini K., Ní Gabhann, Joan, Franco, Placido, Tambuwala, Murtaza M., Jefferies, Caroline A., Keely, Simon, Roda, Aldo, Keely, Stephen J.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.
AbstractList Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.
Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.
Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.
Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.
Author Lajczak, Natalia K.
Giddam, Ashwini K.
Keely, Stephen J.
Keely, Simon
Kelly, Orlaith B.
Tambuwala, Murtaza M.
Ní Gabhann, Joan
O’Dwyer, Aoife M.
Jefferies, Caroline A.
Ward, Joseph B. J.
Franco, Placido
Roda, Aldo
Author_xml – sequence: 1
  givenname: Joseph B. J.
  surname: Ward
  fullname: Ward, Joseph B. J.
  organization: Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
– sequence: 2
  givenname: Natalia K.
  orcidid: 0000-0002-1277-0761
  surname: Lajczak
  fullname: Lajczak, Natalia K.
  organization: Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
– sequence: 3
  givenname: Orlaith B.
  surname: Kelly
  fullname: Kelly, Orlaith B.
  organization: Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
– sequence: 4
  givenname: Aoife M.
  surname: O’Dwyer
  fullname: O’Dwyer, Aoife M.
  organization: Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
– sequence: 5
  givenname: Ashwini K.
  surname: Giddam
  fullname: Giddam, Ashwini K.
  organization: School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
– sequence: 6
  givenname: Joan
  surname: Ní Gabhann
  fullname: Ní Gabhann, Joan
  organization: Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
– sequence: 7
  givenname: Placido
  surname: Franco
  fullname: Franco, Placido
  organization: Department. of Chemistry, University of Bologna, Bologna, Italy
– sequence: 8
  givenname: Murtaza M.
  surname: Tambuwala
  fullname: Tambuwala, Murtaza M.
  organization: School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland; and
– sequence: 9
  givenname: Caroline A.
  surname: Jefferies
  fullname: Jefferies, Caroline A.
  organization: Division of Rheumatology, Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
– sequence: 10
  givenname: Simon
  surname: Keely
  fullname: Keely, Simon
  organization: School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
– sequence: 11
  givenname: Aldo
  surname: Roda
  fullname: Roda, Aldo
  organization: Department. of Chemistry, University of Bologna, Bologna, Italy
– sequence: 12
  givenname: Stephen J.
  surname: Keely
  fullname: Keely, Stephen J.
  organization: Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28360029$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUbP24e5IFL162Jtkku3uU4hcIXtRryGZnbcpuUpMU2v_eVKtIwdPAvN8bHvOO0cg6CwidEzwlhNNrtVi-mynGlIspxUQcoEla05xwVo7QBJO6yEnFyzE6DmGBMeaUkCM0plUhkqueoLdXH1wLbr3Rc9cbnSlt2kzZNutNnLu_S1iDj0mKJje269UwqOj8JonROBsyY7M4h0y73tlTdNipPsDZbp6g17vbl9lD_vR8_zi7eco1K3jMSUNxVwPWQpQdTfFERSmtte6woMCoZkK1TOkGirYpgUGpukZUNW-gralgxQm6-r679O5jBSHKwQQNfa8suFWQpKoKUmFS1gm93EMXbuVtSidJLRhhFedb6mJHrZoBWrn0ZlB-I38-lgD8DWjvQvDQ_SIEy20p8qsU-VWK3JaSLGLPok1U26dFr0z_v_ET0G-RwA
CitedBy_id crossref_primary_10_1016_j_phymed_2024_155812
crossref_primary_10_3389_fphar_2022_910493
crossref_primary_10_1007_s11010_024_04994_2
crossref_primary_10_7717_peerj_11434
crossref_primary_10_1126_scitranslmed_abn7491
crossref_primary_10_1002_mnfr_202200649
crossref_primary_10_1158_2767_9764_CRC_24_0138
crossref_primary_10_3390_cells10113164
crossref_primary_10_1016_j_ijrobp_2022_08_007
crossref_primary_10_1016_j_toxlet_2019_08_024
crossref_primary_10_1124_pharmrev_124_000978
crossref_primary_10_1016_j_cmet_2020_02_006
crossref_primary_10_1016_j_csbj_2022_03_038
crossref_primary_10_1080_17474124_2022_2153672
crossref_primary_10_1021_acs_jafc_4c08671
crossref_primary_10_1038_pr_2018_14
crossref_primary_10_1016_j_foodres_2019_108940
crossref_primary_10_3748_wjg_v29_i1_19
crossref_primary_10_1016_j_ajt_2024_03_018
crossref_primary_10_1186_s13023_023_02958_1
crossref_primary_10_3390_cells11152337
crossref_primary_10_3390_metabo12070659
crossref_primary_10_3390_pharmaceutics12080708
crossref_primary_10_1016_j_rgmx_2021_04_006
crossref_primary_10_1155_2022_1680008
crossref_primary_10_1186_s40168_021_01137_3
crossref_primary_10_3390_antiox8080286
crossref_primary_10_2131_jts_47_389
crossref_primary_10_3390_vetsci11010031
crossref_primary_10_1002_tkm2_1094
crossref_primary_10_1186_s13020_023_00815_8
crossref_primary_10_1371_journal_pone_0265418
crossref_primary_10_3389_fmicb_2024_1433175
crossref_primary_10_1016_j_tvjl_2024_106181
crossref_primary_10_1155_2022_2939921
crossref_primary_10_2147_JIR_S298495
crossref_primary_10_1016_j_ejphar_2018_06_002
crossref_primary_10_1038_s41396_019_0560_3
crossref_primary_10_3390_ijms24031864
crossref_primary_10_1177_17562848211018098
crossref_primary_10_12998_wjcc_v10_i9_2660
crossref_primary_10_1038_s41385_022_00564_1
crossref_primary_10_3389_fgstr_2024_1534431
crossref_primary_10_3748_wjg_v29_i27_4252
crossref_primary_10_1038_s41385_020_00347_6
crossref_primary_10_1128_mbio_01993_22
crossref_primary_10_1016_j_joen_2024_02_026
crossref_primary_10_3389_fphar_2022_902337
crossref_primary_10_1111_dom_14689
crossref_primary_10_1002_JPER_19_0013
crossref_primary_10_1016_j_aquaculture_2024_741611
crossref_primary_10_3389_fnut_2024_1491821
crossref_primary_10_1007_s00018_022_04278_2
crossref_primary_10_1152_ajpgi_00091_2021
crossref_primary_10_1080_19490976_2022_2107387
crossref_primary_10_1016_j_jep_2020_113352
crossref_primary_10_1038_s41598_020_58039_x
crossref_primary_10_3390_nu14214463
crossref_primary_10_1530_REP_22_0303
crossref_primary_10_1126_science_abo2296
crossref_primary_10_1080_10408398_2021_1916429
crossref_primary_10_3389_fnut_2022_861854
crossref_primary_10_1017_gmb_2023_15
crossref_primary_10_1016_j_bbrc_2021_09_061
crossref_primary_10_3389_fimmu_2022_1021924
crossref_primary_10_1016_j_phrs_2021_105767
crossref_primary_10_1016_j_chemosphere_2021_131681
crossref_primary_10_1186_s12864_019_5899_3
crossref_primary_10_31665_JFB_2023_18351
crossref_primary_10_3390_ijms24098024
crossref_primary_10_3389_fendo_2024_1486793
crossref_primary_10_1016_j_ijbiomac_2024_130677
crossref_primary_10_3390_molecules24244513
crossref_primary_10_1016_j_pharmthera_2019_107396
crossref_primary_10_1128_spectrum_00519_24
crossref_primary_10_1080_00304948_2022_2057782
crossref_primary_10_1111_eci_12958
crossref_primary_10_12998_wjcc_v10_i30_10823
crossref_primary_10_1016_j_jgr_2022_03_006
crossref_primary_10_1152_physrev_00054_2017
crossref_primary_10_2147_DMSO_S421134
crossref_primary_10_21508_1027_4065_2023_68_3_46_54
crossref_primary_10_1016_j_heliyon_2022_e08883
crossref_primary_10_3390_pharmaceutics13081304
crossref_primary_10_21518_2079_701X_2022_16_7_52_58
crossref_primary_10_29296_25877305_2024_07_09
crossref_primary_10_2217_nnm_2023_0092
crossref_primary_10_3389_fmicb_2024_1302998
crossref_primary_10_3390_ijms20051214
crossref_primary_10_1021_acs_molpharmaceut_4c00269
crossref_primary_10_1007_s10620_020_06611_w
crossref_primary_10_1021_acs_jafc_4c02005
crossref_primary_10_3390_ani13172753
crossref_primary_10_1002_jcp_28602
crossref_primary_10_1021_acsomega_3c02548
crossref_primary_10_1038_s41598_024_72729_w
crossref_primary_10_1186_s40168_019_0740_4
crossref_primary_10_1016_j_tjnut_2023_11_005
crossref_primary_10_1038_s41598_024_75516_9
crossref_primary_10_1038_s41598_020_64355_z
crossref_primary_10_1016_j_aqrep_2023_101491
crossref_primary_10_1016_j_engreg_2024_04_003
crossref_primary_10_1186_s12872_025_04549_3
crossref_primary_10_1016_j_biopha_2023_115430
crossref_primary_10_3390_ani14020287
crossref_primary_10_1002_eji_202250299
crossref_primary_10_1371_journal_pone_0309921
crossref_primary_10_1111_nmo_13788
crossref_primary_10_7554_eLife_93273
crossref_primary_10_3390_ph16060860
crossref_primary_10_3390_ijms24043517
crossref_primary_10_1080_00365521_2019_1648547
crossref_primary_10_1080_01635581_2024_2367266
crossref_primary_10_2147_DDDT_S328526
crossref_primary_10_14814_phy2_14456
crossref_primary_10_3389_fmicb_2019_03047
crossref_primary_10_1002_jpen_1595
crossref_primary_10_1016_j_chom_2024_06_014
crossref_primary_10_1194_jlr_RA119000200
crossref_primary_10_1128_msystems_00984_20
crossref_primary_10_1016_j_fbio_2024_104618
crossref_primary_10_3390_metabo14030174
crossref_primary_10_3389_fonc_2022_1113785
crossref_primary_10_1016_j_lfs_2021_120152
crossref_primary_10_1152_ajpgi_00354_2017
crossref_primary_10_1007_s10620_020_06715_3
crossref_primary_10_2174_1389557522666220318111730
crossref_primary_10_1016_j_micres_2024_127660
crossref_primary_10_3390_ijms26041759
crossref_primary_10_1016_j_eng_2023_11_017
crossref_primary_10_1016_j_steroids_2019_108461
crossref_primary_10_1186_s12967_023_04214_3
crossref_primary_10_3389_fvets_2025_1493496
crossref_primary_10_2139_ssrn_3940829
crossref_primary_10_1186_s40168_021_01101_1
crossref_primary_10_7554_eLife_93273_3
crossref_primary_10_1007_s00441_018_2886_y
crossref_primary_10_1038_s41392_024_01811_6
crossref_primary_10_1248_bpb_b22_00373
crossref_primary_10_1016_j_ejmech_2024_117156
crossref_primary_10_1007_s11739_023_03343_3
crossref_primary_10_3390_nu13093143
crossref_primary_10_1016_j_ejphar_2018_09_027
crossref_primary_10_3389_fmicb_2023_1096471
crossref_primary_10_1016_j_ajt_2024_02_029
crossref_primary_10_3390_molecules27165292
crossref_primary_10_12998_wjcc_v10_i9_2658
crossref_primary_10_3389_fonc_2024_1392565
crossref_primary_10_4155_tde_2022_0044
crossref_primary_10_1021_acs_jafc_3c08044
crossref_primary_10_3389_fmicb_2024_1458090
crossref_primary_10_1007_s10620_020_06208_3
crossref_primary_10_3390_nu14142964
crossref_primary_10_3892_etm_2021_11061
crossref_primary_10_1002_path_5661
crossref_primary_10_3390_nu13124259
crossref_primary_10_1111_jvim_70035
crossref_primary_10_3390_nu9111232
crossref_primary_10_3390_vetsci9020037
crossref_primary_10_1016_j_foodres_2022_112072
crossref_primary_10_1093_ismejo_wrae098
crossref_primary_10_1080_13880209_2023_2292261
crossref_primary_10_3390_biom14101227
crossref_primary_10_1152_ajpgi_00163_2019
crossref_primary_10_3748_wjg_v29_i21_3222
crossref_primary_10_1152_physrev_00018_2018
crossref_primary_10_3390_ijms241512123
crossref_primary_10_1016_j_pharmthera_2025_108831
crossref_primary_10_1186_s12967_024_05873_6
crossref_primary_10_21518_2079_701X_2022_16_10_84_95
crossref_primary_10_3390_ijms23158343
crossref_primary_10_1080_19490976_2024_2429267
crossref_primary_10_1152_ajpgi_00105_2020
crossref_primary_10_2174_1567205020666230825091147
crossref_primary_10_3389_fimmu_2023_1127743
crossref_primary_10_1128_spectrum_03330_22
crossref_primary_10_3390_foods10040774
crossref_primary_10_1016_j_ymthe_2022_10_014
crossref_primary_10_3389_fmicb_2023_1185463
crossref_primary_10_3389_fphar_2023_1249910
crossref_primary_10_1080_19490976_2019_1674124
crossref_primary_10_1080_14767058_2020_1818210
crossref_primary_10_1080_19490976_2023_2232143
crossref_primary_10_1111_nmo_13854
crossref_primary_10_1016_j_rgmxen_2021_04_003
crossref_primary_10_4014_jmb_2203_03022
crossref_primary_10_1126_sciadv_abm5944
crossref_primary_10_1152_ajpgi_00011_2022
crossref_primary_10_1007_s10620_020_06650_3
crossref_primary_10_1007_s11051_024_05939_y
crossref_primary_10_1111_bph_14705
Cites_doi 10.3389/fimmu.2013.00280
10.1155/2012/718617
10.1111/jgh.12740
10.1002/ibd.21403
10.7453/gahmj.2014.017
10.1097/00042737-200102000-00004
10.1002/cmdc.201300059
10.1093/carcin/21.5.999
10.1136/gutjnl-2012-303954
10.1097/00042737-200502000-00001
10.1016/j.ejps.2014.01.007
10.1042/CS20110184
10.1016/j.cell.2015.01.002
10.1016/j.tiv.2012.12.020
10.1038/labinvest.2014.117
10.3748/wjg.v20.i5.1165
10.1186/1746-4269-5-2
10.1038/35099560
10.1016/j.jconrel.2015.09.022
10.1016/j.cmet.2009.08.001
10.1081/DMR-200033475
10.1016/j.intimp.2012.11.017
10.1080/003655202760230955
10.1038/srep00430
10.1159/000358156
10.1152/ajpgi.00027.2007
10.1007/BF03401914
10.1038/nprot.2007.41
10.1016/j.cgh.2013.07.001
10.3945/jn.113.180794
10.1136/gut.2010.212159
10.1016/S0022-2275(20)39933-8
10.1136/gutjnl-2012-302578
10.1038/ajg.2011.156
10.1113/jphysiol.2013.252544
10.1016/j.dld.2010.03.015
10.1517/14656566.2014.925445
10.1111/j.1365-2567.2005.02200.x
10.1097/MOG.0000000000000156
10.1074/jbc.M115.699504
10.1371/journal.pone.0060270
10.1194/jlr.M039834
10.1128/AEM.02766-16
10.1038/nature04330
10.1159/000358150
10.1136/gutjnl-2012-303959
ContentType Journal Article
Copyright Copyright © 2017 the American Physiological Society.
Copyright American Physiological Society Jun 2017
Copyright_xml – notice: Copyright © 2017 the American Physiological Society.
– notice: Copyright American Physiological Society Jun 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1152/ajpgi.00256.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1547
EndPage G558
ExternalDocumentID 28360029
10_1152_ajpgi_00256_2016
Genre Journal Article
Comparative Study
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
DIK
ECM
EIF
NPM
RHF
K9.
7X8
ID FETCH-LOGICAL-c435t-1b20f9e0c667f2005682229ccf062e42c46ad4acbe3db7e4e7afb6895bed92643
ISSN 0193-1857
1522-1547
IngestDate Fri Jul 11 00:08:22 EDT 2025
Mon Jun 30 07:52:46 EDT 2025
Thu Jan 02 22:22:17 EST 2025
Tue Jul 01 00:25:34 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cytokine
epithelium
bile acid
barrier function
inflammatory bowel disease
Language English
License Copyright © 2017 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c435t-1b20f9e0c667f2005682229ccf062e42c46ad4acbe3db7e4e7afb6895bed92643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-1277-0761
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/ajpgi.00256.2016
PMID 28360029
PQID 1964148559
PQPubID 48585
ParticipantIDs proquest_miscellaneous_1883180179
proquest_journals_1964148559
pubmed_primary_28360029
crossref_primary_10_1152_ajpgi_00256_2016
crossref_citationtrail_10_1152_ajpgi_00256_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
2017-Jun-01
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationTitleAlternate Am J Physiol Gastrointest Liver Physiol
PublicationYear 2017
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B42
B21
B43
B22
B44
B23
B45
B24
B46
B25
B47
B26
B48
B27
B28
B29
B30
B31
B10
Solá S (B37) 2007; 9
B11
B33
B12
B34
B13
B35
B14
B36
B15
Roda A (B32) 1994; 35
B16
B17
B39
B18
B19
B1
B2
B3
Tadano T (B38) 2006; 54
B4
B5
B6
B7
B8
B9
B40
B41
References_xml – ident: B30
  doi: 10.3389/fimmu.2013.00280
– ident: B31
  doi: 10.1155/2012/718617
– ident: B35
  doi: 10.1111/jgh.12740
– ident: B36
  doi: 10.1002/ibd.21403
– ident: B45
  doi: 10.7453/gahmj.2014.017
– ident: B3
  doi: 10.1097/00042737-200102000-00004
– ident: B7
  doi: 10.1002/cmdc.201300059
– ident: B18
  doi: 10.1093/carcin/21.5.999
– ident: B17
  doi: 10.1136/gutjnl-2012-303954
– ident: B5
  doi: 10.1097/00042737-200502000-00001
– ident: B40
  doi: 10.1016/j.ejps.2014.01.007
– ident: B34
  doi: 10.1042/CS20110184
– ident: B27
  doi: 10.1016/j.cell.2015.01.002
– ident: B4
  doi: 10.1016/j.tiv.2012.12.020
– ident: B21
  doi: 10.1038/labinvest.2014.117
– volume: 54
  start-page: 103
  year: 2006
  ident: B38
  publication-title: Rinsho Byori
– ident: B2
  doi: 10.3748/wjg.v20.i5.1165
– ident: B10
  doi: 10.1186/1746-4269-5-2
– ident: B1
  doi: 10.1038/35099560
– ident: B39
  doi: 10.1016/j.jconrel.2015.09.022
– ident: B41
  doi: 10.1016/j.cmet.2009.08.001
– ident: B15
  doi: 10.1081/DMR-200033475
– ident: B25
  doi: 10.1016/j.intimp.2012.11.017
– ident: B44
  doi: 10.1080/003655202760230955
– ident: B14
  doi: 10.1038/srep00430
– ident: B26
  doi: 10.1159/000358156
– ident: B13
  doi: 10.1152/ajpgi.00027.2007
– ident: B33
  doi: 10.1007/BF03401914
– ident: B48
  doi: 10.1038/nprot.2007.41
– ident: B28
  doi: 10.1016/j.cgh.2013.07.001
– ident: B29
  doi: 10.3945/jn.113.180794
– ident: B12
  doi: 10.1136/gut.2010.212159
– volume: 35
  start-page: 2268
  year: 1994
  ident: B32
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)39933-8
– ident: B8
  doi: 10.1136/gutjnl-2012-302578
– ident: B9
  doi: 10.1038/ajg.2011.156
– ident: B16
  doi: 10.1113/jphysiol.2013.252544
– ident: B24
  doi: 10.1016/j.dld.2010.03.015
– ident: B6
  doi: 10.1517/14656566.2014.925445
– ident: B11
  doi: 10.1111/j.1365-2567.2005.02200.x
– ident: B23
  doi: 10.1097/MOG.0000000000000156
– ident: B19
  doi: 10.1074/jbc.M115.699504
– ident: B20
  doi: 10.1371/journal.pone.0060270
– ident: B22
  doi: 10.1194/jlr.M039834
– ident: B43
  doi: 10.1128/AEM.02766-16
– ident: B46
  doi: 10.1038/nature04330
– ident: B47
  doi: 10.1159/000358150
– volume: 9
  start-page: 123
  year: 2007
  ident: B37
  publication-title: Curr Issues Mol Biol
– ident: B42
  doi: 10.1136/gutjnl-2012-303959
SSID ssj0005211
Score 2.598431
Snippet Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often...
Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. 312: G550-G558, 2017. First published March 30, 2017;...
Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage G550
SubjectTerms Acids
Animals
Anti-Inflammatory Agents - pharmacology
Bacteria - metabolism
Bile
Bile acids
Biotransformation
Chromatography
Colitis - chemically induced
Colitis - metabolism
Colitis - microbiology
Colitis - prevention & control
Colon
Colon - drug effects
Colon - metabolism
Colon - microbiology
Colon - pathology
Cytokines - metabolism
Dextran
Dextran Sulfate
Disease Models, Animal
Dose-Response Relationship, Drug
Epithelial cells
Gas chromatography
Gastrointestinal Microbiome
HT29 Cells
Humans
Inflammation
Inflammation Mediators - metabolism
Inflammatory bowel diseases
Interferon
Interleukin 6
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestinal Mucosa - microbiology
Intestinal Mucosa - pathology
Intestine
Lithocholic Acid - pharmacology
Male
Mass spectrometry
Mass spectroscopy
Mice, Inbred C57BL
Mucosa
Rodents
Sodium
Sodium sulfate
Sulfate
Time Factors
Tumor necrosis factor-α
Ursodeoxycholic acid
Ursodeoxycholic Acid - analogs & derivatives
Ursodeoxycholic Acid - metabolism
Ursodeoxycholic Acid - pharmacology
γ-Interferon
Title Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon
URI https://www.ncbi.nlm.nih.gov/pubmed/28360029
https://www.proquest.com/docview/1964148559
https://www.proquest.com/docview/1883180179
Volume 312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBBfEGy8FAYyEkJCU7YkTdLkY4G9iHWrkFrUb5HtOJCpS6Y2FXR_jr_Gne2kZhsT8CWqXMeJfE_O5_Pdc4S8YbCI8MALHNB03AGTOnNYFoaOBPj0WRYwyTBR-OQ0OpoEn6bhtNP5aUUtLWu-Ky5vzCv5H6lCG8gVs2T_QbLtoNAAv0G-cAUJw_WvZDwBazmT1Q-lw5B4VRSKeRUTi79VdiNWVsJY8rpw4MGAgnN9uq7TGhZNtCNSWJe2vdoe6FgME8oZopNceoOdQ7ao5xWyToCyKA3zwAyjPayOa7e9jqTX5w4779eHUkN2Ji6ZLgiEHqWCrR2wx9LUwx7NZwz9xu0x0aiJ1Ug-fl-ZutxVkUvj4zXeDK-_jrqyEghQ_TdvqKBqIlhtP2jSc5DGSi9jRnfDvhoswr6t3Hueb6HYVtWHoWa8vb6GhMhJy84uvha7yiTEAMAb6LpPR-nBZDhMx_vT8R1y14d9Cira48-xFWPkmYKY-m2bc_LQ37s6_u920R82O8roGT8kD8xuhQ409B6Rjiw3ydagBPCcr-hb2s7fapPcOzFhGlvkyxVgUsQgBWBQC5i6UQGTXgMmNcCkRUkBmFQB8zGZHOyPPxw5poCHI8AKrx2P-26eSFdEUT9H92WkyscLkbuRLwNfBBGqA8GlYvkOZJ_lPIqTkMssAUu994RslFUpnxHKZD8RMQ983ouDhLk8E3BP7rkxDJ7xuEv2mulLhWG3xyIrs1TtckM_VROeqglPccK75F17x4Vmdrml73YjkdR8b4sUqew85FZKuuR1-zdoZzxyY6WsltAnjmHRxFWvS55qSbYP8zF_yvWT57cP_oLcX38o22Sjni_lSzCEa_5Kge0XZ_S4WA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ursodeoxycholic+acid+and+lithocholic+acid+exert+anti-inflammatory+actions+in+the+colon&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Ward%2C+Joseph+B+J&rft.au=Lajczak%2C+Natalia+K&rft.au=Kelly%2C+Orlaith+B&rft.au=O%E2%80%99Dwyer%2C+Aoife+M&rft.date=2017-06-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=312&rft.issue=6&rft.spage=G550&rft_id=info:doi/10.1152%2Fajpgi.00256.2016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon