A brain–computer interface using motion-onset visual evoked potential
This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is u...
Saved in:
Published in | Journal of neural engineering Vol. 5; no. 4; pp. 477 - 485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.12.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2552 1741-2560 1741-2552 |
DOI | 10.1088/1741-2560/5/4/011 |
Cover
Abstract | This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation. |
---|---|
AbstractList | This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation. This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation. |
Author | Gao, Xiaorong Hong, Bo Gao, Shangkai Guo, Fei |
Author_xml | – sequence: 1 fullname: Guo, Fei – sequence: 2 fullname: Hong, Bo – sequence: 3 fullname: Gao, Xiaorong – sequence: 4 fullname: Gao, Shangkai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19015582$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM9KxDAQh4OsuO7qA3iRnsSDtfnTtOlxWXQVFrzoOaRtItE2qU264M138A19Elu6KyIiXjJh-H7DzDcDE2ONBOAEwUsEGYtQGqMQ0wRGNIojiNAeONz2KJ58-0_BzLknCAlKM3gApiiDiFKGD8FqEeSt0Obj7b2wddN52Qba9K8ShQw6p81jUFuvrQmtcdIHG-06UQVyY59lGTTWS-O1qI7AvhKVk8fbOgcP11f3y5twfbe6XS7WYRET6kPEIGYiF2VSYsniGImc5qVKkzyFQsZYMAIRLFlRkFQRmKYwEzkTCvfrCkwVmYOzcW7T2pdOOs9r7QpZVcJI2zmeZAwRykgPnm7BLq9lyZtW16J95bvTeyAdgaK1zrVS8UJ7MVzqeyEVR5APkvkgkQ-SOeUx7yX3SfQj-TX8j8zFmNG2-Rd-_gs-YhTvMN6UinwCL26Y3w |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119363 crossref_primary_10_1371_journal_pone_0077755 crossref_primary_10_1109_TCIAIG_2012_2237517 crossref_primary_10_1109_TBME_2021_3136938 crossref_primary_10_3390_computers7020034 crossref_primary_10_1080_2326263X_2016_1266725 crossref_primary_10_1371_journal_pone_0176674 crossref_primary_10_1038_s41598_018_24008_8 crossref_primary_10_1088_1741_2552_aa6213 crossref_primary_10_1088_1741_2552_aa5d5f crossref_primary_10_1109_TBME_2016_2559527 crossref_primary_10_1016_j_patcog_2011_04_007 crossref_primary_10_1109_JSEN_2016_2591582 crossref_primary_10_1088_1741_2552_ada0e3 crossref_primary_10_1016_j_eswa_2023_122640 crossref_primary_10_1038_s41467_024_48576_8 crossref_primary_10_1109_TNSRE_2019_2904260 crossref_primary_10_1080_10447318_2013_780869 crossref_primary_10_1109_TNSRE_2018_2835813 crossref_primary_10_1088_2057_1976_aaee99 crossref_primary_10_3390_electronics10050560 crossref_primary_10_1109_COMST_2024_3396847 crossref_primary_10_1109_MCI_2009_934562 crossref_primary_10_1016_j_neuroimage_2013_12_011 crossref_primary_10_1109_TNSRE_2011_2180925 crossref_primary_10_1007_s12264_018_0257_z crossref_primary_10_3390_brainsci8040057 crossref_primary_10_3389_fnhum_2019_00130 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_1002_tee_22422 crossref_primary_10_1080_17483107_2024_2359479 crossref_primary_10_3389_fnbot_2022_995552 crossref_primary_10_1007_s10899_018_9746_2 crossref_primary_10_1080_27706710_2022_2120775 crossref_primary_10_1088_1741_2552_acbdc0 crossref_primary_10_3103_S0096392518020037 crossref_primary_10_3389_fnagi_2022_1004188 crossref_primary_10_1109_TNSRE_2023_3337525 crossref_primary_10_3109_17483107_2011_589486 crossref_primary_10_1541_ieejeiss_135_826 crossref_primary_10_1109_TCDS_2023_3245042 crossref_primary_10_1109_TCIAIG_2013_2263555 crossref_primary_10_1371_journal_pone_0039707 crossref_primary_10_1016_j_vrih_2022_01_002 crossref_primary_10_3389_fnins_2020_534619 crossref_primary_10_1044_2023_JSLHR_23_00292 crossref_primary_10_1109_TCSII_2020_2983389 crossref_primary_10_1155_2021_6614677 crossref_primary_10_1371_journal_pone_0020422 crossref_primary_10_1109_TNSRE_2016_2591012 crossref_primary_10_1186_1475_925X_12_43 crossref_primary_10_1088_1741_2560_11_5_056004 crossref_primary_10_1109_TBME_2019_2958641 crossref_primary_10_1080_10447318_2022_2121566 crossref_primary_10_1016_j_neuroimage_2012_12_069 crossref_primary_10_1109_TBME_2018_2849102 crossref_primary_10_1007_s10055_017_0328_x crossref_primary_10_1109_TIM_2023_3320759 crossref_primary_10_1007_s11571_021_09664_3 crossref_primary_10_1007_s11517_010_0578_1 crossref_primary_10_1109_TNSRE_2010_2047604 crossref_primary_10_1016_j_neunet_2019_07_007 crossref_primary_10_1109_TAMD_2015_2426176 crossref_primary_10_1088_1741_2552_ab2706 crossref_primary_10_3389_fncom_2019_00024 crossref_primary_10_3390_brainsci11040450 crossref_primary_10_1088_1741_2560_7_3_036003 crossref_primary_10_1109_TBME_2014_2300164 crossref_primary_10_1111_psyp_13569 crossref_primary_10_1109_TIM_2021_3120131 crossref_primary_10_3389_fnhum_2023_1216648 crossref_primary_10_3390_computers9040092 crossref_primary_10_1016_j_clinph_2009_06_026 crossref_primary_10_1016_S1874_1029_13_60023_3 crossref_primary_10_1016_j_jneumeth_2012_01_004 crossref_primary_10_1109_COMST_2022_3232576 crossref_primary_10_1049_iet_spr_2019_0297 crossref_primary_10_1177_10775463211009373 crossref_primary_10_1109_TG_2023_3279289 crossref_primary_10_1016_j_jneumeth_2016_11_002 crossref_primary_10_1088_1741_2552_acb105 crossref_primary_10_1088_1741_2560_9_2_026016 crossref_primary_10_1080_2326263X_2016_1149360 crossref_primary_10_1088_1741_2560_9_2_026018 crossref_primary_10_1109_TBME_2024_3492506 crossref_primary_10_1016_j_jneumeth_2023_109982 crossref_primary_10_1371_journal_pone_0169642 crossref_primary_10_1080_87565641_2011_636851 crossref_primary_10_1109_ACCESS_2023_3262465 crossref_primary_10_1088_1741_2552_ac636a crossref_primary_10_1016_j_clinph_2014_03_028 crossref_primary_10_1016_j_jneumeth_2014_06_003 crossref_primary_10_1155_2018_9476432 crossref_primary_10_1016_j_clinph_2013_01_017 crossref_primary_10_3390_s140405967 crossref_primary_10_1080_2326263X_2020_1860520 crossref_primary_10_1109_JPHOT_2012_2232650 crossref_primary_10_1134_S0362119723600479 crossref_primary_10_1209_0295_5075_127_40004 crossref_primary_10_3389_fnins_2020_00066 crossref_primary_10_1016_j_clinph_2012_06_004 crossref_primary_10_1016_j_jneumeth_2014_10_002 crossref_primary_10_1155_2015_680769 crossref_primary_10_1109_TBME_2018_2834555 crossref_primary_10_3389_fnins_2025_1506104 crossref_primary_10_1109_THMS_2018_2799525 crossref_primary_10_1109_TBME_2020_3005518 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2560/5/4/011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
EndPage | 485 |
ExternalDocumentID | 19015582 10_1088_1741_2560_5_4_011 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AALHV ABFLS ABHWH ABQJV ACGFS AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 UNR W28 XPP --- AAJKP AATNI AAYXX ABJNI ABVAM ACAFW ACARI ACHIP ADEQX AERVB AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN PJBAE CEBXE CGR CUY CVF ECM EIF JCGBZ NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c435t-18028abad6d2e8441ab5bdf76b70ae42a83010d8cc37f307709ab8af2155a25f3 |
IEDL.DBID | IOP |
ISSN | 1741-2552 1741-2560 |
IngestDate | Fri Sep 05 05:04:51 EDT 2025 Thu May 22 04:42:17 EDT 2025 Tue Jul 01 01:58:32 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Mon May 13 14:04:07 EDT 2019 Tue Nov 10 14:17:06 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-18028abad6d2e8441ab5bdf76b70ae42a83010d8cc37f307709ab8af2155a25f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19015582 |
PQID | 69813583 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_19015582 proquest_miscellaneous_69813583 iop_primary_10_1088_1741_2560_5_4_011 crossref_citationtrail_10_1088_1741_2560_5_4_011 crossref_primary_10_1088_1741_2560_5_4_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAlternate | J Neural Eng |
PublicationYear | 2008 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
SSID | ssj0031790 |
Score | 2.252403 |
Snippet | This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research,... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 477 |
SubjectTerms | Adult Algorithms Attention - physiology Brain - physiology Discriminant Analysis Electroencephalography Evoked Potentials, Visual - physiology Female Humans Linear Models Male Motion Photic Stimulation Psychomotor Performance - physiology Regression Analysis User-Computer Interface Young Adult |
Title | A brain–computer interface using motion-onset visual evoked potential |
URI | http://iopscience.iop.org/1741-2552/5/4/011 https://www.ncbi.nlm.nih.gov/pubmed/19015582 https://www.proquest.com/docview/69813583 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagJy5QaIFtKRipcEDKNuvEjve4qmgLEj8HKvVmje1xVbVNVt1sJTjxDrwhT8I4TqgqVLS3KJ44yWQ88zkef8PYLooJOgyTDEKFNEFRisYcuGzqsfTk_wBs3I386bM6Oi4_nsiTG57ts2bee_4xHaaVfIp5GQFfsSf3yli3lPwtxf1ozR--fB28bhGZptLmxyQ9rGDSBK8_p_Khh1sx6D7d6G542YWZg0dp__aiYyeM2SXn42Vrx-7Hv9yNq7zBOnvYw00-S_bxmN3D-gnbmNU01b78zt_yLgG0-7O-wQ5n3MaCEb9__nJ9rQce2SSuAjjkMUH-lKeiP1lMwW759dliSZ3jdXOOns-bNmYewcUmOz54_23_KOvrLGSOwFKbRRI4DRa88gI14SOw0vpQKVvlgKUATV4g99q5ogrkE6p8ClZDILQgQchQPGVrdVPjc8ZF5BooJSpqK4PEKTqpoLClBtTCuxHLB80b15OQx1oYF6ZbDNfaRGWZ-LGMNKUhZY3Yu7-XzBMDx_-E35DWV5F7fUsutUsxtJu5DyP2ajAKQ2MuLqRAjc1yYdRUTwqpixF7lmzlpqMIr6QWWys-xzZ70CWgdPkxL9hae7XEHUI5rX3ZmfcfWDTxgg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVokRAbChTKlEKNBCyQMg8ndpzlCBhaHqULKnVn-XGDqpZk1GYqwYp_6B_2S3pvnABFgCqxi-RHnGv7-jg-PpexpyAm4KGcJLbMATcoSuGcsz4pAmQB_Z-1jm4jf9hRW3vZ2325_8st_oN63rn-IT5GoeBowo4Qp0eIoScJrdQjOcookOloHsoldl2mqqAYBtsfd3tfnJL-VLwSSUWk6M81_1TNpZVpCd_-d9DZLj6zFWb7ZkfOyeFw0bih__abouP_fNdtdqtDpnwa899h16C6y1anFe7Kv3zlz3nLFW1_wq-yN1PuKLbE-fcz34WF4CQ8cVxaD5y49J95jA-UEFu74acHJwusHE7rQwh8XjdEUrJH99je7PWnl1tJF5Ih8YirmoT04rR1NqggQCOUsk66UObK5WMLmbAaHcY4aO_TvET3kY8L67QtEVhIK2SZ3mfLVV3BA8YFyRJkEhSmZaWEArxUNnWZtqBF8AM27rvD-E6vnMJmHJn23FxrQwYzZDAjTWbQYAP24keReRTr-FfmZ9gTV8n35FK-mC5Fn26wlwZssx8pBqcnnbnYCurFiVGFnqRSpwO2FgfQz4oIiUkt1q_Yjk12Y_fVzLzf3nn3kN1saSstq2aDLTfHC3iE2Khxj9vhfwFoNAF9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brain%E2%80%93computer+interface+using+motion-onset+visual+evoked+potential&rft.jtitle=Journal+of+neural+engineering&rft.au=Guo%2C+Fei&rft.au=Hong%2C+Bo&rft.au=Gao%2C+Xiaorong&rft.au=Gao%2C+Shangkai&rft.date=2008-12-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=5&rft.issue=4&rft.spage=477&rft.epage=485&rft_id=info:doi/10.1088%2F1741-2560%2F5%2F4%2F011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2560_5_4_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |