A brain–computer interface using motion-onset visual evoked potential

This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is u...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 5; no. 4; pp. 477 - 485
Main Authors Guo, Fei, Hong, Bo, Gao, Xiaorong, Gao, Shangkai
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2008
Subjects
Online AccessGet full text
ISSN1741-2552
1741-2560
1741-2552
DOI10.1088/1741-2560/5/4/011

Cover

Abstract This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.
AbstractList This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.
This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.
Author Gao, Xiaorong
Hong, Bo
Gao, Shangkai
Guo, Fei
Author_xml – sequence: 1
  fullname: Guo, Fei
– sequence: 2
  fullname: Hong, Bo
– sequence: 3
  fullname: Gao, Xiaorong
– sequence: 4
  fullname: Gao, Shangkai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19015582$$D View this record in MEDLINE/PubMed
BookMark eNqNkM9KxDAQh4OsuO7qA3iRnsSDtfnTtOlxWXQVFrzoOaRtItE2qU264M138A19Elu6KyIiXjJh-H7DzDcDE2ONBOAEwUsEGYtQGqMQ0wRGNIojiNAeONz2KJ58-0_BzLknCAlKM3gApiiDiFKGD8FqEeSt0Obj7b2wddN52Qba9K8ShQw6p81jUFuvrQmtcdIHG-06UQVyY59lGTTWS-O1qI7AvhKVk8fbOgcP11f3y5twfbe6XS7WYRET6kPEIGYiF2VSYsniGImc5qVKkzyFQsZYMAIRLFlRkFQRmKYwEzkTCvfrCkwVmYOzcW7T2pdOOs9r7QpZVcJI2zmeZAwRykgPnm7BLq9lyZtW16J95bvTeyAdgaK1zrVS8UJ7MVzqeyEVR5APkvkgkQ-SOeUx7yX3SfQj-TX8j8zFmNG2-Rd-_gs-YhTvMN6UinwCL26Y3w
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119363
crossref_primary_10_1371_journal_pone_0077755
crossref_primary_10_1109_TCIAIG_2012_2237517
crossref_primary_10_1109_TBME_2021_3136938
crossref_primary_10_3390_computers7020034
crossref_primary_10_1080_2326263X_2016_1266725
crossref_primary_10_1371_journal_pone_0176674
crossref_primary_10_1038_s41598_018_24008_8
crossref_primary_10_1088_1741_2552_aa6213
crossref_primary_10_1088_1741_2552_aa5d5f
crossref_primary_10_1109_TBME_2016_2559527
crossref_primary_10_1016_j_patcog_2011_04_007
crossref_primary_10_1109_JSEN_2016_2591582
crossref_primary_10_1088_1741_2552_ada0e3
crossref_primary_10_1016_j_eswa_2023_122640
crossref_primary_10_1038_s41467_024_48576_8
crossref_primary_10_1109_TNSRE_2019_2904260
crossref_primary_10_1080_10447318_2013_780869
crossref_primary_10_1109_TNSRE_2018_2835813
crossref_primary_10_1088_2057_1976_aaee99
crossref_primary_10_3390_electronics10050560
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_1109_MCI_2009_934562
crossref_primary_10_1016_j_neuroimage_2013_12_011
crossref_primary_10_1109_TNSRE_2011_2180925
crossref_primary_10_1007_s12264_018_0257_z
crossref_primary_10_3390_brainsci8040057
crossref_primary_10_3389_fnhum_2019_00130
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_1002_tee_22422
crossref_primary_10_1080_17483107_2024_2359479
crossref_primary_10_3389_fnbot_2022_995552
crossref_primary_10_1007_s10899_018_9746_2
crossref_primary_10_1080_27706710_2022_2120775
crossref_primary_10_1088_1741_2552_acbdc0
crossref_primary_10_3103_S0096392518020037
crossref_primary_10_3389_fnagi_2022_1004188
crossref_primary_10_1109_TNSRE_2023_3337525
crossref_primary_10_3109_17483107_2011_589486
crossref_primary_10_1541_ieejeiss_135_826
crossref_primary_10_1109_TCDS_2023_3245042
crossref_primary_10_1109_TCIAIG_2013_2263555
crossref_primary_10_1371_journal_pone_0039707
crossref_primary_10_1016_j_vrih_2022_01_002
crossref_primary_10_3389_fnins_2020_534619
crossref_primary_10_1044_2023_JSLHR_23_00292
crossref_primary_10_1109_TCSII_2020_2983389
crossref_primary_10_1155_2021_6614677
crossref_primary_10_1371_journal_pone_0020422
crossref_primary_10_1109_TNSRE_2016_2591012
crossref_primary_10_1186_1475_925X_12_43
crossref_primary_10_1088_1741_2560_11_5_056004
crossref_primary_10_1109_TBME_2019_2958641
crossref_primary_10_1080_10447318_2022_2121566
crossref_primary_10_1016_j_neuroimage_2012_12_069
crossref_primary_10_1109_TBME_2018_2849102
crossref_primary_10_1007_s10055_017_0328_x
crossref_primary_10_1109_TIM_2023_3320759
crossref_primary_10_1007_s11571_021_09664_3
crossref_primary_10_1007_s11517_010_0578_1
crossref_primary_10_1109_TNSRE_2010_2047604
crossref_primary_10_1016_j_neunet_2019_07_007
crossref_primary_10_1109_TAMD_2015_2426176
crossref_primary_10_1088_1741_2552_ab2706
crossref_primary_10_3389_fncom_2019_00024
crossref_primary_10_3390_brainsci11040450
crossref_primary_10_1088_1741_2560_7_3_036003
crossref_primary_10_1109_TBME_2014_2300164
crossref_primary_10_1111_psyp_13569
crossref_primary_10_1109_TIM_2021_3120131
crossref_primary_10_3389_fnhum_2023_1216648
crossref_primary_10_3390_computers9040092
crossref_primary_10_1016_j_clinph_2009_06_026
crossref_primary_10_1016_S1874_1029_13_60023_3
crossref_primary_10_1016_j_jneumeth_2012_01_004
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_1049_iet_spr_2019_0297
crossref_primary_10_1177_10775463211009373
crossref_primary_10_1109_TG_2023_3279289
crossref_primary_10_1016_j_jneumeth_2016_11_002
crossref_primary_10_1088_1741_2552_acb105
crossref_primary_10_1088_1741_2560_9_2_026016
crossref_primary_10_1080_2326263X_2016_1149360
crossref_primary_10_1088_1741_2560_9_2_026018
crossref_primary_10_1109_TBME_2024_3492506
crossref_primary_10_1016_j_jneumeth_2023_109982
crossref_primary_10_1371_journal_pone_0169642
crossref_primary_10_1080_87565641_2011_636851
crossref_primary_10_1109_ACCESS_2023_3262465
crossref_primary_10_1088_1741_2552_ac636a
crossref_primary_10_1016_j_clinph_2014_03_028
crossref_primary_10_1016_j_jneumeth_2014_06_003
crossref_primary_10_1155_2018_9476432
crossref_primary_10_1016_j_clinph_2013_01_017
crossref_primary_10_3390_s140405967
crossref_primary_10_1080_2326263X_2020_1860520
crossref_primary_10_1109_JPHOT_2012_2232650
crossref_primary_10_1134_S0362119723600479
crossref_primary_10_1209_0295_5075_127_40004
crossref_primary_10_3389_fnins_2020_00066
crossref_primary_10_1016_j_clinph_2012_06_004
crossref_primary_10_1016_j_jneumeth_2014_10_002
crossref_primary_10_1155_2015_680769
crossref_primary_10_1109_TBME_2018_2834555
crossref_primary_10_3389_fnins_2025_1506104
crossref_primary_10_1109_THMS_2018_2799525
crossref_primary_10_1109_TBME_2020_3005518
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2560/5/4/011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
EndPage 485
ExternalDocumentID 19015582
10_1088_1741_2560_5_4_011
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AALHV
ABFLS
ABHWH
ABQJV
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UNR
W28
XPP
---
AAJKP
AATNI
AAYXX
ABJNI
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
CEBXE
CGR
CUY
CVF
ECM
EIF
JCGBZ
NPM
7X8
AEINN
ID FETCH-LOGICAL-c435t-18028abad6d2e8441ab5bdf76b70ae42a83010d8cc37f307709ab8af2155a25f3
IEDL.DBID IOP
ISSN 1741-2552
1741-2560
IngestDate Fri Sep 05 05:04:51 EDT 2025
Thu May 22 04:42:17 EDT 2025
Tue Jul 01 01:58:32 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Mon May 13 14:04:07 EDT 2019
Tue Nov 10 14:17:06 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-18028abad6d2e8441ab5bdf76b70ae42a83010d8cc37f307709ab8af2155a25f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19015582
PQID 69813583
PQPubID 23479
PageCount 9
ParticipantIDs pubmed_primary_19015582
proquest_miscellaneous_69813583
iop_primary_10_1088_1741_2560_5_4_011
crossref_citationtrail_10_1088_1741_2560_5_4_011
crossref_primary_10_1088_1741_2560_5_4_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2008
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
SSID ssj0031790
Score 2.252403
Snippet This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research,...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 477
SubjectTerms Adult
Algorithms
Attention - physiology
Brain - physiology
Discriminant Analysis
Electroencephalography
Evoked Potentials, Visual - physiology
Female
Humans
Linear Models
Male
Motion
Photic Stimulation
Psychomotor Performance - physiology
Regression Analysis
User-Computer Interface
Young Adult
Title A brain–computer interface using motion-onset visual evoked potential
URI http://iopscience.iop.org/1741-2552/5/4/011
https://www.ncbi.nlm.nih.gov/pubmed/19015582
https://www.proquest.com/docview/69813583
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagJy5QaIFtKRipcEDKNuvEjve4qmgLEj8HKvVmje1xVbVNVt1sJTjxDrwhT8I4TqgqVLS3KJ44yWQ88zkef8PYLooJOgyTDEKFNEFRisYcuGzqsfTk_wBs3I386bM6Oi4_nsiTG57ts2bee_4xHaaVfIp5GQFfsSf3yli3lPwtxf1ozR--fB28bhGZptLmxyQ9rGDSBK8_p_Khh1sx6D7d6G542YWZg0dp__aiYyeM2SXn42Vrx-7Hv9yNq7zBOnvYw00-S_bxmN3D-gnbmNU01b78zt_yLgG0-7O-wQ5n3MaCEb9__nJ9rQce2SSuAjjkMUH-lKeiP1lMwW759dliSZ3jdXOOns-bNmYewcUmOz54_23_KOvrLGSOwFKbRRI4DRa88gI14SOw0vpQKVvlgKUATV4g99q5ogrkE6p8ClZDILQgQchQPGVrdVPjc8ZF5BooJSpqK4PEKTqpoLClBtTCuxHLB80b15OQx1oYF6ZbDNfaRGWZ-LGMNKUhZY3Yu7-XzBMDx_-E35DWV5F7fUsutUsxtJu5DyP2ajAKQ2MuLqRAjc1yYdRUTwqpixF7lmzlpqMIr6QWWys-xzZ70CWgdPkxL9hae7XEHUI5rX3ZmfcfWDTxgg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVokRAbChTKlEKNBCyQMg8ndpzlCBhaHqULKnVn-XGDqpZk1GYqwYp_6B_2S3pvnABFgCqxi-RHnGv7-jg-PpexpyAm4KGcJLbMATcoSuGcsz4pAmQB_Z-1jm4jf9hRW3vZ2325_8st_oN63rn-IT5GoeBowo4Qp0eIoScJrdQjOcookOloHsoldl2mqqAYBtsfd3tfnJL-VLwSSUWk6M81_1TNpZVpCd_-d9DZLj6zFWb7ZkfOyeFw0bih__abouP_fNdtdqtDpnwa899h16C6y1anFe7Kv3zlz3nLFW1_wq-yN1PuKLbE-fcz34WF4CQ8cVxaD5y49J95jA-UEFu74acHJwusHE7rQwh8XjdEUrJH99je7PWnl1tJF5Ih8YirmoT04rR1NqggQCOUsk66UObK5WMLmbAaHcY4aO_TvET3kY8L67QtEVhIK2SZ3mfLVV3BA8YFyRJkEhSmZaWEArxUNnWZtqBF8AM27rvD-E6vnMJmHJn23FxrQwYzZDAjTWbQYAP24keReRTr-FfmZ9gTV8n35FK-mC5Fn26wlwZssx8pBqcnnbnYCurFiVGFnqRSpwO2FgfQz4oIiUkt1q_Yjk12Y_fVzLzf3nn3kN1saSstq2aDLTfHC3iE2Khxj9vhfwFoNAF9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brain%E2%80%93computer+interface+using+motion-onset+visual+evoked+potential&rft.jtitle=Journal+of+neural+engineering&rft.au=Guo%2C+Fei&rft.au=Hong%2C+Bo&rft.au=Gao%2C+Xiaorong&rft.au=Gao%2C+Shangkai&rft.date=2008-12-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=5&rft.issue=4&rft.spage=477&rft.epage=485&rft_id=info:doi/10.1088%2F1741-2560%2F5%2F4%2F011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2560_5_4_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon