Identification of insulin resistance in Asian Indian adolescents: classification and regression tree (CART) and logistic regression based classification rules

Summary Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routi...

Full description

Saved in:
Bibliographic Details
Published inClinical endocrinology (Oxford) Vol. 70; no. 5; pp. 717 - 724
Main Authors Goel, Ruchika, Misra, Anoop, Kondal, Dimple, Pandey, Ravindra M., Vikram, Naval K., Wasir, Jasjeet S., Dhingra, Vibha, Luthra, Kalpana
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2009
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents. Design  Community based cross‐sectional study. Subjects and patients  Data of apparently healthy 793 adolescents (aged 14–19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection. Methods and measurements  Homeostasis Model of Assessment value > 75th centile was used as cut‐off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score. Results  Three classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88·2%, specificity 50·1% and area under receiver operating characteristic curve (aROC) 77·8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94·5%, specificity 38·3% and aROC 73·6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70·7%, specificity 79·2% and aROC 77·4%. Prediction score for insulin resistance = 1 × (waist circumference) + 1·1 × (percentage body fat) + 1·6 × (triceps skin‐fold thickness) – 1·9 × (gender). A score cut‐off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82·4%, specificity 56·7%, and aROC 73·4%). Conclusion  These simple and cost‐effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.
AbstractList Biochemical measures for assessment of insulin resistance are not cost-effective in resource-constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents.OBJECTIVEBiochemical measures for assessment of insulin resistance are not cost-effective in resource-constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents.Community based cross-sectional study.DESIGNCommunity based cross-sectional study.Data of apparently healthy 793 adolescents (aged 14-19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection.SUBJECTS AND PATIENTSData of apparently healthy 793 adolescents (aged 14-19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection.Homeostasis Model of Assessment value > 75th centile was used as cut-off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score.METHODS AND MEASUREMENTSHomeostasis Model of Assessment value > 75th centile was used as cut-off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score.Three classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88.2%, specificity 50.1% and area under receiver operating characteristic curve (aROC) 77.8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94.5%, specificity 38.3% and aROC 73.6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70.7%, specificity 79.2% and aROC 77.4%. Prediction score for insulin resistance = 1 x (waist circumference) + 1.1 x (percentage body fat) + 1.6 x (triceps skin-fold thickness) - 1.9 x (gender). A score cut-off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82.4%, specificity 56.7%, and aROC 73.4%).RESULTSThree classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88.2%, specificity 50.1% and area under receiver operating characteristic curve (aROC) 77.8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94.5%, specificity 38.3% and aROC 73.6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70.7%, specificity 79.2% and aROC 77.4%. Prediction score for insulin resistance = 1 x (waist circumference) + 1.1 x (percentage body fat) + 1.6 x (triceps skin-fold thickness) - 1.9 x (gender). A score cut-off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82.4%, specificity 56.7%, and aROC 73.4%).These simple and cost-effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.CONCLUSIONThese simple and cost-effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.
Biochemical measures for assessment of insulin resistance are not cost-effective in resource-constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents. Community based cross-sectional study. Data of apparently healthy 793 adolescents (aged 14-19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection. Homeostasis Model of Assessment value > 75th centile was used as cut-off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score. Three classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88.2%, specificity 50.1% and area under receiver operating characteristic curve (aROC) 77.8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94.5%, specificity 38.3% and aROC 73.6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70.7%, specificity 79.2% and aROC 77.4%. Prediction score for insulin resistance = 1 x (waist circumference) + 1.1 x (percentage body fat) + 1.6 x (triceps skin-fold thickness) - 1.9 x (gender). A score cut-off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82.4%, specificity 56.7%, and aROC 73.4%). These simple and cost-effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.
Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents. Design  Community based cross‐sectional study. Subjects and patients  Data of apparently healthy 793 adolescents (aged 14–19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection. Methods and measurements  Homeostasis Model of Assessment value > 75th centile was used as cut‐off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score. Results  Three classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88·2%, specificity 50·1% and area under receiver operating characteristic curve (aROC) 77·8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94·5%, specificity 38·3% and aROC 73·6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70·7%, specificity 79·2% and aROC 77·4%. Prediction score for insulin resistance = 1 × (waist circumference) + 1·1 × (percentage body fat) + 1·6 × (triceps skin‐fold thickness) – 1·9 × (gender). A score cut‐off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82·4%, specificity 56·7%, and aROC 73·4%). Conclusion  These simple and cost‐effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.
Summary Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using classification and regression tree (CART) and multivariate logistic regression, we aimed to develop simple predictive decision models based on routine clinical and biochemical parameters to predict insulin resistance in apparently healthy Asian Indian adolescents. Design  Community based cross‐sectional study. Subjects and patients  Data of apparently healthy 793 adolescents (aged 14–19 years) were used for analysis. WHO's multistage cluster sampling design was used for data collection. Methods and measurements  Homeostasis Model of Assessment value > 75th centile was used as cut‐off for defining the main outcome variable insulin resistance. CART was used to develop the decision tree models and multivariate logistic regression used to develop the clinical prediction score. Results  Three classification trees and an equation for prediction score were developed and internally validated. The three decision trees were termed as CART I, CART II and CART III, respectively. CART I based on anthropometric parameters alone has sensitivity 88·2%, specificity 50·1% and area under receiver operating characteristic curve (aROC) 77·8%. CART II based on anthropometric and routine biochemical parameters has sensitivity 94·5%, specificity 38·3% and aROC 73·6%. CART III based on all anthropometric, biochemical and clinical parameters together has sensitivity 70·7%, specificity 79·2% and aROC 77·4%. Prediction score for insulin resistance = 1 × (waist circumference) + 1·1 × (percentage body fat) + 1·6 × (triceps skin‐fold thickness) – 1·9 × (gender). A score cut‐off of > 0 (using values marked for each) was a marker of insulin resistance in the study population (sensitivity 82·4%, specificity 56·7%, and aROC 73·4%). Conclusion  These simple and cost‐effective classification rules may be used to predict insulin resistance and implement population based preventive interventions in Asian Indian adolescents.
Author Goel, Ruchika
Misra, Anoop
Luthra, Kalpana
Pandey, Ravindra M.
Wasir, Jasjeet S.
Vikram, Naval K.
Kondal, Dimple
Dhingra, Vibha
Author_xml – sequence: 1
  givenname: Ruchika
  surname: Goel
  fullname: Goel, Ruchika
  organization: Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
– sequence: 2
  givenname: Anoop
  surname: Misra
  fullname: Misra, Anoop
  organization: Department of Diabetes and Metabolic Diseases, Fortis Flt. Lt. Rajan Dhall Hospital, Vasant Kunj, New Delhi 110070, India
– sequence: 3
  givenname: Dimple
  surname: Kondal
  fullname: Kondal, Dimple
  organization: Department of Biostatistics
– sequence: 4
  givenname: Ravindra M.
  surname: Pandey
  fullname: Pandey, Ravindra M.
  organization: Department of Biostatistics
– sequence: 5
  givenname: Naval K.
  surname: Vikram
  fullname: Vikram, Naval K.
  organization: Department of Medicine
– sequence: 6
  givenname: Jasjeet S.
  surname: Wasir
  fullname: Wasir, Jasjeet S.
  organization: Department of Diabetes and Metabolic Diseases, Fortis Flt. Lt. Rajan Dhall Hospital, Vasant Kunj, New Delhi 110070, India
– sequence: 7
  givenname: Vibha
  surname: Dhingra
  fullname: Dhingra, Vibha
  organization: Department of Medicine
– sequence: 8
  givenname: Kalpana
  surname: Luthra
  fullname: Luthra, Kalpana
  organization: Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21278624$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18778399$$D View this record in MEDLINE/PubMed
BookMark eNqNkdFu0zAYhS00xLrBK6DcgOAi4Y_t2A4SSFU1SmEaCBXBneU4zuTiOsNORfcyPCtOWwraDeTGsX2-Y_ucM3Tie28QykooyvS9WBUlYVWOMasKDCAKIBTqYnsPTY4bJ2gCBCAHxugpOotxBQCVAP4AnZaCc0HqeoJ-LlrjB9tZrQbb-6zvMuvjxlmfBRNtHJTXJi1l02iVzxa-HQfV9s5Encj4MtNOxfjHQfk2odeJjuN0CMZkz2bTT8vnuy3XXydXq__WNCqa9q5P2KQjHqL7nXLRPDqM5-jzm4vl7G1--WG-mE0vc01JVeeEliBANAx3nHa6NExTwLxhpuFtVeO0BEI0oiWkMY2oKNeYtTXVNVUpPkHO0dO9703ov29MHOTapvc5p7zpN1EynmIHWifh44Nw06xNK2-CXatwK38nmgRPDgIVtXJdSAHaeNThEnPBME2613udDn2MwXRS22H38iEo62QJcqxaruTYqBwblWPVcle13CYDccfgeJd_o6_26A_rzO1_c3J2cTX-JT7f86lJsz3yKnxLQRFeyS9Xc8nev4P5149LuSS_AAVc0Xk
CODEN CLECAP
CitedBy_id crossref_primary_10_1016_j_jns_2011_03_032
crossref_primary_10_1016_j_patrec_2017_10_037
crossref_primary_10_1016_j_compbiomed_2024_109537
crossref_primary_10_1155_2017_7254174
crossref_primary_10_3390_nu5072708
crossref_primary_10_1016_j_healthplace_2015_08_002
crossref_primary_10_1039_C9FO01082C
crossref_primary_10_1186_1471_2288_13_129
crossref_primary_10_1111_1556_4029_12845
crossref_primary_10_3390_ph17091230
crossref_primary_10_1016_j_dsx_2012_11_001
crossref_primary_10_1109_TITB_2009_2039485
crossref_primary_10_1155_2017_2376016
crossref_primary_10_18794_aams_62581
Cites_doi 10.1016/0169-2607(86)90106-9
10.1002/j.1550-8528.1997.tb00648.x
10.1016/S0168-8227(03)00085-8
10.1053/jhep.2002.30692
10.2337/diab.36.1.43
10.1016/j.jpeds.2003.09.045
10.1136/adc.85.3.263
10.1161/01.CIR.97.6.596
10.1542/peds.2004-1921
10.1046/j.1464-5491.1999.00059.x
10.1016/j.atherosclerosis.2005.07.015
10.1210/jc.84.7.2329
10.1038/sj.ejcn.1602333
10.1079/BJN2001382
10.2337/diabetes.54.2.333
10.1136/hrt.60.5.390
10.1007/978-0-387-21706-2
10.2337/dc07-1150
10.1038/sj.ijo.0800864
10.1016/S0021-9150(03)00096-0
10.1016/0899-9007(97)90878-9
10.1056/NEJM199312303292703
10.1002/dmr.5610100206
10.1152/ajpendo.1979.237.3.E214
10.1001/archinte.1987.00370120091016
10.1172/JCI119628
10.2337/diacare.22.9.1462
10.2337/diab.36.2.179
10.1093/ajcn/69.4.621
10.2337/diacare.25.7.1135
10.2337/diacare.28.2.398
10.1016/S0735-1097(02)02051-X
10.7326/0003-4819-130-6-199903160-00016
10.1007/s001250100627
10.1016/j.metabol.2004.05.010
10.2337/diacare.23.1.57
10.2337/diacare.21.9.1414
10.2337/diacare.27.6.1487
10.1016/j.jpeds.2005.06.013
10.1001/jama.286.2.180
10.1111/j.1463-1326.2008.00851.x
10.1038/sj.ijo.0802704
10.1007/BF00280883
10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5
10.1093/oxfordjournals.aje.a009639
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1365-2265.2008.03409.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2265
EndPage 724
ExternalDocumentID 18778399
21278624
10_1111_j_1365_2265_2008_03409_x
CEN3409
ark_67375_WNG_6KJ0GXPT_T
Genre article
Journal Article
GeographicLocations Asia
India
GeographicLocations_xml – name: India
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
08P
0R~
10A
1OB
1OC
29B
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AAQQT
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
REN
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4359-3410808b62f74fc1e6c4027b6eb7d592fc1088b8d33beb8547c26d94c94a00883
IEDL.DBID DR2
ISSN 0300-0664
1365-2265
IngestDate Fri Jul 11 16:49:53 EDT 2025
Mon Jul 21 05:56:33 EDT 2025
Mon Jul 21 09:14:20 EDT 2025
Tue Jul 01 01:33:01 EDT 2025
Thu Apr 24 23:09:22 EDT 2025
Wed Jan 22 16:21:01 EST 2025
Wed Oct 30 09:55:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Endocrinopathy
Human
Pancreatic hormone
Asiatic
Metabolic diseases
Identification
Insulin
Logistic regression
Target tissue resistance
Adolescent
Classification
Tree
Indian
Insulin resistance
Endocrinology
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4359-3410808b62f74fc1e6c4027b6eb7d592fc1088b8d33beb8547c26d94c94a00883
Notes ArticleID:CEN3409
istex:07D17F43F8FF19717B57A70DC0921CD8E851AB40
ark:/67375/WNG-6KJ0GXPT-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18778399
PQID 67111049
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_67111049
pubmed_primary_18778399
pascalfrancis_primary_21278624
crossref_citationtrail_10_1111_j_1365_2265_2008_03409_x
crossref_primary_10_1111_j_1365_2265_2008_03409_x
wiley_primary_10_1111_j_1365_2265_2008_03409_x_CEN3409
istex_primary_ark_67375_WNG_6KJ0GXPT_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2009
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Clinical endocrinology (Oxford)
PublicationTitleAlternate Clin Endocrinol (Oxf)
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Avignon, A., Boegner, C., Mariano-Goulart, D. et al. (1999) Assessment of insulin sensitivity from plasma insulin and glucose in the fasting or post oral glucose-load state. International Journal of Obesity and Related Metabolic Disorders, 23, 512-517.
Vikram, N.K., Misra, A., Pandey, R.M. et al. (2006) Heterogeneous phenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents. Atherosclerosis, 186, 193-199.
Stumvoll, M. & Gerich, J. (2001) Clinical features of insulin resistance and beta cell dysfunction and the relationship to type 2 diabetes. Clinical in Laboratory Medicine, 21, 31-51.
Pyorala, K. (1991) Hyperinsulinaemia as predictor of atherosclerotic vascular disease: epidemiological evidence. Diabetes Metabolism, 17, 87-92.
D'Agostino, R.B.Sr, Grundy, S., Sullivan, L.M. et al. (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. The Journal of the American Medical Association, 286, 180-187.
Wallace, T.M., Levy, J.C. & Matthews, D.R. (2004) Use and abuse of HOMA modeling. Diabetes Care, 27, 1487-1495.
Ferrannini, E., Natali, A., Bell, P. et al. (1997) Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). Journal of Clinical Investigation, 100, 1166-1173.
Miyashita, M., Okada, T., Kuromori, Y. et al. (2006) LDL particle size, fat distribution and insulin resistance in obese children. European Journal of Clinical Nutrition, 60, 416-420.
Scheen, A.J., Paquot, N., Castillo, M.J. et al. (1994) How to measure insulin action in vivo. Diabetes Metabolism Reviews, 10, 151-188.
Stern, S.E., Williams, K., Ferrannini, E. et al. (2005) Identification of individuals with insulin resistance using routine clinical measurements. Diabetes, 54, 333-339.
Chandalia, M., Abate, N., Garg, A. et al. (1999) Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. Journal of Clinical Endocrinology and Metabolism, 84, 2329-2335.
Balkau, B. & Charles, M.A. (1999) Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabetic Medicine, 16, 442-443.
Charlson, M.E., Ales, K.L., Simon, R. et al. (1987) Why predictive indexes perform less well in validation studies. Is it magic or methods? Archives of Internal Medicine, 147, 2155-2161.
Keskin, M., Kurtoglu, S., Kendirci, M. et al. (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics, 115, e500-503.
Pacini, G. & Bergman, R.N. (1986) MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Computer Methods and Programs in Biomedicine, 23, 113-122.
Reaven, G.M. (1997) Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition 13, 65.
Altman, D.G. & Royston, P. (2000) What do we mean by validating a prognostic model? Statistics in Medicine, 19, 453-473.
Chitturi, S., Abeygunasekera, S., Farrell, G.C. et al. (2002) NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology, 35, 373-379.
Goldfield, G.S., Cloutier, P., Mallory, R. et al. (2006) Validity of foot-to-foot bioelectrical impedance analysis in overweight and obese children and parents. The Journal of Sports Medicine and Physical Fitness, 46, 447-453.
McKeigue, P.M., Marmot, M.G., Syndercombe Court, Y.D. et al. (1988) Diabetes, hyperinsulinaemia, and coronary risk factors in Bangladeshis in east London. British Heart Journal, 60, 390-396.
Heikes, K.E., Eddy, D.M., Arondekar, B. et al. (2008) Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care, 31, 1040-1045.
Radikova, Z. (2003) Assessment of insulin sensitivity/resistance in epidemiological studies. Endocrine Regulations, 37, 189-194.
Matsuda, M. & DeFronzo, R.A. (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 22, 1462-1470.
Abbasi, F., Brown, B.W. Jr, Lamendola, C. et al. (2002) Relationship between obesity, insulin resistance, and coronary heart disease risk. Journal of the American College of Cardiology, 40, 937-943.
Lemeshow, S., Letenneur, L., Dartigues, J.F. et al. (1998) Illustration of analysis taking into account complex survey considerations: the association between wine consumption and dementia in the PAQUID study. Personnes Ages Quid. American Journal of Epidemiology, 148, 298-306.
Reddy, K.S. & Yusuf, S. (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation, 97, 596-601.
Vikram, N.K., Misra, A., Dwivedi, M. et al. (2003) Correlations of C-reactive protein levels with anthropometric profile, percentage of body fat and lipids in healthy adolescents and young adults in urban North India. Atherosclerosis, 168, 305-313.
Gupta, A., Gupta, R., Sarna, M. et al. (2003) Prevalence of diabetes, impaired fasting glucose and insulin resistance syndrome in an urban Indian population. Diabetes Research and Clinical Practice, 61, 69-76.
Dudeja, V., Misra, A., Pandey, R.M. et al. (2001) BMI does not accurately predict overweight in Asian Indians in northern India. The British Journal of Nutrition, 86, 105-112.
Misra, A., Garg, A., Abate, N. et al. (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obesity Research, 5, 93-99.
Mohn, A., Marcovecchio, M. & Chiarelli, F. (2006) Validity of HOMA-IR as index of insulin resistance in obesity. Journal of Pediatrics, 148, 565-566; author reply 566.
DeFronzo, R.A., Tobin, J.D. & Andres, R. (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. The American Journal of Physiology, 237, E214-E223.
Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics. Springer-Verlag, New York.
Vikram, N.K., Misra, A., Pandey, R.M. et al. (2004) Adiponectin, insulin resistance, and C-reactive protein in postpubertal Asian Indian adolescents. Metabolism, 53, 1336-1341.
Matthews, D.R., Hosker, J.P., Rudenski, A.S. et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412-419.
Misra, A., Wasir, J.S. & Pandey, R.M. (2005) An evaluation of candidate definitions of the metabolic syndrome in adult Asian Indians. Diabetes Care, 28, 398-403.
Breiman, L., Friedman, J.H., Olshen, R.A. et al. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.
King, H., Aubert, R.E. & Herman, W.H. (1998) Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 21, 1414-1431.
Bonora, E., Formentini, G., Calcaterra, F. et al. (2002) HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care, 25, 1135-1141.
Bonora, E., Targher, G., Alberiche, M. et al. (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 23, 57-63.
Gungor, N., Saad, R., Janosky, J. et al. (2004) Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. Journal of Pediatrics, 144, 47-55.
Vasudev, S., Mohan, A., Mohan, D. et al. (2004) Validation of body fat measurement by skinfolds and two bioelectric impedance methods with DEXA - the Chennai Urban Rural Epidemiology Study [CURES-3]. Journal of Association Physicians India, 52, 877-881.
Lillioja, S., Mott, D.M., Spraul, M. et al. (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. The New England Journal of Medicine, 329, 1988-1992.
Sicree, R.A., Zimmet, P.Z., King, H.O. et al. (1987) Plasma insulin response among Nauruans. Prediction of deterioration in glucose tolerance over 6 years. Diabetes, 36, 179-186.
Kamath, S.K., Hussain, E.A., Amin, D. et al. (1999) Cardiovascular disease risk factors in 2 distinct ethnic groups: Indian and Pakistani compared with American premenopausal women. American Journal of Clinical Nutrition, 69, 621-631.
Ramachandran, A., Snehalatha, C., Kapur, A. et al. (2001) High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia, 44, 1094-1101.
Boneva-Asiova, Z. & Boyanov, M.A. (2008) Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals. Diabetes, Obesity and Metabolism, 10, 1012-1018.
Sung, R.Y., Lau, P., Yu, C.W. et al. (2001) Measurement of body fat using leg to leg bioimpedance. Archives of Disease in Childhood, 85, 263-267.
Therneau, T.M. & Atkinson, E.J. (1997) An Introduction to Recursive Partitioning Using the RPART Routine Technical Report 61. Mayo Clinic, Section of Statistics, Rochester, MN.
Misra, A., Vikram, N.K., Arya, S. et al. (2004) High prevalence of insulin resistance in postpubertal Asian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat. International Journal of Obesity and Related Metabolic Disorders, 28, 1217-1226.
Haffner, S.M., Stern, M.P., Hazuda, H.P. et al. (1987) Do upper-body and centralized adiposity measure different aspects of regional body-fat distribution? Relationship to non-insulin-dependent diabetes mellitus, lipids, and lipoproteins. Diabetes, 36, 43-51.
Justice, A.C., Covinsky, K.E. & Berlin, J.A. (1999) Ass
1987; 36
1985; 28
1991; 17
1993; 329
1987; 147
2004; 27
2004; 28
1999; 84
2008; 31
2001; 44
1997; 5
2005; 28
2001; 85
2001; 86
2006; 60
1979; 237
2000; 19
2002; 40
1999; 16
1997; 13
1997; 100
1984
1999; 130
2003; 168
1998; 97
2001; 286
2004; 144
2000; 23
2002; 35
2005; 115
1999; 69
1999; 23
1997
2003; 37
1999; 22
2008; 10
1992
2002
1998; 21
2001; 21
2002; 25
2004; 52
2004; 53
2006; 46
1986; 23
2006; 186
2005; 54
1998; 148
2003; 61
2006; 148
1988; 60
1994; 10
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
Goldfield G.S. (e_1_2_6_25_2) 2006; 46
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
Radikova Z. (e_1_2_6_12_2) 2003; 37
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Stumvoll M. (e_1_2_6_49_2) 2001; 21
Vasudev S. (e_1_2_6_27_2) 2004; 52
e_1_2_6_18_2
Therneau T.M. (e_1_2_6_36_2) 1997
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
Pyorala K. (e_1_2_6_15_2) 1991; 17
e_1_2_6_42_2
Charlson M.E. (e_1_2_6_45_2) 1987; 147
Clark L.A. (e_1_2_6_34_2) 1992
e_1_2_6_40_2
e_1_2_6_8_2
Breiman L. (e_1_2_6_33_2) 1984
Haffner S.M. (e_1_2_6_37_2) 1987; 36
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_46_2
References_xml – reference: Keskin, M., Kurtoglu, S., Kendirci, M. et al. (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics, 115, e500-503.
– reference: Vikram, N.K., Misra, A., Pandey, R.M. et al. (2006) Heterogeneous phenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents. Atherosclerosis, 186, 193-199.
– reference: Mohn, A., Marcovecchio, M. & Chiarelli, F. (2006) Validity of HOMA-IR as index of insulin resistance in obesity. Journal of Pediatrics, 148, 565-566; author reply 566.
– reference: Pacini, G. & Bergman, R.N. (1986) MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Computer Methods and Programs in Biomedicine, 23, 113-122.
– reference: Charlson, M.E., Ales, K.L., Simon, R. et al. (1987) Why predictive indexes perform less well in validation studies. Is it magic or methods? Archives of Internal Medicine, 147, 2155-2161.
– reference: Kamath, S.K., Hussain, E.A., Amin, D. et al. (1999) Cardiovascular disease risk factors in 2 distinct ethnic groups: Indian and Pakistani compared with American premenopausal women. American Journal of Clinical Nutrition, 69, 621-631.
– reference: Reddy, K.S. & Yusuf, S. (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation, 97, 596-601.
– reference: Gungor, N., Saad, R., Janosky, J. et al. (2004) Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. Journal of Pediatrics, 144, 47-55.
– reference: Bonora, E., Formentini, G., Calcaterra, F. et al. (2002) HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care, 25, 1135-1141.
– reference: Heikes, K.E., Eddy, D.M., Arondekar, B. et al. (2008) Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care, 31, 1040-1045.
– reference: Chitturi, S., Abeygunasekera, S., Farrell, G.C. et al. (2002) NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology, 35, 373-379.
– reference: Boneva-Asiova, Z. & Boyanov, M.A. (2008) Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals. Diabetes, Obesity and Metabolism, 10, 1012-1018.
– reference: Scheen, A.J., Paquot, N., Castillo, M.J. et al. (1994) How to measure insulin action in vivo. Diabetes Metabolism Reviews, 10, 151-188.
– reference: Miyashita, M., Okada, T., Kuromori, Y. et al. (2006) LDL particle size, fat distribution and insulin resistance in obese children. European Journal of Clinical Nutrition, 60, 416-420.
– reference: Ferrannini, E., Natali, A., Bell, P. et al. (1997) Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). Journal of Clinical Investigation, 100, 1166-1173.
– reference: Lemeshow, S., Letenneur, L., Dartigues, J.F. et al. (1998) Illustration of analysis taking into account complex survey considerations: the association between wine consumption and dementia in the PAQUID study. Personnes Ages Quid. American Journal of Epidemiology, 148, 298-306.
– reference: Justice, A.C., Covinsky, K.E. & Berlin, J.A. (1999) Assessing the generalizability of prognostic information. Annals of Internal Medicine, 130, 515-524.
– reference: Dudeja, V., Misra, A., Pandey, R.M. et al. (2001) BMI does not accurately predict overweight in Asian Indians in northern India. The British Journal of Nutrition, 86, 105-112.
– reference: Stumvoll, M. & Gerich, J. (2001) Clinical features of insulin resistance and beta cell dysfunction and the relationship to type 2 diabetes. Clinical in Laboratory Medicine, 21, 31-51.
– reference: Abbasi, F., Brown, B.W. Jr, Lamendola, C. et al. (2002) Relationship between obesity, insulin resistance, and coronary heart disease risk. Journal of the American College of Cardiology, 40, 937-943.
– reference: DeFronzo, R.A., Tobin, J.D. & Andres, R. (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. The American Journal of Physiology, 237, E214-E223.
– reference: Misra, A., Garg, A., Abate, N. et al. (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obesity Research, 5, 93-99.
– reference: Ramachandran, A., Snehalatha, C., Kapur, A. et al. (2001) High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia, 44, 1094-1101.
– reference: Therneau, T.M. & Atkinson, E.J. (1997) An Introduction to Recursive Partitioning Using the RPART Routine Technical Report 61. Mayo Clinic, Section of Statistics, Rochester, MN.
– reference: Radikova, Z. (2003) Assessment of insulin sensitivity/resistance in epidemiological studies. Endocrine Regulations, 37, 189-194.
– reference: Avignon, A., Boegner, C., Mariano-Goulart, D. et al. (1999) Assessment of insulin sensitivity from plasma insulin and glucose in the fasting or post oral glucose-load state. International Journal of Obesity and Related Metabolic Disorders, 23, 512-517.
– reference: Sung, R.Y., Lau, P., Yu, C.W. et al. (2001) Measurement of body fat using leg to leg bioimpedance. Archives of Disease in Childhood, 85, 263-267.
– reference: Altman, D.G. & Royston, P. (2000) What do we mean by validating a prognostic model? Statistics in Medicine, 19, 453-473.
– reference: Vikram, N.K., Misra, A., Dwivedi, M. et al. (2003) Correlations of C-reactive protein levels with anthropometric profile, percentage of body fat and lipids in healthy adolescents and young adults in urban North India. Atherosclerosis, 168, 305-313.
– reference: Pyorala, K. (1991) Hyperinsulinaemia as predictor of atherosclerotic vascular disease: epidemiological evidence. Diabetes Metabolism, 17, 87-92.
– reference: Vasudev, S., Mohan, A., Mohan, D. et al. (2004) Validation of body fat measurement by skinfolds and two bioelectric impedance methods with DEXA - the Chennai Urban Rural Epidemiology Study [CURES-3]. Journal of Association Physicians India, 52, 877-881.
– reference: Haffner, S.M., Stern, M.P., Hazuda, H.P. et al. (1987) Do upper-body and centralized adiposity measure different aspects of regional body-fat distribution? Relationship to non-insulin-dependent diabetes mellitus, lipids, and lipoproteins. Diabetes, 36, 43-51.
– reference: Vikram, N.K., Misra, A., Pandey, R.M. et al. (2004) Adiponectin, insulin resistance, and C-reactive protein in postpubertal Asian Indian adolescents. Metabolism, 53, 1336-1341.
– reference: Gupta, A., Gupta, R., Sarna, M. et al. (2003) Prevalence of diabetes, impaired fasting glucose and insulin resistance syndrome in an urban Indian population. Diabetes Research and Clinical Practice, 61, 69-76.
– reference: Stern, S.E., Williams, K., Ferrannini, E. et al. (2005) Identification of individuals with insulin resistance using routine clinical measurements. Diabetes, 54, 333-339.
– reference: D'Agostino, R.B.Sr, Grundy, S., Sullivan, L.M. et al. (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. The Journal of the American Medical Association, 286, 180-187.
– reference: Misra, A., Vikram, N.K., Arya, S. et al. (2004) High prevalence of insulin resistance in postpubertal Asian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat. International Journal of Obesity and Related Metabolic Disorders, 28, 1217-1226.
– reference: Sicree, R.A., Zimmet, P.Z., King, H.O. et al. (1987) Plasma insulin response among Nauruans. Prediction of deterioration in glucose tolerance over 6 years. Diabetes, 36, 179-186.
– reference: King, H., Aubert, R.E. & Herman, W.H. (1998) Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 21, 1414-1431.
– reference: Chandalia, M., Abate, N., Garg, A. et al. (1999) Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. Journal of Clinical Endocrinology and Metabolism, 84, 2329-2335.
– reference: Misra, A., Wasir, J.S. & Pandey, R.M. (2005) An evaluation of candidate definitions of the metabolic syndrome in adult Asian Indians. Diabetes Care, 28, 398-403.
– reference: Goldfield, G.S., Cloutier, P., Mallory, R. et al. (2006) Validity of foot-to-foot bioelectrical impedance analysis in overweight and obese children and parents. The Journal of Sports Medicine and Physical Fitness, 46, 447-453.
– reference: Lillioja, S., Mott, D.M., Spraul, M. et al. (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. The New England Journal of Medicine, 329, 1988-1992.
– reference: Bonora, E., Targher, G., Alberiche, M. et al. (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 23, 57-63.
– reference: Matsuda, M. & DeFronzo, R.A. (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 22, 1462-1470.
– reference: Matthews, D.R., Hosker, J.P., Rudenski, A.S. et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412-419.
– reference: Reaven, G.M. (1997) Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition 13, 65.
– reference: Balkau, B. & Charles, M.A. (1999) Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabetic Medicine, 16, 442-443.
– reference: Breiman, L., Friedman, J.H., Olshen, R.A. et al. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.
– reference: Wallace, T.M., Levy, J.C. & Matthews, D.R. (2004) Use and abuse of HOMA modeling. Diabetes Care, 27, 1487-1495.
– reference: McKeigue, P.M., Marmot, M.G., Syndercombe Court, Y.D. et al. (1988) Diabetes, hyperinsulinaemia, and coronary risk factors in Bangladeshis in east London. British Heart Journal, 60, 390-396.
– reference: Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics. Springer-Verlag, New York.
– volume: 61
  start-page: 69
  year: 2003
  end-page: 76
  article-title: Prevalence of diabetes, impaired fasting glucose and insulin resistance syndrome in an urban Indian population
  publication-title: Diabetes Research and Clinical Practice
– volume: 27
  start-page: 1487
  year: 2004
  end-page: 1495
  article-title: Use and abuse of HOMA modeling
  publication-title: Diabetes Care
– volume: 25
  start-page: 1135
  year: 2002
  end-page: 1141
  article-title: HOMA‐estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study
  publication-title: Diabetes Care
– volume: 186
  start-page: 193
  year: 2006
  end-page: 199
  article-title: Heterogeneous phenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents
  publication-title: Atherosclerosis
– volume: 23
  start-page: 113
  year: 1986
  end-page: 122
  article-title: MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 22
  start-page: 1462
  year: 1999
  end-page: 1470
  article-title: Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp
  publication-title: Diabetes Care
– volume: 286
  start-page: 180
  year: 2001
  end-page: 187
  article-title: Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation
  publication-title: The Journal of the American Medical Association
– volume: 21
  start-page: 31
  year: 2001
  end-page: 51
  article-title: Clinical features of insulin resistance and beta cell dysfunction and the relationship to type 2 diabetes
  publication-title: Clinical in Laboratory Medicine
– volume: 130
  start-page: 515
  year: 1999
  end-page: 524
  article-title: Assessing the generalizability of prognostic information
  publication-title: Annals of Internal Medicine
– volume: 329
  start-page: 1988
  year: 1993
  end-page: 1992
  article-title: Insulin resistance and insulin secretory dysfunction as precursors of non‐insulin‐dependent diabetes mellitus. Prospective studies of Pima Indians
  publication-title: The New England Journal of Medicine
– volume: 69
  start-page: 621
  year: 1999
  end-page: 631
  article-title: Cardiovascular disease risk factors in 2 distinct ethnic groups: Indian and Pakistani compared with American premenopausal women
  publication-title: American Journal of Clinical Nutrition
– volume: 97
  start-page: 596
  year: 1998
  end-page: 601
  article-title: Emerging epidemic of cardiovascular disease in developing countries
  publication-title: Circulation
– volume: 19
  start-page: 453
  year: 2000
  end-page: 473
  article-title: What do we mean by validating a prognostic model?
  publication-title: Statistics in Medicine
– volume: 115
  start-page: e500
  year: 2005
  end-page: 503
  article-title: Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents
  publication-title: Pediatrics
– volume: 28
  start-page: 1217
  year: 2004
  end-page: 1226
  article-title: High prevalence of insulin resistance in postpubertal Asian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat
  publication-title: International Journal of Obesity and Related Metabolic Disorders
– volume: 52
  start-page: 877
  year: 2004
  end-page: 881
  article-title: Validation of body fat measurement by skinfolds and two bioelectric impedance methods with DEXA – the Chennai Urban Rural Epidemiology Study [CURES‐3]
  publication-title: Journal of Association Physicians India
– volume: 10
  start-page: 151
  year: 1994
  end-page: 188
  article-title: How to measure insulin action in vivo
  publication-title: Diabetes Metabolism Reviews
– volume: 36
  start-page: 179
  year: 1987
  end-page: 186
  article-title: Plasma insulin response among Nauruans. Prediction of deterioration in glucose tolerance over 6 years
  publication-title: Diabetes
– volume: 85
  start-page: 263
  year: 2001
  end-page: 267
  article-title: Measurement of body fat using leg to leg bioimpedance
  publication-title: Archives of Disease in Childhood
– volume: 237
  start-page: E214
  year: 1979
  end-page: E223
  article-title: Glucose clamp technique: a method for quantifying insulin secretion and resistance
  publication-title: The American Journal of Physiology
– volume: 36
  start-page: 43
  year: 1987
  end-page: 51
  article-title: Do upper‐body and centralized adiposity measure different aspects of regional body‐fat distribution? Relationship to non‐insulin‐dependent diabetes mellitus, lipids, and lipoproteins
  publication-title: Diabetes
– volume: 28
  start-page: 398
  year: 2005
  end-page: 403
  article-title: An evaluation of candidate definitions of the metabolic syndrome in adult Asian Indians
  publication-title: Diabetes Care
– volume: 148
  start-page: 298
  year: 1998
  end-page: 306
  article-title: Illustration of analysis taking into account complex survey considerations: the association between wine consumption and dementia in the PAQUID study. Personnes Ages Quid
  publication-title: American Journal of Epidemiology
– year: 1997
– volume: 5
  start-page: 93
  year: 1997
  end-page: 99
  article-title: Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men
  publication-title: Obesity Research
– volume: 13
  start-page: 65
  year: 1997
  article-title: Banting Lecture 1988. Role of insulin resistance in human disease. 1988
  publication-title: Nutrition
– volume: 21
  start-page: 1414
  year: 1998
  end-page: 1431
  article-title: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections
  publication-title: Diabetes Care
– volume: 168
  start-page: 305
  year: 2003
  end-page: 313
  article-title: Correlations of C‐reactive protein levels with anthropometric profile, percentage of body fat and lipids in healthy adolescents and young adults in urban North India
  publication-title: Atherosclerosis
– volume: 100
  start-page: 1166
  year: 1997
  end-page: 1173
  article-title: Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR)
  publication-title: Journal of Clinical Investigation
– volume: 28
  start-page: 412
  year: 1985
  end-page: 419
  article-title: Homeostasis model assessment: insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man
  publication-title: Diabetologia
– volume: 147
  start-page: 2155
  year: 1987
  end-page: 2161
  article-title: Why predictive indexes perform less well in validation studies. Is it magic or methods?
  publication-title: Archives of Internal Medicine
– volume: 44
  start-page: 1094
  year: 2001
  end-page: 1101
  article-title: High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey
  publication-title: Diabetologia
– volume: 148
  start-page: 565
  year: 2006
  end-page: 566
  article-title: Validity of HOMA‐IR as index of insulin resistance in obesity
  publication-title: Journal of Pediatrics
– volume: 53
  start-page: 1336
  year: 2004
  end-page: 1341
  article-title: Adiponectin, insulin resistance, and C‐reactive protein in postpubertal Asian Indian adolescents
  publication-title: Metabolism
– volume: 31
  start-page: 1040
  year: 2008
  end-page: 1045
  article-title: Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre‐diabetes
  publication-title: Diabetes Care
– volume: 23
  start-page: 57
  year: 2000
  end-page: 63
  article-title: Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity
  publication-title: Diabetes Care
– volume: 60
  start-page: 390
  year: 1988
  end-page: 396
  article-title: Diabetes, hyperinsulinaemia, and coronary risk factors in Bangladeshis in east London
  publication-title: British Heart Journal
– volume: 17
  start-page: 87
  year: 1991
  end-page: 92
  article-title: Hyperinsulinaemia as predictor of atherosclerotic vascular disease: epidemiological evidence
  publication-title: Diabetes Metabolism
– volume: 60
  start-page: 416
  year: 2006
  end-page: 420
  article-title: LDL particle size, fat distribution and insulin resistance in obese children
  publication-title: European Journal of Clinical Nutrition
– volume: 10
  start-page: 1012
  year: 2008
  end-page: 1018
  article-title: Body composition analysis by leg‐to‐leg bioelectrical impedance and dual‐energy X‐ray absorptiometry in non‐obese and obese individuals
  publication-title: Diabetes, Obesity and Metabolism
– volume: 35
  start-page: 373
  year: 2002
  end-page: 379
  article-title: NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome
  publication-title: Hepatology
– year: 1992
– volume: 23
  start-page: 512
  year: 1999
  end-page: 517
  article-title: Assessment of insulin sensitivity from plasma insulin and glucose in the fasting or post oral glucose‐load state
  publication-title: International Journal of Obesity and Related Metabolic Disorders
– volume: 86
  start-page: 105
  year: 2001
  end-page: 112
  article-title: BMI does not accurately predict overweight in Asian Indians in northern India
  publication-title: The British Journal of Nutrition
– year: 1984
– volume: 37
  start-page: 189
  year: 2003
  end-page: 194
  article-title: Assessment of insulin sensitivity/resistance in epidemiological studies
  publication-title: Endocrine Regulations
– volume: 16
  start-page: 442
  year: 1999
  end-page: 443
  article-title: Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR)
  publication-title: Diabetic Medicine
– year: 2002
– volume: 40
  start-page: 937
  year: 2002
  end-page: 943
  article-title: Relationship between obesity, insulin resistance, and coronary heart disease risk
  publication-title: Journal of the American College of Cardiology
– volume: 144
  start-page: 47
  year: 2004
  end-page: 55
  article-title: Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents
  publication-title: Journal of Pediatrics
– volume: 84
  start-page: 2329
  year: 1999
  end-page: 2335
  article-title: Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 54
  start-page: 333
  year: 2005
  end-page: 339
  article-title: Identification of individuals with insulin resistance using routine clinical measurements
  publication-title: Diabetes
– volume: 46
  start-page: 447
  year: 2006
  end-page: 453
  article-title: Validity of foot‐to‐foot bioelectrical impedance analysis in overweight and obese children and parents
  publication-title: The Journal of Sports Medicine and Physical Fitness
– ident: e_1_2_6_13_2
  doi: 10.1016/0169-2607(86)90106-9
– ident: e_1_2_6_40_2
  doi: 10.1002/j.1550-8528.1997.tb00648.x
– ident: e_1_2_6_9_2
  doi: 10.1016/S0168-8227(03)00085-8
– volume: 17
  start-page: 87
  year: 1991
  ident: e_1_2_6_15_2
  article-title: Hyperinsulinaemia as predictor of atherosclerotic vascular disease: epidemiological evidence
  publication-title: Diabetes Metabolism
– ident: e_1_2_6_31_2
  doi: 10.1053/jhep.2002.30692
– volume: 36
  start-page: 43
  year: 1987
  ident: e_1_2_6_37_2
  article-title: Do upper‐body and centralized adiposity measure different aspects of regional body‐fat distribution? Relationship to non‐insulin‐dependent diabetes mellitus, lipids, and lipoproteins
  publication-title: Diabetes
  doi: 10.2337/diab.36.1.43
– volume: 46
  start-page: 447
  year: 2006
  ident: e_1_2_6_25_2
  article-title: Validity of foot‐to‐foot bioelectrical impedance analysis in overweight and obese children and parents
  publication-title: The Journal of Sports Medicine and Physical Fitness
– ident: e_1_2_6_51_2
  doi: 10.1016/j.jpeds.2003.09.045
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_6_33_2
– ident: e_1_2_6_26_2
  doi: 10.1136/adc.85.3.263
– ident: e_1_2_6_7_2
  doi: 10.1161/01.CIR.97.6.596
– ident: e_1_2_6_52_2
  doi: 10.1542/peds.2004-1921
– ident: e_1_2_6_32_2
  doi: 10.1046/j.1464-5491.1999.00059.x
– ident: e_1_2_6_17_2
  doi: 10.1016/j.atherosclerosis.2005.07.015
– ident: e_1_2_6_39_2
  doi: 10.1210/jc.84.7.2329
– ident: e_1_2_6_41_2
  doi: 10.1038/sj.ejcn.1602333
– volume-title: An Introduction to Recursive Partitioning Using the RPART Routine Technical Report 61
  year: 1997
  ident: e_1_2_6_36_2
– ident: e_1_2_6_23_2
  doi: 10.1079/BJN2001382
– ident: e_1_2_6_46_2
  doi: 10.2337/diabetes.54.2.333
– ident: e_1_2_6_8_2
  doi: 10.1136/hrt.60.5.390
– ident: e_1_2_6_35_2
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_6_47_2
  doi: 10.2337/dc07-1150
– ident: e_1_2_6_14_2
  doi: 10.1038/sj.ijo.0800864
– ident: e_1_2_6_22_2
  doi: 10.1016/S0021-9150(03)00096-0
– ident: e_1_2_6_3_2
  doi: 10.1016/0899-9007(97)90878-9
– ident: e_1_2_6_4_2
  doi: 10.1056/NEJM199312303292703
– volume-title: Statistical models in S. Wadsworth & Brooks/Cole Advanced Books & Software
  year: 1992
  ident: e_1_2_6_34_2
– ident: e_1_2_6_54_2
  doi: 10.1002/dmr.5610100206
– ident: e_1_2_6_11_2
  doi: 10.1152/ajpendo.1979.237.3.E214
– volume: 147
  start-page: 2155
  year: 1987
  ident: e_1_2_6_45_2
  article-title: Why predictive indexes perform less well in validation studies. Is it magic or methods?
  publication-title: Archives of Internal Medicine
  doi: 10.1001/archinte.1987.00370120091016
– ident: e_1_2_6_19_2
  doi: 10.1172/JCI119628
– ident: e_1_2_6_18_2
  doi: 10.2337/diacare.22.9.1462
– ident: e_1_2_6_20_2
  doi: 10.2337/diab.36.2.179
– volume: 52
  start-page: 877
  year: 2004
  ident: e_1_2_6_27_2
  article-title: Validation of body fat measurement by skinfolds and two bioelectric impedance methods with DEXA – the Chennai Urban Rural Epidemiology Study [CURES‐3]
  publication-title: Journal of Association Physicians India
– ident: e_1_2_6_38_2
  doi: 10.1093/ajcn/69.4.621
– ident: e_1_2_6_2_2
  doi: 10.2337/diacare.25.7.1135
– ident: e_1_2_6_16_2
  doi: 10.2337/diacare.28.2.398
– ident: e_1_2_6_5_2
  doi: 10.1016/S0735-1097(02)02051-X
– ident: e_1_2_6_43_2
  doi: 10.7326/0003-4819-130-6-199903160-00016
– ident: e_1_2_6_10_2
  doi: 10.1007/s001250100627
– ident: e_1_2_6_28_2
  doi: 10.1016/j.metabol.2004.05.010
– ident: e_1_2_6_53_2
  doi: 10.2337/diacare.23.1.57
– ident: e_1_2_6_6_2
  doi: 10.2337/diacare.21.9.1414
– ident: e_1_2_6_48_2
  doi: 10.2337/diacare.27.6.1487
– ident: e_1_2_6_50_2
  doi: 10.1016/j.jpeds.2005.06.013
– ident: e_1_2_6_44_2
  doi: 10.1001/jama.286.2.180
– volume: 21
  start-page: 31
  year: 2001
  ident: e_1_2_6_49_2
  article-title: Clinical features of insulin resistance and beta cell dysfunction and the relationship to type 2 diabetes
  publication-title: Clinical in Laboratory Medicine
– volume: 37
  start-page: 189
  year: 2003
  ident: e_1_2_6_12_2
  article-title: Assessment of insulin sensitivity/resistance in epidemiological studies
  publication-title: Endocrine Regulations
– ident: e_1_2_6_24_2
  doi: 10.1111/j.1463-1326.2008.00851.x
– ident: e_1_2_6_29_2
  doi: 10.1038/sj.ijo.0802704
– ident: e_1_2_6_30_2
  doi: 10.1007/BF00280883
– ident: e_1_2_6_42_2
  doi: 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5
– ident: e_1_2_6_21_2
  doi: 10.1093/oxfordjournals.aje.a009639
SSID ssj0005807
Score 1.9838622
Snippet Summary Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using...
Objective  Biochemical measures for assessment of insulin resistance are not cost‐effective in resource‐constrained developing countries. Using classification...
Biochemical measures for assessment of insulin resistance are not cost-effective in resource-constrained developing countries. Using classification and...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 717
SubjectTerms Adiposity
Adolescent
Adult
Asian Continental Ancestry Group
Biological and medical sciences
Classification - methods
Cross-Sectional Studies
Decision Trees
Diabetes Mellitus, Type 2 - etiology
Endocrinopathies
Female
Fundamental and applied biological sciences. Psychology
Humans
India
Insulin Resistance - ethnology
Logistic Models
Male
Medical sciences
Regression Analysis
Risk Factors
ROC Curve
Skinfold Thickness
Vertebrates: endocrinology
Young Adult
Title Identification of insulin resistance in Asian Indian adolescents: classification and regression tree (CART) and logistic regression based classification rules
URI https://api.istex.fr/ark:/67375/WNG-6KJ0GXPT-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2265.2008.03409.x
https://www.ncbi.nlm.nih.gov/pubmed/18778399
https://www.proquest.com/docview/67111049
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KCqWXvh9O2lSHUtqDl64tS3ZuYcmjKV1K2dC9CUmWStniLfuAkB-T35oZS_twyCGU3oy1I8uzI-kb65sZgPe5E95nnqfoT8uUO-dSzXORVpnJqNgtRX4R22IoTs_52bgYR_4TxcKE_BDrD240M9r1mia4NvPuJG8ZWpkoIiUyR1-lR3iSGggf_dhkkipi5HROgdRC8C6p59aOOjvVfVL6BTEn9RyV50PVi9tgaRflttvU8WOYrF4wsFMmveXC9OzljdyP_0cDT-BRRLPsMJjfU7jnmmfw4Fs8r38OVyEO2McPg2zqWSS_M3TzCbqizeEtdkixnOxLQ9bKtrJMHTBL8H7Tg25qFP0V2LsNozN19nGAqPxT2xQCmn7b7d_QRl3f7Ge2xEe8gPPjo9HgNI0VIVKLsK5KcctFhFsakXnJve07YdH_lUY4I-uiyvAWrpqmrPPcOFMWXNpM1BW3FdeooDJ_CTvNtHGvgYlMG-6FLZ113BVFSeQxp2WNxlH2vUxArv59ZWO6dKra8UdtuU2ofkXqj8U8Sf3qIoH-WvJvSBlyB5kPrYGtBfRsQpQ7WaifwxMlvp59Phl_H6lRAvsdC1wLUKZ-CvZJ4N3KJBWuFHT8oxs3Xc6xOxwBOoQJvAqWuhldKSUCZWwRrb3dedhqcDSkq91_FdyDh-F4jhikb2BnMVu6t4jyFma_nb_XPiNDCA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFth26d6r92h1GIbt4GCxZcnercjapq9gGFIsN8GSpaJo4QxpAhT7Mf2tJS3l4aKHYtjNsENZZijpo_SRBPiUWuFc4niM_rSMubU2Lnkq4iLRCRW7pcgvYlsMRP-UH46yUSgHRLEwPj_EYsONRkYzX9MApw3p9ihvKFqJyAInMkVnpYOAcp0KfFMi_R-_lrmkshA7nVIotRC8Teu5t6XWWrVOar8m7mR5hepzvu7FfcC0jXObhWrvGVzOP9HzUy46s6numL93sj_-Jx08h40AaNmOt8AX8MjWL-HxSTiyfwU3PhTYhb1BNnYs8N8ZevqEXtHs8BbboXBOdlCTwbKVRFPfmSGEv2yhrCsUPfME3prRsTr70kNg_rV55GOazs3qb2itru62M5nhK17D6d7usNePQ1GI2CCyK2JcdRHk5lokTnJnulYYdIGlFlbLKisSvIUTp86rNNVW5xmXJhFVwU3BS1RQnr6BtXpc201gIik1d8Lk1lhusywn_pgtZYXWkXedjEDO_35lQsZ0KtxxqVY8J1S_IvWHep6kfnUdQXch-cdnDXmAzOfGwhYC5eSCWHcyU78H-0ocHX7bH_0cqmEEWy0TXAhQsn6K94lge26TCicLOgEqazueXWFz2AP0CSN460112btcSsTK-EQ0Bvfgbqve7oCu3v2r4DY86Q9PjtXxweDoPTz1p3VEKP0Aa9PJzH5E0DfVW81gvgViyUck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KAqGXNn3GfSQ6lNIevGRtWbJ7C5tsXu0SyobuTViyVMoWb9jsQsiP6W_tjKV9OOQQSm_G9sjyeCR9Y30zA_AhtcK5xPEY_WkZc2ttXPJUxEWiEyp2S5FfxLYYiJNLfjbKRoH_RLEwPj_E8ocbjYxmvqYBflW59iBvGFqJyAIlMkVfpYN4cpOL_YLKOBx-X6WSykLodEqR1ELwNqvn3pZaS9Umaf2GqJPlNWrP-bIX9-HSNsxt1qn-Uxgv3tDTU8ad-Ux3zO2d5I__RwXb8CTAWXbg7e8ZPLL1c9j6FjbsX8AfHwjswp9BNnEssN8Z-vmEXdHo8BQ7oGBOdlqTubK1NFNfmCF8v2qhrCsU_enpuzWjTXX2qYew_HNzyUc0_TLr99BKXd1tZzrHR7yEy_7RsHcSh5IQsUFcV8S45iLEzbVInOTOdK0w6ABLLayWVVYkeAqnTZ1XaaqtzjMuTSKqgpuCl6igPH0FG_WktjvARFJq7oTJrbHcZllO7DFbygqNI-86GYFcfH1lQr50KtvxW635Tah-ReoP1TxJ_eomgu5S8srnDHmAzMfGwJYC5XRMnDuZqR-DYyXOz_aPRxdDNYxgt2WBSwFK1U_RPhHsLUxS4VRB-z9lbSfza2wOe4AeYQSvvaWuepdLiUgZr4jG3h7cbdU7GtDRm38V3IOti8O--no6OH8Lj_1WHbFJ38HGbDq37xHxzfRuM5T_AkNsRdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+insulin+resistance+in+Asian+Indian+adolescents+%3A+classification+and+regression+tree+%28CART%29+and+logistic+regression+based+classification+rules&rft.jtitle=Clinical+endocrinology+%28Oxford%29&rft.au=GOEL%2C+Ruchika&rft.au=MISRA%2C+Anoop&rft.au=KONDAL%2C+Dimple&rft.au=PANDEY%2C+Ravindra+M&rft.date=2009-05-01&rft.pub=Blackwell&rft.issn=0300-0664&rft.volume=70&rft.issue=5&rft.spage=717&rft.epage=724&rft_id=info:doi/10.1111%2Fj.1365-2265.2008.03409.x&rft.externalDBID=n%2Fa&rft.externalDocID=21278624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-0664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-0664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-0664&client=summon