On the determination of the emitter saturation current density from lifetime measurements of silicon devices

ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more g...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 21; no. 5; pp. 850 - 866
Main Authors Mäckel, Helmut, Varner, Kenneth
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.08.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd. We review the physics behind the analysis of the emitter saturation current density (Joe) and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We show that the approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination.
AbstractList Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd [PUBLICATION ABSTRACT].
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density ( J oe ) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of J oe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated J oe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated J oe determined by photoconductance measurements of the rear diffusion. The simulated J oe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated J oe at the front emitter is smaller than the simulated J oe at the rear emitter. Both J oe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of J oe from photoconductance measurements make J oe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, J oe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd.
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (J sub(oe)) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of J sub(oe) and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated J sub(oe) obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated J sub(oe) determined by photoconductance measurements of the rear diffusion. The simulated J sub(oe) at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated J sub(oe) at the front emitter is smaller than the simulated J sub(oe) at the rear emitter. Both J sub(oe) at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of J sub(oe) from photoconductance measurements make J sub(oe) dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, J sub(oe) should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination. Copyright [copy 2012 John Wiley & Sons, Ltd. We review the physics behind the analysis of the emitter saturation current density (J sub(oe)) and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We show that the approximations used for the determination of J sub(oe) from photoconductance measurements make J sub(oe) dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, J sub(oe) should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination.
ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd. We review the physics behind the analysis of the emitter saturation current density (Joe) and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We show that the approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination.
Author Mäckel, Helmut
Varner, Kenneth
Author_xml – sequence: 1
  givenname: Helmut
  surname: Mäckel
  fullname: Mäckel, Helmut
  email: Correspondence: Helmut Mäckel, Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467 Konstanz, Germany., helmut.maeckel@centrotherm.de
  organization: Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467, Konstanz, Germany
– sequence: 2
  givenname: Kenneth
  surname: Varner
  fullname: Varner, Kenneth
  organization: Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467, Konstanz, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530956$$DView record in Pascal Francis
BookMark eNp10d1LHDEQAPBQLPhRwT9hoRT6stdks9lcHsvR-oFVHxTvLYzZWRqbzV6TbPX-e7OeWBR9Spj5zUzI7JItP3gk5IDRGaO0-rayq1nFGvmB7DCqVMmEWm5N96YqpVJim-zGeEspk3PV7BB37ov0G4sWE4beekh28MXQPQaxtymHiwhpDJuMGUNAn7L30aZ10YWhL5ztMNkeix4hjgH7LOLUJFpnTa5q8Z81GD-Rjx24iPtP5x65-vnjcnFUnp4fHi--n5am5kKWomlNI3nFGUJLa44A4oaZWvJWMVFJgJbPDRUKuYTKMIp0zsVNJVnLoO6Q75Gvm76rMPwdMSbd22jQOfA4jFGzmivJm1qxTD-_orfDGHx-XVaU17KhclJfnhREA64L4I2NehVsD2GtKyk4VaL5P9iEIcaA3TNhVE_r0Xk9elpPprNX1Nj0-McpgHVvFZSbgjvrcP1uY31xfPHS25jw_tlD-KNzVgp9fXaouayPTpbLX3rBHwCFU7J0
CODEN PPHOED
CitedBy_id crossref_primary_10_1109_JPHOTOV_2012_2201916
crossref_primary_10_1109_JPHOTOV_2015_2470095
crossref_primary_10_1002_pip_2739
crossref_primary_10_1002_pip_3828
crossref_primary_10_1134_S1063785018100139
crossref_primary_10_1063_1_5035503
crossref_primary_10_1155_2017_7818914
crossref_primary_10_1007_s11708_016_0433_7
crossref_primary_10_1109_JPHOTOV_2016_2547578
crossref_primary_10_1109_JPHOTOV_2012_2226145
crossref_primary_10_1063_1_4913255
crossref_primary_10_15407_jopt_2018_53_013
crossref_primary_10_1016_j_egypro_2012_07_066
crossref_primary_10_1002_pssa_201800414
crossref_primary_10_1088_2053_1591_aaa2b6
crossref_primary_10_1109_TED_2018_2890584
crossref_primary_10_1109_JPHOTOV_2018_2872032
crossref_primary_10_1016_j_egypro_2015_07_046
crossref_primary_10_1016_j_solmat_2017_05_042
crossref_primary_10_1016_j_egypro_2014_08_100
crossref_primary_10_1002_pssr_201600307
crossref_primary_10_1016_j_solmat_2021_111466
crossref_primary_10_1063_5_0130315
crossref_primary_10_1109_JPHOTOV_2023_3265859
crossref_primary_10_1002_pssr_201409138
crossref_primary_10_1007_s00339_016_0434_8
crossref_primary_10_1016_j_mssp_2022_107202
crossref_primary_10_1016_j_egypro_2013_07_258
crossref_primary_10_1016_j_solener_2016_11_025
crossref_primary_10_1088_1361_6463_ac7f66
crossref_primary_10_1016_j_egypro_2015_07_096
crossref_primary_10_1016_j_egypro_2013_05_046
crossref_primary_10_1016_j_solmat_2013_05_050
crossref_primary_10_1016_j_solmat_2013_05_051
crossref_primary_10_1016_j_apsusc_2017_03_204
crossref_primary_10_1109_JPHOTOV_2021_3053094
crossref_primary_10_1109_JPHOTOV_2023_3291453
crossref_primary_10_1016_j_solmat_2018_10_002
crossref_primary_10_1109_JPHOTOV_2018_2861761
crossref_primary_10_1002_pssa_201700293
crossref_primary_10_1038_s41560_020_00768_4
crossref_primary_10_1109_JPHOTOV_2022_3148713
crossref_primary_10_1049_mnl_2018_5147
crossref_primary_10_1109_JPHOTOV_2020_2999869
crossref_primary_10_1016_j_egypro_2014_08_055
crossref_primary_10_1016_j_solmat_2017_06_022
crossref_primary_10_1109_LED_2022_3210161
crossref_primary_10_1063_1_4886595
crossref_primary_10_1109_JPHOTOV_2020_2974289
crossref_primary_10_15222_TKEA2024_1_2_03
crossref_primary_10_1002_pip_2403
crossref_primary_10_1063_1_4979722
crossref_primary_10_1109_JPHOTOV_2012_2199083
crossref_primary_10_1016_j_solmat_2024_112799
crossref_primary_10_3390_app10144887
crossref_primary_10_1002_ese3_130
crossref_primary_10_1109_JPHOTOV_2015_2407152
crossref_primary_10_1063_1_4819970
crossref_primary_10_1063_1_4990819
crossref_primary_10_1088_1361_6463_aad274
Cites_doi 10.1063/1.1529297
10.1063/1.356634
10.1016/0038-1101(92)90325-7
10.1063/1.371633
10.1016/0038-1098(80)90896-0
10.1109/PVSC.1996.564042
10.1109/WCPEC.1994.520221
10.1063/1.1432476
10.1109/PVSC.2010.5616124
10.1063/1.1610231
10.1016/j.egypro.2011.06.136
10.1016/S0927-0248(98)00179-2
10.1016/0038-1101(76)90022-8
10.1063/1.340013
10.1063/1.90974
10.1103/PhysRevB.53.7836
10.1063/1.1501743
10.1002/pip.714
10.1063/1.345414
10.1063/1.370784
10.1088/0268-1242/17/2/314
10.1063/1.373878
10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
10.1016/j.solener.2003.07.033
10.1007/s10825-011-0367-6
10.1063/1.363250
10.1063/1.1541115
10.1063/1.368545
10.1016/0031-8914(67)90062-6
10.1109/16.46368
10.1063/1.2784193
10.1063/1.1350633
10.1149/1.2133492
10.1109/16.81632
10.1109/T-ED.1984.21805
10.1016/S0927-0248(00)00082-9
10.1016/S1473-8325(03)00623-0
10.1016/0379-6787(90)90023-X
10.1002/pip.942
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
L7M
DOI 10.1002/pip.2167
DatabaseName Istex
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database
CrossRef
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1099-159X
EndPage 866
ExternalDocumentID 3023830281
27530956
10_1002_pip_2167
PIP2167
ark_67375_WNG_374HJXXM_C
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
IQODW
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c4357-56dc673231ead043eaa5b1c473d91527aad38c059e37a2c10e0835b271d1a4fe3
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Thu Jul 10 18:34:48 EDT 2025
Fri Jul 25 12:14:58 EDT 2025
Wed Apr 02 07:25:20 EDT 2025
Tue Aug 05 12:15:41 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Wed Jan 22 17:07:32 EST 2025
Wed Oct 30 09:50:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Minority carrier
emitter recombination current
Charge carrier density
Doping
Transmitter
Durability
photoconductance measurement
Two dimensional model
Review
Solar cell
Crystalline material
Carrier lifetime
Analytical method
Visible radiation
Dark current
Surface properties
Illumination
Silicon
Current density
Analytical solution
minority carrier lifetime
Non contact measurement
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4357-56dc673231ead043eaa5b1c473d91527aad38c059e37a2c10e0835b271d1a4fe3
Notes istex:31E7763594EB40D38AE7AED84439B1E8B9FFCBE9
ArticleID:PIP2167
ark:/67375/WNG-374HJXXM-C
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1403476071
PQPubID 1016445
PageCount 17
ParticipantIDs proquest_miscellaneous_1439736491
proquest_journals_1403476071
pascalfrancis_primary_27530956
crossref_primary_10_1002_pip_2167
crossref_citationtrail_10_1002_pip_2167
wiley_primary_10_1002_pip_2167_PIP2167
istex_primary_ark_67375_WNG_374HJXXM_C
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationTitleAlternate Prog. Photovolt: Res. Appl
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Sentaurus Device. Synopsys Inc.: Mountain View, USA, 2008.
Cuevas AS, Sinton RA. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Progress in Photovoltaics: Research and Applications 1997; 5: 79-90.
Fair RB, Tsai JCC. A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. Journal of the Electrochemical Society 1977; 124: 1107-1118.
Bail M, Schulz M, Brendel R. Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers. Applied Physics Letters 2003; 82: 757-759.
Cuevas A, Basore PA, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics 1996; 80: 3370-3375.
Lindmayer J, Allison JF. The violet cell: an improved silicon solar cell. Solar Cells 1990; 29: 151-166.
del Alamo JA, Swanson RM. The physics and modeling of heavily doped emitters. IEEE Transactions on Electron Devices 1984; 31: 1878-1888.
King RR, Swanson RM. Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Transactions on Electron Devices 1991; 38: 1399-1409.
Altermatt PP. Models for numerical device simulations of crystalline silicon solar cells-a review. Journal of Computational Electronics 2011; 10: 314-330.
Kerr MJ, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics 2002; 91: 2473-2480.
Green MA. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics 1990; 67: 2944-2954.
Fossum JG. Computer-aided numerical analysis of silicon solar cells. Solid State Electronics 1976; 19: 269-277.
Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D, Moro L. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B 1996; 53: 7836.
Altermatt P. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics 2003; 93: 1598.
Huldt L, Nilsson NG, Svantesson KG. The temperature dependence of band-to-band Auger recombination in silicon. Applied Physics Letters 1979; 35: 776-777.
Schmidt J, Kerr M, Altermatt PP. Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities. Journal of Applied Physics 2000; 88: 1494-1497.
Schumacher JO, Altermatt PP, Heiser G, Aberle AG. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials and Solar Cells 2001; 65: 95-103.
Kerr MJ, Cuevas A. Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semiconductor Science and Technology 2002; 17: 166-172.
Bueno G, Recart F, Jimeno JC. A simulation-based method for the comprehensive analysis of effective lifetime from photoconductance. Progress in Photovoltaics: Research and Applications 2007; 15: 123-142.
Nagel H, Berge C, Aberle AG. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics 1999; 86: 6218-6221.
Klaassen DBM. A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid State Electronics 1992; 35: 953-959.
Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics 1998; 84: 3684-3695.
Altermatt PP, Schumacher JO, Cuevas A, Kerr MJ, Glunz SW, King RR, Heiser G, Schenk A. Numerical modeling of highly doped Si : P emitters based on Fermi-Dirac statistics and self-consistent material parameters. Journal of Applied Physics 2002; 92: 3187-3197.
Cuevas A, Macdonald D. Measuring and interpreting the lifetime of silicon wafers. Solar Energy 2004; 76: 255-262.
Reichel C, Granek F, Benick J, Schultz-Wittmann O, Glunz SW. Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes. Progress in Photovoltaics: Research and Applications 2011; 20: 21-30.
Häcker R, Hangleiter A. Intrinsic upper limits of the carrier lifetime in silicon. Journal of Applied Physics 1994; 75: 7570-7572.
Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 1967; 34: 149-154.
King RR, Sinton RA, Swanson RM. Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Transactions on Electron Devices 1990; 37: 365-371.
Kunst M, Beck G. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II. Journal of Applied Physics 1988; 63: 1093-1098.
Kerr MJ, Schmidt J, Cuevas A, Bultman JH. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics 2001; 89: 3821-3826.
Bock R, Schmidt J, Brendel R. Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon. Applied Physics Letters 2007; 91: 112112.
Trupke T, Green MA, Wurfel P, Altermatt PP, Wang A, Zhao J, Corkish R. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics 2003; 94: 4930-4937.
Cuevas A. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells 1999; 57: 277-290.
Glunz SW, Biro D, Rein S, Warta W. Field-effect passivation of the SiO2-Si interface. Journal of Applied Physics 1999; 86: 683-691.
Lochmann W, Haug A. Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Communications 1980; 35: 553-556.
2002; 17
1991; 38
1979; 35
1990; 37
2011
2010
2000; 88
2009
1997
2008
1996
2007; 91
2007
1995
2006
2011; 10
2005
1992; 35
1999; 86
1993
2003
1997; 5
2003; 93
2001; 89
1998; 84
2003; 94
1977; 124
1996; 53
2007; 15
2001; 65
2004; 76
1984; 31
1990; 67
1967; 34
1990; 29
1980; 35
2011; 20
1999; 57
1985
2002; 92
1988; 63
1994; 2402
1996; 80
2002; 91
2003; 82
1976; 19
1994; 75
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
(e_1_2_8_19_1) 2008
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Cuevas A, Basore PA, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics 1996; 80: 3370-3375.
– reference: Green MA. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics 1990; 67: 2944-2954.
– reference: Altermatt PP, Schumacher JO, Cuevas A, Kerr MJ, Glunz SW, King RR, Heiser G, Schenk A. Numerical modeling of highly doped Si : P emitters based on Fermi-Dirac statistics and self-consistent material parameters. Journal of Applied Physics 2002; 92: 3187-3197.
– reference: Kerr MJ, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics 2002; 91: 2473-2480.
– reference: Huldt L, Nilsson NG, Svantesson KG. The temperature dependence of band-to-band Auger recombination in silicon. Applied Physics Letters 1979; 35: 776-777.
– reference: Lochmann W, Haug A. Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Communications 1980; 35: 553-556.
– reference: Bueno G, Recart F, Jimeno JC. A simulation-based method for the comprehensive analysis of effective lifetime from photoconductance. Progress in Photovoltaics: Research and Applications 2007; 15: 123-142.
– reference: King RR, Sinton RA, Swanson RM. Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Transactions on Electron Devices 1990; 37: 365-371.
– reference: Altermatt PP. Models for numerical device simulations of crystalline silicon solar cells-a review. Journal of Computational Electronics 2011; 10: 314-330.
– reference: Cuevas A, Macdonald D. Measuring and interpreting the lifetime of silicon wafers. Solar Energy 2004; 76: 255-262.
– reference: Bail M, Schulz M, Brendel R. Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers. Applied Physics Letters 2003; 82: 757-759.
– reference: Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics 1998; 84: 3684-3695.
– reference: Fair RB, Tsai JCC. A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. Journal of the Electrochemical Society 1977; 124: 1107-1118.
– reference: Lindmayer J, Allison JF. The violet cell: an improved silicon solar cell. Solar Cells 1990; 29: 151-166.
– reference: King RR, Swanson RM. Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Transactions on Electron Devices 1991; 38: 1399-1409.
– reference: Glunz SW, Biro D, Rein S, Warta W. Field-effect passivation of the SiO2-Si interface. Journal of Applied Physics 1999; 86: 683-691.
– reference: Cuevas AS, Sinton RA. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Progress in Photovoltaics: Research and Applications 1997; 5: 79-90.
– reference: Bock R, Schmidt J, Brendel R. Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon. Applied Physics Letters 2007; 91: 112112.
– reference: Cuevas A. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells 1999; 57: 277-290.
– reference: Schmidt J, Kerr M, Altermatt PP. Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities. Journal of Applied Physics 2000; 88: 1494-1497.
– reference: Sentaurus Device. Synopsys Inc.: Mountain View, USA, 2008.
– reference: Altermatt P. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics 2003; 93: 1598.
– reference: Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 1967; 34: 149-154.
– reference: Schumacher JO, Altermatt PP, Heiser G, Aberle AG. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials and Solar Cells 2001; 65: 95-103.
– reference: Trupke T, Green MA, Wurfel P, Altermatt PP, Wang A, Zhao J, Corkish R. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics 2003; 94: 4930-4937.
– reference: del Alamo JA, Swanson RM. The physics and modeling of heavily doped emitters. IEEE Transactions on Electron Devices 1984; 31: 1878-1888.
– reference: Nagel H, Berge C, Aberle AG. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics 1999; 86: 6218-6221.
– reference: Klaassen DBM. A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid State Electronics 1992; 35: 953-959.
– reference: Häcker R, Hangleiter A. Intrinsic upper limits of the carrier lifetime in silicon. Journal of Applied Physics 1994; 75: 7570-7572.
– reference: Kunst M, Beck G. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II. Journal of Applied Physics 1988; 63: 1093-1098.
– reference: Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D, Moro L. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B 1996; 53: 7836.
– reference: Reichel C, Granek F, Benick J, Schultz-Wittmann O, Glunz SW. Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes. Progress in Photovoltaics: Research and Applications 2011; 20: 21-30.
– reference: Kerr MJ, Schmidt J, Cuevas A, Bultman JH. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics 2001; 89: 3821-3826.
– reference: Fossum JG. Computer-aided numerical analysis of silicon solar cells. Solid State Electronics 1976; 19: 269-277.
– reference: Kerr MJ, Cuevas A. Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semiconductor Science and Technology 2002; 17: 166-172.
– year: 2011
– volume: 67
  start-page: 2944
  year: 1990
  end-page: 2954
  article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon
  publication-title: Journal of Applied Physics
– volume: 89
  start-page: 3821
  year: 2001
  end-page: 3826
  article-title: Surface recombination velocity of phosphorus‐diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide
  publication-title: Journal of Applied Physics
– volume: 34
  start-page: 149
  year: 1967
  end-page: 154
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
– volume: 91
  start-page: 2473
  year: 2002
  end-page: 2480
  article-title: General parameterization of Auger recombination in crystalline silicon
  publication-title: Journal of Applied Physics
– start-page: 457
  year: 1996
  end-page: 460
– volume: 53
  start-page: 7836
  year: 1996
  article-title: Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates
  publication-title: Physical Review B
– volume: 92
  start-page: 3187
  year: 2002
  end-page: 3197
  article-title: Numerical modeling of highly doped Si : P emitters based on Fermi–Dirac statistics and self‐consistent material parameters
  publication-title: Journal of Applied Physics
– start-page: 578
  year: 1985
  end-page: 583
– volume: 94
  start-page: 4930
  year: 2003
  end-page: 4937
  article-title: Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon
  publication-title: Journal of Applied Physics
– volume: 57
  start-page: 277
  year: 1999
  end-page: 290
  article-title: The effect of emitter recombination on the effective lifetime of silicon wafers
  publication-title: Solar Energy Materials and Solar Cells
– start-page: 337
  year: 1995
  end-page: 342
– volume: 93
  start-page: 1598
  year: 2003
  article-title: Reassessment of the intrinsic carrier density in crystalline silicon in view of band‐gap narrowing
  publication-title: Journal of Applied Physics
– volume: 19
  start-page: 269
  year: 1976
  end-page: 277
  article-title: Computer‐aided numerical analysis of silicon solar cells
  publication-title: Solid State Electronics
– volume: 29
  start-page: 151
  year: 1990
  end-page: 166
  article-title: The violet cell: an improved silicon solar cell
  publication-title: Solar Cells
– volume: 20
  start-page: 21
  year: 2011
  end-page: 30
  article-title: Comparison of emitter saturation current densities determined by injection‐dependent lifetime spectroscopy in high and low injection regimes
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 35
  start-page: 953
  year: 1992
  end-page: 959
  article-title: A unified mobility model for device simulation—I. Model equations and concentration dependence
  publication-title: Solid State Electronics
– start-page: 647
  year: 2006
  end-page: 650
– year: 2008
– volume: 15
  start-page: 123
  year: 2007
  end-page: 142
  article-title: A simulation‐based method for the comprehensive analysis of effective lifetime from photoconductance
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 17
  start-page: 166
  year: 2002
  end-page: 172
  article-title: Recombination at the interface between silicon and stoichiometric plasma silicon nitride
  publication-title: Semiconductor Science and Technology
– volume: 31
  start-page: 1878
  year: 1984
  end-page: 1888
  article-title: The physics and modeling of heavily doped emitters
  publication-title: IEEE Transactions on Electron Devices
– volume: 124
  start-page: 1107
  year: 1977
  end-page: 1118
  article-title: A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect
  publication-title: Journal of the Electrochemical Society
– volume: 38
  start-page: 1399
  year: 1991
  end-page: 1409
  article-title: Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity
  publication-title: IEEE Transactions on Electron Devices
– volume: 84
  start-page: 3684
  year: 1998
  end-page: 3695
  article-title: Finite‐temperature full random‐phase approximation model of band gap narrowing for silicon device simulation
  publication-title: Journal of Applied Physics
– volume: 86
  start-page: 6218
  year: 1999
  end-page: 6221
  article-title: Generalized analysis of quasi‐steady‐state and quasi‐transient measurements of carrier lifetimes in semiconductors
  publication-title: Journal of Applied Physics
– volume: 75
  start-page: 7570
  year: 1994
  end-page: 7572
  article-title: Intrinsic upper limits of the carrier lifetime in silicon
  publication-title: Journal of Applied Physics
– start-page: 1228
  year: 2005
  end-page: 1231
– start-page: 91
  year: 2003
  end-page: 94
– volume: 86
  start-page: 683
  year: 1999
  end-page: 691
  article-title: Field‐effect passivation of the SiO ‐Si interface
  publication-title: Journal of Applied Physics
– start-page: 1068
  year: 2009
  end-page: 1071
– start-page: 147
  year: 1993
  end-page: 152
– start-page: 1262
  year: 2007
  end-page: 1265
– volume: 10
  start-page: 314
  year: 2011
  end-page: 330
  article-title: Models for numerical device simulations of crystalline silicon solar cells–a review
  publication-title: Journal of Computational Electronics
– year: 2003
– volume: 37
  start-page: 365
  year: 1990
  end-page: 371
  article-title: Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency
  publication-title: IEEE Transactions on Electron Devices
– volume: 63
  start-page: 1093
  year: 1988
  end-page: 1098
  article-title: The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II
  publication-title: Journal of Applied Physics
– volume: 82
  start-page: 757
  year: 2003
  end-page: 759
  article-title: Space‐charge region‐dominated steady‐state photoconductance in low‐lifetime Si wafers
  publication-title: Applied Physics Letters
– year: 2010
– volume: 35
  start-page: 776
  year: 1979
  end-page: 777
  article-title: The temperature dependence of band‐to‐band Auger recombination in silicon
  publication-title: Applied Physics Letters
– volume: 91
  start-page: 112112
  year: 2007
  article-title: Effective passivation of highly aluminum‐doped p‐type silicon surfaces using amorphous silicon
  publication-title: Applied Physics Letters
– volume: 5
  start-page: 79
  year: 1997
  end-page: 90
  article-title: Prediction of the open‐circuit voltage of solar cells from the steady‐state photoconductance
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 88
  start-page: 1494
  year: 2000
  end-page: 1497
  article-title: Coulomb‐enhanced Auger recombination in crystalline silicon at intermediate and high‐injection densities
  publication-title: Journal of Applied Physics
– volume: 35
  start-page: 553
  year: 1980
  end-page: 556
  article-title: Phonon‐assisted Auger recombination in Si with direct calculation of the overlap integrals
  publication-title: Solid State Communications
– volume: 80
  start-page: 3370
  year: 1996
  end-page: 3375
  article-title: Surface recombination velocity of highly doped n‐type silicon
  publication-title: Journal of Applied Physics
– volume: 2402
  start-page: 1446
  year: 1994
  end-page: 2409
– start-page: 207
  year: 1997
  end-page: 210
– volume: 65
  start-page: 95
  year: 2001
  end-page: 103
  article-title: Application of an improved band‐gap narrowing model to the numerical simulation of recombination properties of phosphorus‐doped silicon emitters
  publication-title: Solar Energy Materials and Solar Cells
– volume: 76
  start-page: 255
  year: 2004
  end-page: 262
  article-title: Measuring and interpreting the lifetime of silicon wafers
  publication-title: Solar Energy
– ident: e_1_2_8_34_1
  doi: 10.1063/1.1529297
– ident: e_1_2_8_44_1
  doi: 10.1063/1.356634
– ident: e_1_2_8_27_1
  doi: 10.1016/0038-1101(92)90325-7
– ident: e_1_2_8_50_1
  doi: 10.1063/1.371633
– ident: e_1_2_8_43_1
  doi: 10.1016/0038-1098(80)90896-0
– ident: e_1_2_8_3_1
  doi: 10.1109/PVSC.1996.564042
– ident: e_1_2_8_11_1
  doi: 10.1109/WCPEC.1994.520221
– ident: e_1_2_8_28_1
– ident: e_1_2_8_47_1
  doi: 10.1063/1.1432476
– ident: e_1_2_8_30_1
  doi: 10.1109/PVSC.2010.5616124
– ident: e_1_2_8_36_1
  doi: 10.1063/1.1610231
– ident: e_1_2_8_17_1
  doi: 10.1016/j.egypro.2011.06.136
– ident: e_1_2_8_22_1
  doi: 10.1016/S0927-0248(98)00179-2
– ident: e_1_2_8_37_1
  doi: 10.1016/0038-1101(76)90022-8
– ident: e_1_2_8_4_1
  doi: 10.1063/1.340013
– ident: e_1_2_8_42_1
  doi: 10.1063/1.90974
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.53.7836
– ident: e_1_2_8_14_1
  doi: 10.1063/1.1501743
– volume-title: Sentaurus Device
  year: 2008
  ident: e_1_2_8_19_1
– ident: e_1_2_8_18_1
– ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_23_1
  doi: 10.1002/pip.714
– ident: e_1_2_8_31_1
  doi: 10.1063/1.345414
– ident: e_1_2_8_45_1
  doi: 10.1063/1.370784
– ident: e_1_2_8_20_1
  doi: 10.1088/0268-1242/17/2/314
– ident: e_1_2_8_46_1
  doi: 10.1063/1.373878
– ident: e_1_2_8_25_1
  doi: 10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
– ident: e_1_2_8_40_1
  doi: 10.1016/j.solener.2003.07.033
– ident: e_1_2_8_39_1
– ident: e_1_2_8_32_1
  doi: 10.1007/s10825-011-0367-6
– ident: e_1_2_8_13_1
  doi: 10.1063/1.363250
– ident: e_1_2_8_8_1
  doi: 10.1063/1.1541115
– ident: e_1_2_8_35_1
  doi: 10.1063/1.368545
– ident: e_1_2_8_7_1
– ident: e_1_2_8_33_1
  doi: 10.1016/0031-8914(67)90062-6
– ident: e_1_2_8_2_1
– ident: e_1_2_8_9_1
  doi: 10.1109/16.46368
– ident: e_1_2_8_16_1
– ident: e_1_2_8_6_1
  doi: 10.1063/1.2784193
– ident: e_1_2_8_24_1
– ident: e_1_2_8_5_1
  doi: 10.1063/1.1350633
– ident: e_1_2_8_48_1
  doi: 10.1149/1.2133492
– ident: e_1_2_8_41_1
– ident: e_1_2_8_10_1
  doi: 10.1109/16.81632
– ident: e_1_2_8_49_1
– ident: e_1_2_8_29_1
  doi: 10.1109/T-ED.1984.21805
– ident: e_1_2_8_26_1
  doi: 10.1016/S0927-0248(00)00082-9
– ident: e_1_2_8_38_1
  doi: 10.1016/S1473-8325(03)00623-0
– ident: e_1_2_8_52_1
  doi: 10.1016/0379-6787(90)90023-X
– ident: e_1_2_8_21_1
  doi: 10.1002/pip.942
SSID ssj0017896
Score 2.3305597
Snippet ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples...
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density ( J oe ) for crystalline silicon samples...
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing...
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (J sub(oe)) for crystalline silicon samples...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 850
SubjectTerms Applied sciences
Approximation
Current density
Density
Emittance
emitter recombination current
Energy
Exact sciences and technology
minority carrier lifetime
Minority carriers
Natural energy
photoconductance measurement
Photovoltaic conversion
Saturation
Silicon
Simulation
solar cell
Solar cells. Photoelectrochemical cells
Solar energy
Title On the determination of the emitter saturation current density from lifetime measurements of silicon devices
URI https://api.istex.fr/ark:/67375/WNG-374HJXXM-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2167
https://www.proquest.com/docview/1403476071
https://www.proquest.com/docview/1439736491
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlubSHNumDbvNAhZKcvLEs2bKPISTZBpKGktCFHoRehiUb7xLvQsivz4z8SLakUHoy2CMjSzPyJ-nTN4R8KwsDEQSTHJNzHwmZx5HRzkYpd5k3LtUysAnPL7LRtTgbp-OWVYlnYRp9iH7BDSMjjNcY4NrUB0-iofPJfJiwDA-SI1UL8dDPXjmKyTyk5oIJDwDIokg73dk4OegKrvyJ1rFR75EZqWtonLLJarECO5-D1_D3OXlHfnf1bkgnN8Plwgztwx-Sjv_3YRvkbQtK6WHjRZvkla_ekzfPpAo_kOmPigJWpK6jz2CH0lkZbvrbCR4KojWqhDZPbKP7BPYVsj4oHmOh00npMZk9vX1amazxJfVkCh5ZgXUYuD6S65Pjq6NR1GZqiCzALRmlmbOZ5IAVwTFjwb3WqWFWSO4KzJurteO5BSTnudSJZbFH5GcSyRzTovT8E1mrZpX_TKg2iQl7pUxakWfC2FJ7ZlKHyv5xyQZkv-s1ZVsZc8ymMVWNAHOioP0Utt-AfO0t5410xws2e6HjewN9d4NUN5mqXxeniksxOhuPz9XRgOyueEZfIIH5Hoo5Dsh25yqqHQZqhWKIQqKEH1SmfwwBjLsyuvKzJdoAJOSZKMBmL_jFX2urLr9f4vXLvxpukddJSN-BhMVtsra4W_odAFELsxvC5RHTPBqq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7QF4GD8nOsYwEhpP6ZLYiRPxhCZGN9YyoU30AcmyHUeq1qXV0kqIv547p8lWBBLiKVJ8jhz7zv7OPn8H8LbMDVoQOjkm4y4QMgsDowsbJLxInSkSLX004XCUDi7F6TgZb8D79i5Mww_RbbiRZfj5mgycNqQPb1lD55N5P45SeQ-2KKG396e-dtxRkcx8ci50eRBC5nnSMs-G8WFbc20t2qJu_UGxkbrG7imbvBZrwPMufPXrz_Ej-N62vAk7ueovF6Zvf_5G6vifv_YYtle4lH1oFOkJbLjqKTy8w1b4DKZfKoZwkRVtBA2NKZuV_qW7ntC9IFYTUWhTYhvqJ5SvKPCD0U0WNp2UjvLZs-vbzcmaPlJPpqiUFUr7ues5XB5_vDgaBKtkDYFFxCWDJC1sKjnCRdTNUHCndWIiKyQvckqdq3XBM4tgznGpYxuFjsCfiWVURFqUju_AZjWr3Atg2sTGH5dG0oosFcaW2kUmKYjcPyyjHrxrh03ZFZM5JdSYqoaDOVbYf4r6rwdvOsl5w97xB5kDP_KdgL65omg3mahvo0-KSzE4HY-H6qgH-2uq0VWI0eUjPsce7LW6olYzQa2ID1FIYvHDxnTFaMN0MKMrN1uSDKJCnoocZQ68Yvy1ter85Jyeu_8q-BruDy6GZ-rsZPT5JTyIfTYPil_cg83FzdK9Qky1MPvedn4BXBgexQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbC2N7aLuPsnRd58HonpxalmzZj6VdlnZrFsbKAnsQ-jKEpk6oExj763cnf7QpG4w9GayTkU930k_S6XeEvCtyDR4EixydMRdykUWhVtaECbOp0zZRwkcTXozS4SU_nySTJqoS78LU_BDdhht6hh-v0cEXtji6JQ1dTBf9mKbiIdnkaZShRZ9-7aijqMh8bi5Y8QCCzPOkJZ6N4qO25tpUtIla_YmhkaoC7RR1Wos13HkXvfrpZ7BNfrQNr6NOrvqrpe6bX_c4Hf_vz3bIVoNKg-PajJ6SB658Rp7c4Sp8TmZfygDAYmDb-Bns0WBe-Jfueoq3goIKaULrElMTP4F8iWEfAd5jCWbTwmE2--D6dmuywo9U0xmYZAnSfuR6QS4HH76dDMMmVUNoAG-JMEmtSQUDsAiWGXHmlEo0NVwwm2PiXKUsywxAOceEig2NHEI_HQtqqeKFY7tko5yX7iUJlI61PyylwvAs5doUylGdWKT2jwraI-_bXpOm4THHdBozWTMwxxL0J1F_PfK2k1zU3B1_kDn0Hd8JqJsrjHUTifw--iiZ4MPzyeRCnvTIwZpldBViWPAhm2OP7LemIptxoJLIhsgFcvhBY7pi8GA8llGlm69QBjAhS3kOMofeLv7aWjk-G-Nz718F35BH49OB_Hw2-vSKPI59Kg8MXtwnG8ublXsNgGqpD7zn_AYRPh19
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+determination+of+the+emitter+saturation+current+density+from+lifetime+measurements+of+silicon+devices&rft.jtitle=Progress+in+photovoltaics&rft.au=M%C3%A4ckel%2C+Helmut&rft.au=Varner%2C+Kenneth&rft.date=2013-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=21&rft.issue=5&rft.spage=850&rft_id=info:doi/10.1002%2Fpip.2167&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3023830281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon