On the determination of the emitter saturation current density from lifetime measurements of silicon devices
ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more g...
Saved in:
Published in | Progress in photovoltaics Vol. 21; no. 5; pp. 850 - 866 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.08.2013
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd.
We review the physics behind the analysis of the emitter saturation current density (Joe) and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We show that the approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. |
---|---|
AbstractList | Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd [PUBLICATION ABSTRACT]. Contactless photoconductance measurements are commonly used to extract the emitter saturation current density ( J oe ) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of J oe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated J oe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated J oe determined by photoconductance measurements of the rear diffusion. The simulated J oe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated J oe at the front emitter is smaller than the simulated J oe at the rear emitter. Both J oe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of J oe from photoconductance measurements make J oe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, J oe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd. Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (J sub(oe)) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of J sub(oe) and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated J sub(oe) obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated J sub(oe) determined by photoconductance measurements of the rear diffusion. The simulated J sub(oe) at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated J sub(oe) at the front emitter is smaller than the simulated J sub(oe) at the rear emitter. Both J sub(oe) at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of J sub(oe) from photoconductance measurements make J sub(oe) dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, J sub(oe) should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination. Copyright [copy 2012 John Wiley & Sons, Ltd. We review the physics behind the analysis of the emitter saturation current density (J sub(oe)) and compare the commonly used approximations with more generalised solutions using two-dimensional device simulations. We show that the approximations used for the determination of J sub(oe) from photoconductance measurements make J sub(oe) dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high-quality silicon, J sub(oe) should be determined from the analytical solution as a function of excess minority carrier density including Shockley-Read-Hall recombination. ABSTRACT Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing an emitter on the surface. We review the physics behind the analysis of Joe and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We quantify errors present in such approximations for different test conditions involving varying illumination conditions and surface properties in samples with the same emitter on both sides. The simulated Joe obtained from the dark hole current from the emitter into the bulk is nearly the same as the simulated Joe determined by photoconductance measurements of the rear diffusion. The simulated Joe at the front emitter is equivalent to that at the rear emitter only when the sample is subject to a nearly constant and flat generation profile. For illumination conditions including visible light, the simulated Joe at the front emitter is smaller than the simulated Joe at the rear emitter. Both Joe at the rear emitter and from the dark hole current in the emitter remain nearly constant over a wide range of base doping densities. The approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. Copyright © 2012 John Wiley & Sons, Ltd. We review the physics behind the analysis of the emitter saturation current density (Joe) and compare the commonly used approximations with more generalised solutions using two‐dimensional device simulations. We show that the approximations used for the determination of Joe from photoconductance measurements make Joe dependent on the excess minority carrier density. Lifetime measurements demonstrate that, even in high‐quality silicon, Joe should be determined from the analytical solution as a function of excess minority carrier density including Shockley‐Read‐Hall recombination. |
Author | Mäckel, Helmut Varner, Kenneth |
Author_xml | – sequence: 1 givenname: Helmut surname: Mäckel fullname: Mäckel, Helmut email: Correspondence: Helmut Mäckel, Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467 Konstanz, Germany., helmut.maeckel@centrotherm.de organization: Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467, Konstanz, Germany – sequence: 2 givenname: Kenneth surname: Varner fullname: Varner, Kenneth organization: Centrotherm Cell & Module GmbH, Reichenaustr. 21, 78467, Konstanz, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530956$$DView record in Pascal Francis |
BookMark | eNp10d1LHDEQAPBQLPhRwT9hoRT6stdks9lcHsvR-oFVHxTvLYzZWRqbzV6TbPX-e7OeWBR9Spj5zUzI7JItP3gk5IDRGaO0-rayq1nFGvmB7DCqVMmEWm5N96YqpVJim-zGeEspk3PV7BB37ov0G4sWE4beekh28MXQPQaxtymHiwhpDJuMGUNAn7L30aZ10YWhL5ztMNkeix4hjgH7LOLUJFpnTa5q8Z81GD-Rjx24iPtP5x65-vnjcnFUnp4fHi--n5am5kKWomlNI3nFGUJLa44A4oaZWvJWMVFJgJbPDRUKuYTKMIp0zsVNJVnLoO6Q75Gvm76rMPwdMSbd22jQOfA4jFGzmivJm1qxTD-_orfDGHx-XVaU17KhclJfnhREA64L4I2NehVsD2GtKyk4VaL5P9iEIcaA3TNhVE_r0Xk9elpPprNX1Nj0-McpgHVvFZSbgjvrcP1uY31xfPHS25jw_tlD-KNzVgp9fXaouayPTpbLX3rBHwCFU7J0 |
CODEN | PPHOED |
CitedBy_id | crossref_primary_10_1109_JPHOTOV_2012_2201916 crossref_primary_10_1109_JPHOTOV_2015_2470095 crossref_primary_10_1002_pip_2739 crossref_primary_10_1002_pip_3828 crossref_primary_10_1134_S1063785018100139 crossref_primary_10_1063_1_5035503 crossref_primary_10_1155_2017_7818914 crossref_primary_10_1007_s11708_016_0433_7 crossref_primary_10_1109_JPHOTOV_2016_2547578 crossref_primary_10_1109_JPHOTOV_2012_2226145 crossref_primary_10_1063_1_4913255 crossref_primary_10_15407_jopt_2018_53_013 crossref_primary_10_1016_j_egypro_2012_07_066 crossref_primary_10_1002_pssa_201800414 crossref_primary_10_1088_2053_1591_aaa2b6 crossref_primary_10_1109_TED_2018_2890584 crossref_primary_10_1109_JPHOTOV_2018_2872032 crossref_primary_10_1016_j_egypro_2015_07_046 crossref_primary_10_1016_j_solmat_2017_05_042 crossref_primary_10_1016_j_egypro_2014_08_100 crossref_primary_10_1002_pssr_201600307 crossref_primary_10_1016_j_solmat_2021_111466 crossref_primary_10_1063_5_0130315 crossref_primary_10_1109_JPHOTOV_2023_3265859 crossref_primary_10_1002_pssr_201409138 crossref_primary_10_1007_s00339_016_0434_8 crossref_primary_10_1016_j_mssp_2022_107202 crossref_primary_10_1016_j_egypro_2013_07_258 crossref_primary_10_1016_j_solener_2016_11_025 crossref_primary_10_1088_1361_6463_ac7f66 crossref_primary_10_1016_j_egypro_2015_07_096 crossref_primary_10_1016_j_egypro_2013_05_046 crossref_primary_10_1016_j_solmat_2013_05_050 crossref_primary_10_1016_j_solmat_2013_05_051 crossref_primary_10_1016_j_apsusc_2017_03_204 crossref_primary_10_1109_JPHOTOV_2021_3053094 crossref_primary_10_1109_JPHOTOV_2023_3291453 crossref_primary_10_1016_j_solmat_2018_10_002 crossref_primary_10_1109_JPHOTOV_2018_2861761 crossref_primary_10_1002_pssa_201700293 crossref_primary_10_1038_s41560_020_00768_4 crossref_primary_10_1109_JPHOTOV_2022_3148713 crossref_primary_10_1049_mnl_2018_5147 crossref_primary_10_1109_JPHOTOV_2020_2999869 crossref_primary_10_1016_j_egypro_2014_08_055 crossref_primary_10_1016_j_solmat_2017_06_022 crossref_primary_10_1109_LED_2022_3210161 crossref_primary_10_1063_1_4886595 crossref_primary_10_1109_JPHOTOV_2020_2974289 crossref_primary_10_15222_TKEA2024_1_2_03 crossref_primary_10_1002_pip_2403 crossref_primary_10_1063_1_4979722 crossref_primary_10_1109_JPHOTOV_2012_2199083 crossref_primary_10_1016_j_solmat_2024_112799 crossref_primary_10_3390_app10144887 crossref_primary_10_1002_ese3_130 crossref_primary_10_1109_JPHOTOV_2015_2407152 crossref_primary_10_1063_1_4819970 crossref_primary_10_1063_1_4990819 crossref_primary_10_1088_1361_6463_aad274 |
Cites_doi | 10.1063/1.1529297 10.1063/1.356634 10.1016/0038-1101(92)90325-7 10.1063/1.371633 10.1016/0038-1098(80)90896-0 10.1109/PVSC.1996.564042 10.1109/WCPEC.1994.520221 10.1063/1.1432476 10.1109/PVSC.2010.5616124 10.1063/1.1610231 10.1016/j.egypro.2011.06.136 10.1016/S0927-0248(98)00179-2 10.1016/0038-1101(76)90022-8 10.1063/1.340013 10.1063/1.90974 10.1103/PhysRevB.53.7836 10.1063/1.1501743 10.1002/pip.714 10.1063/1.345414 10.1063/1.370784 10.1088/0268-1242/17/2/314 10.1063/1.373878 10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J 10.1016/j.solener.2003.07.033 10.1007/s10825-011-0367-6 10.1063/1.363250 10.1063/1.1541115 10.1063/1.368545 10.1016/0031-8914(67)90062-6 10.1109/16.46368 10.1063/1.2784193 10.1063/1.1350633 10.1149/1.2133492 10.1109/16.81632 10.1109/T-ED.1984.21805 10.1016/S0927-0248(00)00082-9 10.1016/S1473-8325(03)00623-0 10.1016/0379-6787(90)90023-X 10.1002/pip.942 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. 2014 INIST-CNRS Copyright © 2013 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION IQODW 7SP 7TB 8FD FR3 L7M |
DOI | 10.1002/pip.2167 |
DatabaseName | Istex CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1099-159X |
EndPage | 866 |
ExternalDocumentID | 3023830281 27530956 10_1002_pip_2167 PIP2167 ark_67375_WNG_374HJXXM_C |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION IQODW 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c4357-56dc673231ead043eaa5b1c473d91527aad38c059e37a2c10e0835b271d1a4fe3 |
IEDL.DBID | DR2 |
ISSN | 1062-7995 |
IngestDate | Thu Jul 10 18:34:48 EDT 2025 Fri Jul 25 12:14:58 EDT 2025 Wed Apr 02 07:25:20 EDT 2025 Tue Aug 05 12:15:41 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Wed Jan 22 17:07:32 EST 2025 Wed Oct 30 09:50:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Minority carrier emitter recombination current Charge carrier density Doping Transmitter Durability photoconductance measurement Two dimensional model Review Solar cell Crystalline material Carrier lifetime Analytical method Visible radiation Dark current Surface properties Illumination Silicon Current density Analytical solution minority carrier lifetime Non contact measurement |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4357-56dc673231ead043eaa5b1c473d91527aad38c059e37a2c10e0835b271d1a4fe3 |
Notes | istex:31E7763594EB40D38AE7AED84439B1E8B9FFCBE9 ArticleID:PIP2167 ark:/67375/WNG-374HJXXM-C ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1403476071 |
PQPubID | 1016445 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1439736491 proquest_journals_1403476071 pascalfrancis_primary_27530956 crossref_primary_10_1002_pip_2167 crossref_citationtrail_10_1002_pip_2167 wiley_primary_10_1002_pip_2167_PIP2167 istex_primary_ark_67375_WNG_374HJXXM_C |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Progress in photovoltaics |
PublicationTitleAlternate | Prog. Photovolt: Res. Appl |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Sentaurus Device. Synopsys Inc.: Mountain View, USA, 2008. Cuevas AS, Sinton RA. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Progress in Photovoltaics: Research and Applications 1997; 5: 79-90. Fair RB, Tsai JCC. A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. Journal of the Electrochemical Society 1977; 124: 1107-1118. Bail M, Schulz M, Brendel R. Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers. Applied Physics Letters 2003; 82: 757-759. Cuevas A, Basore PA, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics 1996; 80: 3370-3375. Lindmayer J, Allison JF. The violet cell: an improved silicon solar cell. Solar Cells 1990; 29: 151-166. del Alamo JA, Swanson RM. The physics and modeling of heavily doped emitters. IEEE Transactions on Electron Devices 1984; 31: 1878-1888. King RR, Swanson RM. Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Transactions on Electron Devices 1991; 38: 1399-1409. Altermatt PP. Models for numerical device simulations of crystalline silicon solar cells-a review. Journal of Computational Electronics 2011; 10: 314-330. Kerr MJ, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics 2002; 91: 2473-2480. Green MA. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics 1990; 67: 2944-2954. Fossum JG. Computer-aided numerical analysis of silicon solar cells. Solid State Electronics 1976; 19: 269-277. Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D, Moro L. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B 1996; 53: 7836. Altermatt P. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics 2003; 93: 1598. Huldt L, Nilsson NG, Svantesson KG. The temperature dependence of band-to-band Auger recombination in silicon. Applied Physics Letters 1979; 35: 776-777. Schmidt J, Kerr M, Altermatt PP. Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities. Journal of Applied Physics 2000; 88: 1494-1497. Schumacher JO, Altermatt PP, Heiser G, Aberle AG. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials and Solar Cells 2001; 65: 95-103. Kerr MJ, Cuevas A. Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semiconductor Science and Technology 2002; 17: 166-172. Bueno G, Recart F, Jimeno JC. A simulation-based method for the comprehensive analysis of effective lifetime from photoconductance. Progress in Photovoltaics: Research and Applications 2007; 15: 123-142. Nagel H, Berge C, Aberle AG. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics 1999; 86: 6218-6221. Klaassen DBM. A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid State Electronics 1992; 35: 953-959. Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics 1998; 84: 3684-3695. Altermatt PP, Schumacher JO, Cuevas A, Kerr MJ, Glunz SW, King RR, Heiser G, Schenk A. Numerical modeling of highly doped Si : P emitters based on Fermi-Dirac statistics and self-consistent material parameters. Journal of Applied Physics 2002; 92: 3187-3197. Cuevas A, Macdonald D. Measuring and interpreting the lifetime of silicon wafers. Solar Energy 2004; 76: 255-262. Reichel C, Granek F, Benick J, Schultz-Wittmann O, Glunz SW. Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes. Progress in Photovoltaics: Research and Applications 2011; 20: 21-30. Häcker R, Hangleiter A. Intrinsic upper limits of the carrier lifetime in silicon. Journal of Applied Physics 1994; 75: 7570-7572. Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 1967; 34: 149-154. King RR, Sinton RA, Swanson RM. Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Transactions on Electron Devices 1990; 37: 365-371. Kunst M, Beck G. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II. Journal of Applied Physics 1988; 63: 1093-1098. Kerr MJ, Schmidt J, Cuevas A, Bultman JH. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics 2001; 89: 3821-3826. Bock R, Schmidt J, Brendel R. Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon. Applied Physics Letters 2007; 91: 112112. Trupke T, Green MA, Wurfel P, Altermatt PP, Wang A, Zhao J, Corkish R. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics 2003; 94: 4930-4937. Cuevas A. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells 1999; 57: 277-290. Glunz SW, Biro D, Rein S, Warta W. Field-effect passivation of the SiO2-Si interface. Journal of Applied Physics 1999; 86: 683-691. Lochmann W, Haug A. Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Communications 1980; 35: 553-556. 2002; 17 1991; 38 1979; 35 1990; 37 2011 2010 2000; 88 2009 1997 2008 1996 2007; 91 2007 1995 2006 2011; 10 2005 1992; 35 1999; 86 1993 2003 1997; 5 2003; 93 2001; 89 1998; 84 2003; 94 1977; 124 1996; 53 2007; 15 2001; 65 2004; 76 1984; 31 1990; 67 1967; 34 1990; 29 1980; 35 2011; 20 1999; 57 1985 2002; 92 1988; 63 1994; 2402 1996; 80 2002; 91 2003; 82 1976; 19 1994; 75 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 (e_1_2_8_19_1) 2008 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Cuevas A, Basore PA, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics 1996; 80: 3370-3375. – reference: Green MA. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics 1990; 67: 2944-2954. – reference: Altermatt PP, Schumacher JO, Cuevas A, Kerr MJ, Glunz SW, King RR, Heiser G, Schenk A. Numerical modeling of highly doped Si : P emitters based on Fermi-Dirac statistics and self-consistent material parameters. Journal of Applied Physics 2002; 92: 3187-3197. – reference: Kerr MJ, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics 2002; 91: 2473-2480. – reference: Huldt L, Nilsson NG, Svantesson KG. The temperature dependence of band-to-band Auger recombination in silicon. Applied Physics Letters 1979; 35: 776-777. – reference: Lochmann W, Haug A. Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Communications 1980; 35: 553-556. – reference: Bueno G, Recart F, Jimeno JC. A simulation-based method for the comprehensive analysis of effective lifetime from photoconductance. Progress in Photovoltaics: Research and Applications 2007; 15: 123-142. – reference: King RR, Sinton RA, Swanson RM. Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Transactions on Electron Devices 1990; 37: 365-371. – reference: Altermatt PP. Models for numerical device simulations of crystalline silicon solar cells-a review. Journal of Computational Electronics 2011; 10: 314-330. – reference: Cuevas A, Macdonald D. Measuring and interpreting the lifetime of silicon wafers. Solar Energy 2004; 76: 255-262. – reference: Bail M, Schulz M, Brendel R. Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers. Applied Physics Letters 2003; 82: 757-759. – reference: Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics 1998; 84: 3684-3695. – reference: Fair RB, Tsai JCC. A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. Journal of the Electrochemical Society 1977; 124: 1107-1118. – reference: Lindmayer J, Allison JF. The violet cell: an improved silicon solar cell. Solar Cells 1990; 29: 151-166. – reference: King RR, Swanson RM. Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Transactions on Electron Devices 1991; 38: 1399-1409. – reference: Glunz SW, Biro D, Rein S, Warta W. Field-effect passivation of the SiO2-Si interface. Journal of Applied Physics 1999; 86: 683-691. – reference: Cuevas AS, Sinton RA. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Progress in Photovoltaics: Research and Applications 1997; 5: 79-90. – reference: Bock R, Schmidt J, Brendel R. Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon. Applied Physics Letters 2007; 91: 112112. – reference: Cuevas A. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells 1999; 57: 277-290. – reference: Schmidt J, Kerr M, Altermatt PP. Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities. Journal of Applied Physics 2000; 88: 1494-1497. – reference: Sentaurus Device. Synopsys Inc.: Mountain View, USA, 2008. – reference: Altermatt P. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics 2003; 93: 1598. – reference: Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 1967; 34: 149-154. – reference: Schumacher JO, Altermatt PP, Heiser G, Aberle AG. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters. Solar Energy Materials and Solar Cells 2001; 65: 95-103. – reference: Trupke T, Green MA, Wurfel P, Altermatt PP, Wang A, Zhao J, Corkish R. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. Journal of Applied Physics 2003; 94: 4930-4937. – reference: del Alamo JA, Swanson RM. The physics and modeling of heavily doped emitters. IEEE Transactions on Electron Devices 1984; 31: 1878-1888. – reference: Nagel H, Berge C, Aberle AG. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics 1999; 86: 6218-6221. – reference: Klaassen DBM. A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid State Electronics 1992; 35: 953-959. – reference: Häcker R, Hangleiter A. Intrinsic upper limits of the carrier lifetime in silicon. Journal of Applied Physics 1994; 75: 7570-7572. – reference: Kunst M, Beck G. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II. Journal of Applied Physics 1988; 63: 1093-1098. – reference: Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D, Moro L. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B 1996; 53: 7836. – reference: Reichel C, Granek F, Benick J, Schultz-Wittmann O, Glunz SW. Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes. Progress in Photovoltaics: Research and Applications 2011; 20: 21-30. – reference: Kerr MJ, Schmidt J, Cuevas A, Bultman JH. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics 2001; 89: 3821-3826. – reference: Fossum JG. Computer-aided numerical analysis of silicon solar cells. Solid State Electronics 1976; 19: 269-277. – reference: Kerr MJ, Cuevas A. Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semiconductor Science and Technology 2002; 17: 166-172. – year: 2011 – volume: 67 start-page: 2944 year: 1990 end-page: 2954 article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon publication-title: Journal of Applied Physics – volume: 89 start-page: 3821 year: 2001 end-page: 3826 article-title: Surface recombination velocity of phosphorus‐diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide publication-title: Journal of Applied Physics – volume: 34 start-page: 149 year: 1967 end-page: 154 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica – volume: 91 start-page: 2473 year: 2002 end-page: 2480 article-title: General parameterization of Auger recombination in crystalline silicon publication-title: Journal of Applied Physics – start-page: 457 year: 1996 end-page: 460 – volume: 53 start-page: 7836 year: 1996 article-title: Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates publication-title: Physical Review B – volume: 92 start-page: 3187 year: 2002 end-page: 3197 article-title: Numerical modeling of highly doped Si : P emitters based on Fermi–Dirac statistics and self‐consistent material parameters publication-title: Journal of Applied Physics – start-page: 578 year: 1985 end-page: 583 – volume: 94 start-page: 4930 year: 2003 end-page: 4937 article-title: Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon publication-title: Journal of Applied Physics – volume: 57 start-page: 277 year: 1999 end-page: 290 article-title: The effect of emitter recombination on the effective lifetime of silicon wafers publication-title: Solar Energy Materials and Solar Cells – start-page: 337 year: 1995 end-page: 342 – volume: 93 start-page: 1598 year: 2003 article-title: Reassessment of the intrinsic carrier density in crystalline silicon in view of band‐gap narrowing publication-title: Journal of Applied Physics – volume: 19 start-page: 269 year: 1976 end-page: 277 article-title: Computer‐aided numerical analysis of silicon solar cells publication-title: Solid State Electronics – volume: 29 start-page: 151 year: 1990 end-page: 166 article-title: The violet cell: an improved silicon solar cell publication-title: Solar Cells – volume: 20 start-page: 21 year: 2011 end-page: 30 article-title: Comparison of emitter saturation current densities determined by injection‐dependent lifetime spectroscopy in high and low injection regimes publication-title: Progress in Photovoltaics: Research and Applications – volume: 35 start-page: 953 year: 1992 end-page: 959 article-title: A unified mobility model for device simulation—I. Model equations and concentration dependence publication-title: Solid State Electronics – start-page: 647 year: 2006 end-page: 650 – year: 2008 – volume: 15 start-page: 123 year: 2007 end-page: 142 article-title: A simulation‐based method for the comprehensive analysis of effective lifetime from photoconductance publication-title: Progress in Photovoltaics: Research and Applications – volume: 17 start-page: 166 year: 2002 end-page: 172 article-title: Recombination at the interface between silicon and stoichiometric plasma silicon nitride publication-title: Semiconductor Science and Technology – volume: 31 start-page: 1878 year: 1984 end-page: 1888 article-title: The physics and modeling of heavily doped emitters publication-title: IEEE Transactions on Electron Devices – volume: 124 start-page: 1107 year: 1977 end-page: 1118 article-title: A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect publication-title: Journal of the Electrochemical Society – volume: 38 start-page: 1399 year: 1991 end-page: 1409 article-title: Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity publication-title: IEEE Transactions on Electron Devices – volume: 84 start-page: 3684 year: 1998 end-page: 3695 article-title: Finite‐temperature full random‐phase approximation model of band gap narrowing for silicon device simulation publication-title: Journal of Applied Physics – volume: 86 start-page: 6218 year: 1999 end-page: 6221 article-title: Generalized analysis of quasi‐steady‐state and quasi‐transient measurements of carrier lifetimes in semiconductors publication-title: Journal of Applied Physics – volume: 75 start-page: 7570 year: 1994 end-page: 7572 article-title: Intrinsic upper limits of the carrier lifetime in silicon publication-title: Journal of Applied Physics – start-page: 1228 year: 2005 end-page: 1231 – start-page: 91 year: 2003 end-page: 94 – volume: 86 start-page: 683 year: 1999 end-page: 691 article-title: Field‐effect passivation of the SiO ‐Si interface publication-title: Journal of Applied Physics – start-page: 1068 year: 2009 end-page: 1071 – start-page: 147 year: 1993 end-page: 152 – start-page: 1262 year: 2007 end-page: 1265 – volume: 10 start-page: 314 year: 2011 end-page: 330 article-title: Models for numerical device simulations of crystalline silicon solar cells–a review publication-title: Journal of Computational Electronics – year: 2003 – volume: 37 start-page: 365 year: 1990 end-page: 371 article-title: Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency publication-title: IEEE Transactions on Electron Devices – volume: 63 start-page: 1093 year: 1988 end-page: 1098 article-title: The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II publication-title: Journal of Applied Physics – volume: 82 start-page: 757 year: 2003 end-page: 759 article-title: Space‐charge region‐dominated steady‐state photoconductance in low‐lifetime Si wafers publication-title: Applied Physics Letters – year: 2010 – volume: 35 start-page: 776 year: 1979 end-page: 777 article-title: The temperature dependence of band‐to‐band Auger recombination in silicon publication-title: Applied Physics Letters – volume: 91 start-page: 112112 year: 2007 article-title: Effective passivation of highly aluminum‐doped p‐type silicon surfaces using amorphous silicon publication-title: Applied Physics Letters – volume: 5 start-page: 79 year: 1997 end-page: 90 article-title: Prediction of the open‐circuit voltage of solar cells from the steady‐state photoconductance publication-title: Progress in Photovoltaics: Research and Applications – volume: 88 start-page: 1494 year: 2000 end-page: 1497 article-title: Coulomb‐enhanced Auger recombination in crystalline silicon at intermediate and high‐injection densities publication-title: Journal of Applied Physics – volume: 35 start-page: 553 year: 1980 end-page: 556 article-title: Phonon‐assisted Auger recombination in Si with direct calculation of the overlap integrals publication-title: Solid State Communications – volume: 80 start-page: 3370 year: 1996 end-page: 3375 article-title: Surface recombination velocity of highly doped n‐type silicon publication-title: Journal of Applied Physics – volume: 2402 start-page: 1446 year: 1994 end-page: 2409 – start-page: 207 year: 1997 end-page: 210 – volume: 65 start-page: 95 year: 2001 end-page: 103 article-title: Application of an improved band‐gap narrowing model to the numerical simulation of recombination properties of phosphorus‐doped silicon emitters publication-title: Solar Energy Materials and Solar Cells – volume: 76 start-page: 255 year: 2004 end-page: 262 article-title: Measuring and interpreting the lifetime of silicon wafers publication-title: Solar Energy – ident: e_1_2_8_34_1 doi: 10.1063/1.1529297 – ident: e_1_2_8_44_1 doi: 10.1063/1.356634 – ident: e_1_2_8_27_1 doi: 10.1016/0038-1101(92)90325-7 – ident: e_1_2_8_50_1 doi: 10.1063/1.371633 – ident: e_1_2_8_43_1 doi: 10.1016/0038-1098(80)90896-0 – ident: e_1_2_8_3_1 doi: 10.1109/PVSC.1996.564042 – ident: e_1_2_8_11_1 doi: 10.1109/WCPEC.1994.520221 – ident: e_1_2_8_28_1 – ident: e_1_2_8_47_1 doi: 10.1063/1.1432476 – ident: e_1_2_8_30_1 doi: 10.1109/PVSC.2010.5616124 – ident: e_1_2_8_36_1 doi: 10.1063/1.1610231 – ident: e_1_2_8_17_1 doi: 10.1016/j.egypro.2011.06.136 – ident: e_1_2_8_22_1 doi: 10.1016/S0927-0248(98)00179-2 – ident: e_1_2_8_37_1 doi: 10.1016/0038-1101(76)90022-8 – ident: e_1_2_8_4_1 doi: 10.1063/1.340013 – ident: e_1_2_8_42_1 doi: 10.1063/1.90974 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.53.7836 – ident: e_1_2_8_14_1 doi: 10.1063/1.1501743 – volume-title: Sentaurus Device year: 2008 ident: e_1_2_8_19_1 – ident: e_1_2_8_18_1 – ident: e_1_2_8_15_1 – ident: e_1_2_8_12_1 – ident: e_1_2_8_23_1 doi: 10.1002/pip.714 – ident: e_1_2_8_31_1 doi: 10.1063/1.345414 – ident: e_1_2_8_45_1 doi: 10.1063/1.370784 – ident: e_1_2_8_20_1 doi: 10.1088/0268-1242/17/2/314 – ident: e_1_2_8_46_1 doi: 10.1063/1.373878 – ident: e_1_2_8_25_1 doi: 10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J – ident: e_1_2_8_40_1 doi: 10.1016/j.solener.2003.07.033 – ident: e_1_2_8_39_1 – ident: e_1_2_8_32_1 doi: 10.1007/s10825-011-0367-6 – ident: e_1_2_8_13_1 doi: 10.1063/1.363250 – ident: e_1_2_8_8_1 doi: 10.1063/1.1541115 – ident: e_1_2_8_35_1 doi: 10.1063/1.368545 – ident: e_1_2_8_7_1 – ident: e_1_2_8_33_1 doi: 10.1016/0031-8914(67)90062-6 – ident: e_1_2_8_2_1 – ident: e_1_2_8_9_1 doi: 10.1109/16.46368 – ident: e_1_2_8_16_1 – ident: e_1_2_8_6_1 doi: 10.1063/1.2784193 – ident: e_1_2_8_24_1 – ident: e_1_2_8_5_1 doi: 10.1063/1.1350633 – ident: e_1_2_8_48_1 doi: 10.1149/1.2133492 – ident: e_1_2_8_41_1 – ident: e_1_2_8_10_1 doi: 10.1109/16.81632 – ident: e_1_2_8_49_1 – ident: e_1_2_8_29_1 doi: 10.1109/T-ED.1984.21805 – ident: e_1_2_8_26_1 doi: 10.1016/S0927-0248(00)00082-9 – ident: e_1_2_8_38_1 doi: 10.1016/S1473-8325(03)00623-0 – ident: e_1_2_8_52_1 doi: 10.1016/0379-6787(90)90023-X – ident: e_1_2_8_21_1 doi: 10.1002/pip.942 |
SSID | ssj0017896 |
Score | 2.3305597 |
Snippet | ABSTRACT
Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples... Contactless photoconductance measurements are commonly used to extract the emitter saturation current density ( J oe ) for crystalline silicon samples... Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (Joe) for crystalline silicon samples containing... Contactless photoconductance measurements are commonly used to extract the emitter saturation current density (J sub(oe)) for crystalline silicon samples... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 850 |
SubjectTerms | Applied sciences Approximation Current density Density Emittance emitter recombination current Energy Exact sciences and technology minority carrier lifetime Minority carriers Natural energy photoconductance measurement Photovoltaic conversion Saturation Silicon Simulation solar cell Solar cells. Photoelectrochemical cells Solar energy |
Title | On the determination of the emitter saturation current density from lifetime measurements of silicon devices |
URI | https://api.istex.fr/ark:/67375/WNG-374HJXXM-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2167 https://www.proquest.com/docview/1403476071 https://www.proquest.com/docview/1439736491 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlubSHNumDbvNAhZKcvLEs2bKPISTZBpKGktCFHoRehiUb7xLvQsivz4z8SLakUHoy2CMjSzPyJ-nTN4R8KwsDEQSTHJNzHwmZx5HRzkYpd5k3LtUysAnPL7LRtTgbp-OWVYlnYRp9iH7BDSMjjNcY4NrUB0-iofPJfJiwDA-SI1UL8dDPXjmKyTyk5oIJDwDIokg73dk4OegKrvyJ1rFR75EZqWtonLLJarECO5-D1_D3OXlHfnf1bkgnN8Plwgztwx-Sjv_3YRvkbQtK6WHjRZvkla_ekzfPpAo_kOmPigJWpK6jz2CH0lkZbvrbCR4KojWqhDZPbKP7BPYVsj4oHmOh00npMZk9vX1amazxJfVkCh5ZgXUYuD6S65Pjq6NR1GZqiCzALRmlmbOZ5IAVwTFjwb3WqWFWSO4KzJurteO5BSTnudSJZbFH5GcSyRzTovT8E1mrZpX_TKg2iQl7pUxakWfC2FJ7ZlKHyv5xyQZkv-s1ZVsZc8ymMVWNAHOioP0Utt-AfO0t5410xws2e6HjewN9d4NUN5mqXxeniksxOhuPz9XRgOyueEZfIIH5Hoo5Dsh25yqqHQZqhWKIQqKEH1SmfwwBjLsyuvKzJdoAJOSZKMBmL_jFX2urLr9f4vXLvxpukddJSN-BhMVtsra4W_odAFELsxvC5RHTPBqq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7QF4GD8nOsYwEhpP6ZLYiRPxhCZGN9YyoU30AcmyHUeq1qXV0kqIv547p8lWBBLiKVJ8jhz7zv7OPn8H8LbMDVoQOjkm4y4QMgsDowsbJLxInSkSLX004XCUDi7F6TgZb8D79i5Mww_RbbiRZfj5mgycNqQPb1lD55N5P45SeQ-2KKG396e-dtxRkcx8ci50eRBC5nnSMs-G8WFbc20t2qJu_UGxkbrG7imbvBZrwPMufPXrz_Ej-N62vAk7ueovF6Zvf_5G6vifv_YYtle4lH1oFOkJbLjqKTy8w1b4DKZfKoZwkRVtBA2NKZuV_qW7ntC9IFYTUWhTYhvqJ5SvKPCD0U0WNp2UjvLZs-vbzcmaPlJPpqiUFUr7ues5XB5_vDgaBKtkDYFFxCWDJC1sKjnCRdTNUHCndWIiKyQvckqdq3XBM4tgznGpYxuFjsCfiWVURFqUju_AZjWr3Atg2sTGH5dG0oosFcaW2kUmKYjcPyyjHrxrh03ZFZM5JdSYqoaDOVbYf4r6rwdvOsl5w97xB5kDP_KdgL65omg3mahvo0-KSzE4HY-H6qgH-2uq0VWI0eUjPsce7LW6olYzQa2ID1FIYvHDxnTFaMN0MKMrN1uSDKJCnoocZQ68Yvy1ter85Jyeu_8q-BruDy6GZ-rsZPT5JTyIfTYPil_cg83FzdK9Qky1MPvedn4BXBgexQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbC2N7aLuPsnRd58HonpxalmzZj6VdlnZrFsbKAnsQ-jKEpk6oExj763cnf7QpG4w9GayTkU930k_S6XeEvCtyDR4EixydMRdykUWhVtaECbOp0zZRwkcTXozS4SU_nySTJqoS78LU_BDdhht6hh-v0cEXtji6JQ1dTBf9mKbiIdnkaZShRZ9-7aijqMh8bi5Y8QCCzPOkJZ6N4qO25tpUtIla_YmhkaoC7RR1Wos13HkXvfrpZ7BNfrQNr6NOrvqrpe6bX_c4Hf_vz3bIVoNKg-PajJ6SB658Rp7c4Sp8TmZfygDAYmDb-Bns0WBe-Jfueoq3goIKaULrElMTP4F8iWEfAd5jCWbTwmE2--D6dmuywo9U0xmYZAnSfuR6QS4HH76dDMMmVUNoAG-JMEmtSQUDsAiWGXHmlEo0NVwwm2PiXKUsywxAOceEig2NHEI_HQtqqeKFY7tko5yX7iUJlI61PyylwvAs5doUylGdWKT2jwraI-_bXpOm4THHdBozWTMwxxL0J1F_PfK2k1zU3B1_kDn0Hd8JqJsrjHUTifw--iiZ4MPzyeRCnvTIwZpldBViWPAhm2OP7LemIptxoJLIhsgFcvhBY7pi8GA8llGlm69QBjAhS3kOMofeLv7aWjk-G-Nz718F35BH49OB_Hw2-vSKPI59Kg8MXtwnG8ublXsNgGqpD7zn_AYRPh19 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+determination+of+the+emitter+saturation+current+density+from+lifetime+measurements+of+silicon+devices&rft.jtitle=Progress+in+photovoltaics&rft.au=M%C3%A4ckel%2C+Helmut&rft.au=Varner%2C+Kenneth&rft.date=2013-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=21&rft.issue=5&rft.spage=850&rft_id=info:doi/10.1002%2Fpip.2167&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3023830281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |