Irreversible thermal denaturation of Torpedo californica acetylcholinesterase

Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending o...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 4; no. 11; pp. 2349 - 2357
Main Authors Kreimer, David I., Shnyrov, Valery L., Villar, Enrique, Silman, Israel, Weiner, Lev
Format Journal Article
LanguageEnglish
Published Bristol Cold Spring Harbor Laboratory Press 01.11.1995
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
AbstractList Abstract Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
Author Kreimer, David I.
Shnyrov, Valery L.
Silman, Israel
Villar, Enrique
Weiner, Lev
AuthorAffiliation Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
AuthorAffiliation_xml – name: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
Author_xml – sequence: 1
  givenname: David I.
  surname: Kreimer
  fullname: Kreimer, David I.
– sequence: 2
  givenname: Valery L.
  surname: Shnyrov
  fullname: Shnyrov, Valery L.
– sequence: 3
  givenname: Enrique
  surname: Villar
  fullname: Villar, Enrique
– sequence: 4
  givenname: Israel
  surname: Silman
  fullname: Silman, Israel
– sequence: 5
  givenname: Lev
  surname: Weiner
  fullname: Weiner, Lev
  email: cilev@weizmann.weizmann.ac.il
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8563632$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlLBDEQhYMoOi5Xb0KfvPWYpbP0RRBxA0URBW8hna52IplkTHpG5t_bMoPLyVNRvFdfPap20WaIARA6JHhMMKYnsxTHnAuMK0II20AjUom6VLV42UQjXAtSKibUDtrN-Q1_uSjbRtuKCyYYHaG7m5RgASm7xkPRTyBNjS9aCKafJ9O7GIrYFU8xzaCNhTXedTEFZ01hLPRLbyfRuwC5h2Qy7KOtzvgMB-u6h54vL57Or8vb-6ub87Pb0laMs9LWjeRdo6TELTWNVJQwwIYDlVRKUsuK17RVHVdEMqNq2VXcYNUIIXFHsWV76HTFnc2bKbQWQp-M17PkpiYtdTRO_1WCm-jXuNCUVAwTMQCO14AU3-dDfD112YL3JkCcZy2lwlJUajCOV0abYs4Juu8lBOuvBwx91D8PGAaOfkf7tq8vPuj1Sv9wHpb_0PTD4_0v9ifOF5Wz
CitedBy_id crossref_primary_10_1006_jmbi_1999_2732
crossref_primary_10_1046_j_1432_1033_2003_03856_x
crossref_primary_10_1016_S0301_4622_97_80552_2
crossref_primary_10_1016_j_bpc_2008_04_001
crossref_primary_10_1016_j_ijbiomac_2007_09_012
crossref_primary_10_1021_bi801196y
crossref_primary_10_1002__SICI_1097_0134_20000701_40_1_58__AID_PROT80_3_0_CO_2_M
crossref_primary_10_1016_S0301_4622_98_00149_5
crossref_primary_10_1134_S1811238212070053
crossref_primary_10_1016_j_ijbiomac_2014_05_021
crossref_primary_10_1016_S0040_6031_97_00238_4
crossref_primary_10_1002_pro_2923
crossref_primary_10_1016_S0021_9673_00_01211_5
crossref_primary_10_1016_S0167_4838_00_00279_X
crossref_primary_10_1002_pro_5560050911
crossref_primary_10_1007_s10158_008_0075_5
crossref_primary_10_1002_1522_2683_200203_23_6_930__AID_ELPS930_3_0_CO_2_2
crossref_primary_10_1110_ps_03110703
crossref_primary_10_1016_j_bbapap_2006_04_011
crossref_primary_10_1016_j_jasms_2008_12_016
crossref_primary_10_1021_acs_jpcb_2c00622
crossref_primary_10_1110_ps_0205102
crossref_primary_10_1093_protein_gzq051
crossref_primary_10_1002_pro_4061
crossref_primary_10_1002_pro_2101
crossref_primary_10_1002_prot_21614
crossref_primary_10_1021_acs_jpcb_3c00318
crossref_primary_10_1016_j_abb_2006_03_023
crossref_primary_10_1007_s10930_017_9694_1
crossref_primary_10_1016_j_bbapap_2008_02_018
crossref_primary_10_1016_S0040_6031_03_00358_7
crossref_primary_10_1016_j_nbd_2003_08_014
crossref_primary_10_1016_j_bpc_2010_02_004
crossref_primary_10_1016_S0301_4622_97_00133_6
crossref_primary_10_1016_j_bbapap_2020_140554
crossref_primary_10_1016_S0301_4622_99_00050_2
crossref_primary_10_1073_pnas_94_7_2848
crossref_primary_10_1529_biophysj_105_078980
crossref_primary_10_1006_jmbi_1998_2216
crossref_primary_10_1002_1522_2683_200202_23_2_189__AID_ELPS189_3_0_CO_2_M
Cites_doi 10.1021/bi00190a002
10.1006/bbrc.1993.1930
10.1038/355033a0
10.1016/0003-2697(76)90527-3
10.1016/S0065-3233(08)60460-X
10.1016/S0065-3233(08)60468-4
10.1042/bj2990731
10.1021/bi00172a010
10.1021/bi00222a009
10.1016/0167-4838(87)90266-4
10.1016/0896-6273(90)90103-M
10.1111/j.1432-1033.1991.tb16230.x
10.1021/bi00367a014
10.1021/bi00096a028
10.1021/bi00227a001
10.1038/nsb0195-10a
10.1111/j.1432-1033.1993.tb17874.x
10.1016/0022-2836(88)90213-6
10.1006/bbrc.1994.1130
10.1021/bi00455a028
10.1038/nbt0991-825
10.1007/BF01150717
10.1038/nsb0195-10b
10.1021/bi00222a010
10.1002/prot.340090404
10.1099/0022-1317-69-11-2785
10.1016/0006-291X(85)91439-1
10.1002/bem.2250050406
10.1016/0014-5793(93)81400-T
10.1016/0301-4622(94)00033-G
10.1002/prot.340060202
10.1016/S0167-7799(00)88897-6
10.1021/bi00052a004
10.1146/annurev.bi.62.070193.003253
10.1021/bi00447a048
10.1146/annurev.bi.59.070190.003215
10.1111/j.1365-2958.1995.tb02423.x
10.1021/j150512a005
10.1021/bi00405a039
10.1021/bi00524a042
10.1006/jmbi.1994.1632
10.1016/S0021-9258(18)43778-7
10.1093/oso/9780199633968.003.0003
10.1073/pnas.91.25.12145
10.1021/bi00150a029
10.1146/annurev.bb.19.060190.001111
10.1016/0301-4622(87)80049-2
10.1016/0959-440X(93)90204-X
10.1021/bi00165a023
10.1038/356263a0
10.1016/S0021-9258(19)57277-5
10.1073/pnas.90.15.6924
10.1021/bi00163a039
ContentType Journal Article
Copyright Copyright © 1995 The Protein Society
Copyright_xml – notice: Copyright © 1995 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1002/pro.5560041113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 2357
ExternalDocumentID 10_1002_pro_5560041113
8563632
PRO5560041113
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4353-c9b75fb8770d2ab78213e0a5e272771974592d8f58173a897f45a08b6670f20c3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:10:01 EDT 2024
Fri Aug 16 10:37:09 EDT 2024
Fri Aug 23 01:54:55 EDT 2024
Sat Sep 28 07:31:34 EDT 2024
Sat Aug 24 00:49:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4353-c9b75fb8770d2ab78213e0a5e272771974592d8f58173a897f45a08b6670f20c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc2143016?pdf=render
PMID 8563632
PQID 77807648
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143016
proquest_miscellaneous_77807648
crossref_primary_10_1002_pro_5560041113
pubmed_primary_8563632
wiley_primary_10_1002_pro_5560041113_PRO5560041113
PublicationCentury 1900
PublicationDate November 1995
PublicationDateYYYYMMDD 1995-11-01
PublicationDate_xml – month: 11
  year: 1995
  text: November 1995
PublicationDecade 1990
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 1995
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 1968; 25
1994; 299
1974; 10
1990; 59
1993; 62
1991a; 30
1990; 19
1994; 296
1988; 263
1985; 129
1983; 17
1979; 33
1993; 324
1993; 3
1987; 87
1989; 31
1994b; 91
1954; 58
1976; 72
1993; 32
1992; 355
1992; 356
1987; 911
1994; 34
1994; 33
1994; 35
1993; 213
1982; 35
1994; 198
1995; 16
1991; 30
1995; 13
1994a; 31
1989; 6
1994
1993; 90
1992
1992; 31
1995; 2
1991; 9
1981; 20
1988; 203
1991b; 200
1994; 243
1990; 29
1988; 69
1988; 27
1986; 25
1984; 5
1993; 194
1994; 52
1990; 4
8312253 - Biochemistry. 1994 Feb 15;33(6):1351-5
8117296 - Biochem Biophys Res Commun. 1994 Feb 15;198(3):915-22
3778869 - Biochemistry. 1986 Sep 23;25(19):5432-44
6762066 - Adv Protein Chem. 1982;35:1-104
3183628 - J Gen Virol. 1988 Nov;69 ( Pt 11):2785-95
3607241 - Biophys Chem. 1987 Jul;27(1):87-96
7476156 - Mol Microbiol. 1995 May;16(4):609-14
7982909 - J Biol Chem. 1994 Dec 2;269(48):30093-6
8418836 - Biochemistry. 1993 Jan 12;32(1):18-26
1998668 - Biochemistry. 1991 Feb 26;30(8):2061-6
8346198 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6924-8
6517960 - Bioelectromagnetics. 1984;5(4):411-8
8011615 - Biochemistry. 1994 Jun 21;33(24):7505-9
1472509 - Biochemistry. 1992 Dec 22;31(50):12706-12
7910735 - Biochem J. 1994 May 1;299 ( Pt 3):731-3
8389298 - Eur J Biochem. 1993 May 1;213(3):1235-42
2009257 - Biochemistry. 1991 Apr 2;30(13):3147-61
4846184 - Mol Pharmacol. 1974 Jan;10(1):78-92
8508927 - FEBS Lett. 1993 Jun 14;324(2):237-40
7849638 - Biochem Mol Biol Int. 1994 Sep;34(2):281-6
1333796 - Biochemistry. 1992 Dec 8;31(48):12248-54
2159790 - Biochemistry. 1990 Jan 23;29(3):781-8
2695928 - Proteins. 1989;6(2):87-103
2306366 - Neuron. 1990 Feb;4(2):289-301
4004881 - Biochem Biophys Res Commun. 1985 May 31;129(1):312-7
8352763 - Biochem Biophys Res Commun. 1993 Aug 16;194(3):1065-73
3790597 - Biochim Biophys Acta. 1987 Jan 5;911(1):25-36
1998669 - Biochemistry. 1991 Feb 26;30(8):2067-72
17020833 - Biophys Chem. 1994 Nov;52(3):183-9
7030385 - Biochemistry. 1981 Oct 13;20(21):6185-90
44431 - Adv Protein Chem. 1979;33:167-241
1915340 - Eur J Biochem. 1991 Sep 15;200(3):663-70
1650946 - Proteins. 1991;9(4):248-66
3365417 - Biochemistry. 1988 Mar 8;27(5):1648-52
2197986 - Annu Rev Biochem. 1990;59:631-60
2690944 - Biochemistry. 1989 Oct 17;28(21):8588-96
2194474 - Annu Rev Biophys Biophys Chem. 1990;19:159-88
7932744 - J Mol Biol. 1994 Oct 14;243(1):93-9
2850366 - J Mol Biol. 1988 Oct 5;203(3):821-3
e_1_2_1_60_1
Eichler J (e_1_2_1_12_1) 1994; 296
Shnyrov VL (e_1_2_1_46_1) 1994; 34
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Garel JR (e_1_2_1_18_1) 1992
Christensen H (e_1_2_1_6_1) 1994
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
Gibney G (e_1_2_1_20_1) 1988; 263
e_1_2_1_58_1
Tanford C. (e_1_2_1_54_1) 1968; 25
e_1_2_1_42_1
Kreimer DI (e_1_2_1_27_1) 1994; 31
Taylor P (e_1_2_1_55_1) 1974; 10
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_25_1
e_1_2_1_48_1
Ptitsyn OB (e_1_2_1_41_1) 1992
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 299
  start-page: 731
  year: 1994
  end-page: 733
  article-title: Differential‐scanning‐calorimetric study of the irreversible thermal denaturation of 8 kDa cytotoxin from the sea anemone
  publication-title: Biochem J
– volume: 69
  start-page: 2785
  year: 1988
  end-page: 2795
  article-title: Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion
  publication-title: J Gen Virol
– start-page: 243
  year: 1992
  end-page: 300
– volume: 30
  start-page: 2067
  year: 1991a
  end-page: 2072
  article-title: Effect of Zn on the thermal denaturation of carboxypeptidase B
  publication-title: Biochemistry
– volume: 129
  start-page: 312
  year: 1985
  end-page: 317
  article-title: Identification of covalently bound inositol in the hydrophobic membrane‐anchoring domain of acetylcholinesterase
  publication-title: Biochem Biophys Res Commun
– volume: 911
  start-page: 25
  year: 1987
  end-page: 36
  article-title: Conformational similarities of the globular and tailed forms of acetylcholinesterase from
  publication-title: Biochim Biophys Acta
– volume: 13
  start-page: 23
  year: 1995
  end-page: 27
  article-title: Simulation of protein‐folding pathways: Lost in (conformational) space?
  publication-title: Trends Biotechnol
– volume: 87
  start-page: 87
  year: 1987
  end-page: 96
  article-title: Dynamic analysis of differential scanning calorimetry data
  publication-title: Biophys Chem
– volume: 17
  start-page: 381
  year: 1983
  end-page: 391
  article-title: Synthesis and properties of stable nitroxyl radicals of imidazoline series
  publication-title: Pharm Chem J
– volume: 90
  start-page: 6924
  year: 1993
  end-page: 6928
  article-title: Folding pathway mediated by an intramolecular chaperone
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 281
  year: 1994
  end-page: 286
  article-title: Calorimetric investigation of the NaBH ‐modified bacteriorhodopsin in purple membrane from
  publication-title: Biochem Mol Biol Int
– volume: 31
  start-page: 12248
  year: 1992
  end-page: 12254
  article-title: Chemical modification of acetylcholinesterase by disulfides: Appearance of a “molten globule” state
  publication-title: Biochemistry
– volume: 25
  start-page: 5432
  year: 1968
  end-page: 5444
  article-title: Protein denaturation
  publication-title: Adv Protein Chem
– volume: 91
  start-page: 12145
  year: 1994b
  end-page: 12149
  article-title: Two‐state transition between molten globule and unfolded states of acetylcholinesterase as monitored by EPR spectroscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 194
  start-page: 1065
  year: 1993
  end-page: 1073
  article-title: Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy
  publication-title: Biochem Biophys Res Commun
– volume: 31
  start-page: 8588
  year: 1989
  end-page: 8596
  article-title: A simple model for proteins with interacting domains. Applications to scanning calorimetry data
  publication-title: Biochemistry
– volume: 243
  start-page: 93
  year: 1994
  end-page: 99
  article-title: Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first‐order phase transition?
  publication-title: J Mol Biol
– volume: 31
  start-page: 12706
  year: 1992
  end-page: 12712
  article-title: Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation
  publication-title: Biochemistry
– start-page: 55
  year: 1994
  end-page: 79
– volume: 29
  start-page: 781
  year: 1990
  end-page: 788
  article-title: Thermal stability of membrane‐reconstituted cytochrome c oxidase
  publication-title: Biochemistry
– volume: 3
  start-page: 66
  year: 1993
  end-page: 74
  article-title: Denatured states of proteins and their roles in folding and stability
  publication-title: Curr Opin Struct Biol
– volume: 31
  start-page: 12248
  year: 1994a
  end-page: 12254
  article-title: A metastable state of acetylcholinesterase generated by modification with organomercurials
  publication-title: Biochemistry
– volume: 324
  start-page: 237
  year: 1993
  end-page: 240
  article-title: Thermal transitions in the purple membrane from
  publication-title: FEBS Lett
– volume: 30
  start-page: 3147
  year: 1991
  end-page: 3161
  article-title: Protein folding: Local structures, domains, subunits, and assemblies
  publication-title: Biochemistry
– volume: 2
  year: 1995
  article-title: What is the molten globule?
  publication-title: Nature Struct Biol
– volume: 33
  start-page: 167
  year: 1979
  end-page: 241
  article-title: Stability of proteins. Small globular proteins
  publication-title: Adv Protein Chem
– volume: 35
  start-page: 1
  year: 1982
  end-page: 104
  article-title: Stability of proteins. Proteins which do not present a single cooperative system
  publication-title: Adv Protein Chem
– volume: 200
  start-page: 663
  year: 1991b
  end-page: 670
  article-title: Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain
  publication-title: Eur J Biochem
– volume: 35
  start-page: 7505
  year: 1994
  end-page: 7509
  article-title: Kinetics versus thermodynamics in protein folding
  publication-title: Biochemistry
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 198
  start-page: 915
  year: 1994
  end-page: 922
  article-title: Oxidative stress transforms acetylcholinesterase to a molten‐globule‐like state
  publication-title: Biochem Biophys Res Commun
– volume: 296
  start-page: 30093
  year: 1994
  end-page: 30096
  article-title: A “molten globule” of acetylcholinesterase undergoes thiol‐disulfide exchange
  publication-title: J Biol Chem
– volume: 58
  start-page: 110
  year: 1954
  end-page: 120
  article-title: Conformation changes of proteins
  publication-title: J Phys Chem
– volume: 16
  start-page: 609
  year: 1995
  end-page: 614
  article-title: Pro‐sequence‐assisted protein folding
  publication-title: Mol Microbiol
– volume: 33
  start-page: 1351
  year: 1994
  end-page: 1355
  article-title: Thermally denatured ribonuclease A retains secondary structure as shown by FTIR
  publication-title: Biochemistry
– volume: 203
  start-page: 821
  year: 1988
  end-page: 823
  article-title: Purification and crystallization of a dimeric form of acetylcholinesterase from subsequent to solubilization with phosphatidylinositol‐specific phospholipase C
  publication-title: J Mol Biol
– volume: 32
  start-page: 18
  year: 1993
  end-page: 26
  article-title: Folding of subtilisin BPN': Characterization of a folding intermediate
  publication-title: Biochemistry
– volume: 9
  start-page: 825
  year: 1991
  end-page: 829
  article-title: Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation
  publication-title: Bio/Technology
– volume: 2
  start-page: 10
  year: 1995
  end-page: 11
  article-title: What is the molten globule? In reply
  publication-title: Nature Struct Biol
– volume: 10
  start-page: 78
  year: 1974
  end-page: 92
  article-title: Acetylcholinesterase from : Characterization of an enzyme species isolated by lytic procedures
  publication-title: Mol Pharmacol
– volume: 6
  start-page: 87
  year: 1989
  end-page: 103
  article-title: The molten globule state as a clue for understanding the folding and cooperativity of globular‐protein structure
  publication-title: Proteins Struct Funct Genet
– volume: 263
  start-page: 1140
  year: 1988
  end-page: 1145
  article-title: Divergence in primary structure between the molecular forms of acetylcholinesterase
  publication-title: J Biol Chem
– volume: 9
  start-page: 248
  year: 1991
  end-page: 266
  article-title: Hydrophobic clustering in nonnative states of a protein: Interpretation of chemical shifts in NMR spectra of denatured states of lysozyme
  publication-title: Proteins Struct Funct Genet
– start-page: 405
  year: 1992
  end-page: 454
– volume: 31
  start-page: 8329
  year: 1992
  end-page: 8335
  article-title: Denatured states of ribonuclease A have compact dimensions and residual secondary structure
  publication-title: Biochemistry
– volume: 213
  start-page: 1235
  year: 1993
  end-page: 1242
  article-title: Secondary structure and temperature behavior of acetylcholinesterase
  publication-title: Eur J Biochem
– volume: 52
  start-page: 183
  year: 1994
  end-page: 189
  article-title: Extended theoretical analysis of irreversible protein thermal folding
  publication-title: Biophys Chem
– volume: 59
  start-page: 631
  year: 1990
  end-page: 660
  article-title: Intermediates in the folding reactions of small proteins
  publication-title: Annu Rev Biochem
– volume: 5
  start-page: 411
  year: 1984
  end-page: 418
  article-title: Calorimetric measurements of the effect of 330‐MHz radiofrequency radiation on human erythrocyte ghosts
  publication-title: Bioelectromagnetics
– volume: 25
  start-page: 5432
  year: 1986
  end-page: 5444
  article-title: Why does ribonuclease irreversibly inactivate at high temperatures?
  publication-title: Biochemistry
– volume: 20
  start-page: 6185
  year: 1981
  end-page: 6190
  article-title: Thermal denaturation of subtilisin inhibitor, subtilisin BPN', and the inhibitor‐subtilisin complex
  publication-title: Biochemistry
– volume: 27
  start-page: 1648
  year: 1988
  end-page: 1652
  article-title: Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin
  publication-title: Biochemistry
– volume: 32
  start-page: 12160
  year: 1993
  end-page: 12166
  article-title: The pro region required for folding of carboxypeptidase Y is a partially folded domain with little regular structural core
  publication-title: Biochemistry
– volume: 356
  start-page: 263
  year: 1992
  end-page: 265
  article-title: A protein‐folding reaction under kinetic control
  publication-title: Nature
– volume: 30
  start-page: 2061
  year: 1991
  end-page: 2066
  article-title: Kinetic study of the irreversible denaturation of yeast phosphoglycerate kinase
  publication-title: Biochemistry
– volume: 355
  start-page: 33
  year: 1992
  end-page: 44
  article-title: Protein folding in the cell
  publication-title: Nature
– volume: 19
  start-page: 159
  year: 1990
  end-page: 188
  article-title: Calorimetrically determined dynamics of complex unfolding transitions in proteins
  publication-title: Annu Rev Biophys Biophys Chem
– volume: 62
  start-page: 653
  year: 1993
  end-page: 683
  article-title: Pathways of protein folding
  publication-title: Annu Rev Biochem
– volume: 4
  start-page: 298
  year: 1990
  end-page: 301
  article-title: Single gene encodes glycophospholipid‐anchored and asymmetric acetylcholinesterase forms: Alternative coding exons contain inverted repeat sequences
  publication-title: Neuron
– ident: e_1_2_1_2_1
  doi: 10.1021/bi00190a002
– ident: e_1_2_1_30_1
  doi: 10.1006/bbrc.1993.1930
– ident: e_1_2_1_19_1
  doi: 10.1038/355033a0
– ident: e_1_2_1_4_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_1_39_1
  doi: 10.1016/S0065-3233(08)60460-X
– ident: e_1_2_1_40_1
  doi: 10.1016/S0065-3233(08)60468-4
– ident: e_1_2_1_60_1
  doi: 10.1042/bj2990731
– ident: e_1_2_1_44_1
  doi: 10.1021/bi00172a010
– ident: e_1_2_1_17_1
  doi: 10.1021/bi00222a009
– ident: e_1_2_1_58_1
  doi: 10.1016/0167-4838(87)90266-4
– ident: e_1_2_1_35_1
  doi: 10.1016/0896-6273(90)90103-M
– ident: e_1_2_1_8_1
  doi: 10.1111/j.1432-1033.1991.tb16230.x
– ident: e_1_2_1_59_1
  doi: 10.1021/bi00367a014
– ident: e_1_2_1_50_1
  doi: 10.1021/bi00096a028
– start-page: 405
  volume-title: Protein folding
  year: 1992
  ident: e_1_2_1_18_1
  contributor:
    fullname: Garel JR
– ident: e_1_2_1_24_1
  doi: 10.1021/bi00227a001
– ident: e_1_2_1_14_1
  doi: 10.1038/nsb0195-10a
– ident: e_1_2_1_21_1
  doi: 10.1111/j.1432-1033.1993.tb17874.x
– ident: e_1_2_1_52_1
  doi: 10.1016/0022-2836(88)90213-6
– ident: e_1_2_1_57_1
  doi: 10.1006/bbrc.1994.1130
– ident: e_1_2_1_37_1
  doi: 10.1021/bi00455a028
– ident: e_1_2_1_25_1
  doi: 10.1038/nbt0991-825
– volume: 10
  start-page: 78
  year: 1974
  ident: e_1_2_1_55_1
  article-title: Acetylcholinesterase from Torpedo: Characterization of an enzyme species isolated by lytic procedures
  publication-title: Mol Pharmacol
  contributor:
    fullname: Taylor P
– ident: e_1_2_1_56_1
  doi: 10.1007/BF01150717
– ident: e_1_2_1_38_1
  doi: 10.1038/nsb0195-10b
– ident: e_1_2_1_7_1
  doi: 10.1021/bi00222a010
– ident: e_1_2_1_13_1
  doi: 10.1002/prot.340090404
– volume: 31
  start-page: 12248
  year: 1994
  ident: e_1_2_1_27_1
  article-title: A metastable state of Torpedo californica acetylcholinesterase generated by modification with organomercurials
  publication-title: Biochemistry
  contributor:
    fullname: Kreimer DI
– ident: e_1_2_1_42_1
  doi: 10.1099/0022-1317-69-11-2785
– ident: e_1_2_1_16_1
  doi: 10.1016/0006-291X(85)91439-1
– ident: e_1_2_1_48_1
  doi: 10.1002/bem.2250050406
– start-page: 243
  volume-title: Protein folding
  year: 1992
  ident: e_1_2_1_41_1
  contributor:
    fullname: Ptitsyn OB
– ident: e_1_2_1_47_1
  doi: 10.1016/0014-5793(93)81400-T
– ident: e_1_2_1_36_1
  doi: 10.1016/0301-4622(94)00033-G
– ident: e_1_2_1_29_1
  doi: 10.1002/prot.340060202
– volume: 25
  start-page: 5432
  year: 1968
  ident: e_1_2_1_54_1
  article-title: Protein denaturation
  publication-title: Adv Protein Chem
  contributor:
    fullname: Tanford C.
– ident: e_1_2_1_23_1
  doi: 10.1016/S0167-7799(00)88897-6
– ident: e_1_2_1_11_1
  doi: 10.1021/bi00052a004
– ident: e_1_2_1_34_1
  doi: 10.1146/annurev.bi.62.070193.003253
– volume: 34
  start-page: 281
  year: 1994
  ident: e_1_2_1_46_1
  article-title: Calorimetric investigation of the NaBH4‐modified bacteriorhodopsin in purple membrane from Halobacterium halobium
  publication-title: Biochem Mol Biol Int
  contributor:
    fullname: Shnyrov VL
– ident: e_1_2_1_5_1
  doi: 10.1021/bi00447a048
– ident: e_1_2_1_26_1
  doi: 10.1146/annurev.bi.59.070190.003215
– ident: e_1_2_1_10_1
  doi: 10.1111/j.1365-2958.1995.tb02423.x
– ident: e_1_2_1_33_1
  doi: 10.1021/j150512a005
– ident: e_1_2_1_43_1
  doi: 10.1021/bi00405a039
– ident: e_1_2_1_53_1
  doi: 10.1021/bi00524a042
– ident: e_1_2_1_22_1
  doi: 10.1006/jmbi.1994.1632
– volume: 296
  start-page: 30093
  year: 1994
  ident: e_1_2_1_12_1
  article-title: A “molten globule” of Torpedo acetylcholinesterase undergoes thiol‐disulfide exchange
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)43778-7
  contributor:
    fullname: Eichler J
– start-page: 55
  volume-title: Mechanisms of protein folding
  year: 1994
  ident: e_1_2_1_6_1
  doi: 10.1093/oso/9780199633968.003.0003
  contributor:
    fullname: Christensen H
– ident: e_1_2_1_28_1
  doi: 10.1073/pnas.91.25.12145
– ident: e_1_2_1_51_1
  doi: 10.1021/bi00150a029
– ident: e_1_2_1_15_1
  doi: 10.1146/annurev.bb.19.060190.001111
– ident: e_1_2_1_32_1
  doi: 10.1016/0301-4622(87)80049-2
– ident: e_1_2_1_49_1
  doi: 10.1016/0959-440X(93)90204-X
– ident: e_1_2_1_31_1
  doi: 10.1021/bi00165a023
– ident: e_1_2_1_3_1
  doi: 10.1038/356263a0
– volume: 263
  start-page: 1140
  year: 1988
  ident: e_1_2_1_20_1
  article-title: Divergence in primary structure between the molecular forms of acetylcholinesterase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)57277-5
  contributor:
    fullname: Gibney G
– ident: e_1_2_1_45_1
  doi: 10.1073/pnas.90.15.6924
– ident: e_1_2_1_9_1
  doi: 10.1021/bi00163a039
SSID ssj0004123
Score 1.7327543
Snippet Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by...
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by...
Abstract Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2349
SubjectTerms acetylcholinesterase
Acetylcholinesterase - chemistry
Animals
Calorimetry, Differential Scanning
differential scanning calorimetry
Disulfides - chemistry
Electrophoresis, Polyacrylamide Gel
Guanidine
Guanidines
Hot Temperature
irreversible denaturation
Kinetics
molten globule
Protein Denaturation
Spectrometry, Fluorescence
Sulfhydryl Compounds - chemistry
Thermodynamics
thiol‐disulfide exchange
Torpedo
two‐state kinetic model
Title Irreversible thermal denaturation of Torpedo californica acetylcholinesterase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560041113
https://www.ncbi.nlm.nih.gov/pubmed/8563632
https://search.proquest.com/docview/77807648
https://pubmed.ncbi.nlm.nih.gov/PMC2143016
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BEiqXikJRU14-oPaUxXHiR45oBeIhKKpA4hY5jq2utJusluXAv2fsrIEVh0ocI0uONTPxfI6_-QbgiEsqrFMmzXwEY74u0toWLrVO1oj2tdUuqH3eiPP74vKBP6wAj7UwgbRv6tGgHU8G7ehf4FZOJ-Y48sSOb6-HDJO8J2mtwioGaDyix2LIjPX940WWqlyoqNRImS9uG3Cf4gvfYH0D1hUXucjZck76ADQ_8iXf49iQiM424esCQZKTfqXfYMW2W7B90uLpefJMfpHA6Qw_y7fgyzD2c9uG64uZl2ua4TcwtsTjvglOg9uOl_YM_iGdI3fdbGqbjphYs2U00cbOn8d-n_QceV-y_Gi_w_3Z6d3wPF00U0gNIqI8NWUtuauVlLRhukZgkOWWam4ZIhiZ4bGCl6xRjqtM5lqV0hVcU1ULIalj1OQ7sNZ2rf0BxFHHtfI3NkYUhovS4bZXON24xjkmywR-R3NW014zo-rVkRk-d9WbCxI4jNau0Br-rkK3tnt6rKRUVIpCJbDT2_51poXPEpBLTnkd93rZyyMYRkE3exE2CbDgvv-srbr9--ft6eenX7cLG6EMPtQv7sHafPZk9xHIzOsDhPAXVwchfF8AZrHxzg
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGP00htB2GbAxEX7NBwSnZI7jXzlOFVMH65hQh3aLHMcWE21Sde1h--uxnXqj7IDgaFly4jzb33P8vmeA90xgbqzUae5HsIvXNK0NtamxonZsXxllg9vnGR9e0M-X7HIDWMyFCaJ9XV9l7WSatVc_grZyNtWHUSd2eD4aEBfkvUjrETx28xXTuEmP6ZA56W-Q53kqCy6jVyMmPr0tYz7IU3_F-jY8kYwXvCDrUekB1XyomPydyYZQdPwUvsdO9AqUn9lyUWf69g9_x3_u5TPYWZFTdNRXP4cN0-7C3lHrNubTG_QBBblo-A-_C1uDeFXcHoxO5t4Jau6m18QgTymnrhm3onnX0AA96iwad_OZaTqkYzqYVkhps7iZ-CXYy-99NvS1eQEXx5_Gg2G6uqch1Y5sFakua8FsLYXADVG14xx5YbBihjhyJHK3Y2ElaaRlMheFkqWwlCksa84FtgTrYh822641LwFZbJmS_jBIc6oZL61bUalVjW2sJaJM4GPEqZr1dhxVb7xMXLmr7rFN4CDCWLmv4Y9BVGu65XUlhMSCU5nAfg_qXUurwZCAWEP7rt5bca_XOOyCJfcKqwRIGBd_ebfq_NvX-9Kr_37cAWwNx6PT6vTk7Mtr2A7Z9iFN8g1sLuZL89bxpUX9LsyOX0HKEss
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEdALj5aq4VUfEJySdZz4kWO1sGqBlhVqpYpLZDu2qNhNVtvdQ_vrsZ1126UHpB4tR85jxp7P8TffAHygHDNjhU5z78EuXpepMqVNjeXKoX1ppA1qn8fs4LT8ekbPbpX6CqR9rc6zdjLN2vPfgVs5m-pB5IkNxkdD4oK8J2nNGjt4CI_cnMUsbtRjSmRO-iryLE9FwUTUa8TEp7hl1Af60pdZ34THgrKCFWQ9Mt2Bm3dZk7fRbAhHo-fwK75Iz0L5ky0XKtNX_2g83utNX8CzFUhF-_0lL-GBabdge791G_TpJfqIAm00_I_fgqfDWDJuG44O514Rau6m2cQgDy2nbhi3snn10OACqLPopJvPTNMhHdPCtERSm8XlxC_Fnobvs6IvzCs4HX05GR6kq3oNqXagq0h1pTi1SnCOGyKVwx55YbCkhjiQxHO3c6EVaYSlIueFFBW3JZVYKMY4tgTrYgc22q41u4AstlQKfyikWakpq6xbWUsrG9tYS3iVwKdoq3rWy3LUvQAzce2uvrFvAnvRlLX7Gv44RLamW17UnAvMWSkS2OkNez3SyiES4GsWv-73ktzrPc5-QZp7Za8ESPCN_zxbPf7546b1-t6324Mn48-j-vvh8bc3sBmS7kO25FvYWMyX5p2DTQv1PkyQv--fFUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irreversible+thermal+denaturation+of+Torpedo+californica+acetylcholinesterase&rft.jtitle=Protein+science&rft.au=Kreimer%2C+David+I.&rft.au=Shnyrov%2C+Valery+L.&rft.au=Villar%2C+Enrique&rft.au=Silman%2C+Israel&rft.date=1995-11-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=4&rft.issue=11&rft.spage=2349&rft.epage=2357&rft_id=info:doi/10.1002%2Fpro.5560041113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pro_5560041113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon