Irreversible thermal denaturation of Torpedo californica acetylcholinesterase
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending o...
Saved in:
Published in | Protein science Vol. 4; no. 11; pp. 2349 - 2357 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
Cold Spring Harbor Laboratory Press
01.11.1995
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. |
---|---|
AbstractList | Abstract
Thermal denaturation of
Torpedo californica
acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two‐state kinetic scheme N → D, with activation energy 131 ± 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 ± 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol‐specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. |
Author | Kreimer, David I. Shnyrov, Valery L. Silman, Israel Villar, Enrique Weiner, Lev |
AuthorAffiliation | Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel |
AuthorAffiliation_xml | – name: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel |
Author_xml | – sequence: 1 givenname: David I. surname: Kreimer fullname: Kreimer, David I. – sequence: 2 givenname: Valery L. surname: Shnyrov fullname: Shnyrov, Valery L. – sequence: 3 givenname: Enrique surname: Villar fullname: Villar, Enrique – sequence: 4 givenname: Israel surname: Silman fullname: Silman, Israel – sequence: 5 givenname: Lev surname: Weiner fullname: Weiner, Lev email: cilev@weizmann.weizmann.ac.il |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8563632$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlLBDEQhYMoOi5Xb0KfvPWYpbP0RRBxA0URBW8hna52IplkTHpG5t_bMoPLyVNRvFdfPap20WaIARA6JHhMMKYnsxTHnAuMK0II20AjUom6VLV42UQjXAtSKibUDtrN-Q1_uSjbRtuKCyYYHaG7m5RgASm7xkPRTyBNjS9aCKafJ9O7GIrYFU8xzaCNhTXedTEFZ01hLPRLbyfRuwC5h2Qy7KOtzvgMB-u6h54vL57Or8vb-6ub87Pb0laMs9LWjeRdo6TELTWNVJQwwIYDlVRKUsuK17RVHVdEMqNq2VXcYNUIIXFHsWV76HTFnc2bKbQWQp-M17PkpiYtdTRO_1WCm-jXuNCUVAwTMQCO14AU3-dDfD112YL3JkCcZy2lwlJUajCOV0abYs4Juu8lBOuvBwx91D8PGAaOfkf7tq8vPuj1Sv9wHpb_0PTD4_0v9ifOF5Wz |
CitedBy_id | crossref_primary_10_1006_jmbi_1999_2732 crossref_primary_10_1046_j_1432_1033_2003_03856_x crossref_primary_10_1016_S0301_4622_97_80552_2 crossref_primary_10_1016_j_bpc_2008_04_001 crossref_primary_10_1016_j_ijbiomac_2007_09_012 crossref_primary_10_1021_bi801196y crossref_primary_10_1002__SICI_1097_0134_20000701_40_1_58__AID_PROT80_3_0_CO_2_M crossref_primary_10_1016_S0301_4622_98_00149_5 crossref_primary_10_1134_S1811238212070053 crossref_primary_10_1016_j_ijbiomac_2014_05_021 crossref_primary_10_1016_S0040_6031_97_00238_4 crossref_primary_10_1002_pro_2923 crossref_primary_10_1016_S0021_9673_00_01211_5 crossref_primary_10_1016_S0167_4838_00_00279_X crossref_primary_10_1002_pro_5560050911 crossref_primary_10_1007_s10158_008_0075_5 crossref_primary_10_1002_1522_2683_200203_23_6_930__AID_ELPS930_3_0_CO_2_2 crossref_primary_10_1110_ps_03110703 crossref_primary_10_1016_j_bbapap_2006_04_011 crossref_primary_10_1016_j_jasms_2008_12_016 crossref_primary_10_1021_acs_jpcb_2c00622 crossref_primary_10_1110_ps_0205102 crossref_primary_10_1093_protein_gzq051 crossref_primary_10_1002_pro_4061 crossref_primary_10_1002_pro_2101 crossref_primary_10_1002_prot_21614 crossref_primary_10_1021_acs_jpcb_3c00318 crossref_primary_10_1016_j_abb_2006_03_023 crossref_primary_10_1007_s10930_017_9694_1 crossref_primary_10_1016_j_bbapap_2008_02_018 crossref_primary_10_1016_S0040_6031_03_00358_7 crossref_primary_10_1016_j_nbd_2003_08_014 crossref_primary_10_1016_j_bpc_2010_02_004 crossref_primary_10_1016_S0301_4622_97_00133_6 crossref_primary_10_1016_j_bbapap_2020_140554 crossref_primary_10_1016_S0301_4622_99_00050_2 crossref_primary_10_1073_pnas_94_7_2848 crossref_primary_10_1529_biophysj_105_078980 crossref_primary_10_1006_jmbi_1998_2216 crossref_primary_10_1002_1522_2683_200202_23_2_189__AID_ELPS189_3_0_CO_2_M |
Cites_doi | 10.1021/bi00190a002 10.1006/bbrc.1993.1930 10.1038/355033a0 10.1016/0003-2697(76)90527-3 10.1016/S0065-3233(08)60460-X 10.1016/S0065-3233(08)60468-4 10.1042/bj2990731 10.1021/bi00172a010 10.1021/bi00222a009 10.1016/0167-4838(87)90266-4 10.1016/0896-6273(90)90103-M 10.1111/j.1432-1033.1991.tb16230.x 10.1021/bi00367a014 10.1021/bi00096a028 10.1021/bi00227a001 10.1038/nsb0195-10a 10.1111/j.1432-1033.1993.tb17874.x 10.1016/0022-2836(88)90213-6 10.1006/bbrc.1994.1130 10.1021/bi00455a028 10.1038/nbt0991-825 10.1007/BF01150717 10.1038/nsb0195-10b 10.1021/bi00222a010 10.1002/prot.340090404 10.1099/0022-1317-69-11-2785 10.1016/0006-291X(85)91439-1 10.1002/bem.2250050406 10.1016/0014-5793(93)81400-T 10.1016/0301-4622(94)00033-G 10.1002/prot.340060202 10.1016/S0167-7799(00)88897-6 10.1021/bi00052a004 10.1146/annurev.bi.62.070193.003253 10.1021/bi00447a048 10.1146/annurev.bi.59.070190.003215 10.1111/j.1365-2958.1995.tb02423.x 10.1021/j150512a005 10.1021/bi00405a039 10.1021/bi00524a042 10.1006/jmbi.1994.1632 10.1016/S0021-9258(18)43778-7 10.1093/oso/9780199633968.003.0003 10.1073/pnas.91.25.12145 10.1021/bi00150a029 10.1146/annurev.bb.19.060190.001111 10.1016/0301-4622(87)80049-2 10.1016/0959-440X(93)90204-X 10.1021/bi00165a023 10.1038/356263a0 10.1016/S0021-9258(19)57277-5 10.1073/pnas.90.15.6924 10.1021/bi00163a039 |
ContentType | Journal Article |
Copyright | Copyright © 1995 The Protein Society |
Copyright_xml | – notice: Copyright © 1995 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1002/pro.5560041113 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 2357 |
ExternalDocumentID | 10_1002_pro_5560041113 8563632 PRO5560041113 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4353-c9b75fb8770d2ab78213e0a5e272771974592d8f58173a897f45a08b6670f20c3 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:10:01 EDT 2024 Fri Aug 16 10:37:09 EDT 2024 Fri Aug 23 01:54:55 EDT 2024 Sat Sep 28 07:31:34 EDT 2024 Sat Aug 24 00:49:11 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4353-c9b75fb8770d2ab78213e0a5e272771974592d8f58173a897f45a08b6670f20c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc2143016?pdf=render |
PMID | 8563632 |
PQID | 77807648 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143016 proquest_miscellaneous_77807648 crossref_primary_10_1002_pro_5560041113 pubmed_primary_8563632 wiley_primary_10_1002_pro_5560041113_PRO5560041113 |
PublicationCentury | 1900 |
PublicationDate | November 1995 |
PublicationDateYYYYMMDD | 1995-11-01 |
PublicationDate_xml | – month: 11 year: 1995 text: November 1995 |
PublicationDecade | 1990 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 1995 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 1968; 25 1994; 299 1974; 10 1990; 59 1993; 62 1991a; 30 1990; 19 1994; 296 1988; 263 1985; 129 1983; 17 1979; 33 1993; 324 1993; 3 1987; 87 1989; 31 1994b; 91 1954; 58 1976; 72 1993; 32 1992; 355 1992; 356 1987; 911 1994; 34 1994; 33 1994; 35 1993; 213 1982; 35 1994; 198 1995; 16 1991; 30 1995; 13 1994a; 31 1989; 6 1994 1993; 90 1992 1992; 31 1995; 2 1991; 9 1981; 20 1988; 203 1991b; 200 1994; 243 1990; 29 1988; 69 1988; 27 1986; 25 1984; 5 1993; 194 1994; 52 1990; 4 8312253 - Biochemistry. 1994 Feb 15;33(6):1351-5 8117296 - Biochem Biophys Res Commun. 1994 Feb 15;198(3):915-22 3778869 - Biochemistry. 1986 Sep 23;25(19):5432-44 6762066 - Adv Protein Chem. 1982;35:1-104 3183628 - J Gen Virol. 1988 Nov;69 ( Pt 11):2785-95 3607241 - Biophys Chem. 1987 Jul;27(1):87-96 7476156 - Mol Microbiol. 1995 May;16(4):609-14 7982909 - J Biol Chem. 1994 Dec 2;269(48):30093-6 8418836 - Biochemistry. 1993 Jan 12;32(1):18-26 1998668 - Biochemistry. 1991 Feb 26;30(8):2061-6 8346198 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6924-8 6517960 - Bioelectromagnetics. 1984;5(4):411-8 8011615 - Biochemistry. 1994 Jun 21;33(24):7505-9 1472509 - Biochemistry. 1992 Dec 22;31(50):12706-12 7910735 - Biochem J. 1994 May 1;299 ( Pt 3):731-3 8389298 - Eur J Biochem. 1993 May 1;213(3):1235-42 2009257 - Biochemistry. 1991 Apr 2;30(13):3147-61 4846184 - Mol Pharmacol. 1974 Jan;10(1):78-92 8508927 - FEBS Lett. 1993 Jun 14;324(2):237-40 7849638 - Biochem Mol Biol Int. 1994 Sep;34(2):281-6 1333796 - Biochemistry. 1992 Dec 8;31(48):12248-54 2159790 - Biochemistry. 1990 Jan 23;29(3):781-8 2695928 - Proteins. 1989;6(2):87-103 2306366 - Neuron. 1990 Feb;4(2):289-301 4004881 - Biochem Biophys Res Commun. 1985 May 31;129(1):312-7 8352763 - Biochem Biophys Res Commun. 1993 Aug 16;194(3):1065-73 3790597 - Biochim Biophys Acta. 1987 Jan 5;911(1):25-36 1998669 - Biochemistry. 1991 Feb 26;30(8):2067-72 17020833 - Biophys Chem. 1994 Nov;52(3):183-9 7030385 - Biochemistry. 1981 Oct 13;20(21):6185-90 44431 - Adv Protein Chem. 1979;33:167-241 1915340 - Eur J Biochem. 1991 Sep 15;200(3):663-70 1650946 - Proteins. 1991;9(4):248-66 3365417 - Biochemistry. 1988 Mar 8;27(5):1648-52 2197986 - Annu Rev Biochem. 1990;59:631-60 2690944 - Biochemistry. 1989 Oct 17;28(21):8588-96 2194474 - Annu Rev Biophys Biophys Chem. 1990;19:159-88 7932744 - J Mol Biol. 1994 Oct 14;243(1):93-9 2850366 - J Mol Biol. 1988 Oct 5;203(3):821-3 e_1_2_1_60_1 Eichler J (e_1_2_1_12_1) 1994; 296 Shnyrov VL (e_1_2_1_46_1) 1994; 34 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 Garel JR (e_1_2_1_18_1) 1992 Christensen H (e_1_2_1_6_1) 1994 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 Gibney G (e_1_2_1_20_1) 1988; 263 e_1_2_1_58_1 Tanford C. (e_1_2_1_54_1) 1968; 25 e_1_2_1_42_1 Kreimer DI (e_1_2_1_27_1) 1994; 31 Taylor P (e_1_2_1_55_1) 1974; 10 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_25_1 e_1_2_1_48_1 Ptitsyn OB (e_1_2_1_41_1) 1992 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 299 start-page: 731 year: 1994 end-page: 733 article-title: Differential‐scanning‐calorimetric study of the irreversible thermal denaturation of 8 kDa cytotoxin from the sea anemone publication-title: Biochem J – volume: 69 start-page: 2785 year: 1988 end-page: 2795 article-title: Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion publication-title: J Gen Virol – start-page: 243 year: 1992 end-page: 300 – volume: 30 start-page: 2067 year: 1991a end-page: 2072 article-title: Effect of Zn on the thermal denaturation of carboxypeptidase B publication-title: Biochemistry – volume: 129 start-page: 312 year: 1985 end-page: 317 article-title: Identification of covalently bound inositol in the hydrophobic membrane‐anchoring domain of acetylcholinesterase publication-title: Biochem Biophys Res Commun – volume: 911 start-page: 25 year: 1987 end-page: 36 article-title: Conformational similarities of the globular and tailed forms of acetylcholinesterase from publication-title: Biochim Biophys Acta – volume: 13 start-page: 23 year: 1995 end-page: 27 article-title: Simulation of protein‐folding pathways: Lost in (conformational) space? publication-title: Trends Biotechnol – volume: 87 start-page: 87 year: 1987 end-page: 96 article-title: Dynamic analysis of differential scanning calorimetry data publication-title: Biophys Chem – volume: 17 start-page: 381 year: 1983 end-page: 391 article-title: Synthesis and properties of stable nitroxyl radicals of imidazoline series publication-title: Pharm Chem J – volume: 90 start-page: 6924 year: 1993 end-page: 6928 article-title: Folding pathway mediated by an intramolecular chaperone publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 281 year: 1994 end-page: 286 article-title: Calorimetric investigation of the NaBH ‐modified bacteriorhodopsin in purple membrane from publication-title: Biochem Mol Biol Int – volume: 31 start-page: 12248 year: 1992 end-page: 12254 article-title: Chemical modification of acetylcholinesterase by disulfides: Appearance of a “molten globule” state publication-title: Biochemistry – volume: 25 start-page: 5432 year: 1968 end-page: 5444 article-title: Protein denaturation publication-title: Adv Protein Chem – volume: 91 start-page: 12145 year: 1994b end-page: 12149 article-title: Two‐state transition between molten globule and unfolded states of acetylcholinesterase as monitored by EPR spectroscopy publication-title: Proc Natl Acad Sci USA – volume: 194 start-page: 1065 year: 1993 end-page: 1073 article-title: Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy publication-title: Biochem Biophys Res Commun – volume: 31 start-page: 8588 year: 1989 end-page: 8596 article-title: A simple model for proteins with interacting domains. Applications to scanning calorimetry data publication-title: Biochemistry – volume: 243 start-page: 93 year: 1994 end-page: 99 article-title: Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first‐order phase transition? publication-title: J Mol Biol – volume: 31 start-page: 12706 year: 1992 end-page: 12712 article-title: Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation publication-title: Biochemistry – start-page: 55 year: 1994 end-page: 79 – volume: 29 start-page: 781 year: 1990 end-page: 788 article-title: Thermal stability of membrane‐reconstituted cytochrome c oxidase publication-title: Biochemistry – volume: 3 start-page: 66 year: 1993 end-page: 74 article-title: Denatured states of proteins and their roles in folding and stability publication-title: Curr Opin Struct Biol – volume: 31 start-page: 12248 year: 1994a end-page: 12254 article-title: A metastable state of acetylcholinesterase generated by modification with organomercurials publication-title: Biochemistry – volume: 324 start-page: 237 year: 1993 end-page: 240 article-title: Thermal transitions in the purple membrane from publication-title: FEBS Lett – volume: 30 start-page: 3147 year: 1991 end-page: 3161 article-title: Protein folding: Local structures, domains, subunits, and assemblies publication-title: Biochemistry – volume: 2 year: 1995 article-title: What is the molten globule? publication-title: Nature Struct Biol – volume: 33 start-page: 167 year: 1979 end-page: 241 article-title: Stability of proteins. Small globular proteins publication-title: Adv Protein Chem – volume: 35 start-page: 1 year: 1982 end-page: 104 article-title: Stability of proteins. Proteins which do not present a single cooperative system publication-title: Adv Protein Chem – volume: 200 start-page: 663 year: 1991b end-page: 670 article-title: Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain publication-title: Eur J Biochem – volume: 35 start-page: 7505 year: 1994 end-page: 7509 article-title: Kinetics versus thermodynamics in protein folding publication-title: Biochemistry – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 198 start-page: 915 year: 1994 end-page: 922 article-title: Oxidative stress transforms acetylcholinesterase to a molten‐globule‐like state publication-title: Biochem Biophys Res Commun – volume: 296 start-page: 30093 year: 1994 end-page: 30096 article-title: A “molten globule” of acetylcholinesterase undergoes thiol‐disulfide exchange publication-title: J Biol Chem – volume: 58 start-page: 110 year: 1954 end-page: 120 article-title: Conformation changes of proteins publication-title: J Phys Chem – volume: 16 start-page: 609 year: 1995 end-page: 614 article-title: Pro‐sequence‐assisted protein folding publication-title: Mol Microbiol – volume: 33 start-page: 1351 year: 1994 end-page: 1355 article-title: Thermally denatured ribonuclease A retains secondary structure as shown by FTIR publication-title: Biochemistry – volume: 203 start-page: 821 year: 1988 end-page: 823 article-title: Purification and crystallization of a dimeric form of acetylcholinesterase from subsequent to solubilization with phosphatidylinositol‐specific phospholipase C publication-title: J Mol Biol – volume: 32 start-page: 18 year: 1993 end-page: 26 article-title: Folding of subtilisin BPN': Characterization of a folding intermediate publication-title: Biochemistry – volume: 9 start-page: 825 year: 1991 end-page: 829 article-title: Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation publication-title: Bio/Technology – volume: 2 start-page: 10 year: 1995 end-page: 11 article-title: What is the molten globule? In reply publication-title: Nature Struct Biol – volume: 10 start-page: 78 year: 1974 end-page: 92 article-title: Acetylcholinesterase from : Characterization of an enzyme species isolated by lytic procedures publication-title: Mol Pharmacol – volume: 6 start-page: 87 year: 1989 end-page: 103 article-title: The molten globule state as a clue for understanding the folding and cooperativity of globular‐protein structure publication-title: Proteins Struct Funct Genet – volume: 263 start-page: 1140 year: 1988 end-page: 1145 article-title: Divergence in primary structure between the molecular forms of acetylcholinesterase publication-title: J Biol Chem – volume: 9 start-page: 248 year: 1991 end-page: 266 article-title: Hydrophobic clustering in nonnative states of a protein: Interpretation of chemical shifts in NMR spectra of denatured states of lysozyme publication-title: Proteins Struct Funct Genet – start-page: 405 year: 1992 end-page: 454 – volume: 31 start-page: 8329 year: 1992 end-page: 8335 article-title: Denatured states of ribonuclease A have compact dimensions and residual secondary structure publication-title: Biochemistry – volume: 213 start-page: 1235 year: 1993 end-page: 1242 article-title: Secondary structure and temperature behavior of acetylcholinesterase publication-title: Eur J Biochem – volume: 52 start-page: 183 year: 1994 end-page: 189 article-title: Extended theoretical analysis of irreversible protein thermal folding publication-title: Biophys Chem – volume: 59 start-page: 631 year: 1990 end-page: 660 article-title: Intermediates in the folding reactions of small proteins publication-title: Annu Rev Biochem – volume: 5 start-page: 411 year: 1984 end-page: 418 article-title: Calorimetric measurements of the effect of 330‐MHz radiofrequency radiation on human erythrocyte ghosts publication-title: Bioelectromagnetics – volume: 25 start-page: 5432 year: 1986 end-page: 5444 article-title: Why does ribonuclease irreversibly inactivate at high temperatures? publication-title: Biochemistry – volume: 20 start-page: 6185 year: 1981 end-page: 6190 article-title: Thermal denaturation of subtilisin inhibitor, subtilisin BPN', and the inhibitor‐subtilisin complex publication-title: Biochemistry – volume: 27 start-page: 1648 year: 1988 end-page: 1652 article-title: Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin publication-title: Biochemistry – volume: 32 start-page: 12160 year: 1993 end-page: 12166 article-title: The pro region required for folding of carboxypeptidase Y is a partially folded domain with little regular structural core publication-title: Biochemistry – volume: 356 start-page: 263 year: 1992 end-page: 265 article-title: A protein‐folding reaction under kinetic control publication-title: Nature – volume: 30 start-page: 2061 year: 1991 end-page: 2066 article-title: Kinetic study of the irreversible denaturation of yeast phosphoglycerate kinase publication-title: Biochemistry – volume: 355 start-page: 33 year: 1992 end-page: 44 article-title: Protein folding in the cell publication-title: Nature – volume: 19 start-page: 159 year: 1990 end-page: 188 article-title: Calorimetrically determined dynamics of complex unfolding transitions in proteins publication-title: Annu Rev Biophys Biophys Chem – volume: 62 start-page: 653 year: 1993 end-page: 683 article-title: Pathways of protein folding publication-title: Annu Rev Biochem – volume: 4 start-page: 298 year: 1990 end-page: 301 article-title: Single gene encodes glycophospholipid‐anchored and asymmetric acetylcholinesterase forms: Alternative coding exons contain inverted repeat sequences publication-title: Neuron – ident: e_1_2_1_2_1 doi: 10.1021/bi00190a002 – ident: e_1_2_1_30_1 doi: 10.1006/bbrc.1993.1930 – ident: e_1_2_1_19_1 doi: 10.1038/355033a0 – ident: e_1_2_1_4_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_1_39_1 doi: 10.1016/S0065-3233(08)60460-X – ident: e_1_2_1_40_1 doi: 10.1016/S0065-3233(08)60468-4 – ident: e_1_2_1_60_1 doi: 10.1042/bj2990731 – ident: e_1_2_1_44_1 doi: 10.1021/bi00172a010 – ident: e_1_2_1_17_1 doi: 10.1021/bi00222a009 – ident: e_1_2_1_58_1 doi: 10.1016/0167-4838(87)90266-4 – ident: e_1_2_1_35_1 doi: 10.1016/0896-6273(90)90103-M – ident: e_1_2_1_8_1 doi: 10.1111/j.1432-1033.1991.tb16230.x – ident: e_1_2_1_59_1 doi: 10.1021/bi00367a014 – ident: e_1_2_1_50_1 doi: 10.1021/bi00096a028 – start-page: 405 volume-title: Protein folding year: 1992 ident: e_1_2_1_18_1 contributor: fullname: Garel JR – ident: e_1_2_1_24_1 doi: 10.1021/bi00227a001 – ident: e_1_2_1_14_1 doi: 10.1038/nsb0195-10a – ident: e_1_2_1_21_1 doi: 10.1111/j.1432-1033.1993.tb17874.x – ident: e_1_2_1_52_1 doi: 10.1016/0022-2836(88)90213-6 – ident: e_1_2_1_57_1 doi: 10.1006/bbrc.1994.1130 – ident: e_1_2_1_37_1 doi: 10.1021/bi00455a028 – ident: e_1_2_1_25_1 doi: 10.1038/nbt0991-825 – volume: 10 start-page: 78 year: 1974 ident: e_1_2_1_55_1 article-title: Acetylcholinesterase from Torpedo: Characterization of an enzyme species isolated by lytic procedures publication-title: Mol Pharmacol contributor: fullname: Taylor P – ident: e_1_2_1_56_1 doi: 10.1007/BF01150717 – ident: e_1_2_1_38_1 doi: 10.1038/nsb0195-10b – ident: e_1_2_1_7_1 doi: 10.1021/bi00222a010 – ident: e_1_2_1_13_1 doi: 10.1002/prot.340090404 – volume: 31 start-page: 12248 year: 1994 ident: e_1_2_1_27_1 article-title: A metastable state of Torpedo californica acetylcholinesterase generated by modification with organomercurials publication-title: Biochemistry contributor: fullname: Kreimer DI – ident: e_1_2_1_42_1 doi: 10.1099/0022-1317-69-11-2785 – ident: e_1_2_1_16_1 doi: 10.1016/0006-291X(85)91439-1 – ident: e_1_2_1_48_1 doi: 10.1002/bem.2250050406 – start-page: 243 volume-title: Protein folding year: 1992 ident: e_1_2_1_41_1 contributor: fullname: Ptitsyn OB – ident: e_1_2_1_47_1 doi: 10.1016/0014-5793(93)81400-T – ident: e_1_2_1_36_1 doi: 10.1016/0301-4622(94)00033-G – ident: e_1_2_1_29_1 doi: 10.1002/prot.340060202 – volume: 25 start-page: 5432 year: 1968 ident: e_1_2_1_54_1 article-title: Protein denaturation publication-title: Adv Protein Chem contributor: fullname: Tanford C. – ident: e_1_2_1_23_1 doi: 10.1016/S0167-7799(00)88897-6 – ident: e_1_2_1_11_1 doi: 10.1021/bi00052a004 – ident: e_1_2_1_34_1 doi: 10.1146/annurev.bi.62.070193.003253 – volume: 34 start-page: 281 year: 1994 ident: e_1_2_1_46_1 article-title: Calorimetric investigation of the NaBH4‐modified bacteriorhodopsin in purple membrane from Halobacterium halobium publication-title: Biochem Mol Biol Int contributor: fullname: Shnyrov VL – ident: e_1_2_1_5_1 doi: 10.1021/bi00447a048 – ident: e_1_2_1_26_1 doi: 10.1146/annurev.bi.59.070190.003215 – ident: e_1_2_1_10_1 doi: 10.1111/j.1365-2958.1995.tb02423.x – ident: e_1_2_1_33_1 doi: 10.1021/j150512a005 – ident: e_1_2_1_43_1 doi: 10.1021/bi00405a039 – ident: e_1_2_1_53_1 doi: 10.1021/bi00524a042 – ident: e_1_2_1_22_1 doi: 10.1006/jmbi.1994.1632 – volume: 296 start-page: 30093 year: 1994 ident: e_1_2_1_12_1 article-title: A “molten globule” of Torpedo acetylcholinesterase undergoes thiol‐disulfide exchange publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)43778-7 contributor: fullname: Eichler J – start-page: 55 volume-title: Mechanisms of protein folding year: 1994 ident: e_1_2_1_6_1 doi: 10.1093/oso/9780199633968.003.0003 contributor: fullname: Christensen H – ident: e_1_2_1_28_1 doi: 10.1073/pnas.91.25.12145 – ident: e_1_2_1_51_1 doi: 10.1021/bi00150a029 – ident: e_1_2_1_15_1 doi: 10.1146/annurev.bb.19.060190.001111 – ident: e_1_2_1_32_1 doi: 10.1016/0301-4622(87)80049-2 – ident: e_1_2_1_49_1 doi: 10.1016/0959-440X(93)90204-X – ident: e_1_2_1_31_1 doi: 10.1021/bi00165a023 – ident: e_1_2_1_3_1 doi: 10.1038/356263a0 – volume: 263 start-page: 1140 year: 1988 ident: e_1_2_1_20_1 article-title: Divergence in primary structure between the molecular forms of acetylcholinesterase publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)57277-5 contributor: fullname: Gibney G – ident: e_1_2_1_45_1 doi: 10.1073/pnas.90.15.6924 – ident: e_1_2_1_9_1 doi: 10.1021/bi00163a039 |
SSID | ssj0004123 |
Score | 1.7327543 |
Snippet | Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by... Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by... Abstract Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide‐linked homodimer with 537 amino acids in each subunit, was studied by... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2349 |
SubjectTerms | acetylcholinesterase Acetylcholinesterase - chemistry Animals Calorimetry, Differential Scanning differential scanning calorimetry Disulfides - chemistry Electrophoresis, Polyacrylamide Gel Guanidine Guanidines Hot Temperature irreversible denaturation Kinetics molten globule Protein Denaturation Spectrometry, Fluorescence Sulfhydryl Compounds - chemistry Thermodynamics thiol‐disulfide exchange Torpedo two‐state kinetic model |
Title | Irreversible thermal denaturation of Torpedo californica acetylcholinesterase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560041113 https://www.ncbi.nlm.nih.gov/pubmed/8563632 https://search.proquest.com/docview/77807648 https://pubmed.ncbi.nlm.nih.gov/PMC2143016 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BEiqXikJRU14-oPaUxXHiR45oBeIhKKpA4hY5jq2utJusluXAv2fsrIEVh0ocI0uONTPxfI6_-QbgiEsqrFMmzXwEY74u0toWLrVO1oj2tdUuqH3eiPP74vKBP6wAj7UwgbRv6tGgHU8G7ehf4FZOJ-Y48sSOb6-HDJO8J2mtwioGaDyix2LIjPX940WWqlyoqNRImS9uG3Cf4gvfYH0D1hUXucjZck76ADQ_8iXf49iQiM424esCQZKTfqXfYMW2W7B90uLpefJMfpHA6Qw_y7fgyzD2c9uG64uZl2ua4TcwtsTjvglOg9uOl_YM_iGdI3fdbGqbjphYs2U00cbOn8d-n_QceV-y_Gi_w_3Z6d3wPF00U0gNIqI8NWUtuauVlLRhukZgkOWWam4ZIhiZ4bGCl6xRjqtM5lqV0hVcU1ULIalj1OQ7sNZ2rf0BxFHHtfI3NkYUhovS4bZXON24xjkmywR-R3NW014zo-rVkRk-d9WbCxI4jNau0Br-rkK3tnt6rKRUVIpCJbDT2_51poXPEpBLTnkd93rZyyMYRkE3exE2CbDgvv-srbr9--ft6eenX7cLG6EMPtQv7sHafPZk9xHIzOsDhPAXVwchfF8AZrHxzg |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGP00htB2GbAxEX7NBwSnZI7jXzlOFVMH65hQh3aLHMcWE21Sde1h--uxnXqj7IDgaFly4jzb33P8vmeA90xgbqzUae5HsIvXNK0NtamxonZsXxllg9vnGR9e0M-X7HIDWMyFCaJ9XV9l7WSatVc_grZyNtWHUSd2eD4aEBfkvUjrETx28xXTuEmP6ZA56W-Q53kqCy6jVyMmPr0tYz7IU3_F-jY8kYwXvCDrUekB1XyomPydyYZQdPwUvsdO9AqUn9lyUWf69g9_x3_u5TPYWZFTdNRXP4cN0-7C3lHrNubTG_QBBblo-A-_C1uDeFXcHoxO5t4Jau6m18QgTymnrhm3onnX0AA96iwad_OZaTqkYzqYVkhps7iZ-CXYy-99NvS1eQEXx5_Gg2G6uqch1Y5sFakua8FsLYXADVG14xx5YbBihjhyJHK3Y2ElaaRlMheFkqWwlCksa84FtgTrYh822641LwFZbJmS_jBIc6oZL61bUalVjW2sJaJM4GPEqZr1dhxVb7xMXLmr7rFN4CDCWLmv4Y9BVGu65XUlhMSCU5nAfg_qXUurwZCAWEP7rt5bca_XOOyCJfcKqwRIGBd_ebfq_NvX-9Kr_37cAWwNx6PT6vTk7Mtr2A7Z9iFN8g1sLuZL89bxpUX9LsyOX0HKEss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEdALj5aq4VUfEJySdZz4kWO1sGqBlhVqpYpLZDu2qNhNVtvdQ_vrsZ1126UHpB4tR85jxp7P8TffAHygHDNjhU5z78EuXpepMqVNjeXKoX1ppA1qn8fs4LT8ekbPbpX6CqR9rc6zdjLN2vPfgVs5m-pB5IkNxkdD4oK8J2nNGjt4CI_cnMUsbtRjSmRO-iryLE9FwUTUa8TEp7hl1Af60pdZ34THgrKCFWQ9Mt2Bm3dZk7fRbAhHo-fwK75Iz0L5ky0XKtNX_2g83utNX8CzFUhF-_0lL-GBabdge791G_TpJfqIAm00_I_fgqfDWDJuG44O514Rau6m2cQgDy2nbhi3snn10OACqLPopJvPTNMhHdPCtERSm8XlxC_Fnobvs6IvzCs4HX05GR6kq3oNqXagq0h1pTi1SnCOGyKVwx55YbCkhjiQxHO3c6EVaYSlIueFFBW3JZVYKMY4tgTrYgc22q41u4AstlQKfyikWakpq6xbWUsrG9tYS3iVwKdoq3rWy3LUvQAzce2uvrFvAnvRlLX7Gv44RLamW17UnAvMWSkS2OkNez3SyiES4GsWv-73ktzrPc5-QZp7Za8ESPCN_zxbPf7546b1-t6324Mn48-j-vvh8bc3sBmS7kO25FvYWMyX5p2DTQv1PkyQv--fFUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irreversible+thermal+denaturation+of+Torpedo+californica+acetylcholinesterase&rft.jtitle=Protein+science&rft.au=Kreimer%2C+David+I.&rft.au=Shnyrov%2C+Valery+L.&rft.au=Villar%2C+Enrique&rft.au=Silman%2C+Israel&rft.date=1995-11-01&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=4&rft.issue=11&rft.spage=2349&rft.epage=2357&rft_id=info:doi/10.1002%2Fpro.5560041113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pro_5560041113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |