Flexible and lightweight PPyNT/EPDM foam for efficient electromagnetic waves absorption in X‐band
Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, den...
Saved in:
Published in | Polymer engineering and science Vol. 65; no. 7; pp. 3704 - 3714 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2025
Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials.
Highlights
Lightweight PPyNT/EPDM foam for X‐band EMW absorption.
Tailored porous structure and absorption performance by PPyNT content.
Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz.
Synergy of impedance matching, conduction loss, and multiple reflection.
The 15 phr PPyNT/EPDM foam achieves impedance matching through its porous structure, synergistically integrating multiple reflection, conduction loss, and interfacial polarization mechanisms to realize excellent electromagnetic wave absorption performance. |
---|---|
AbstractList | Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X-band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X-band, demonstrated by the minimum reflection loss ([RL.sub.min]) of -27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/[cm.sup.3]. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost-effective, and highly efficient EMW absorption materials. Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials. Highlights Lightweight PPyNT/EPDM foam for X‐band EMW absorption. Tailored porous structure and absorption performance by PPyNT content. Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz. Synergy of impedance matching, conduction loss, and multiple reflection. Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X-band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X-band, demonstrated by the minimum reflection loss ([RL.sub.min]) of -27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/[cm.sup.3]. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost-effective, and highly efficient EMW absorption materials. Highlights * Lightweight PPyNT/EPDM foam for X-band EMW absorption. * Tailored porous structure and absorption performance by PPyNT content. * Foam with 15 phr PPyNT achieves [RL.sub.min] of --27.01 dB and EAB of 3.4 GHz. * Synergy of impedance matching, conduction loss, and multiple reflection. KEYWORDS cell structure, electromagnetic wave absorption, impedance matching, polypyrrole nanotube Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials. Highlights Lightweight PPyNT/EPDM foam for X‐band EMW absorption. Tailored porous structure and absorption performance by PPyNT content. Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz. Synergy of impedance matching, conduction loss, and multiple reflection. The 15 phr PPyNT/EPDM foam achieves impedance matching through its porous structure, synergistically integrating multiple reflection, conduction loss, and interfacial polarization mechanisms to realize excellent electromagnetic wave absorption performance. |
Audience | Academic |
Author | Sui, Jing Zhu, Xinyu Li, Jinze Sun, Chong Zhuang, Tao Wen, Xiangtong Yuan, Wei |
Author_xml | – sequence: 1 givenname: Xinyu surname: Zhu fullname: Zhu, Xinyu organization: Qingdao University of Science & Technology – sequence: 2 givenname: Wei surname: Yuan fullname: Yuan, Wei organization: Qingdao University of Science & Technology – sequence: 3 givenname: Xiangtong surname: Wen fullname: Wen, Xiangtong organization: Qingdao University of Science & Technology – sequence: 4 givenname: Jinze surname: Li fullname: Li, Jinze organization: Qingdao University of Science & Technology – sequence: 5 givenname: Jing orcidid: 0000-0002-3997-8968 surname: Sui fullname: Sui, Jing email: jingsui1007@qust.edu.cn organization: Qingdao University of Science & Technology – sequence: 6 givenname: Tao surname: Zhuang fullname: Zhuang, Tao organization: Qingdao University of Science & Technology – sequence: 7 givenname: Chong surname: Sun fullname: Sun, Chong email: sunchongmc@qust.edu.cn organization: Qingdao University of Science & Technology |
BookMark | eNp1kt9qFDEUxoO04LZ64RsEvBKc3WyS-ZPLUrdaqO2iFbwLmczJmDKTrEnW7d75CD6jT2LWFXRhJXAC4fd953DynaET5x0g9GJOpnNC6GwFbkprytkTNJmXvCloxfgJmhDCaMGapnmKzmJ8IJllpZggfTXAo20HwMp1eLD9l7SBXcXL5fb2frZYvnmPjVdjLgGDMVZbcAnDADoFP6reQbIab9Q3iFi10YdVst5h6_Dnn99_tNn2GTo1aojw_M99jj5dLe4v3xU3d2-vLy9uCs1ZyYqacM1r01WiFYqXqlZC5ykrXXEFmjZclKIrjWKCtNAJqCnhYHjNoTRUAWPn6OXedxX81zXEJB_8OrjcUjJKBanyKqq_VK8GkNYZn4LSo41aXjQlbVieg2eqOEL14CCoIa_c2Px8wE-P8Pl0MFp9VPDqQJCZBI-pV-sY5fXHD4fs63_Ydh2tg5hL3H1U3EuOWevgYwxg5CrYUYWtnBO5S4nMKZG_U5LZ2Z7d5Pm2_wflcnG7V_wCH5S9tg |
Cites_doi | 10.1016/j.carbon.2017.09.101 10.1007/s42114-021-00275-4 10.1016/j.jallcom.2013.03.280 10.1016/j.matdes.2009.12.041 10.1016/j.compscitech.2019.05.027 10.1016/j.jallcom.2018.11.041 10.1016/j.jallcom.2022.168577 10.1007/s10118-024-3112-x 10.1002/app.54843 10.1016/j.ceramint.2019.06.302 10.1016/j.cej.2019.122304 10.1016/j.jallcom.2021.159983 10.1021/acs.iecr.3c01944 10.1007/s00289-005-0433-y 10.1016/j.carbon.2020.07.028 10.1016/j.compscitech.2013.04.010 10.1016/j.carbon.2012.01.033 10.1016/j.cej.2019.01.090 10.1002/adma.201403735 10.1016/j.carbon.2024.118802 10.1016/j.jallcom.2019.03.159 10.1002/app.53946 10.1016/j.jmmm.2010.06.036 10.1016/j.cej.2015.10.031 10.1016/j.polymer.2017.02.064 10.1016/j.jallcom.2016.05.127 10.1016/j.apsusc.2021.151270 10.1016/j.compositesb.2016.04.039 10.3390/polym15081866 10.1007/s00339-024-07928-3 10.1016/j.compositesb.2018.08.112 10.1016/j.carbon.2018.08.014 10.1016/j.carbon.2024.119737 10.1016/j.supflu.2019.02.015 10.1016/j.apsusc.2017.09.118 10.1016/j.compscitech.2020.108479 10.1002/adma.201190147 10.1021/acsami.7b10067 10.1007/s10854-017-8326-z 10.1016/j.jmmm.2022.170097 10.1039/c3ta11278k 10.1016/j.cej.2023.141749 10.1021/jp210872w 10.1016/j.jmst.2020.12.078 10.1016/j.jallcom.2020.156052 10.1016/j.compositesa.2022.107138 10.1016/j.jallcom.2022.168592 |
ContentType | Journal Article |
Copyright | 2025 Society of Plastics Engineers. COPYRIGHT 2025 Society of Plastics Engineers, Inc. 2025 Society of Plastics Engineers |
Copyright_xml | – notice: 2025 Society of Plastics Engineers. – notice: COPYRIGHT 2025 Society of Plastics Engineers, Inc. – notice: 2025 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.27243 |
DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 3714 |
ExternalDocumentID | A852837044 10_1002_pen_27243 PEN27243 |
Genre | researchArticle |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51503114 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2020ME069 |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PHGZM PHGZT PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWL RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION PQGLB 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c4353-704c47fd69b9a45a7a9c0236c64aec284959d5fa390bed9e7204ef474e5f2ae33 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Sat Aug 23 12:35:56 EDT 2025 Wed Aug 27 16:51:52 EDT 2025 Thu Aug 28 12:10:47 EDT 2025 Tue Aug 26 03:41:34 EDT 2025 Tue Aug 26 03:21:33 EDT 2025 Tue Aug 26 01:12:56 EDT 2025 Thu Jul 10 07:34:42 EDT 2025 Thu Jul 03 09:30:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4353-704c47fd69b9a45a7a9c0236c64aec284959d5fa390bed9e7204ef474e5f2ae33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3997-8968 |
PQID | 3229066346 |
PQPubID | 41843 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3229066346 gale_infotracmisc_A852837044 gale_infotracgeneralonefile_A852837044 gale_infotracacademiconefile_A852837044 gale_incontextgauss_ISR_A852837044 gale_businessinsightsgauss_A852837044 crossref_primary_10_1002_pen_27243 wiley_primary_10_1002_pen_27243_PEN27243 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | 2018; 29 2010; 31 2021; 86 2021; 4 2013; 1 2025; 231 2023; 460 2018; 427 2023; 140 2023; 15 2010; 322 2014; 26 2024; 141 2016; 96 2016; 683 2023; 566 2019; 147 2020; 843 2020; 200 2020; 168 2017; 113 2022; 139 2016; 285 2017; 9 2019; 362 2012; 50 2018; 155 2023; 62 2022; 162 2019; 181 2018; 139 2021; 876 2019; 45 2024; 219 2024; 130 2013; 573 2020; 379 2013; 82 2024; 42 2011; 23 2021; 570 2019; 777 2023; 939 2023; 938 2019; 790 2012; 116 2017; 125 2005; 55 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Malere CP (e_1_2_8_37_1) 2022; 139 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 23 start-page: 4207 issue: 37 year: 2011 end-page: 4331 article-title: Two‐dimensional nanocrystals produced by exfoliation of Ti AlC publication-title: Adv Mater – volume: 86 start-page: 91 year: 2021 end-page: 109 article-title: A review on carbon/magnetic metal composites for microwave absorption publication-title: J Mater Sci Technol – volume: 147 start-page: 107 year: 2019 end-page: 115 article-title: Preparation of polymeric foams with bimodal cell size: an application of heterogeneous nucleation effect of nanofillers publication-title: J Supercrit Fluids – volume: 9 start-page: 30850 issue: 36 year: 2017 end-page: 30861 article-title: Magnetically aligned Co‐C/MWCNTs composite derived from MWCNT‐interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber publication-title: ACS Appl Mater Interfaces – volume: 570 issue: 28 year: 2021 article-title: Flexible reduced graphene oxide@Fe O /silicone rubber composites for enhanced microwave absorption publication-title: Appl Surf Sci – volume: 4 start-page: 591 issue: 3 year: 2021 end-page: 601 article-title: Study on broadband microwave absorbing performance of gradient porous structure publication-title: Adv Compos Hybrid Mater – volume: 1 start-page: 8547 issue: 30 year: 2013 end-page: 8552 article-title: Novel rGO/α‐Fe O composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption publication-title: J Mater Chem A – volume: 168 start-page: 606 year: 2020 end-page: 623 article-title: Electromagnetic microwave absorption theory and recent achievements in microwave absorbers publication-title: Carbon – volume: 427 start-page: 1054 year: 2018 end-page: 1063 article-title: Fe O @polyaniline yolk‐shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption publication-title: Appl Surf Sci – volume: 125 start-page: 630 year: 2017 end-page: 639 article-title: Magnetic graphene for microwave absorbing application: towards the lightest graphene‐based absorber publication-title: Carbon – volume: 116 start-page: 2051 issue: 2 year: 2012 end-page: 2058 article-title: Biphasic polymer blends containing carbon nanotubes: heterogeneous nanotube distribution and its influence on the dielectric properties publication-title: J Phys Chem C – volume: 938 year: 2023 article-title: Core‐shell CuCo S based microspheres composited with carbon black nanoparticles for effective microwave absorption publication-title: J Alloys Compd – volume: 231 year: 2025 article-title: Pyramid‐like magnetic carbon composites device toward tunable and adaptive radar‐visible compatible properties publication-title: Carbon – volume: 162 year: 2022 article-title: Porous micro‐antennas decorated turbostratic graphitized carbon/TiO derived from polyaniline/Ti C Tx for high‐performance electromagnetic wave absorption publication-title: Compos Part A Appl Sci Manuf – volume: 843 year: 2020 article-title: Fe O /Fe O /PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe O /Fe O NPs in polyaniline for high microwave absorbing performance publication-title: J Alloys Compd – volume: 777 start-page: 627 year: 2019 end-page: 637 article-title: Electromagnetic shielding, magnetic and microwave absorbing properties of polypyrrole/Ba Sr Fe O composite synthesized via in‐situ polymerization technique publication-title: J Alloys Compd – volume: 55 start-page: 299 year: 2005 end-page: 307 article-title: Microwave absorbing coatings based on a blend of nitrile rubber, EPDM rubber and polyaniline publication-title: Polym Bull – volume: 285 start-page: 497 year: 2016 end-page: 507 article-title: Synthesis and characterization of Fe O /polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content publication-title: Chem Eng J – volume: 566 year: 2023 article-title: Ultra‐broadband wave‐absorbing metamaterials with open‐hole effect publication-title: J Magn Magn Mater – volume: 460 year: 2023 article-title: MnO intercalation‐guided impedance tuning of carbon/polypyrrole double conductive layers for electromagnetic wave absorption publication-title: Chem Eng J – volume: 130 issue: 10 year: 2024 article-title: Flexible composites of Ni‐Fe fiber/NBR for effective electromagnetic wave absorption publication-title: Appl Phys A – volume: 45 start-page: 20282 issue: 16 year: 2019 end-page: 20289 article-title: Enhanced wave‐absorbing performances of silicone rubber composites by incorporating C‐SnO ‐MWCNT absorbent with ternary heterostructure publication-title: Ceram Int – volume: 139 issue: 17 year: 2022 article-title: Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite publication-title: J Supercrit Fluids – volume: 362 start-page: 513 year: 2019 end-page: 524 article-title: Nitrogen‐doped Co‐C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X‐band publication-title: Chem Eng J – volume: 379 year: 2020 article-title: Multifunctional microcellular PVDF/Ni‐chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance publication-title: Chem Eng J – volume: 939 year: 2023 article-title: Optimization of electromagnetic wave absorption properties of CoNi/MoSe composites with 3D flower‐like by controlling the Co/Ni molar ratio publication-title: J Alloys Compd – volume: 200 year: 2020 article-title: 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance publication-title: Compos Sci Technol – volume: 219 year: 2024 article-title: Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation publication-title: Carbon – volume: 42 start-page: 693 issue: 6 year: 2024 end-page: 710 article-title: Recent advances in asymmetric structural composites for excellent electromagnetic interference shielding: a review publication-title: Chin J Polym Sci – volume: 683 start-page: 567 year: 2016 end-page: 574 article-title: Microwave absorbing properties of the ferrite composites based on graphene publication-title: J Alloys Comp – volume: 82 start-page: 69 year: 2013 end-page: 75 article-title: A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X‐band applications publication-title: Compos Sci Technol – volume: 140 issue: 24 year: 2023 article-title: A study on microwave absorption properties of polyaniline/nitrile rubber/graphene/Fe O composites with a thickness of 0.7 mm and high flexibility publication-title: J Appl Polym Sci – volume: 181 year: 2019 article-title: Light‐weight and flexible silicone rubber/MWCNTs/Fe O nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption publication-title: Compos Sci Technol – volume: 790 start-page: 316 year: 2019 end-page: 325 article-title: Enhanced microwave absorption properties of Zr ‐doped Fe O for coordinated impedance matching and attenuation performances publication-title: J Alloys Compd – volume: 31 start-page: 3106 issue: 6 year: 2010 end-page: 3110 article-title: Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams publication-title: Mater Des – volume: 50 start-page: 2202 issue: 6 year: 2012 end-page: 2208 article-title: Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite publication-title: Carbon – volume: 96 start-page: 231 year: 2016 end-page: 241 article-title: Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber publication-title: Compos Part B Eng – volume: 573 start-page: 151 year: 2013 end-page: 156 article-title: Synthesis and excellent electromagnetic absorption properties of polypyrrole‐reduced graphene oxide–Co O nanocomposites publication-title: J Alloys Compd – volume: 113 start-page: 247 year: 2017 end-page: 258 article-title: Polypyrrole nanotubes: the tuning of morphology and conductivity publication-title: Polymer – volume: 141 issue: 4 year: 2024 article-title: Microwave absorption performance of nitrile butadiene rubber/ethylene propylene diene monomer rubber filled with multiwalled carbon nanotubes publication-title: J Appl Polym Sci – volume: 876 year: 2021 article-title: Lightweight PVDF/γ‐Fe O /PANI foam for efficient broadband microwave absorption in the K and Ka bands publication-title: J Alloys Compd – volume: 322 start-page: 3401 issue: 21 year: 2010 end-page: 3409 article-title: Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites publication-title: J Magn Magn Mater – volume: 139 start-page: 1126 year: 2018 end-page: 1135 article-title: Ultralight, highly compressible and fire‐retardant graphene aerogel with self‐adjustable electromagnetic wave absorption publication-title: Carbon – volume: 62 start-page: 17711 issue: 43 year: 2023 end-page: 17720 article-title: Covulcanizing of fluorinated carbon black ability with styrene butadiene rubber combining enhanced low‐and wide‐frequency microwave absorption publication-title: Ind Eng Chem Res – volume: 15 issue: 8 year: 2023 article-title: PPyNT/NR/NBR composites with excellent microwave absorbing performance in X‐band publication-title: Polymers – volume: 155 start-page: 282 year: 2018 end-page: 287 article-title: Non‐isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature publication-title: Compos Part B Eng – volume: 26 start-page: 8120 issue: 48 year: 2014 end-page: 8125 article-title: Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities publication-title: Adv Mater – volume: 29 start-page: 3884 year: 2018 end-page: 3890 article-title: Synthesis, structural and high frequency dielectric properties of polypyrrole (PPy)/holmium ferrite composites publication-title: J Mater Sci Mater Electron – ident: e_1_2_8_24_1 doi: 10.1016/j.carbon.2017.09.101 – ident: e_1_2_8_32_1 doi: 10.1007/s42114-021-00275-4 – ident: e_1_2_8_43_1 doi: 10.1016/j.jallcom.2013.03.280 – ident: e_1_2_8_35_1 doi: 10.1016/j.matdes.2009.12.041 – ident: e_1_2_8_47_1 doi: 10.1016/j.compscitech.2019.05.027 – ident: e_1_2_8_7_1 doi: 10.1016/j.jallcom.2018.11.041 – ident: e_1_2_8_23_1 doi: 10.1016/j.jallcom.2022.168577 – ident: e_1_2_8_45_1 doi: 10.1007/s10118-024-3112-x – ident: e_1_2_8_28_1 doi: 10.1002/app.54843 – ident: e_1_2_8_18_1 doi: 10.1016/j.ceramint.2019.06.302 – ident: e_1_2_8_49_1 doi: 10.1016/j.cej.2019.122304 – ident: e_1_2_8_48_1 doi: 10.1016/j.jallcom.2021.159983 – ident: e_1_2_8_34_1 doi: 10.1021/acs.iecr.3c01944 – ident: e_1_2_8_19_1 doi: 10.1007/s00289-005-0433-y – ident: e_1_2_8_4_1 doi: 10.1016/j.carbon.2020.07.028 – ident: e_1_2_8_29_1 doi: 10.1016/j.compscitech.2013.04.010 – ident: e_1_2_8_20_1 doi: 10.1016/j.carbon.2012.01.033 – ident: e_1_2_8_6_1 doi: 10.1016/j.cej.2019.01.090 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201403735 – ident: e_1_2_8_22_1 doi: 10.1016/j.carbon.2024.118802 – ident: e_1_2_8_31_1 doi: 10.1016/j.jallcom.2019.03.159 – ident: e_1_2_8_15_1 doi: 10.1002/app.53946 – ident: e_1_2_8_17_1 doi: 10.1016/j.jmmm.2010.06.036 – volume: 139 issue: 17 year: 2022 ident: e_1_2_8_37_1 article-title: Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite publication-title: J Supercrit Fluids – ident: e_1_2_8_9_1 doi: 10.1016/j.cej.2015.10.031 – ident: e_1_2_8_11_1 doi: 10.1016/j.polymer.2017.02.064 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2016.05.127 – ident: e_1_2_8_30_1 doi: 10.1016/j.apsusc.2021.151270 – ident: e_1_2_8_21_1 doi: 10.1016/j.compositesb.2016.04.039 – ident: e_1_2_8_46_1 doi: 10.3390/polym15081866 – ident: e_1_2_8_16_1 doi: 10.1007/s00339-024-07928-3 – ident: e_1_2_8_5_1 doi: 10.1016/j.compositesb.2018.08.112 – ident: e_1_2_8_8_1 doi: 10.1016/j.carbon.2018.08.014 – ident: e_1_2_8_26_1 doi: 10.1016/j.carbon.2024.119737 – ident: e_1_2_8_36_1 doi: 10.1016/j.supflu.2019.02.015 – ident: e_1_2_8_12_1 doi: 10.1016/j.apsusc.2017.09.118 – ident: e_1_2_8_39_1 doi: 10.1016/j.compscitech.2020.108479 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201190147 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.7b10067 – ident: e_1_2_8_33_1 doi: 10.1007/s10854-017-8326-z – ident: e_1_2_8_38_1 doi: 10.1016/j.jmmm.2022.170097 – ident: e_1_2_8_41_1 doi: 10.1039/c3ta11278k – ident: e_1_2_8_42_1 doi: 10.1016/j.cej.2023.141749 – ident: e_1_2_8_40_1 doi: 10.1021/jp210872w – ident: e_1_2_8_25_1 doi: 10.1016/j.jmst.2020.12.078 – ident: e_1_2_8_44_1 doi: 10.1016/j.jallcom.2020.156052 – ident: e_1_2_8_2_1 doi: 10.1016/j.compositesa.2022.107138 – ident: e_1_2_8_3_1 doi: 10.1016/j.jallcom.2022.168592 |
SSID | ssj0002359 |
Score | 2.4482446 |
Snippet | Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption... |
SourceID | proquest gale crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3704 |
SubjectTerms | Absorption cell structure Cellular structure Conduction losses Density Electric waves Electromagnetic radiation electromagnetic wave absorption Electromagnetic waves Electromagnetism Foams Impedance matching polypyrrole nanotube Polypyrroles Propylene Rubber Synergistic effect Thickness |
Title | Flexible and lightweight PPyNT/EPDM foam for efficient electromagnetic waves absorption in X‐band |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.27243 https://www.proquest.com/docview/3229066346 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9RAFMeH0hfrg9pWcbWWQbT6kt1lLskGn0q7Syt0WWoL-yAMZ26L2GZls2vRJz-Cn9FP0jOTpDVFQXwJgfyTTOZ2zoQzv0PIK2mMlpbJxPIcErTXPgGwPsm4ceDsQA5ibM7JOD06F--ncrpG3jV7YSo-xM0PtzAy4nwdBjjosncLDcXVfpdlTATSZ4jVCg7R6S06inFZub6cJRxf2FCF-qx3c2fLFt2dkdveajQ3o4fkY1PQKsrkc3e11F3z_Q7D8T-_5BF5ULuhdL_qN5tkzRVb5N5Bk_1ti9z_DVS4TcwocDP1haNQWHoRFvRX8Z8qnUy-jc96w8nhCfVzuMTDgrqIpUBrRuskO5cwK8JmSXoFX11JsVzzRZyq6KeCTn_9-KnxsY_J-Wh4dnCU1OkZEoM-Fk-yvjAi8zbNdQ5CQga5CTx6kwpwBs1eLnMrPfC8r53NXUiH47zIhJOegeP8CVkv5oV7SqhzQkppce1inTCZ0DDAdWGKBlxn2lvbIS-bhlJfKgqHqnjLTGHtqVh7HfI6NKGqs3fioQwVUc5gVZZqfyAj6EcIfFjUBfpFEcJrKsHxh9OW6E0t8vPlAgzUuxWwvAGY1VLutZSzChf-J-FOS4gNatqXm66n6nmkVDzi-FMu0g55G_vQ379fTYbjePLs36XPyQYLCY1j_PEOWV8uVu4FellLvRuH0zXBRCRY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a42HwwGWAKAywELeXtFVsJ43EyzRadbBW1eikviDr-FahbenUtEzwxE_gN_JLsJ1kIxNIiBcrUr44vp6LdfwdgBdcKcl1zCNNM4ycvrYRorZRSpVBo3u8F2JzRuNkeMTez_hsA97Wd2FKfoiLAze_M4K89hvcH0h3LllDnbvfjtOY0Wtw3Wf0Dg7V4SV5VEx5afzSOKLulzWvUDfuXHza0EZXZXLTXg0KZ3AbPtVNLeNMjtvrlWyrb1dYHP-3L3fgVmWJkt1y6dyFDZNvw9ZenQBuG27-xlV4D9TAU2fKE0Mw1-TE-_Tn4ViVTCZfx9NOf_JuROwCT12xJCYwUziFRqo8O6c4z_19SXKOX0xBUBaLZZBW5HNOZj-__5Cu2vtwNOhP94ZRlaEhUs7MolHaZYqlVieZzJBxTDFTnpJeJQyNcpov45nmFmnWlUZnxmfEMZalzHAbo6H0AWzmi9w8BGIM45xr575ow1TKJPaca5g4HS5TabVuwfN6psRZScQhSsrlWLjRE2H0WvDSz6GoEni6ovADUcxxXRRit8cD1w9jrrKA8wQYuY-wKQH7Hw8boNcVyC5WS1RYXVhw7fWcWQ3kqwZyXjKG_wm40wC6CVXN1_XaE5UoKQQNjPwJZUkL3oRF9Pf-i0l_HB4e_Tv0GWwNp6MDcbA__vAYbsQ-v3EIR96BzdVybZ44o2sln4a99QvpBihz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VInE8cBQQgQIW4nrZJFrbe4inqknUAo2i0kp5qGSNrwjRbqpsQgVP_AR-I78E27vbshVIiBdrpf3W62PsmbHG3wC84EpJrmMeaZpj5PS1jRC1jVKqDBqd8SzE5uyNk51D9m7Kp2vwtrkLU_FDnB-4-ZUR9mu_wE-17V2QhjpvvxunMaNX4CpL-pkX6cH-BXdUTHll-9I4ou6PDa1QP-6df9pSRpe35La5GvTN6DYcNS2twkw-d1dL2VXfLpE4_mdX7sCt2g4lW5Xg3IU1U2zA9e0m_dsG3PyNqfAeqJEnzpTHhmChybH36M_CoSqZTL6OD3rDyWCP2DmeuGJBTOClcOqM1Fl2TnBW-NuS5Ay_mJKgLOeLsFeRTwWZ_vz-Q7pq78PhaHiwvRPV-Rki5YwsGqV9plhqdZLLHBnHFHPlCelVwtAop_dynmtukeZ9aXRufD4cY1nKDLcxGkofwHoxL8xDIMYwzrl2zos2TKVMYuYcw8RpcJlKq3UHnjcTJU4rGg5RES7Hwo2eCKPXgZd-CkWdvtMVpR-IcoarshRbGQ9MP4y5ygLO018UPr6mAux-3G-BXtcgO18uUGF9XcG11zNmtZCvWshZxRf-J-BmC-gmVLVfN6In6o2kFDTw8SeUJR14E2To7_0Xk-E4PDz6d-gzuDYZjMSH3fH7x3Aj9smNQyzyJqwvFyvzxFlcS_k0rKxfc14nKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+lightweight+PPyNT%2FEPDM+foam+for+efficient+electromagnetic+waves+absorption+in+X-band&rft.jtitle=Polymer+engineering+and+science&rft.au=Zhu%2C+Xinyu&rft.au=Yuan%2C+Wei&rft.au=Wen%2C+Xiangtong&rft.au=Li%2C+Jinze&rft.date=2025-07-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=65&rft.issue=7&rft.spage=3704&rft_id=info:doi/10.1002%2Fpen.27243&rft.externalDBID=N95&rft.externalDocID=A852837044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |