Flexible and lightweight PPyNT/EPDM foam for efficient electromagnetic waves absorption in X‐band

Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, den...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 65; no. 7; pp. 3704 - 3714
Main Authors Zhu, Xinyu, Yuan, Wei, Wen, Xiangtong, Li, Jinze, Sui, Jing, Zhuang, Tao, Sun, Chong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2025
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials. Highlights Lightweight PPyNT/EPDM foam for X‐band EMW absorption. Tailored porous structure and absorption performance by PPyNT content. Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz. Synergy of impedance matching, conduction loss, and multiple reflection. The 15 phr PPyNT/EPDM foam achieves impedance matching through its porous structure, synergistically integrating multiple reflection, conduction loss, and interfacial polarization mechanisms to realize excellent electromagnetic wave absorption performance.
AbstractList Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X-band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X-band, demonstrated by the minimum reflection loss ([RL.sub.min]) of -27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/[cm.sup.3]. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost-effective, and highly efficient EMW absorption materials.
Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials. Highlights Lightweight PPyNT/EPDM foam for X‐band EMW absorption. Tailored porous structure and absorption performance by PPyNT content. Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz. Synergy of impedance matching, conduction loss, and multiple reflection.
Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X-band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X-band, demonstrated by the minimum reflection loss ([RL.sub.min]) of -27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/[cm.sup.3]. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost-effective, and highly efficient EMW absorption materials. Highlights * Lightweight PPyNT/EPDM foam for X-band EMW absorption. * Tailored porous structure and absorption performance by PPyNT content. * Foam with 15 phr PPyNT achieves [RL.sub.min] of --27.01 dB and EAB of 3.4 GHz. * Synergy of impedance matching, conduction loss, and multiple reflection. KEYWORDS cell structure, electromagnetic wave absorption, impedance matching, polypyrrole nanotube
Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption performance in the X‐band were prepared via a simple chemical foaming method. By adjusting the content of PPyNT, the cellular structure, density, and EMW absorption properties of the PPyNT/EPDM foams can be precisely tailored. The synergistic effect of the cellular structure and an optimal PPyNT content (15 phr) endows the PPyNT/EPDM foam with an excellent impedance matching and a high attenuation capacity, in turn resulting in excellent EMW absorption performance in the X‐band, demonstrated by the minimum reflection loss (RLmin) of −27.01 dB at a thickness of 2.3 mm and the maximum effective absorption bandwidth (EAB) of 3.4 GHz at a thickness of 2.6 mm. Furthermore, this foam composite exhibits excellent lightweight characteristics with a density of only 0.795 g/cm3. Hence, this research presents a promising approach for the commercial development of flexible, lightweight, cost‐effective, and highly efficient EMW absorption materials. Highlights Lightweight PPyNT/EPDM foam for X‐band EMW absorption. Tailored porous structure and absorption performance by PPyNT content. Foam with 15 phr PPyNT achieves RLmin of −27.01 dB and EAB of 3.4 GHz. Synergy of impedance matching, conduction loss, and multiple reflection. The 15 phr PPyNT/EPDM foam achieves impedance matching through its porous structure, synergistically integrating multiple reflection, conduction loss, and interfacial polarization mechanisms to realize excellent electromagnetic wave absorption performance.
Audience Academic
Author Sui, Jing
Zhu, Xinyu
Li, Jinze
Sun, Chong
Zhuang, Tao
Wen, Xiangtong
Yuan, Wei
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Zhu
  fullname: Zhu, Xinyu
  organization: Qingdao University of Science & Technology
– sequence: 2
  givenname: Wei
  surname: Yuan
  fullname: Yuan, Wei
  organization: Qingdao University of Science & Technology
– sequence: 3
  givenname: Xiangtong
  surname: Wen
  fullname: Wen, Xiangtong
  organization: Qingdao University of Science & Technology
– sequence: 4
  givenname: Jinze
  surname: Li
  fullname: Li, Jinze
  organization: Qingdao University of Science & Technology
– sequence: 5
  givenname: Jing
  orcidid: 0000-0002-3997-8968
  surname: Sui
  fullname: Sui, Jing
  email: jingsui1007@qust.edu.cn
  organization: Qingdao University of Science & Technology
– sequence: 6
  givenname: Tao
  surname: Zhuang
  fullname: Zhuang, Tao
  organization: Qingdao University of Science & Technology
– sequence: 7
  givenname: Chong
  surname: Sun
  fullname: Sun, Chong
  email: sunchongmc@qust.edu.cn
  organization: Qingdao University of Science & Technology
BookMark eNp1kt9qFDEUxoO04LZ64RsEvBKc3WyS-ZPLUrdaqO2iFbwLmczJmDKTrEnW7d75CD6jT2LWFXRhJXAC4fd953DynaET5x0g9GJOpnNC6GwFbkprytkTNJmXvCloxfgJmhDCaMGapnmKzmJ8IJllpZggfTXAo20HwMp1eLD9l7SBXcXL5fb2frZYvnmPjVdjLgGDMVZbcAnDADoFP6reQbIab9Q3iFi10YdVst5h6_Dnn99_tNn2GTo1aojw_M99jj5dLe4v3xU3d2-vLy9uCs1ZyYqacM1r01WiFYqXqlZC5ykrXXEFmjZclKIrjWKCtNAJqCnhYHjNoTRUAWPn6OXedxX81zXEJB_8OrjcUjJKBanyKqq_VK8GkNYZn4LSo41aXjQlbVieg2eqOEL14CCoIa_c2Px8wE-P8Pl0MFp9VPDqQJCZBI-pV-sY5fXHD4fs63_Ydh2tg5hL3H1U3EuOWevgYwxg5CrYUYWtnBO5S4nMKZG_U5LZ2Z7d5Pm2_wflcnG7V_wCH5S9tg
Cites_doi 10.1016/j.carbon.2017.09.101
10.1007/s42114-021-00275-4
10.1016/j.jallcom.2013.03.280
10.1016/j.matdes.2009.12.041
10.1016/j.compscitech.2019.05.027
10.1016/j.jallcom.2018.11.041
10.1016/j.jallcom.2022.168577
10.1007/s10118-024-3112-x
10.1002/app.54843
10.1016/j.ceramint.2019.06.302
10.1016/j.cej.2019.122304
10.1016/j.jallcom.2021.159983
10.1021/acs.iecr.3c01944
10.1007/s00289-005-0433-y
10.1016/j.carbon.2020.07.028
10.1016/j.compscitech.2013.04.010
10.1016/j.carbon.2012.01.033
10.1016/j.cej.2019.01.090
10.1002/adma.201403735
10.1016/j.carbon.2024.118802
10.1016/j.jallcom.2019.03.159
10.1002/app.53946
10.1016/j.jmmm.2010.06.036
10.1016/j.cej.2015.10.031
10.1016/j.polymer.2017.02.064
10.1016/j.jallcom.2016.05.127
10.1016/j.apsusc.2021.151270
10.1016/j.compositesb.2016.04.039
10.3390/polym15081866
10.1007/s00339-024-07928-3
10.1016/j.compositesb.2018.08.112
10.1016/j.carbon.2018.08.014
10.1016/j.carbon.2024.119737
10.1016/j.supflu.2019.02.015
10.1016/j.apsusc.2017.09.118
10.1016/j.compscitech.2020.108479
10.1002/adma.201190147
10.1021/acsami.7b10067
10.1007/s10854-017-8326-z
10.1016/j.jmmm.2022.170097
10.1039/c3ta11278k
10.1016/j.cej.2023.141749
10.1021/jp210872w
10.1016/j.jmst.2020.12.078
10.1016/j.jallcom.2020.156052
10.1016/j.compositesa.2022.107138
10.1016/j.jallcom.2022.168592
ContentType Journal Article
Copyright 2025 Society of Plastics Engineers.
COPYRIGHT 2025 Society of Plastics Engineers, Inc.
2025 Society of Plastics Engineers
Copyright_xml – notice: 2025 Society of Plastics Engineers.
– notice: COPYRIGHT 2025 Society of Plastics Engineers, Inc.
– notice: 2025 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.27243
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database





DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 3714
ExternalDocumentID A852837044
10_1002_pen_27243
PEN27243
Genre researchArticle
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51503114
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2020ME069
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWL
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
PQGLB
7SR
8FD
JG9
ID FETCH-LOGICAL-c4353-704c47fd69b9a45a7a9c0236c64aec284959d5fa390bed9e7204ef474e5f2ae33
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Sat Aug 23 12:35:56 EDT 2025
Wed Aug 27 16:51:52 EDT 2025
Thu Aug 28 12:10:47 EDT 2025
Tue Aug 26 03:41:34 EDT 2025
Tue Aug 26 03:21:33 EDT 2025
Tue Aug 26 01:12:56 EDT 2025
Thu Jul 10 07:34:42 EDT 2025
Thu Jul 03 09:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4353-704c47fd69b9a45a7a9c0236c64aec284959d5fa390bed9e7204ef474e5f2ae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3997-8968
PQID 3229066346
PQPubID 41843
PageCount 11
ParticipantIDs proquest_journals_3229066346
gale_infotracmisc_A852837044
gale_infotracgeneralonefile_A852837044
gale_infotracacademiconefile_A852837044
gale_incontextgauss_ISR_A852837044
gale_businessinsightsgauss_A852837044
crossref_primary_10_1002_pen_27243
wiley_primary_10_1002_pen_27243_PEN27243
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References 2018; 29
2010; 31
2021; 86
2021; 4
2013; 1
2025; 231
2023; 460
2018; 427
2023; 140
2023; 15
2010; 322
2014; 26
2024; 141
2016; 96
2016; 683
2023; 566
2019; 147
2020; 843
2020; 200
2020; 168
2017; 113
2022; 139
2016; 285
2017; 9
2019; 362
2012; 50
2018; 155
2023; 62
2022; 162
2019; 181
2018; 139
2021; 876
2019; 45
2024; 219
2024; 130
2013; 573
2020; 379
2013; 82
2024; 42
2011; 23
2021; 570
2019; 777
2023; 939
2023; 938
2019; 790
2012; 116
2017; 125
2005; 55
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Malere CP (e_1_2_8_37_1) 2022; 139
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 23
  start-page: 4207
  issue: 37
  year: 2011
  end-page: 4331
  article-title: Two‐dimensional nanocrystals produced by exfoliation of Ti AlC
  publication-title: Adv Mater
– volume: 86
  start-page: 91
  year: 2021
  end-page: 109
  article-title: A review on carbon/magnetic metal composites for microwave absorption
  publication-title: J Mater Sci Technol
– volume: 147
  start-page: 107
  year: 2019
  end-page: 115
  article-title: Preparation of polymeric foams with bimodal cell size: an application of heterogeneous nucleation effect of nanofillers
  publication-title: J Supercrit Fluids
– volume: 9
  start-page: 30850
  issue: 36
  year: 2017
  end-page: 30861
  article-title: Magnetically aligned Co‐C/MWCNTs composite derived from MWCNT‐interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber
  publication-title: ACS Appl Mater Interfaces
– volume: 570
  issue: 28
  year: 2021
  article-title: Flexible reduced graphene oxide@Fe O /silicone rubber composites for enhanced microwave absorption
  publication-title: Appl Surf Sci
– volume: 4
  start-page: 591
  issue: 3
  year: 2021
  end-page: 601
  article-title: Study on broadband microwave absorbing performance of gradient porous structure
  publication-title: Adv Compos Hybrid Mater
– volume: 1
  start-page: 8547
  issue: 30
  year: 2013
  end-page: 8552
  article-title: Novel rGO/α‐Fe O composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption
  publication-title: J Mater Chem A
– volume: 168
  start-page: 606
  year: 2020
  end-page: 623
  article-title: Electromagnetic microwave absorption theory and recent achievements in microwave absorbers
  publication-title: Carbon
– volume: 427
  start-page: 1054
  year: 2018
  end-page: 1063
  article-title: Fe O @polyaniline yolk‐shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption
  publication-title: Appl Surf Sci
– volume: 125
  start-page: 630
  year: 2017
  end-page: 639
  article-title: Magnetic graphene for microwave absorbing application: towards the lightest graphene‐based absorber
  publication-title: Carbon
– volume: 116
  start-page: 2051
  issue: 2
  year: 2012
  end-page: 2058
  article-title: Biphasic polymer blends containing carbon nanotubes: heterogeneous nanotube distribution and its influence on the dielectric properties
  publication-title: J Phys Chem C
– volume: 938
  year: 2023
  article-title: Core‐shell CuCo S based microspheres composited with carbon black nanoparticles for effective microwave absorption
  publication-title: J Alloys Compd
– volume: 231
  year: 2025
  article-title: Pyramid‐like magnetic carbon composites device toward tunable and adaptive radar‐visible compatible properties
  publication-title: Carbon
– volume: 162
  year: 2022
  article-title: Porous micro‐antennas decorated turbostratic graphitized carbon/TiO derived from polyaniline/Ti C Tx for high‐performance electromagnetic wave absorption
  publication-title: Compos Part A Appl Sci Manuf
– volume: 843
  year: 2020
  article-title: Fe O /Fe O /PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe O /Fe O NPs in polyaniline for high microwave absorbing performance
  publication-title: J Alloys Compd
– volume: 777
  start-page: 627
  year: 2019
  end-page: 637
  article-title: Electromagnetic shielding, magnetic and microwave absorbing properties of polypyrrole/Ba Sr Fe O composite synthesized via in‐situ polymerization technique
  publication-title: J Alloys Compd
– volume: 55
  start-page: 299
  year: 2005
  end-page: 307
  article-title: Microwave absorbing coatings based on a blend of nitrile rubber, EPDM rubber and polyaniline
  publication-title: Polym Bull
– volume: 285
  start-page: 497
  year: 2016
  end-page: 507
  article-title: Synthesis and characterization of Fe O /polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content
  publication-title: Chem Eng J
– volume: 566
  year: 2023
  article-title: Ultra‐broadband wave‐absorbing metamaterials with open‐hole effect
  publication-title: J Magn Magn Mater
– volume: 460
  year: 2023
  article-title: MnO intercalation‐guided impedance tuning of carbon/polypyrrole double conductive layers for electromagnetic wave absorption
  publication-title: Chem Eng J
– volume: 130
  issue: 10
  year: 2024
  article-title: Flexible composites of Ni‐Fe fiber/NBR for effective electromagnetic wave absorption
  publication-title: Appl Phys A
– volume: 45
  start-page: 20282
  issue: 16
  year: 2019
  end-page: 20289
  article-title: Enhanced wave‐absorbing performances of silicone rubber composites by incorporating C‐SnO ‐MWCNT absorbent with ternary heterostructure
  publication-title: Ceram Int
– volume: 139
  issue: 17
  year: 2022
  article-title: Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite
  publication-title: J Supercrit Fluids
– volume: 362
  start-page: 513
  year: 2019
  end-page: 524
  article-title: Nitrogen‐doped Co‐C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X‐band
  publication-title: Chem Eng J
– volume: 379
  year: 2020
  article-title: Multifunctional microcellular PVDF/Ni‐chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance
  publication-title: Chem Eng J
– volume: 939
  year: 2023
  article-title: Optimization of electromagnetic wave absorption properties of CoNi/MoSe composites with 3D flower‐like by controlling the Co/Ni molar ratio
  publication-title: J Alloys Compd
– volume: 200
  year: 2020
  article-title: 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance
  publication-title: Compos Sci Technol
– volume: 219
  year: 2024
  article-title: Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation
  publication-title: Carbon
– volume: 42
  start-page: 693
  issue: 6
  year: 2024
  end-page: 710
  article-title: Recent advances in asymmetric structural composites for excellent electromagnetic interference shielding: a review
  publication-title: Chin J Polym Sci
– volume: 683
  start-page: 567
  year: 2016
  end-page: 574
  article-title: Microwave absorbing properties of the ferrite composites based on graphene
  publication-title: J Alloys Comp
– volume: 82
  start-page: 69
  year: 2013
  end-page: 75
  article-title: A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X‐band applications
  publication-title: Compos Sci Technol
– volume: 140
  issue: 24
  year: 2023
  article-title: A study on microwave absorption properties of polyaniline/nitrile rubber/graphene/Fe O composites with a thickness of 0.7 mm and high flexibility
  publication-title: J Appl Polym Sci
– volume: 181
  year: 2019
  article-title: Light‐weight and flexible silicone rubber/MWCNTs/Fe O nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption
  publication-title: Compos Sci Technol
– volume: 790
  start-page: 316
  year: 2019
  end-page: 325
  article-title: Enhanced microwave absorption properties of Zr ‐doped Fe O for coordinated impedance matching and attenuation performances
  publication-title: J Alloys Compd
– volume: 31
  start-page: 3106
  issue: 6
  year: 2010
  end-page: 3110
  article-title: Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams
  publication-title: Mater Des
– volume: 50
  start-page: 2202
  issue: 6
  year: 2012
  end-page: 2208
  article-title: Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite
  publication-title: Carbon
– volume: 96
  start-page: 231
  year: 2016
  end-page: 241
  article-title: Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber
  publication-title: Compos Part B Eng
– volume: 573
  start-page: 151
  year: 2013
  end-page: 156
  article-title: Synthesis and excellent electromagnetic absorption properties of polypyrrole‐reduced graphene oxide–Co O nanocomposites
  publication-title: J Alloys Compd
– volume: 113
  start-page: 247
  year: 2017
  end-page: 258
  article-title: Polypyrrole nanotubes: the tuning of morphology and conductivity
  publication-title: Polymer
– volume: 141
  issue: 4
  year: 2024
  article-title: Microwave absorption performance of nitrile butadiene rubber/ethylene propylene diene monomer rubber filled with multiwalled carbon nanotubes
  publication-title: J Appl Polym Sci
– volume: 876
  year: 2021
  article-title: Lightweight PVDF/γ‐Fe O /PANI foam for efficient broadband microwave absorption in the K and Ka bands
  publication-title: J Alloys Compd
– volume: 322
  start-page: 3401
  issue: 21
  year: 2010
  end-page: 3409
  article-title: Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites
  publication-title: J Magn Magn Mater
– volume: 139
  start-page: 1126
  year: 2018
  end-page: 1135
  article-title: Ultralight, highly compressible and fire‐retardant graphene aerogel with self‐adjustable electromagnetic wave absorption
  publication-title: Carbon
– volume: 62
  start-page: 17711
  issue: 43
  year: 2023
  end-page: 17720
  article-title: Covulcanizing of fluorinated carbon black ability with styrene butadiene rubber combining enhanced low‐and wide‐frequency microwave absorption
  publication-title: Ind Eng Chem Res
– volume: 15
  issue: 8
  year: 2023
  article-title: PPyNT/NR/NBR composites with excellent microwave absorbing performance in X‐band
  publication-title: Polymers
– volume: 155
  start-page: 282
  year: 2018
  end-page: 287
  article-title: Non‐isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature
  publication-title: Compos Part B Eng
– volume: 26
  start-page: 8120
  issue: 48
  year: 2014
  end-page: 8125
  article-title: Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities
  publication-title: Adv Mater
– volume: 29
  start-page: 3884
  year: 2018
  end-page: 3890
  article-title: Synthesis, structural and high frequency dielectric properties of polypyrrole (PPy)/holmium ferrite composites
  publication-title: J Mater Sci Mater Electron
– ident: e_1_2_8_24_1
  doi: 10.1016/j.carbon.2017.09.101
– ident: e_1_2_8_32_1
  doi: 10.1007/s42114-021-00275-4
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jallcom.2013.03.280
– ident: e_1_2_8_35_1
  doi: 10.1016/j.matdes.2009.12.041
– ident: e_1_2_8_47_1
  doi: 10.1016/j.compscitech.2019.05.027
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jallcom.2018.11.041
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jallcom.2022.168577
– ident: e_1_2_8_45_1
  doi: 10.1007/s10118-024-3112-x
– ident: e_1_2_8_28_1
  doi: 10.1002/app.54843
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ceramint.2019.06.302
– ident: e_1_2_8_49_1
  doi: 10.1016/j.cej.2019.122304
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jallcom.2021.159983
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.iecr.3c01944
– ident: e_1_2_8_19_1
  doi: 10.1007/s00289-005-0433-y
– ident: e_1_2_8_4_1
  doi: 10.1016/j.carbon.2020.07.028
– ident: e_1_2_8_29_1
  doi: 10.1016/j.compscitech.2013.04.010
– ident: e_1_2_8_20_1
  doi: 10.1016/j.carbon.2012.01.033
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cej.2019.01.090
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201403735
– ident: e_1_2_8_22_1
  doi: 10.1016/j.carbon.2024.118802
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jallcom.2019.03.159
– ident: e_1_2_8_15_1
  doi: 10.1002/app.53946
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jmmm.2010.06.036
– volume: 139
  issue: 17
  year: 2022
  ident: e_1_2_8_37_1
  article-title: Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite
  publication-title: J Supercrit Fluids
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cej.2015.10.031
– ident: e_1_2_8_11_1
  doi: 10.1016/j.polymer.2017.02.064
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2016.05.127
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apsusc.2021.151270
– ident: e_1_2_8_21_1
  doi: 10.1016/j.compositesb.2016.04.039
– ident: e_1_2_8_46_1
  doi: 10.3390/polym15081866
– ident: e_1_2_8_16_1
  doi: 10.1007/s00339-024-07928-3
– ident: e_1_2_8_5_1
  doi: 10.1016/j.compositesb.2018.08.112
– ident: e_1_2_8_8_1
  doi: 10.1016/j.carbon.2018.08.014
– ident: e_1_2_8_26_1
  doi: 10.1016/j.carbon.2024.119737
– ident: e_1_2_8_36_1
  doi: 10.1016/j.supflu.2019.02.015
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apsusc.2017.09.118
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compscitech.2020.108479
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201190147
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.7b10067
– ident: e_1_2_8_33_1
  doi: 10.1007/s10854-017-8326-z
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jmmm.2022.170097
– ident: e_1_2_8_41_1
  doi: 10.1039/c3ta11278k
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cej.2023.141749
– ident: e_1_2_8_40_1
  doi: 10.1021/jp210872w
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jmst.2020.12.078
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jallcom.2020.156052
– ident: e_1_2_8_2_1
  doi: 10.1016/j.compositesa.2022.107138
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jallcom.2022.168592
SSID ssj0002359
Score 2.4482446
Snippet Flexible and lightweight polypyrrole nanotubes/ethylene propylene diene monomer (PPyNT/EPDM) rubber foams with excellent electromagnetic waves (EMW) absorption...
SourceID proquest
gale
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3704
SubjectTerms Absorption
cell structure
Cellular structure
Conduction losses
Density
Electric waves
Electromagnetic radiation
electromagnetic wave absorption
Electromagnetic waves
Electromagnetism
Foams
Impedance matching
polypyrrole nanotube
Polypyrroles
Propylene
Rubber
Synergistic effect
Thickness
Title Flexible and lightweight PPyNT/EPDM foam for efficient electromagnetic waves absorption in X‐band
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.27243
https://www.proquest.com/docview/3229066346
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9RAFMeH0hfrg9pWcbWWQbT6kt1lLskGn0q7Syt0WWoL-yAMZ26L2GZls2vRJz-Cn9FP0jOTpDVFQXwJgfyTTOZ2zoQzv0PIK2mMlpbJxPIcErTXPgGwPsm4ceDsQA5ibM7JOD06F--ncrpG3jV7YSo-xM0PtzAy4nwdBjjosncLDcXVfpdlTATSZ4jVCg7R6S06inFZub6cJRxf2FCF-qx3c2fLFt2dkdveajQ3o4fkY1PQKsrkc3e11F3z_Q7D8T-_5BF5ULuhdL_qN5tkzRVb5N5Bk_1ti9z_DVS4TcwocDP1haNQWHoRFvRX8Z8qnUy-jc96w8nhCfVzuMTDgrqIpUBrRuskO5cwK8JmSXoFX11JsVzzRZyq6KeCTn_9-KnxsY_J-Wh4dnCU1OkZEoM-Fk-yvjAi8zbNdQ5CQga5CTx6kwpwBs1eLnMrPfC8r53NXUiH47zIhJOegeP8CVkv5oV7SqhzQkppce1inTCZ0DDAdWGKBlxn2lvbIS-bhlJfKgqHqnjLTGHtqVh7HfI6NKGqs3fioQwVUc5gVZZqfyAj6EcIfFjUBfpFEcJrKsHxh9OW6E0t8vPlAgzUuxWwvAGY1VLutZSzChf-J-FOS4gNatqXm66n6nmkVDzi-FMu0g55G_vQ379fTYbjePLs36XPyQYLCY1j_PEOWV8uVu4FellLvRuH0zXBRCRY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a42HwwGWAKAywELeXtFVsJ43EyzRadbBW1eikviDr-FahbenUtEzwxE_gN_JLsJ1kIxNIiBcrUr44vp6LdfwdgBdcKcl1zCNNM4ycvrYRorZRSpVBo3u8F2JzRuNkeMTez_hsA97Wd2FKfoiLAze_M4K89hvcH0h3LllDnbvfjtOY0Wtw3Wf0Dg7V4SV5VEx5afzSOKLulzWvUDfuXHza0EZXZXLTXg0KZ3AbPtVNLeNMjtvrlWyrb1dYHP-3L3fgVmWJkt1y6dyFDZNvw9ZenQBuG27-xlV4D9TAU2fKE0Mw1-TE-_Tn4ViVTCZfx9NOf_JuROwCT12xJCYwUziFRqo8O6c4z_19SXKOX0xBUBaLZZBW5HNOZj-__5Cu2vtwNOhP94ZRlaEhUs7MolHaZYqlVieZzJBxTDFTnpJeJQyNcpov45nmFmnWlUZnxmfEMZalzHAbo6H0AWzmi9w8BGIM45xr575ow1TKJPaca5g4HS5TabVuwfN6psRZScQhSsrlWLjRE2H0WvDSz6GoEni6ovADUcxxXRRit8cD1w9jrrKA8wQYuY-wKQH7Hw8boNcVyC5WS1RYXVhw7fWcWQ3kqwZyXjKG_wm40wC6CVXN1_XaE5UoKQQNjPwJZUkL3oRF9Pf-i0l_HB4e_Tv0GWwNp6MDcbA__vAYbsQ-v3EIR96BzdVybZ44o2sln4a99QvpBihz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VInE8cBQQgQIW4nrZJFrbe4inqknUAo2i0kp5qGSNrwjRbqpsQgVP_AR-I78E27vbshVIiBdrpf3W62PsmbHG3wC84EpJrmMeaZpj5PS1jRC1jVKqDBqd8SzE5uyNk51D9m7Kp2vwtrkLU_FDnB-4-ZUR9mu_wE-17V2QhjpvvxunMaNX4CpL-pkX6cH-BXdUTHll-9I4ou6PDa1QP-6df9pSRpe35La5GvTN6DYcNS2twkw-d1dL2VXfLpE4_mdX7sCt2g4lW5Xg3IU1U2zA9e0m_dsG3PyNqfAeqJEnzpTHhmChybH36M_CoSqZTL6OD3rDyWCP2DmeuGJBTOClcOqM1Fl2TnBW-NuS5Ay_mJKgLOeLsFeRTwWZ_vz-Q7pq78PhaHiwvRPV-Rki5YwsGqV9plhqdZLLHBnHFHPlCelVwtAop_dynmtukeZ9aXRufD4cY1nKDLcxGkofwHoxL8xDIMYwzrl2zos2TKVMYuYcw8RpcJlKq3UHnjcTJU4rGg5RES7Hwo2eCKPXgZd-CkWdvtMVpR-IcoarshRbGQ9MP4y5ygLO018UPr6mAux-3G-BXtcgO18uUGF9XcG11zNmtZCvWshZxRf-J-BmC-gmVLVfN6In6o2kFDTw8SeUJR14E2To7_0Xk-E4PDz6d-gzuDYZjMSH3fH7x3Aj9smNQyzyJqwvFyvzxFlcS_k0rKxfc14nKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+lightweight+PPyNT%2FEPDM+foam+for+efficient+electromagnetic+waves+absorption+in+X-band&rft.jtitle=Polymer+engineering+and+science&rft.au=Zhu%2C+Xinyu&rft.au=Yuan%2C+Wei&rft.au=Wen%2C+Xiangtong&rft.au=Li%2C+Jinze&rft.date=2025-07-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=65&rft.issue=7&rft.spage=3704&rft_id=info:doi/10.1002%2Fpen.27243&rft.externalDBID=N95&rft.externalDocID=A852837044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon