Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance
Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of...
Saved in:
Published in | Protein science Vol. 5; no. 12; pp. 2583 - 2591 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
Cold Spring Harbor Laboratory Press
01.12.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693–704) that SK is composed of three structural domains (A, B, and C) with a C‐terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two‐chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 °C and its stability is largely independent of the presence of the other domains. The high‐temperature transition in intact SK (at approximately 63 °C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63—Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native‐like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native‐like structure of domain A. |
---|---|
AbstractList | Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693–704) that SK is composed of three structural domains (A, B, and C) with a C‐terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two‐chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 °C and its stability is largely independent of the presence of the other domains. The high‐temperature transition in intact SK (at approximately 63 °C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63—Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native‐like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native‐like structure of domain A. Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A. Abstract Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5 :693–704) that SK is composed of three structural domains (A, B, and C) with a C‐terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two‐chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 °C and its stability is largely independent of the presence of the other domains. The high‐temperature transition in intact SK (at approximately 63 °C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63—Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native‐like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native‐like structure of domain A. |
Author | Azuaga, Ana I. Ponting, Christopher P. Dobson, Christopher M. Conejero‐Lara, Francisco Smith, Richard A.G. Parrado, Juan |
AuthorAffiliation | Oxford Centre for Molecular Sciences, University of Oxford, United Kingdom |
AuthorAffiliation_xml | – name: Oxford Centre for Molecular Sciences, University of Oxford, United Kingdom |
Author_xml | – sequence: 1 givenname: Francisco surname: Conejero‐Lara fullname: Conejero‐Lara, Francisco – sequence: 2 givenname: Juan surname: Parrado fullname: Parrado, Juan – sequence: 3 givenname: Ana I. surname: Azuaga fullname: Azuaga, Ana I. – sequence: 4 givenname: Richard A.G. surname: Smith fullname: Smith, Richard A.G. – sequence: 5 givenname: Christopher P. surname: Ponting fullname: Ponting, Christopher P. – sequence: 6 givenname: Christopher M. surname: Dobson fullname: Dobson, Christopher M. email: e‐mil:chris.dobson@icl.ox.ac.uk. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8976567$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEYxoO01G316k3Iydus-ZhJJhdBSv2AQkup4C1kMu90o5lkTTLK_vdm2aXWUw8hvM_z5PcGnnN0EmIAhN5QsqaEsPfbFNddJwjpKGP0BVrRVqimV-L7CVoRJWjTc9G_ROc5_yCEtJTxM3TWKyk6IVeo3G8gzcbjXMzgvCs7HCdcNlBPAsBjnI0LeS_mkmBb4k8XTIY6LaODEQ87bF2yizcJj85uUnR5xiaMOCzWQ1Vn8xCgOIsT5BhMsPAKnU7GZ3h9vC_Qt09X95dfmuubz18vP143tuUdbSbFJzGQllMjWtZROXUTk7I1FAyXrEpDO4meq3GQYAUBVSOE9KCYJGrk_AJ9OHC3yzDDaCGUZLzeJjebtNPROP2_E9xGP8TfmtGWc7oHvDsCUvy1QC56dtmC9yZAXLKWveB9p1gNrg9Bm2LOCabHJZTofU91jvpfT_XB26dfe4wfi6m-Ovh_nIfdMzR9e3fzhP0XEDqj8A |
CitedBy_id | crossref_primary_10_1023_A_1011044718840 crossref_primary_10_1016_j_bbapap_2010_04_003 crossref_primary_10_1074_jbc_M400253200 crossref_primary_10_1046_j_1432_1033_2002_03107_x crossref_primary_10_1021_bi101163u crossref_primary_10_1110_ps_8_12_2791 crossref_primary_10_1021_bi801827j crossref_primary_10_1002_pro_5560070313 crossref_primary_10_1002_pro_5560071017 crossref_primary_10_1016_j_bbapap_2008_05_013 crossref_primary_10_1126_science_281_5383_1662 crossref_primary_10_1007_s00253_013_5052_1 crossref_primary_10_1177_0885328210374778 crossref_primary_10_1074_jbc_M411637200 crossref_primary_10_1007_s11239_006_9011_x crossref_primary_10_1042_BJ20040658 crossref_primary_10_1016_j_biotechadv_2003_09_004 crossref_primary_10_1074_jbc_M108422200 crossref_primary_10_1074_jbc_M303799200 crossref_primary_10_1016_j_micpath_2019_103862 crossref_primary_10_1016_j_febslet_2013_02_033 crossref_primary_10_1110_ps_8_2_443 |
Cites_doi | 10.1021/bi00032a021 10.1042/bj3040235 10.1016/S0021-9258(18)81747-1 10.1042/bj2900313 10.1074/jbc.270.49.29601 10.1021/bi00116a034 10.1016/0140-6736(92)91893-D 10.1016/0141-8130(92)90007-U 10.1016/S0021-9258(18)52895-7 10.1021/bi00178a017 10.1016/S0021-9258(17)33335-5 10.1016/S0022-2836(95)80060-3 10.1016/0006-291X(71)90670-X 10.1074/jbc.270.21.12355 10.1021/bi00707a010 10.1007/BF00196594 10.1021/bi00349a016 10.1016/S0065-3233(08)60460-X 10.1002/pro.5560050414 10.1016/S0141-8130(05)80013-3 10.1002/prot.340220106 10.1016/0268-9499(94)90016-7 10.1016/0003-2697(87)90587-2 10.1111/j.1432-1033.1995.0779h.x 10.1016/0014-5793(91)80073-C 10.1111/j.1432-1033.1995.0083l.x 10.1016/S0021-9258(18)98794-6 10.1021/bi00191a024 10.1021/bi00176a027 10.1021/bi00447a048 10.1016/S0021-9258(19)74192-1 |
ContentType | Journal Article |
Copyright | Copyright © 1996 The Protein Society |
Copyright_xml | – notice: Copyright © 1996 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1002/pro.5560051221 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 2591 |
ExternalDocumentID | 10_1002_pro_5560051221 8976567 PRO5560051221 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: UK Engineering and Physical Sciences Research Council – fundername: International Research Scholars award – fundername: Human Capital and Mobility Programme of the European Commission – fundername: Medical Research Council Training Fellowship |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4351-f93f6b0431a642517f5f2774a1ea372425b4f6839db7ec60e917f008e92709d33 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:08:05 EDT 2024 Sat Aug 17 02:39:40 EDT 2024 Fri Aug 23 01:54:56 EDT 2024 Sat Sep 28 07:37:34 EDT 2024 Sat Aug 24 00:53:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4351-f93f6b0431a642517f5f2774a1ea372425b4f6839db7ec60e917f008e92709d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc2143313?pdf=render |
PMID | 8976567 |
PQID | 78638592 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143313 proquest_miscellaneous_78638592 crossref_primary_10_1002_pro_5560051221 pubmed_primary_8976567 wiley_primary_10_1002_pro_5560051221_PRO5560051221 |
PublicationCentury | 1900 |
PublicationDate | December 1996 |
PublicationDateYYYYMMDD | 1996-12-01 |
PublicationDate_xml | – month: 12 year: 1996 text: December 1996 |
PublicationDecade | 1990 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 1996 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 1974; 13 1971; 43 1991; 278 1987; 166 1995; 34 1992; 14 1995; 230 1992; 31 1993; 268 1979; 33 1995; 270 1989; 28 1994; 8 1994; 304 1976; 251 1991; 266 1990; 24 1986; 25 1989; 264 1995; 229 1995; 22 1987 1994; 33 1995; 248 1992; 339 1982 1993; 290 1992; 20 1996; 5 2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79 3954985 - Biochemistry. 1986 Jan 14;25(1):108-14 1515400 - Int J Biol Macromol. 1992 Apr;14(2):107-16 7675785 - Proteins. 1995 May;22(1):41-4 7607252 - Eur J Biochem. 1995 Jun 1;230(2):779-87 4857058 - Biochemistry. 1974 May 7;13(10):2063-70 8845759 - Protein Sci. 1996 Apr;5(4):693-704 8142358 - Biochemistry. 1994 Mar 29;33(12):3599-606 8473287 - J Biol Chem. 1993 Apr 25;268(12):8436-46 2722885 - J Biol Chem. 1989 Jun 15;264(17):9915-22 1906462 - J Biol Chem. 1991 Jul 15;266(20):12994-3002 7494004 - J Biol Chem. 1995 Dec 8;270(49):29601-6 932013 - J Biol Chem. 1976 Jul 10;251(13):3913-20 7744053 - Eur J Biochem. 1995 Apr 1;229(1):83-90 8130209 - Biochemistry. 1994 Mar 15;33(10):2951-60 8262920 - J Biol Chem. 1993 Dec 25;268(36):26872-8 44431 - Adv Protein Chem. 1979;33:167-241 7739050 - J Mol Biol. 1995 Apr 28;248(2):414-30 7640282 - Biochemistry. 1995 Aug 15;34(32):10266-71 8452517 - Biochem J. 1993 Mar 1;290 ( Pt 2):313-9 1847112 - FEBS Lett. 1991 Jan 14;278(1):17-22 4254608 - Biochem Biophys Res Commun. 1971 May 7;43(3):694-702 2690944 - Biochemistry. 1989 Oct 17;28(21):8588-96 7998939 - Biochem J. 1994 Nov 15;304 ( Pt 1):235-41 1731874 - Biochemistry. 1992 Jan 14;31(1):250-6 8011658 - Biochemistry. 1994 Jun 28;33(25):7957-63 7759476 - J Biol Chem. 1995 May 26;270(21):12355-60 Sun AQ (e_1_2_1_29_1) 1993; 268 Vysotchin A (e_1_2_1_33_1) 1993; 268 Pautov VD (e_1_2_1_20_1) 1990; 24 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_26_1 Siefring GE (e_1_2_1_28_1) 1976; 251 Radek JT (e_1_2_1_22_1) 1989; 264 Martin M. (e_1_2_1_14_1) 1982 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 Malke H (e_1_2_1_12_1) 1987 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – volume: 166 start-page: 368 year: 1987 end-page: 379 article-title: Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 kDa to 100 kDa publication-title: Anal Biochem – volume: 290 start-page: 313 year: 1993 end-page: 319 article-title: Characterization of structural and folding properties of streptokinase by n.m.r. spectroscopy publication-title: Biochem J – volume: 8 start-page: 276 year: 1994 end-page: 285 article-title: The streptokinase domain responsible for plasminogen binding publication-title: Fibrinolysis – volume: 339 start-page: 753 year: 1992 end-page: 781 article-title: Third International Study of Infarct Survival Collaborative Group. A randomized comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction publication-title: Lancet – volume: 230 start-page: 779 year: 1995 end-page: 787 article-title: Limited proteolysis of lysozyme in trifluoroethanol—Isolation and characterization of a partially active enzyme derivative publication-title: Eur J Biochem – volume: 304 start-page: 235 year: 1994 end-page: 241 article-title: Function of streptokinase fragments in plasminogen activation publication-title: Biochem J – volume: 268 start-page: 26872 year: 1993 end-page: 26878 article-title: Limited proteolysis of triose‐phosphate isomerase and characterization of the catalytically active peptide complex publication-title: J Biol Chem – volume: 251 start-page: 3913 year: 1976 end-page: 3920 article-title: Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product publication-title: J Biol Chem – volume: 33 start-page: 2951 year: 1994 end-page: 2960 article-title: Unfolding studies of the protease domain of urokinase‐type plasminogen activator: The existence of partly folded states and stable subdomains publication-title: Biochemistry – volume: 14 start-page: 9 year: 1992 end-page: 22 article-title: Conformational properties of streptokinase—Secondary structure and localization of aromatic amino acids publication-title: Int J Biol Macromol – volume: 33 start-page: 7957 year: 1994 end-page: 7963 article-title: Generation of a family of protein fragments for structure‐folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor‐2 formed by cleavage at its unique methionine residue publication-title: Biochemistry – volume: 24 start-page: 35 year: 1990 end-page: 41 article-title: Structural‐dynamic and functional properties of native and modified streptokinase publication-title: Molecular Biology (Trans Molek Biol) – volume: 28 start-page: 8588 year: 1989 end-page: 8596 article-title: A simple model for proteins with interacting domains. Applications to scanning calorimetry data publication-title: Biochemistry – volume: 13 start-page: 2063 year: 1974 end-page: 2070 article-title: A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex publication-title: Biochemistry – volume: 264 start-page: 9915 year: 1989 end-page: 9922 article-title: Conformational properties of streptokinase publication-title: J Biol Chem – year: 1982 – volume: 278 start-page: 17 year: 1991 end-page: 22 article-title: Domain interactions in human plasminogen studied by proton NMR publication-title: FEBS Lett – volume: 22 start-page: 41 year: 1995 end-page: 44 article-title: NMR‐study of the reconstitution of the beta‐sheet of thioredoxin by fragment complementation publication-title: Proteins Struct Funct Genet – volume: 25 start-page: 108 year: 1986 end-page: 114 article-title: Active streptokinase from the cloned gene in is without the carboxyl‐terminal 32 residues publication-title: Biochemistry – volume: 266 start-page: 12994 year: 1991 end-page: 13002 article-title: Domain structure and domain‐domain interactions of recombinant tissue plasminogen activator publication-title: J Biol Chem – volume: 31 start-page: 250 year: 1992 end-page: 256 article-title: The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase publication-title: Biochemistry – volume: 20 start-page: 355 year: 1992 end-page: 361 article-title: Streptokinase is a flexible multi‐domain protein publication-title: Eur Biophys J – volume: 33 start-page: 3599 year: 1994 end-page: 3606 article-title: Conformational studies of human plasminogen fragments: Evidence for a novel third conformation of plasminogen publication-title: Biochemistry – volume: 270 start-page: 12355 year: 1995 end-page: 12360 article-title: The role of the lysyl binding site of tissue‐type plasminogen activator in the interaction with a forming fibrin clot publication-title: J Biol Chem – volume: 33 start-page: 167 year: 1979 end-page: 241 article-title: Stability of proteins: Small globular proteins publication-title: Adv Prot Chem – start-page: 143 year: 1987 end-page: 149 – volume: 268 start-page: 8436 year: 1993 end-page: 8446 article-title: Domain structure and domain—domain interactions in human coagulation factor IX publication-title: J Biol Chem – volume: 248 start-page: 414 year: 1995 end-page: 430 article-title: Domain structure, stability and domain—domain interactions in recombinant factor XIII publication-title: J Mol Biol – volume: 270 start-page: 29601 year: 1995 end-page: 29606 article-title: Interaction of streptokinase and plasminogen studied with truncated streptokinase peptides publication-title: J Biol Chem – volume: 229 start-page: 83 year: 1995 end-page: 90 article-title: Structural domains of streptokinase involved in the interaction with plasminogen publication-title: Eur J Biochem – volume: 5 start-page: 693 year: 1996 end-page: 704 article-title: The domain organization of streptokinase: Nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments publication-title: Protein Sci – volume: 43 start-page: 694 year: 1971 end-page: 702 article-title: The mechanism of activation of human plasminogen by streptokinase publication-title: Biochem Biophys Res Commun – volume: 14 start-page: 107 year: 1992 end-page: 116 article-title: Limited proteolysis of streptokinase and properties of some fragments publication-title: Int J Biol Macromol – volume: 34 start-page: 10266 year: 1995 end-page: 10271 article-title: Identification of a plasminogen binding region in streptokinase that is necessary for the creation of a functional streptokinase‐plasminogen activator complex publication-title: Biochemistry – ident: e_1_2_1_23_1 doi: 10.1021/bi00032a021 – ident: e_1_2_1_27_1 doi: 10.1042/bj3040235 – volume: 264 start-page: 9915 year: 1989 ident: e_1_2_1_22_1 article-title: Conformational properties of streptokinase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)81747-1 contributor: fullname: Radek JT – ident: e_1_2_1_31_1 doi: 10.1042/bj2900313 – ident: e_1_2_1_35_1 doi: 10.1074/jbc.270.49.29601 – ident: e_1_2_1_8_1 doi: 10.1021/bi00116a034 – ident: e_1_2_1_9_1 doi: 10.1016/0140-6736(92)91893-D – ident: e_1_2_1_16_1 doi: 10.1016/0141-8130(92)90007-U – volume: 268 start-page: 8436 year: 1993 ident: e_1_2_1_33_1 article-title: Domain structure and domain—domain interactions in human coagulation factor IX publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)52895-7 contributor: fullname: Vysotchin A – ident: e_1_2_1_13_1 doi: 10.1021/bi00178a017 – volume: 251 start-page: 3913 year: 1976 ident: e_1_2_1_28_1 article-title: Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)33335-5 contributor: fullname: Siefring GE – ident: e_1_2_1_11_1 doi: 10.1016/S0022-2836(95)80060-3 – ident: e_1_2_1_15_1 doi: 10.1016/0006-291X(71)90670-X – ident: e_1_2_1_2_1 doi: 10.1074/jbc.270.21.12355 – ident: e_1_2_1_4_1 doi: 10.1021/bi00707a010 – ident: e_1_2_1_5_1 doi: 10.1007/BF00196594 – volume: 24 start-page: 35 year: 1990 ident: e_1_2_1_20_1 article-title: Structural‐dynamic and functional properties of native and modified streptokinase publication-title: Molecular Biology (Trans Molek Biol) contributor: fullname: Pautov VD – ident: e_1_2_1_10_1 doi: 10.1021/bi00349a016 – ident: e_1_2_1_21_1 doi: 10.1016/S0065-3233(08)60460-X – ident: e_1_2_1_19_1 doi: 10.1002/pro.5560050414 – ident: e_1_2_1_34_1 doi: 10.1016/S0141-8130(05)80013-3 – ident: e_1_2_1_30_1 doi: 10.1002/prot.340220106 – ident: e_1_2_1_24_1 doi: 10.1016/0268-9499(94)90016-7 – ident: e_1_2_1_26_1 doi: 10.1016/0003-2697(87)90587-2 – ident: e_1_2_1_6_1 doi: 10.1111/j.1432-1033.1995.0779h.x – volume-title: Streptokinase in chronic arterial diseases year: 1982 ident: e_1_2_1_14_1 contributor: fullname: Martin M. – start-page: 143 volume-title: Streptococcal genetics year: 1987 ident: e_1_2_1_12_1 contributor: fullname: Malke H – ident: e_1_2_1_32_1 doi: 10.1016/0014-5793(91)80073-C – ident: e_1_2_1_25_1 doi: 10.1111/j.1432-1033.1995.0083l.x – ident: e_1_2_1_17_1 doi: 10.1016/S0021-9258(18)98794-6 – ident: e_1_2_1_7_1 doi: 10.1021/bi00191a024 – ident: e_1_2_1_18_1 doi: 10.1021/bi00176a027 – ident: e_1_2_1_3_1 doi: 10.1021/bi00447a048 – volume: 268 start-page: 26872 year: 1993 ident: e_1_2_1_29_1 article-title: Limited proteolysis of triose‐phosphate isomerase and characterization of the catalytically active peptide complex publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)74192-1 contributor: fullname: Sun AQ |
SSID | ssj0004123 |
Score | 1.6668485 |
Snippet | Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial... Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial... Abstract Streptococcus equisimilis streptokinase (SK) is a single‐chain protein of 414 residues that is used extensively in the clinical treatment of acute... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2583 |
SubjectTerms | Circular Dichroism domains Enzyme Stability fibrinolysis Humans Magnetic Resonance Spectroscopy NMR protein fragments Streptococcus streptokinase Streptokinase - chemistry Temperature thermal stability |
Title | Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560051221 https://www.ncbi.nlm.nih.gov/pubmed/8976567 https://search.proquest.com/docview/78638592 https://pubmed.ncbi.nlm.nih.gov/PMC2143313 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6ShZBcSpoH3TYPHUpz8u5KtmT7uCwNeZA2lAZyM5IlJaaxvOxuDvvvM5LXeZBDoAcfLIMsPGPPN_I33wB811SnknIZcTVSUZKX-M4JwyORM2alVhgx_X7H1S9xdpNc3PLbNeBdLUwg7ZeqGriHeuCq-8CtnNblsOOJDa-vJoz6Op94uA7r6KBdit4VQ1LW9o8XNMpikXVKjSPmi9sG3Id4jHKMbsFGhsGYhxbzr2LSO6D5ni_5GseGQHS6DZ9WCJKM25V-hjXjdmB37DB7rpfkBwmczrBZvgObk66f2y4s0CPwK_xAEA8GRuySNJYg_sNjZgzRTS0rN_eDvoBkumj-VQ5jHJkHqqEmaknKahZ4q0RX5f2sqeY1kU4T50WRcbSWd84XRRLM4Ruv5GH24Ob059_JWbTquRCVCJxoZPPYCuUVdyRmJpymlluGEFFSI-PU5ycqsQJRlZdlLsXIYLpnEUeYnKWjXMfxPvRc48wXINIX4SqMfWWKcyc600ayIFBmbSIY68NJ99SLaSutUbQiygzPm-LFUn047oxS4EPzvzSkM83jvEgz_H7wHOfab030PNPKtH1I39ju-bqX1X57Bb0tyGuvvKsPLFj5g7UV139-v5x9_e_bfYOtQAgPTJkD6C1mj-YQ8c5CHSHSP788Cl7-BMu__xs |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItReeLRULK_6gOCUbOLEeRyrFdUC3VKhFvUW2bHdRm2cVTZ7WH49Y2fTBz0gOOTgWHIeM_Z8k3zzGeCDDGXKQ8Y9JgLhxXmJcy5RzEtySjWXAiOm_d4xO06mZ_HXc3a-AWyohXGk_VJUvrmufVNdOm7lvC7HA09sfDKb0NDW-UTjR_AY52sQD0n6UA4Z0n4H-ST0sijJBq3GgNryNp_ZII9xjobb8CTDcMzcJvN3otIDqPmQMXkXybpQdPgMfg4P0TNQrvxlJ_zy1x_6jv_8lM_h6RqckoO--wVsKLMDuwcGE_N6RT4SRxd13-F3YGsybBW3Cx06Gy7w1wShpiPbrkijCUJLPFqliGxqXpmFPWlrU-Zdc1UZDJ9k4ViMkogVKavWUWKJrMrLtqkWNeFGEmP1lvFszS-MrbckrbLJA7rqSzg7_Hw6mXrr7Ry8EjFZ6Ok80omwYj4ckx4WppppiuiTh4pHqU19RKwTBGxW8blMAoWZpEaIonKaBrmMoj3YNI1Rr4BwW98rMKyWKY4dy0wqTp32mdZxQukIPg3mLOa9akfR6zNTbDfFrQuMYH-wdoEvzf4t4UY1y0WRZrg0sRzH2uttfzPS2mdGkN5zipt-q9h9vwdN7JS71yYdAXXu85d7K05-fL9tvf7vy-3D1vR0dlQcfTn-9ga2He_cEXLewmbXLtU7hFWdeO8m0W-cGCAY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB61qdrm0kce6vYVH6r2BAsGDByjbVfpI-mqaqSoF2Rju0EJZsWyh-2v79gsyaY5VMqBAw-Zx4yZb-CbbwDeyVCmPEy4l4hAeHFe4pxjKvFYTqnmUmDEtN87jk_Y0Wn85Sw522j15Uj7pah8c1n7pjp33Mp5XY4Hnth4djyhoa3zicZzqcf34QHO2YANifpQEhnSvos8C70sYtmg1xhQW-LmJzbQY6yj4TY8zDAkJ67R_EZkugU3b7MmN9GsC0fTp_BruJGehXLhLzvhl3_-0Xi8050-gydrkEoO-0Oewz1ldmD30GCCXq_Ie-Joo-57_A48ngwt43ahQ6fDF_0lQcjpSLcr0miCEBOXVikim5pXZmE32hqVeddcVAbDKFk4NqMkYkXKqnXUWCKr8rxtqkVNuJHEWN1l3Frz38bWXZJW2SQCXXYPTqeffk6OvHVbB69EbBZ6Oo80E1bUh2Pyk4SpTjRFFMpDxaPUpkAi1gyBm1V-LlmgMKPUCFVUTtMgl1G0D1umMeoFEG7rfAWG1zLFsWOZScWp00DTOmaUjuDDYNJi3qt3FL1OM8X1prh2gxEcDBYv8KHZvybcqGa5KNIMX1FJjmPt9_a_GmntNyNIbzjG1X6r3H1zD5rZKXivzToC6lzoP9dWzH58v157eefTHcCj2cdp8e3zyddXsO3o546X8xq2unap3iC66sRbN4_-AqpFIpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+of+the+three+domains+of+streptokinase+studied+by+circular+dichroism+and+nuclear+magnetic+resonance&rft.jtitle=Protein+science&rft.au=Conejero-Lara%2C+F&rft.au=Parrado%2C+J&rft.au=Azuaga%2C+A+I&rft.au=Smith%2C+R+A&rft.date=1996-12-01&rft.issn=0961-8368&rft.volume=5&rft.issue=12&rft.spage=2583&rft_id=info:doi/10.1002%2Fpro.5560051221&rft_id=info%3Apmid%2F8976567&rft.externalDocID=8976567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |