Decay of Dissipative Equations and Negative Sobolev Spaces
We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the...
Saved in:
Published in | Communications in partial differential equations Vol. 37; no. 12; pp. 2165 - 2208 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
01.01.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis. |
---|---|
AbstractList | We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis. We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis. [PUBLICATION ABSTRACT] |
Author | Guo, Yan Wang, Yanjin |
Author_xml | – sequence: 1 givenname: Yan surname: Guo fullname: Guo, Yan organization: Division of Applied Mathemathics , Brown University – sequence: 2 givenname: Yanjin surname: Wang fullname: Wang, Yanjin email: yanjinwang@xmu.edu.cn organization: School of Mathematical Sciences , Xiamen University |
BookMark | eNqFkDtPwzAUhS1UJNrCP2CIxMKS4neSLgi15SEhGAqz5Tg2cpXGqZ0U9d-TEFg6wHSvrr5zdO6ZgFHlKg3AJYIzBFN4AwmHjEA8wxDhGc84zvgJGCNGcEwRISMw7pG4Z87AJIQNhCjFGR2D-VIreYiciZY2BFvLxu51tNq13eKqEMmqiF70x3Beu9yVeh-ta6l0OAenRpZBX_zMKXi_X70tHuPn14enxd1zrCihTWwMZkoSCClJeZ4xxg3kJjeqYHludEIVVF06RVDOVaYSzWRKdJbw3DCTJgWZguvBt_Zu1-rQiK0NSpelrLRrg0A8QQyjjCQdenWEblzrqy6dQJRnFLOEpR01HyjlXQheG6Fs8_1v46UtBYKir1X81ir6WsVQayemR-La2630h_9kt4PMVsb5rfx0vixEIw-l88bLStkgyJ8OX0mTjrQ |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2016_01_081 crossref_primary_10_1142_S0218202522500403 crossref_primary_10_1016_j_jde_2015_10_021 crossref_primary_10_1016_j_jde_2022_09_030 crossref_primary_10_1016_j_jde_2016_04_033 crossref_primary_10_1016_j_jmaa_2017_10_047 crossref_primary_10_1016_j_na_2016_04_009 crossref_primary_10_1016_j_jmaa_2021_125273 crossref_primary_10_1137_22M1497857 crossref_primary_10_1088_1361_6544_aa7eff crossref_primary_10_1007_s00205_016_1067_y crossref_primary_10_1007_s00033_016_0685_4 crossref_primary_10_1016_j_na_2021_112385 crossref_primary_10_1016_j_jmaa_2019_02_048 crossref_primary_10_1137_22M1533232 crossref_primary_10_1007_s00033_018_1049_z crossref_primary_10_1016_j_jde_2023_12_042 crossref_primary_10_1016_j_nonrwa_2024_104090 crossref_primary_10_1016_j_jde_2025_01_072 crossref_primary_10_1007_s00021_022_00710_6 crossref_primary_10_1186_s13661_022_01656_4 crossref_primary_10_1002_mma_8371 crossref_primary_10_1007_s10483_018_2380_8 crossref_primary_10_1007_s10955_015_1380_0 crossref_primary_10_1007_s10884_023_10346_3 crossref_primary_10_1016_S0252_9602_16_30123_0 crossref_primary_10_1016_j_nonrwa_2016_09_005 crossref_primary_10_1142_S0218202515500530 crossref_primary_10_1016_j_jmaa_2022_126767 crossref_primary_10_2140_paa_2022_4_85 crossref_primary_10_1016_j_jde_2020_10_021 crossref_primary_10_1007_s00033_016_0658_7 crossref_primary_10_1007_s40840_019_00751_7 crossref_primary_10_1112_jlms_12393 crossref_primary_10_3233_ASY_201616 crossref_primary_10_1080_00036811_2023_2271946 crossref_primary_10_1155_2021_5512285 crossref_primary_10_1016_j_jde_2024_10_026 crossref_primary_10_1016_j_jde_2019_02_002 crossref_primary_10_1007_s11425_022_2130_2 crossref_primary_10_1063_5_0096472 crossref_primary_10_1080_00036811_2016_1165216 crossref_primary_10_1002_mma_4672 crossref_primary_10_1016_j_jde_2024_01_016 crossref_primary_10_1002_mma_6974 crossref_primary_10_3934_cpaa_2022028 crossref_primary_10_1007_s11425_021_1937_9 crossref_primary_10_12677_pm_2024_1410343 crossref_primary_10_1016_j_nonrwa_2020_103103 crossref_primary_10_1016_j_jde_2012_12_007 crossref_primary_10_1007_s11425_015_5013_5 crossref_primary_10_1016_j_jmaa_2019_02_023 crossref_primary_10_1016_S0252_9602_15_30018_7 crossref_primary_10_1137_130925517 crossref_primary_10_1016_j_nonrwa_2013_08_001 crossref_primary_10_1007_s00033_024_02399_1 crossref_primary_10_1137_22M1526162 crossref_primary_10_1016_j_jde_2015_06_008 crossref_primary_10_1007_s10440_020_00342_w crossref_primary_10_1016_j_na_2021_112494 crossref_primary_10_1016_j_jde_2016_12_012 crossref_primary_10_3934_cpaa_2015_14_981 crossref_primary_10_1016_j_jde_2021_03_038 crossref_primary_10_3934_dcds_2016_36_1383 crossref_primary_10_1002_mma_7491 crossref_primary_10_1016_j_aml_2019_106183 crossref_primary_10_1088_1361_6544_abaff0 crossref_primary_10_1137_20M1331202 crossref_primary_10_1007_s10114_017_7344_3 crossref_primary_10_1007_s00021_022_00668_5 crossref_primary_10_3934_math_2021330 crossref_primary_10_3934_krm_2014_7_605 crossref_primary_10_1007_s00021_021_00590_2 crossref_primary_10_1007_s00332_021_09771_9 crossref_primary_10_1142_S0219530520500141 crossref_primary_10_3934_dcds_2017201 crossref_primary_10_1016_j_na_2015_07_028 crossref_primary_10_1007_s00033_016_0762_8 crossref_primary_10_1007_s00033_015_0536_8 crossref_primary_10_1007_s10955_022_03030_1 crossref_primary_10_1007_s11425_020_1719_9 crossref_primary_10_1016_j_jmaa_2017_03_044 crossref_primary_10_1002_mma_5176 crossref_primary_10_1007_s00021_019_0475_9 crossref_primary_10_1515_anona_2021_0219 crossref_primary_10_1007_s10473_019_0212_8 crossref_primary_10_1007_s00033_024_02250_7 crossref_primary_10_1007_s00033_022_01814_9 crossref_primary_10_1016_j_jde_2014_05_056 crossref_primary_10_1016_j_physd_2020_132506 crossref_primary_10_1007_s00021_023_00822_7 crossref_primary_10_1016_j_nonrwa_2022_103582 crossref_primary_10_1063_1_5121247 crossref_primary_10_1007_s00021_022_00660_z crossref_primary_10_1063_5_0082272 crossref_primary_10_1137_130950069 crossref_primary_10_3934_era_2020099 crossref_primary_10_1137_15M1037792 crossref_primary_10_1016_j_jde_2016_07_016 crossref_primary_10_1002_mma_9082 crossref_primary_10_1016_j_jde_2017_04_002 crossref_primary_10_1063_1_4961319 crossref_primary_10_1016_j_jde_2020_11_033 crossref_primary_10_1002_mma_10562 crossref_primary_10_1142_S0219530516500160 crossref_primary_10_1007_s40840_022_01330_z crossref_primary_10_1016_j_nonrwa_2020_103092 crossref_primary_10_1007_s00021_018_0386_1 crossref_primary_10_1007_s10255_023_1070_7 crossref_primary_10_1016_j_nonrwa_2021_103392 crossref_primary_10_1016_j_jde_2022_03_017 crossref_primary_10_1007_s00033_016_0654_y crossref_primary_10_1016_j_jde_2015_04_031 crossref_primary_10_1016_j_jmaa_2023_128021 crossref_primary_10_1137_16M1055104 crossref_primary_10_1016_j_matpur_2022_07_001 crossref_primary_10_1137_22M1504998 crossref_primary_10_1007_s00208_024_02864_2 crossref_primary_10_1080_00036811_2016_1200721 crossref_primary_10_1137_16M1088156 crossref_primary_10_3934_cpaa_2025037 crossref_primary_10_1007_s40818_021_00112_3 crossref_primary_10_1016_j_jde_2017_08_041 crossref_primary_10_1016_j_jmaa_2017_04_053 crossref_primary_10_1016_j_jde_2016_10_015 crossref_primary_10_1137_20M1388309 crossref_primary_10_1007_s00033_020_01407_4 crossref_primary_10_1111_sapm_12655 crossref_primary_10_1016_j_jde_2016_09_026 crossref_primary_10_1063_5_0146449 crossref_primary_10_1007_s00220_017_2844_7 crossref_primary_10_1016_j_jde_2018_09_027 crossref_primary_10_1016_j_jmaa_2014_09_047 crossref_primary_10_3934_math_2022347 crossref_primary_10_1016_j_jmaa_2014_10_050 crossref_primary_10_1112_plms_12616 crossref_primary_10_4236_jamp_2018_611203 crossref_primary_10_1007_s00021_018_0381_6 crossref_primary_10_1007_s00033_024_02215_w crossref_primary_10_1016_j_jde_2018_05_002 crossref_primary_10_1063_1_5133774 crossref_primary_10_1007_s00033_016_0616_4 crossref_primary_10_1007_s00021_021_00599_7 crossref_primary_10_1016_j_na_2019_01_014 crossref_primary_10_3934_dcdsb_2016071 crossref_primary_10_1186_s13661_023_01797_0 crossref_primary_10_1063_1_4967975 crossref_primary_10_58997_ejde_2020_102 crossref_primary_10_1002_zamm_202100359 crossref_primary_10_1007_s00021_023_00820_9 crossref_primary_10_1007_s11425_016_9083_x crossref_primary_10_1515_anona_2024_0037 crossref_primary_10_1016_j_jde_2022_01_053 crossref_primary_10_1155_2021_8636092 crossref_primary_10_1007_s00021_019_0409_6 crossref_primary_10_1088_1742_6596_2964_1_012083 crossref_primary_10_3934_dcds_2017146 crossref_primary_10_1007_s00033_021_01610_x crossref_primary_10_1016_j_jde_2021_05_038 crossref_primary_10_1080_02522667_2017_1386902 crossref_primary_10_1016_j_jde_2016_09_046 crossref_primary_10_1063_5_0135436 crossref_primary_10_1063_5_0175649 crossref_primary_10_1007_s11425_020_1779_7 crossref_primary_10_1016_j_jde_2017_03_015 crossref_primary_10_1016_j_jfa_2014_09_011 crossref_primary_10_1016_j_jmaa_2014_04_008 crossref_primary_10_1515_anona_2020_0184 crossref_primary_10_1007_s00028_024_00943_0 crossref_primary_10_1016_j_aml_2022_107959 crossref_primary_10_1137_22M1477295 crossref_primary_10_1016_j_jde_2012_10_026 crossref_primary_10_1016_j_anihpc_2020_11_004 crossref_primary_10_1016_j_jmaa_2016_02_007 crossref_primary_10_1090_qam_1569 crossref_primary_10_1063_1_4949769 crossref_primary_10_3934_cpaa_2016004 crossref_primary_10_1016_j_jde_2016_11_029 crossref_primary_10_1007_s00033_023_02119_1 crossref_primary_10_1016_j_jde_2022_06_018 crossref_primary_10_1063_5_0046114 crossref_primary_10_1002_mma_5591 crossref_primary_10_1016_j_jde_2024_11_043 crossref_primary_10_1016_j_jde_2019_11_025 crossref_primary_10_3934_dcds_2022066 crossref_primary_10_1137_22M1478859 crossref_primary_10_1007_s00220_019_03415_6 crossref_primary_10_1007_s10473_023_0513_9 crossref_primary_10_1016_j_jmaa_2019_123708 crossref_primary_10_1515_anona_2023_0131 crossref_primary_10_1137_22M1515963 crossref_primary_10_1016_j_aml_2020_106510 crossref_primary_10_1007_s00028_022_00841_3 crossref_primary_10_1007_s00028_016_0333_7 crossref_primary_10_1002_mma_2984 crossref_primary_10_1016_j_jde_2023_08_039 crossref_primary_10_1063_1_5017899 crossref_primary_10_3934_math_2021730 crossref_primary_10_1007_s00332_022_09881_y crossref_primary_10_1016_j_jde_2020_06_021 crossref_primary_10_1007_s40840_022_01355_4 crossref_primary_10_1007_s10473_022_0314_6 crossref_primary_10_3934_krm_2014_7_551 crossref_primary_10_1016_j_nonrwa_2018_01_006 crossref_primary_10_1002_mma_3269 crossref_primary_10_1063_1_4971193 crossref_primary_10_1007_s10114_017_6274_4 crossref_primary_10_1016_j_na_2022_112925 crossref_primary_10_1016_j_nonrwa_2013_07_004 crossref_primary_10_1016_j_jde_2014_12_008 crossref_primary_10_1007_s00028_022_00788_5 crossref_primary_10_1007_s00028_022_00864_w crossref_primary_10_1137_20M1380995 crossref_primary_10_1016_j_jfa_2021_109332 crossref_primary_10_3934_dcds_2016_36_3077 crossref_primary_10_1137_21M1404946 crossref_primary_10_1016_j_jde_2015_09_063 crossref_primary_10_1063_5_0244275 crossref_primary_10_1016_j_jmaa_2023_127580 crossref_primary_10_1016_j_jmaa_2012_09_021 crossref_primary_10_1002_mma_7185 crossref_primary_10_12677_PM_2023_131003 crossref_primary_10_1002_mma_3494 crossref_primary_10_1016_j_jde_2021_04_027 crossref_primary_10_1016_j_jfa_2024_110529 crossref_primary_10_1016_j_jmaa_2020_124641 crossref_primary_10_1016_j_jmaa_2015_01_038 crossref_primary_10_1007_s00033_016_0672_9 crossref_primary_10_1007_s10473_022_0315_5 crossref_primary_10_1007_s12220_023_01418_3 crossref_primary_10_1016_j_aml_2022_108286 crossref_primary_10_1088_1361_6544_ac93e0 crossref_primary_10_1016_j_nonrwa_2021_103313 crossref_primary_10_1016_j_jmaa_2015_02_077 crossref_primary_10_3934_dcds_2016_36_1583 |
Cites_doi | 10.1512/iumj.1995.44.2003 10.1007/s00220-006-0103-4 10.1007/s002200050418 10.1007/BF02570825 10.3792/pja/1195519027 10.1007/s00205-005-0365-6 10.1007/s00205-008-0169-6 10.1512/iumj.2004.53.2574 10.1142/S0219530505000522 10.1007/s000330050049 10.1007/s00222-003-0301-z 10.1007/s002200050543 10.1142/S021820250700208X 10.1007/978-3-642-16830-7 10.1006/jdeq.2002.4158 10.1002/cpa.3160360602 10.1142/S0219530506000784 10.1007/s00205-010-0318-6 10.1007/s00220-010-1142-4 10.1080/03605309308820981 10.1007/s00220-007-0366-4 10.1016/0362-546X(85)90001-X 10.1007/s00205-002-0221-x 10.1002/cpa.20121 10.1215/kjm/1250522322 10.2977/prims/1195190965 10.1002/cpa.10040 10.3792/pjaa.55.337 10.1007/978-1-4419-7049-7 10.1007/s11401-005-0199-4 10.1016/j.physd.2003.07.011 10.1007/s00220-006-0109-y |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor and Francis Group, LLC |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor and Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2012.696296 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 2208 |
ExternalDocumentID | 3160951291 10_1080_03605302_2012_696296 696296 |
Genre | Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE ADYSH AEUMN AFRVT AGCQS AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q VH1 ZY4 7SC 8FD H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c434t-ff25ca3004386b9556f06fbfcd5bbfe74c0c036c31b6c9c7e5a83e976bf5f87d3 |
ISSN | 0360-5302 |
IngestDate | Sun Aug 24 04:12:42 EDT 2025 Wed Aug 13 09:40:06 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 03:00:51 EDT 2025 Wed Dec 25 09:05:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-ff25ca3004386b9556f06fbfcd5bbfe74c0c036c31b6c9c7e5a83e976bf5f87d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1469425758 |
PQPubID | 186205 |
PageCount | 44 |
ParticipantIDs | crossref_citationtrail_10_1080_03605302_2012_696296 crossref_primary_10_1080_03605302_2012_696296 proquest_journals_1469425758 informaworld_taylorfrancis_310_1080_03605302_2012_696296 proquest_miscellaneous_1671521937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0034 CIT0011 CIT0033 Duan R.J. (CIT0005) 2011; 64 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 Matsumura A. (CIT0025) 1980; 20 Taylor M.E. (CIT0031) 2011 Stein E.M. (CIT0029) 1970 Majda A.J. (CIT0022) 2002 CIT0003 CIT0002 CIT0024 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0013 doi: 10.1512/iumj.1995.44.2003 – volume-title: Singular Integrals and Differentiability Properties of Functions year: 1970 ident: CIT0029 – volume-title: Vorticity and Incompressible Flow year: 2002 ident: CIT0022 – ident: CIT0037 doi: 10.1007/s00220-006-0103-4 – ident: CIT0020 doi: 10.1007/s002200050418 – ident: CIT0002 doi: 10.1007/BF02570825 – ident: CIT0032 doi: 10.3792/pja/1195519027 – ident: CIT0017 doi: 10.1007/s00205-005-0365-6 – ident: CIT0015 doi: 10.1007/s00205-008-0169-6 – ident: CIT0010 doi: 10.1512/iumj.2004.53.2574 – volume: 64 start-page: 1497 year: 2011 ident: CIT0005 publication-title: Comm. Pure Appl. Math. – ident: CIT0034 doi: 10.1142/S0219530505000522 – ident: CIT0023 – ident: CIT0014 doi: 10.1007/s000330050049 – ident: CIT0009 doi: 10.1007/s00222-003-0301-z – ident: CIT0019 doi: 10.1007/s002200050543 – ident: CIT0006 doi: 10.1142/S021820250700208X – ident: CIT0001 doi: 10.1007/978-3-642-16830-7 – ident: CIT0018 doi: 10.1006/jdeq.2002.4158 – ident: CIT0028 doi: 10.1002/cpa.3160360602 – ident: CIT0033 doi: 10.1142/S0219530506000784 – ident: CIT0004 doi: 10.1007/s00205-010-0318-6 – ident: CIT0036 doi: 10.1007/s00220-010-1142-4 – ident: CIT0003 doi: 10.1080/03605309308820981 – ident: CIT0007 doi: 10.1007/s00220-007-0366-4 – ident: CIT0027 doi: 10.1016/0362-546X(85)90001-X – ident: CIT0016 doi: 10.1007/s00205-002-0221-x – ident: CIT0011 doi: 10.1002/cpa.20121 – volume: 20 start-page: 67 year: 1980 ident: CIT0025 publication-title: J. Math. Kyoto Univ. doi: 10.1215/kjm/1250522322 – ident: CIT0026 doi: 10.2977/prims/1195190965 – ident: CIT0008 doi: 10.1002/cpa.10040 – ident: CIT0024 doi: 10.3792/pjaa.55.337 – volume-title: Partial Differential Equations III. Nonlinear Equations year: 2011 ident: CIT0031 doi: 10.1007/978-1-4419-7049-7 – ident: CIT0035 doi: 10.1007/s11401-005-0199-4 – ident: CIT0021 doi: 10.1016/j.physd.2003.07.011 – ident: CIT0030 doi: 10.1007/s00220-006-0109-y |
SSID | ssj0018294 |
Score | 2.468029 |
Snippet | We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2165 |
SubjectTerms | Aerodynamics Boltzmann equation Decay Decay rate Derivatives Dissipation Energy method Eulers equations Mathematical analysis Navier-Stokes equations Negative Sobolev space Optimal decay rates Optimization Partial differential equations Sobolev interpolation |
Title | Decay of Dissipative Equations and Negative Sobolev Spaces |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2012.696296 https://www.proquest.com/docview/1469425758 https://www.proquest.com/docview/1671521937 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWK5NIeiq6o27RQgN4CBTIXSewtqB0YReIeIiNuL4RIkQWKwMoi59Cv73CRLMFGulxkm5Ioa-ZxZkjOgtBHxo0GvahhiFMZg8anMWdJEhuVS5PhalyWzttins4W9MuSLTf-8y66pJHH6tfOuJL_4Sq0AV9tlOw_cLbrFBrgO_AXjsBhOP4VjydalW6HfALkc77R9_poerMO7m12TXyuf_jmi1rWV_r-6OLaOmH1bdJBjIh3K7fPcrs3vnqK-6HbfjuXnbVbZv22wddlWHyGpp8ho3dYUHCeGf0FhWKrtkfPwcjHWSWxrTXkNUgrNjEw2qe0aOWqT-bS4gcPpKSvD7ElvoO_IzzBPsA63uHjlKeY78iWPf8qThdnZ6KYLovhWa-dxzaVHlgzMDXexzCHACG4fzKbfL_sNplyzEN2Mf9CbWSlTb2-4y8MLJdBXtstPe6Mk-IZehpmFdGJh8hz9EivXqAn511K3ruX6JMDS1SbqAeWqANLBGCJWrBEASyRB8srtDidFp9ncSicEStKaBMbg5kqidvlTSVnLDVJaqRRFZPS6IyqRMEbKjKWqeIq06zMiQbDVBpm8qwir9Heql7pNyiipSxJWjFCsaRJWXFOucSUGE2V_Rgh0hJFqJBV3hY3uRLjNvlsIKWwpBSelCMUd3dd-6wqf7g-79NbNA6jxsNTkIdvPWh5I8LQvbPzXW6VFctH6LA7DYLV7paVK12v4Zo0s7YtmO9vH-7iHXq8GUYHaK-5Xev3YKk28kNA3G-ExYyt |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CMgADN6KcQWJNSeMjMRuiReXqQpHYItuxGaiaQtNK8Oux46TiECDBFCm2E-f5Xba_fAY4IkwrExeVMXEsfBPxsc9IEPhaxkJHYdrkvEBbdGnnDl_ekwpNOCphlXYOrR1RROGrrXHbxegKEndsvG5gT7uxyKywQRkNGZ2FOcJoZFUdBd3pRkIcspJBKvBtk-rvuW-e8iE6feAu_eKriwB0vgyi6rrDnTw2xrloyNdPrI7_-rYVWCrTU-_U6dMqzKjBGizeTLldR-tw0lKSv3iZ9lpm0ApE9kR57SfHGT7yzKu9rnpwt28zkfXVxLsdWujXBtydt3tnHb88gcGXGOHc1zokkqNiu5AKRgjVAdVCy5QIoVWEZSBNhyVqCiqZjBThMVImwxGa6DhK0SbUBtlAbYGHueCIpgThUOCAp4xhJkKMtMLSXuqAKsknsqQnt6dk9JNmxWJaSiaxkkmcZOrgT1sNHT3HL_Xj94Oa5MWyiHZnmCTo56a7lQIkpZ2P7MSJWa9H4jocTouNhdptFz5Q2djUoZFNkkweuP33tx_AfKd3c51cX3SvdmDBlriFoF2o5c9jtWdSo1zsF8r_Brbt_jM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB5xSCt44FhAlDNI-5puGh-JeUOUirNaCZB4i2zH5gHUFJoiwa_HEycVLFpWgqdIsR07Y89he-YbgF9MWOP0onEsTlXoND4NBYui0OpU2STOO1JW3hZ9fnxNT2_YzZsofnSrxD209UARlaxG5h7mtvGI--2EboTJbtAxK25zwWPBp2GWY5wlBnFE_ck9QhqLGkAqCrFJEzz3j6-8U07voEs_iOpK__QWQTYj924nd-1xqdr65S9Qx-_82hIs1MZpcOBX0zJMmcFPmL-YILuOVmC_a7R8DgobdN2UVf7YTyY4evCI4aPA9Rz0za1_fVmo4t48BZdDdPxaheve0dXhcVjnXwg1JbQMrY2ZlqS6LORKMMZtxK2yOmdKWZNQHWk3YE06imuhE8NkSoyzb5RlNk1ysgYzg2Jg1iGgUknCc0ZorGgkcyGoUDEl1lCNjxaQhvCZrsHJMUfGfdZpMExrymRImcxTpgXhpNXQg3P8p376dk6zsjoUsT6DSUY-b7rVzH9Wc_kIt00CZR5LW7A3KXb8iZcucmCKsavDEzSRnBW48fXed-HHn24vOz_pn23CHBb4U6AtmCkfx2bb2UWl2qmW_iuI0vzX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+Dissipative+Equations+and+Negative+Sobolev+Spaces&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Guo%2C+Yan&rft.au=Wang%2C+Yanjin&rft.date=2012-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=37&rft.issue=12&rft.spage=2165&rft_id=info:doi/10.1080%2F03605302.2012.696296&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3160951291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |