Decay of Dissipative Equations and Negative Sobolev Spaces

We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 37; no. 12; pp. 2165 - 2208
Main Authors Guo, Yan, Wang, Yanjin
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 01.01.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.
AbstractList We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.
We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is applied to classical examples such as the heat equation, the compressible Navier-Stokes equations and the Boltzmann equation. In particular, the optimal decay rates of the higher-order spatial derivatives of solutions are obtained. The negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis. [PUBLICATION ABSTRACT]
Author Guo, Yan
Wang, Yanjin
Author_xml – sequence: 1
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  organization: Division of Applied Mathemathics , Brown University
– sequence: 2
  givenname: Yanjin
  surname: Wang
  fullname: Wang, Yanjin
  email: yanjinwang@xmu.edu.cn
  organization: School of Mathematical Sciences , Xiamen University
BookMark eNqFkDtPwzAUhS1UJNrCP2CIxMKS4neSLgi15SEhGAqz5Tg2cpXGqZ0U9d-TEFg6wHSvrr5zdO6ZgFHlKg3AJYIzBFN4AwmHjEA8wxDhGc84zvgJGCNGcEwRISMw7pG4Z87AJIQNhCjFGR2D-VIreYiciZY2BFvLxu51tNq13eKqEMmqiF70x3Beu9yVeh-ta6l0OAenRpZBX_zMKXi_X70tHuPn14enxd1zrCihTWwMZkoSCClJeZ4xxg3kJjeqYHludEIVVF06RVDOVaYSzWRKdJbw3DCTJgWZguvBt_Zu1-rQiK0NSpelrLRrg0A8QQyjjCQdenWEblzrqy6dQJRnFLOEpR01HyjlXQheG6Fs8_1v46UtBYKir1X81ir6WsVQayemR-La2630h_9kt4PMVsb5rfx0vixEIw-l88bLStkgyJ8OX0mTjrQ
CitedBy_id crossref_primary_10_1016_j_jmaa_2016_01_081
crossref_primary_10_1142_S0218202522500403
crossref_primary_10_1016_j_jde_2015_10_021
crossref_primary_10_1016_j_jde_2022_09_030
crossref_primary_10_1016_j_jde_2016_04_033
crossref_primary_10_1016_j_jmaa_2017_10_047
crossref_primary_10_1016_j_na_2016_04_009
crossref_primary_10_1016_j_jmaa_2021_125273
crossref_primary_10_1137_22M1497857
crossref_primary_10_1088_1361_6544_aa7eff
crossref_primary_10_1007_s00205_016_1067_y
crossref_primary_10_1007_s00033_016_0685_4
crossref_primary_10_1016_j_na_2021_112385
crossref_primary_10_1016_j_jmaa_2019_02_048
crossref_primary_10_1137_22M1533232
crossref_primary_10_1007_s00033_018_1049_z
crossref_primary_10_1016_j_jde_2023_12_042
crossref_primary_10_1016_j_nonrwa_2024_104090
crossref_primary_10_1016_j_jde_2025_01_072
crossref_primary_10_1007_s00021_022_00710_6
crossref_primary_10_1186_s13661_022_01656_4
crossref_primary_10_1002_mma_8371
crossref_primary_10_1007_s10483_018_2380_8
crossref_primary_10_1007_s10955_015_1380_0
crossref_primary_10_1007_s10884_023_10346_3
crossref_primary_10_1016_S0252_9602_16_30123_0
crossref_primary_10_1016_j_nonrwa_2016_09_005
crossref_primary_10_1142_S0218202515500530
crossref_primary_10_1016_j_jmaa_2022_126767
crossref_primary_10_2140_paa_2022_4_85
crossref_primary_10_1016_j_jde_2020_10_021
crossref_primary_10_1007_s00033_016_0658_7
crossref_primary_10_1007_s40840_019_00751_7
crossref_primary_10_1112_jlms_12393
crossref_primary_10_3233_ASY_201616
crossref_primary_10_1080_00036811_2023_2271946
crossref_primary_10_1155_2021_5512285
crossref_primary_10_1016_j_jde_2024_10_026
crossref_primary_10_1016_j_jde_2019_02_002
crossref_primary_10_1007_s11425_022_2130_2
crossref_primary_10_1063_5_0096472
crossref_primary_10_1080_00036811_2016_1165216
crossref_primary_10_1002_mma_4672
crossref_primary_10_1016_j_jde_2024_01_016
crossref_primary_10_1002_mma_6974
crossref_primary_10_3934_cpaa_2022028
crossref_primary_10_1007_s11425_021_1937_9
crossref_primary_10_12677_pm_2024_1410343
crossref_primary_10_1016_j_nonrwa_2020_103103
crossref_primary_10_1016_j_jde_2012_12_007
crossref_primary_10_1007_s11425_015_5013_5
crossref_primary_10_1016_j_jmaa_2019_02_023
crossref_primary_10_1016_S0252_9602_15_30018_7
crossref_primary_10_1137_130925517
crossref_primary_10_1016_j_nonrwa_2013_08_001
crossref_primary_10_1007_s00033_024_02399_1
crossref_primary_10_1137_22M1526162
crossref_primary_10_1016_j_jde_2015_06_008
crossref_primary_10_1007_s10440_020_00342_w
crossref_primary_10_1016_j_na_2021_112494
crossref_primary_10_1016_j_jde_2016_12_012
crossref_primary_10_3934_cpaa_2015_14_981
crossref_primary_10_1016_j_jde_2021_03_038
crossref_primary_10_3934_dcds_2016_36_1383
crossref_primary_10_1002_mma_7491
crossref_primary_10_1016_j_aml_2019_106183
crossref_primary_10_1088_1361_6544_abaff0
crossref_primary_10_1137_20M1331202
crossref_primary_10_1007_s10114_017_7344_3
crossref_primary_10_1007_s00021_022_00668_5
crossref_primary_10_3934_math_2021330
crossref_primary_10_3934_krm_2014_7_605
crossref_primary_10_1007_s00021_021_00590_2
crossref_primary_10_1007_s00332_021_09771_9
crossref_primary_10_1142_S0219530520500141
crossref_primary_10_3934_dcds_2017201
crossref_primary_10_1016_j_na_2015_07_028
crossref_primary_10_1007_s00033_016_0762_8
crossref_primary_10_1007_s00033_015_0536_8
crossref_primary_10_1007_s10955_022_03030_1
crossref_primary_10_1007_s11425_020_1719_9
crossref_primary_10_1016_j_jmaa_2017_03_044
crossref_primary_10_1002_mma_5176
crossref_primary_10_1007_s00021_019_0475_9
crossref_primary_10_1515_anona_2021_0219
crossref_primary_10_1007_s10473_019_0212_8
crossref_primary_10_1007_s00033_024_02250_7
crossref_primary_10_1007_s00033_022_01814_9
crossref_primary_10_1016_j_jde_2014_05_056
crossref_primary_10_1016_j_physd_2020_132506
crossref_primary_10_1007_s00021_023_00822_7
crossref_primary_10_1016_j_nonrwa_2022_103582
crossref_primary_10_1063_1_5121247
crossref_primary_10_1007_s00021_022_00660_z
crossref_primary_10_1063_5_0082272
crossref_primary_10_1137_130950069
crossref_primary_10_3934_era_2020099
crossref_primary_10_1137_15M1037792
crossref_primary_10_1016_j_jde_2016_07_016
crossref_primary_10_1002_mma_9082
crossref_primary_10_1016_j_jde_2017_04_002
crossref_primary_10_1063_1_4961319
crossref_primary_10_1016_j_jde_2020_11_033
crossref_primary_10_1002_mma_10562
crossref_primary_10_1142_S0219530516500160
crossref_primary_10_1007_s40840_022_01330_z
crossref_primary_10_1016_j_nonrwa_2020_103092
crossref_primary_10_1007_s00021_018_0386_1
crossref_primary_10_1007_s10255_023_1070_7
crossref_primary_10_1016_j_nonrwa_2021_103392
crossref_primary_10_1016_j_jde_2022_03_017
crossref_primary_10_1007_s00033_016_0654_y
crossref_primary_10_1016_j_jde_2015_04_031
crossref_primary_10_1016_j_jmaa_2023_128021
crossref_primary_10_1137_16M1055104
crossref_primary_10_1016_j_matpur_2022_07_001
crossref_primary_10_1137_22M1504998
crossref_primary_10_1007_s00208_024_02864_2
crossref_primary_10_1080_00036811_2016_1200721
crossref_primary_10_1137_16M1088156
crossref_primary_10_3934_cpaa_2025037
crossref_primary_10_1007_s40818_021_00112_3
crossref_primary_10_1016_j_jde_2017_08_041
crossref_primary_10_1016_j_jmaa_2017_04_053
crossref_primary_10_1016_j_jde_2016_10_015
crossref_primary_10_1137_20M1388309
crossref_primary_10_1007_s00033_020_01407_4
crossref_primary_10_1111_sapm_12655
crossref_primary_10_1016_j_jde_2016_09_026
crossref_primary_10_1063_5_0146449
crossref_primary_10_1007_s00220_017_2844_7
crossref_primary_10_1016_j_jde_2018_09_027
crossref_primary_10_1016_j_jmaa_2014_09_047
crossref_primary_10_3934_math_2022347
crossref_primary_10_1016_j_jmaa_2014_10_050
crossref_primary_10_1112_plms_12616
crossref_primary_10_4236_jamp_2018_611203
crossref_primary_10_1007_s00021_018_0381_6
crossref_primary_10_1007_s00033_024_02215_w
crossref_primary_10_1016_j_jde_2018_05_002
crossref_primary_10_1063_1_5133774
crossref_primary_10_1007_s00033_016_0616_4
crossref_primary_10_1007_s00021_021_00599_7
crossref_primary_10_1016_j_na_2019_01_014
crossref_primary_10_3934_dcdsb_2016071
crossref_primary_10_1186_s13661_023_01797_0
crossref_primary_10_1063_1_4967975
crossref_primary_10_58997_ejde_2020_102
crossref_primary_10_1002_zamm_202100359
crossref_primary_10_1007_s00021_023_00820_9
crossref_primary_10_1007_s11425_016_9083_x
crossref_primary_10_1515_anona_2024_0037
crossref_primary_10_1016_j_jde_2022_01_053
crossref_primary_10_1155_2021_8636092
crossref_primary_10_1007_s00021_019_0409_6
crossref_primary_10_1088_1742_6596_2964_1_012083
crossref_primary_10_3934_dcds_2017146
crossref_primary_10_1007_s00033_021_01610_x
crossref_primary_10_1016_j_jde_2021_05_038
crossref_primary_10_1080_02522667_2017_1386902
crossref_primary_10_1016_j_jde_2016_09_046
crossref_primary_10_1063_5_0135436
crossref_primary_10_1063_5_0175649
crossref_primary_10_1007_s11425_020_1779_7
crossref_primary_10_1016_j_jde_2017_03_015
crossref_primary_10_1016_j_jfa_2014_09_011
crossref_primary_10_1016_j_jmaa_2014_04_008
crossref_primary_10_1515_anona_2020_0184
crossref_primary_10_1007_s00028_024_00943_0
crossref_primary_10_1016_j_aml_2022_107959
crossref_primary_10_1137_22M1477295
crossref_primary_10_1016_j_jde_2012_10_026
crossref_primary_10_1016_j_anihpc_2020_11_004
crossref_primary_10_1016_j_jmaa_2016_02_007
crossref_primary_10_1090_qam_1569
crossref_primary_10_1063_1_4949769
crossref_primary_10_3934_cpaa_2016004
crossref_primary_10_1016_j_jde_2016_11_029
crossref_primary_10_1007_s00033_023_02119_1
crossref_primary_10_1016_j_jde_2022_06_018
crossref_primary_10_1063_5_0046114
crossref_primary_10_1002_mma_5591
crossref_primary_10_1016_j_jde_2024_11_043
crossref_primary_10_1016_j_jde_2019_11_025
crossref_primary_10_3934_dcds_2022066
crossref_primary_10_1137_22M1478859
crossref_primary_10_1007_s00220_019_03415_6
crossref_primary_10_1007_s10473_023_0513_9
crossref_primary_10_1016_j_jmaa_2019_123708
crossref_primary_10_1515_anona_2023_0131
crossref_primary_10_1137_22M1515963
crossref_primary_10_1016_j_aml_2020_106510
crossref_primary_10_1007_s00028_022_00841_3
crossref_primary_10_1007_s00028_016_0333_7
crossref_primary_10_1002_mma_2984
crossref_primary_10_1016_j_jde_2023_08_039
crossref_primary_10_1063_1_5017899
crossref_primary_10_3934_math_2021730
crossref_primary_10_1007_s00332_022_09881_y
crossref_primary_10_1016_j_jde_2020_06_021
crossref_primary_10_1007_s40840_022_01355_4
crossref_primary_10_1007_s10473_022_0314_6
crossref_primary_10_3934_krm_2014_7_551
crossref_primary_10_1016_j_nonrwa_2018_01_006
crossref_primary_10_1002_mma_3269
crossref_primary_10_1063_1_4971193
crossref_primary_10_1007_s10114_017_6274_4
crossref_primary_10_1016_j_na_2022_112925
crossref_primary_10_1016_j_nonrwa_2013_07_004
crossref_primary_10_1016_j_jde_2014_12_008
crossref_primary_10_1007_s00028_022_00788_5
crossref_primary_10_1007_s00028_022_00864_w
crossref_primary_10_1137_20M1380995
crossref_primary_10_1016_j_jfa_2021_109332
crossref_primary_10_3934_dcds_2016_36_3077
crossref_primary_10_1137_21M1404946
crossref_primary_10_1016_j_jde_2015_09_063
crossref_primary_10_1063_5_0244275
crossref_primary_10_1016_j_jmaa_2023_127580
crossref_primary_10_1016_j_jmaa_2012_09_021
crossref_primary_10_1002_mma_7185
crossref_primary_10_12677_PM_2023_131003
crossref_primary_10_1002_mma_3494
crossref_primary_10_1016_j_jde_2021_04_027
crossref_primary_10_1016_j_jfa_2024_110529
crossref_primary_10_1016_j_jmaa_2020_124641
crossref_primary_10_1016_j_jmaa_2015_01_038
crossref_primary_10_1007_s00033_016_0672_9
crossref_primary_10_1007_s10473_022_0315_5
crossref_primary_10_1007_s12220_023_01418_3
crossref_primary_10_1016_j_aml_2022_108286
crossref_primary_10_1088_1361_6544_ac93e0
crossref_primary_10_1016_j_nonrwa_2021_103313
crossref_primary_10_1016_j_jmaa_2015_02_077
crossref_primary_10_3934_dcds_2016_36_1583
Cites_doi 10.1512/iumj.1995.44.2003
10.1007/s00220-006-0103-4
10.1007/s002200050418
10.1007/BF02570825
10.3792/pja/1195519027
10.1007/s00205-005-0365-6
10.1007/s00205-008-0169-6
10.1512/iumj.2004.53.2574
10.1142/S0219530505000522
10.1007/s000330050049
10.1007/s00222-003-0301-z
10.1007/s002200050543
10.1142/S021820250700208X
10.1007/978-3-642-16830-7
10.1006/jdeq.2002.4158
10.1002/cpa.3160360602
10.1142/S0219530506000784
10.1007/s00205-010-0318-6
10.1007/s00220-010-1142-4
10.1080/03605309308820981
10.1007/s00220-007-0366-4
10.1016/0362-546X(85)90001-X
10.1007/s00205-002-0221-x
10.1002/cpa.20121
10.1215/kjm/1250522322
10.2977/prims/1195190965
10.1002/cpa.10040
10.3792/pjaa.55.337
10.1007/978-1-4419-7049-7
10.1007/s11401-005-0199-4
10.1016/j.physd.2003.07.011
10.1007/s00220-006-0109-y
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor and Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor and Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2012.696296
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 2208
ExternalDocumentID 3160951291
10_1080_03605302_2012_696296
696296
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
ZY4
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c434t-ff25ca3004386b9556f06fbfcd5bbfe74c0c036c31b6c9c7e5a83e976bf5f87d3
ISSN 0360-5302
IngestDate Sun Aug 24 04:12:42 EDT 2025
Wed Aug 13 09:40:06 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 03:00:51 EDT 2025
Wed Dec 25 09:05:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-ff25ca3004386b9556f06fbfcd5bbfe74c0c036c31b6c9c7e5a83e976bf5f87d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1469425758
PQPubID 186205
PageCount 44
ParticipantIDs crossref_citationtrail_10_1080_03605302_2012_696296
crossref_primary_10_1080_03605302_2012_696296
proquest_journals_1469425758
informaworld_taylorfrancis_310_1080_03605302_2012_696296
proquest_miscellaneous_1671521937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0034
CIT0011
CIT0033
Duan R.J. (CIT0005) 2011; 64
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
Matsumura A. (CIT0025) 1980; 20
Taylor M.E. (CIT0031) 2011
Stein E.M. (CIT0029) 1970
Majda A.J. (CIT0022) 2002
CIT0003
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0013
  doi: 10.1512/iumj.1995.44.2003
– volume-title: Singular Integrals and Differentiability Properties of Functions
  year: 1970
  ident: CIT0029
– volume-title: Vorticity and Incompressible Flow
  year: 2002
  ident: CIT0022
– ident: CIT0037
  doi: 10.1007/s00220-006-0103-4
– ident: CIT0020
  doi: 10.1007/s002200050418
– ident: CIT0002
  doi: 10.1007/BF02570825
– ident: CIT0032
  doi: 10.3792/pja/1195519027
– ident: CIT0017
  doi: 10.1007/s00205-005-0365-6
– ident: CIT0015
  doi: 10.1007/s00205-008-0169-6
– ident: CIT0010
  doi: 10.1512/iumj.2004.53.2574
– volume: 64
  start-page: 1497
  year: 2011
  ident: CIT0005
  publication-title: Comm. Pure Appl. Math.
– ident: CIT0034
  doi: 10.1142/S0219530505000522
– ident: CIT0023
– ident: CIT0014
  doi: 10.1007/s000330050049
– ident: CIT0009
  doi: 10.1007/s00222-003-0301-z
– ident: CIT0019
  doi: 10.1007/s002200050543
– ident: CIT0006
  doi: 10.1142/S021820250700208X
– ident: CIT0001
  doi: 10.1007/978-3-642-16830-7
– ident: CIT0018
  doi: 10.1006/jdeq.2002.4158
– ident: CIT0028
  doi: 10.1002/cpa.3160360602
– ident: CIT0033
  doi: 10.1142/S0219530506000784
– ident: CIT0004
  doi: 10.1007/s00205-010-0318-6
– ident: CIT0036
  doi: 10.1007/s00220-010-1142-4
– ident: CIT0003
  doi: 10.1080/03605309308820981
– ident: CIT0007
  doi: 10.1007/s00220-007-0366-4
– ident: CIT0027
  doi: 10.1016/0362-546X(85)90001-X
– ident: CIT0016
  doi: 10.1007/s00205-002-0221-x
– ident: CIT0011
  doi: 10.1002/cpa.20121
– volume: 20
  start-page: 67
  year: 1980
  ident: CIT0025
  publication-title: J. Math. Kyoto Univ.
  doi: 10.1215/kjm/1250522322
– ident: CIT0026
  doi: 10.2977/prims/1195190965
– ident: CIT0008
  doi: 10.1002/cpa.10040
– ident: CIT0024
  doi: 10.3792/pjaa.55.337
– volume-title: Partial Differential Equations III. Nonlinear Equations
  year: 2011
  ident: CIT0031
  doi: 10.1007/978-1-4419-7049-7
– ident: CIT0035
  doi: 10.1007/s11401-005-0199-4
– ident: CIT0021
  doi: 10.1016/j.physd.2003.07.011
– ident: CIT0030
  doi: 10.1007/s00220-006-0109-y
SSID ssj0018294
Score 2.468029
Snippet We develop a general energy method for proving the optimal time decay rates of the solutions to the dissipative equations in the whole space. Our method is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2165
SubjectTerms Aerodynamics
Boltzmann equation
Decay
Decay rate
Derivatives
Dissipation
Energy method
Eulers equations
Mathematical analysis
Navier-Stokes equations
Negative Sobolev space
Optimal decay rates
Optimization
Partial differential equations
Sobolev interpolation
Title Decay of Dissipative Equations and Negative Sobolev Spaces
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2012.696296
https://www.proquest.com/docview/1469425758
https://www.proquest.com/docview/1671521937
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWK5NIeiq6o27RQgN4CBTIXSewtqB0YReIeIiNuL4RIkQWKwMoi59Cv73CRLMFGulxkm5Ioa-ZxZkjOgtBHxo0GvahhiFMZg8anMWdJEhuVS5PhalyWzttins4W9MuSLTf-8y66pJHH6tfOuJL_4Sq0AV9tlOw_cLbrFBrgO_AXjsBhOP4VjydalW6HfALkc77R9_poerMO7m12TXyuf_jmi1rWV_r-6OLaOmH1bdJBjIh3K7fPcrs3vnqK-6HbfjuXnbVbZv22wddlWHyGpp8ho3dYUHCeGf0FhWKrtkfPwcjHWSWxrTXkNUgrNjEw2qe0aOWqT-bS4gcPpKSvD7ElvoO_IzzBPsA63uHjlKeY78iWPf8qThdnZ6KYLovhWa-dxzaVHlgzMDXexzCHACG4fzKbfL_sNplyzEN2Mf9CbWSlTb2-4y8MLJdBXtstPe6Mk-IZehpmFdGJh8hz9EivXqAn511K3ruX6JMDS1SbqAeWqANLBGCJWrBEASyRB8srtDidFp9ncSicEStKaBMbg5kqidvlTSVnLDVJaqRRFZPS6IyqRMEbKjKWqeIq06zMiQbDVBpm8qwir9Heql7pNyiipSxJWjFCsaRJWXFOucSUGE2V_Rgh0hJFqJBV3hY3uRLjNvlsIKWwpBSelCMUd3dd-6wqf7g-79NbNA6jxsNTkIdvPWh5I8LQvbPzXW6VFctH6LA7DYLV7paVK12v4Zo0s7YtmO9vH-7iHXq8GUYHaK-5Xev3YKk28kNA3G-ExYyt
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CMgADN6KcQWJNSeMjMRuiReXqQpHYItuxGaiaQtNK8Oux46TiECDBFCm2E-f5Xba_fAY4IkwrExeVMXEsfBPxsc9IEPhaxkJHYdrkvEBbdGnnDl_ekwpNOCphlXYOrR1RROGrrXHbxegKEndsvG5gT7uxyKywQRkNGZ2FOcJoZFUdBd3pRkIcspJBKvBtk-rvuW-e8iE6feAu_eKriwB0vgyi6rrDnTw2xrloyNdPrI7_-rYVWCrTU-_U6dMqzKjBGizeTLldR-tw0lKSv3iZ9lpm0ApE9kR57SfHGT7yzKu9rnpwt28zkfXVxLsdWujXBtydt3tnHb88gcGXGOHc1zokkqNiu5AKRgjVAdVCy5QIoVWEZSBNhyVqCiqZjBThMVImwxGa6DhK0SbUBtlAbYGHueCIpgThUOCAp4xhJkKMtMLSXuqAKsknsqQnt6dk9JNmxWJaSiaxkkmcZOrgT1sNHT3HL_Xj94Oa5MWyiHZnmCTo56a7lQIkpZ2P7MSJWa9H4jocTouNhdptFz5Q2djUoZFNkkweuP33tx_AfKd3c51cX3SvdmDBlriFoF2o5c9jtWdSo1zsF8r_Brbt_jM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB5xSCt44FhAlDNI-5puGh-JeUOUirNaCZB4i2zH5gHUFJoiwa_HEycVLFpWgqdIsR07Y89he-YbgF9MWOP0onEsTlXoND4NBYui0OpU2STOO1JW3hZ9fnxNT2_YzZsofnSrxD209UARlaxG5h7mtvGI--2EboTJbtAxK25zwWPBp2GWY5wlBnFE_ck9QhqLGkAqCrFJEzz3j6-8U07voEs_iOpK__QWQTYj924nd-1xqdr65S9Qx-_82hIs1MZpcOBX0zJMmcFPmL-YILuOVmC_a7R8DgobdN2UVf7YTyY4evCI4aPA9Rz0za1_fVmo4t48BZdDdPxaheve0dXhcVjnXwg1JbQMrY2ZlqS6LORKMMZtxK2yOmdKWZNQHWk3YE06imuhE8NkSoyzb5RlNk1ysgYzg2Jg1iGgUknCc0ZorGgkcyGoUDEl1lCNjxaQhvCZrsHJMUfGfdZpMExrymRImcxTpgXhpNXQg3P8p376dk6zsjoUsT6DSUY-b7rVzH9Wc_kIt00CZR5LW7A3KXb8iZcucmCKsavDEzSRnBW48fXed-HHn24vOz_pn23CHBb4U6AtmCkfx2bb2UWl2qmW_iuI0vzX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+Dissipative+Equations+and+Negative+Sobolev+Spaces&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Guo%2C+Yan&rft.au=Wang%2C+Yanjin&rft.date=2012-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=37&rft.issue=12&rft.spage=2165&rft_id=info:doi/10.1080%2F03605302.2012.696296&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3160951291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon