Remote ambient methane monitoring using fiber-optically coupled optical sensors
A tunable diode laser absorption spectroscopy system, employing a 2 f wavelength modulation spectroscopy measurement scheme, was developed for remote monitoring of ambient methane fluctuations by way of fiber-optically connected all-optical sensors. Detection of fugitive methane emissions demands a...
Saved in:
Published in | Applied physics. B, Lasers and optics Vol. 119; no. 1; pp. 133 - 142 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A tunable diode laser absorption spectroscopy system, employing a 2
f
wavelength modulation spectroscopy measurement scheme, was developed for remote monitoring of ambient methane fluctuations by way of fiber-optically connected all-optical sensors. Detection of fugitive methane emissions demands a measurement precision less than 2.0 ppm
v
and a lower detection limit less than ~1.7 ppm
v
methane in air. To determine the optimum base system configuration, the influence of the laser driving signal frequency and amplitude was characterized to strike a balance between measurement precision and system sensitivity. In addition, relative to the basic system configuration, a 50 and 96 % reduction in measurement deviation was achieved by way of polarization scrambling and thermal stabilization of critical optical components, respectively. For methane concentrations between 2.0 and 50.0 ppm
v
in air, the laboratory-based system achieved a measured precision of 1.36 ppm
v
and a lower detection limit of 1.56 ppm
v
using a 6.0-m single-mode optical fiber and an averaging time of 1 s. The long-term system stability and system performance were analyzed using datasets acquired 4 and 12 months after the initial system calibration, yielding a difference in measured precision within the uncertainties of the calibration gas mixture. Finally, it was determined that fiber length between individual remote optical sensors can lead to a varying measurement bias, which implies that length-specific calibrations for each remote optical sensor may be required for a field implementation. |
---|---|
AbstractList | A tunable diode laser absorption spectroscopy system, employing a 2
f
wavelength modulation spectroscopy measurement scheme, was developed for remote monitoring of ambient methane fluctuations by way of fiber-optically connected all-optical sensors. Detection of fugitive methane emissions demands a measurement precision less than 2.0 ppm
v
and a lower detection limit less than ~1.7 ppm
v
methane in air. To determine the optimum base system configuration, the influence of the laser driving signal frequency and amplitude was characterized to strike a balance between measurement precision and system sensitivity. In addition, relative to the basic system configuration, a 50 and 96 % reduction in measurement deviation was achieved by way of polarization scrambling and thermal stabilization of critical optical components, respectively. For methane concentrations between 2.0 and 50.0 ppm
v
in air, the laboratory-based system achieved a measured precision of 1.36 ppm
v
and a lower detection limit of 1.56 ppm
v
using a 6.0-m single-mode optical fiber and an averaging time of 1 s. The long-term system stability and system performance were analyzed using datasets acquired 4 and 12 months after the initial system calibration, yielding a difference in measured precision within the uncertainties of the calibration gas mixture. Finally, it was determined that fiber length between individual remote optical sensors can lead to a varying measurement bias, which implies that length-specific calibrations for each remote optical sensor may be required for a field implementation. A tunable diode laser absorption spectroscopy system, employing a 2f wavelength modulation spectroscopy measurement scheme, was developed for remote monitoring of ambient methane fluctuations by way of fiber-optically connected all-optical sensors. Detection of fugitive methane emissions demands a measurement precision less than 2.0 ppm sub(v) and a lower detection limit less than ~1.7 ppm sub(v) methane in air. To determine the optimum base system configuration, the influence of the laser driving signal frequency and amplitude was characterized to strike a balance between measurement precision and system sensitivity. In addition, relative to the basic system configuration, a 50 and 96 % reduction in measurement deviation was achieved by way of polarization scrambling and thermal stabilization of critical optical components, respectively. For methane concentrations between 2.0 and 50.0 ppm sub(v) in air, the laboratory-based system achieved a measured precision of 1.36 ppm sub(v) and a lower detection limit of 1.56 ppm sub(v) using a 6.0-m single-mode optical fiber and an averaging time of 1 s. The long-term system stability and system performance were analyzed using datasets acquired 4 and 12 months after the initial system calibration, yielding a difference in measured precision within the uncertainties of the calibration gas mixture. Finally, it was determined that fiber length between individual remote optical sensors can lead to a varying measurement bias, which implies that length-specific calibrations for each remote optical sensor may be required for a field implementation. |
Author | Johnson, Matthew R. Schoonbaert, Stephen B. Tyner, David R. |
Author_xml | – sequence: 1 givenname: Stephen B. surname: Schoonbaert fullname: Schoonbaert, Stephen B. organization: Energy and Emissions Research Lab, Mechanical and Aerospace Engineering, Carleton University – sequence: 2 givenname: David R. surname: Tyner fullname: Tyner, David R. organization: Energy and Emissions Research Lab, Mechanical and Aerospace Engineering, Carleton University – sequence: 3 givenname: Matthew R. surname: Johnson fullname: Johnson, Matthew R. email: Matthew_Johnson@carleton.ca organization: Energy and Emissions Research Lab, Mechanical and Aerospace Engineering, Carleton University |
BookMark | eNp9kE1LxDAQhoOs4O7qD_DWo5fo5KNpe5TFL1hYED2HJJ1qlzapSXvYf2-XenYOMzC878vMsyErHzwScsvgngEUDwlASKDAJFUAjMIFWTMpOAUlqxVZQyUV5axgV2ST0hHmUmW5Jod37MOImelti37Mehy_jcesD74dQ2z9Vzalc29ai5GGYWyd6bpT5sI0dFhnf5ssoU8hpmty2Zgu4c3f3JLP56eP3SvdH17edo976qSQI0VTiqJhFvOCmTpXxsq8KJw1dc2BgXBCGWlzKCyvXS5lDlY0FZairvIm50psyd2SO8TwM2Eadd8mh103Hx-mpJkq50DBeTlL2SJ1MaQUsdFDbHsTT5qBPsPTCzw9w9NneBpmD188aTgzwKiPYYp-_ugf0y-RnXSA |
CitedBy_id | crossref_primary_10_1088_1755_1315_558_4_042037 crossref_primary_10_1016_j_materresbull_2017_01_032 crossref_primary_10_1007_s11706_021_0580_6 crossref_primary_10_1016_j_physe_2021_114866 crossref_primary_10_1039_C6RA01913G crossref_primary_10_1016_j_jqsrt_2017_04_030 crossref_primary_10_1364_OL_497052 crossref_primary_10_1021_acs_analchem_9b04708 crossref_primary_10_1016_j_ceramint_2019_03_250 crossref_primary_10_1016_j_snb_2020_129286 crossref_primary_10_1016_j_vacuum_2022_111149 crossref_primary_10_1021_acs_analchem_5b04298 crossref_primary_10_1364_OE_389746 crossref_primary_10_1016_j_jallcom_2020_157169 crossref_primary_10_1364_OE_27_004648 crossref_primary_10_1016_j_optlaseng_2018_10_013 crossref_primary_10_1080_00268976_2020_1856429 crossref_primary_10_3389_fchem_2018_00194 crossref_primary_10_3390_s22166139 crossref_primary_10_3390_s23031163 |
Cites_doi | 10.1109/68.145278 10.1364/AO.42.006728 10.1117/12.599837 10.1364/OL.39.004796 10.1364/AO.43.006500 10.1007/BF00691764 10.1364/OE.22.013170 10.1016/j.jqsrt.2009.02.013 10.1088/1464-4258/5/5/355 10.1364/AO.40.001011 10.1364/JOSAB.15.000006 10.1364/OL.38.000434 10.1364/AO.45.001052 10.1016/j.atmosenv.2012.01.057 10.1016/j.jqsrt.2013.07.002 10.1088/0957-0233/15/8/034 10.1016/S0925-4005(98)00199-3 10.1016/j.snb.2012.06.071 10.1016/j.saa.2003.10.013 10.1016/j.cplett.2011.05.052 10.1109/68.887743 10.3155/1047-3289.58.8.1047 10.1016/S0045-6535(97)00236-1 10.1364/AO.48.005546 10.1364/OE.18.020059 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 |
Copyright_xml | – notice: The Author(s) 2015 |
DBID | C6C AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1007/s00340-014-6001-0 |
DatabaseName | Springer_OA刊 CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0649 |
EndPage | 142 |
ExternalDocumentID | 10_1007_s00340_014_6001_0 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G8K GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZE2 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AGRTI AIGIU CITATION H13 7SP 7U5 8FD AAYZH H8D L7M |
ID | FETCH-LOGICAL-c434t-ea837f1be571ad56ab4577cbadd20103c36a4b507b2dc54450b3f9e83d95f5263 |
IEDL.DBID | C6C |
ISSN | 0946-2171 |
IngestDate | Thu Oct 24 23:19:41 EDT 2024 Thu Sep 12 18:19:25 EDT 2024 Sat Dec 16 12:02:05 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Measurement Standard Deviation Tunable Diode Laser Absorption Spectroscopy Fugitive Emission Wavelength Modulation Spectroscopy Methane Concentration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-ea837f1be571ad56ab4577cbadd20103c36a4b507b2dc54450b3f9e83d95f5263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s00340-014-6001-0 |
PQID | 1685773228 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1685773228 crossref_primary_10_1007_s00340_014_6001_0 springer_journals_10_1007_s00340_014_6001_0 |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | Lasers and Optics |
PublicationTitle | Applied physics. B, Lasers and optics |
PublicationTitleAbbrev | Appl. Phys. B |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | KirchgessnerDALottRACowgillRMHarrisonMRShiresTMChemosphere199735136510.1016/S0045-6535(97)00236-1 CAPPBest management practice: management of fugitive emissions at upstream oil and gas facilities2007Calgary, ABCanadian Association of Petroleum Producers (CAPP) TaiHYamamotoKUchidaMOsawaSUeharaKIEEE Photonics Technol. Lett.1992480410.1109/68.1452781992IPTL....4..804T ChanKItoHInabaHFuruyaTAppl. Phys. B1985381110.1007/BF006917641985ApPhB..38...11C WhitenettGStewartGAthertonKCulshawBJohnstoneWJ. Opt. A: Pure Appl. Opt.20035S14010.1088/1464-4258/5/5/3552003JOptA...5S.140W ChambersAKStrosherMWoottonTMoncrieffJMcCreadyPJ. Air Waste Manag. Assoc.200858104710.3155/1047-3289.58.8.1047 CaoYJinWHoHLMaJOpt. Lett.20133843410.1364/OL.38.0004342013OptL...38..434C YeJMaL-SHallJLJ. Opt. Soc. Am. B199815610.1364/JOSAB.15.0000061998OSAJB..15....6Y UsEPAVOC fugitive losses: new monitors, emission losses, and potential policy gaps2006Washington, D.C.United States Environmental Protection Agency (US EPA)303 HeYKanREnglichFVLiuWOrrBJOpt. Express2010182005910.1364/OE.18.020059 LoockH-PWentzellPDSensors Actuators B Chem.201217315710.1016/j.snb.2012.06.071 G. Stewart, W. Johnstone, G. Thursby, B. Culshaw, in Proceeding of SPIE 7675, Photonics Transp. Ind. Auto to Aerosp. III, ed by A.A. Kazemi, B.C. Kress, E.Y. Chan (Orlando, FL, 2010), pp. 1–9 LiuJTCJeffriesJBHansonRKAppl. Opt.200443650010.1364/AO.43.0065002004ApOpt..43.6500L WerlePMazzinghiPD’AmatoFDe RosaMMaurerKSlemrFSpectrochim. Acta. A Mol. Biomol. Spectrosc.200460168510.1016/j.saa.2003.10.0132004AcSpA..60.1685W S. Li, Optical fiber gas sensor for remote detection of methane gas in coal mines, Ph.D. Thesis, Stevens Institute of Technology (2006) JoynesIMProof-of-concept inverse micro-scale dispersion modelling for fugitive emissions quantification in industrial facilities2013OttawaCarleton University SchiltSThévenazLRobertPAppl. Opt.200342672810.1364/AO.42.0067282003ApOpt..42.6728S ChambersPAustinEADDakinJPMeas. Sci. Tech.200415162910.1088/0957-0233/15/8/0342004MeScT..15.1629C J.N. Carras, P.M. Franklin, Y. Hu, A.K. Singh, O.V. Tailakov, D. Picard, F.M.A. Azhari, E. Gjerald, S. Nordrum, I. Yesserkepova, in 2006 IPCC Guildelines Natl. Greenh. Gas Invent. Vol. 2 Energy, ed. by S. Eggleston, L. Buendia, K. Miwa, T. Mgara, K. Tanabe (Intergovernmental Panel on Climate Change (IPCC), Hayama Japan, 2006), pp. 4.1–4.78 T. Zhang, W. Wang, L. Gao, T. Koscica, and D. Li, in Proceeding of SPIE 8417, 6th Int. Symp. Adv. Opt. Manuf. Test. Technol. Opt. Test Meas. Technol. Equip. (2012), pp. 1–6 StewartGTandyCMoodieDMoranteMADongFSensors Actuators B Chem.19985122710.1016/S0925-4005(98)00199-3 HoHLJinWYuHBChanKCChanCCDemokanMSIEEE Photonics Technol. Lett.200012154610.1109/68.8877432000IPTL...12.1549H HeYJinCKanRLiuJLiuWHillJJamieIMOrrBJOpt. Express2014221317010.1364/OE.22.0131702014OExpr..2213170H UNFCCC. http://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php. Accessed 27 October 2014 (2014) BreretonCAJohnsonMRAtmos. Environ.2012514610.1016/j.atmosenv.2012.01.0572012AtmEn..51...46B RothmanLSGordonIEBarbeABennerDCBernathPFBirkMBoudonVBrownLRCampargueAChampionJ-PJ. Quant. Spectrosc. Radiat. Transf.200911053310.1016/j.jqsrt.2009.02.0132009JQSRT.110..533R LiHRiekerGBLiuXJeffriesJBHansonRKAppl. Opt.200645105210.1364/AO.45.0010522006ApOpt..45.1052L UsEPAAlternative work practice to detect leaks from equipment2008Washington, D.C.United States Environmental Protection Agency (US EPA) OrrBJHeYChem. Phys. Lett.2011512110.1016/j.cplett.2011.05.0522011CPL...512....1O L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013) YuHBJinWHoHLChanKCChanCCDemokanMSStewartGCulshawBLiaoYBAppl. Opt.200140101110.1364/AO.40.0010112001ApOpt..40.1011Y RiekerGBJeffriesJBHansonRKAppl. Opt.200948554610.1364/AO.48.005546 US EPA, Method 21—determination of volatile organic compound leaks (n.d.), pp. 4–10 BauerRStewartGJohnstoneWBoydELengdenMOpt. Lett.201439479610.1364/OL.39.004796 AK Chambers (6001_CR3) 2008; 58 G Stewart (6001_CR26) 1998; 51 CA Brereton (6001_CR9) 2012; 51 LS Rothman (6001_CR27) 2009; 110 H-P Loock (6001_CR34) 2012; 173 Y He (6001_CR23) 2014; 22 H Li (6001_CR28) 2006; 45 6001_CR4 6001_CR18 6001_CR19 6001_CR6 EPA Us (6001_CR8) 2008 P Chambers (6001_CR30) 2004; 15 6001_CR7 GB Rieker (6001_CR29) 2009; 48 S Schilt (6001_CR32) 2003; 42 HB Yu (6001_CR17) 2001; 40 H Tai (6001_CR21) 1992; 4 6001_CR15 6001_CR13 R Bauer (6001_CR20) 2014; 39 P Werle (6001_CR33) 2004; 60 BJ Orr (6001_CR11) 2011; 512 CAPP (6001_CR5) 2007 J Ye (6001_CR24) 1998; 15 Y Cao (6001_CR22) 2013; 38 Y He (6001_CR12) 2010; 18 EPA Us (6001_CR1) 2006 JTC Liu (6001_CR31) 2004; 43 HL Ho (6001_CR16) 2000; 12 IM Joynes (6001_CR10) 2013 DA Kirchgessner (6001_CR2) 1997; 35 G Whitenett (6001_CR25) 2003; 5 K Chan (6001_CR14) 1985; 38 |
References_xml | – volume: 4 start-page: 804 year: 1992 ident: 6001_CR21 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/68.145278 contributor: fullname: H Tai – volume: 42 start-page: 6728 year: 2003 ident: 6001_CR32 publication-title: Appl. Opt. doi: 10.1364/AO.42.006728 contributor: fullname: S Schilt – ident: 6001_CR15 doi: 10.1117/12.599837 – volume: 39 start-page: 4796 year: 2014 ident: 6001_CR20 publication-title: Opt. Lett. doi: 10.1364/OL.39.004796 contributor: fullname: R Bauer – volume: 43 start-page: 6500 year: 2004 ident: 6001_CR31 publication-title: Appl. Opt. doi: 10.1364/AO.43.006500 contributor: fullname: JTC Liu – volume: 38 start-page: 11 year: 1985 ident: 6001_CR14 publication-title: Appl. Phys. B doi: 10.1007/BF00691764 contributor: fullname: K Chan – volume: 22 start-page: 13170 year: 2014 ident: 6001_CR23 publication-title: Opt. Express doi: 10.1364/OE.22.013170 contributor: fullname: Y He – ident: 6001_CR18 – ident: 6001_CR7 – volume: 110 start-page: 533 year: 2009 ident: 6001_CR27 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2009.02.013 contributor: fullname: LS Rothman – volume: 5 start-page: S140 year: 2003 ident: 6001_CR25 publication-title: J. Opt. A: Pure Appl. Opt. doi: 10.1088/1464-4258/5/5/355 contributor: fullname: G Whitenett – volume: 40 start-page: 1011 year: 2001 ident: 6001_CR17 publication-title: Appl. Opt. doi: 10.1364/AO.40.001011 contributor: fullname: HB Yu – volume: 15 start-page: 6 year: 1998 ident: 6001_CR24 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.15.000006 contributor: fullname: J Ye – start-page: 303 volume-title: VOC fugitive losses: new monitors, emission losses, and potential policy gaps year: 2006 ident: 6001_CR1 contributor: fullname: EPA Us – volume: 38 start-page: 434 year: 2013 ident: 6001_CR22 publication-title: Opt. Lett. doi: 10.1364/OL.38.000434 contributor: fullname: Y Cao – volume: 45 start-page: 1052 year: 2006 ident: 6001_CR28 publication-title: Appl. Opt. doi: 10.1364/AO.45.001052 contributor: fullname: H Li – volume: 51 start-page: 46 year: 2012 ident: 6001_CR9 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.01.057 contributor: fullname: CA Brereton – ident: 6001_CR13 doi: 10.1016/j.jqsrt.2013.07.002 – volume: 15 start-page: 1629 year: 2004 ident: 6001_CR30 publication-title: Meas. Sci. Tech. doi: 10.1088/0957-0233/15/8/034 contributor: fullname: P Chambers – volume-title: Proof-of-concept inverse micro-scale dispersion modelling for fugitive emissions quantification in industrial facilities year: 2013 ident: 6001_CR10 contributor: fullname: IM Joynes – volume: 51 start-page: 227 year: 1998 ident: 6001_CR26 publication-title: Sensors Actuators B Chem. doi: 10.1016/S0925-4005(98)00199-3 contributor: fullname: G Stewart – volume: 173 start-page: 157 year: 2012 ident: 6001_CR34 publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2012.06.071 contributor: fullname: H-P Loock – volume: 60 start-page: 1685 year: 2004 ident: 6001_CR33 publication-title: Spectrochim. Acta. A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2003.10.013 contributor: fullname: P Werle – volume: 512 start-page: 1 year: 2011 ident: 6001_CR11 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.05.052 contributor: fullname: BJ Orr – volume: 12 start-page: 1546 year: 2000 ident: 6001_CR16 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/68.887743 contributor: fullname: HL Ho – volume: 58 start-page: 1047 year: 2008 ident: 6001_CR3 publication-title: J. Air Waste Manag. Assoc. doi: 10.3155/1047-3289.58.8.1047 contributor: fullname: AK Chambers – ident: 6001_CR4 – volume: 35 start-page: 1365 year: 1997 ident: 6001_CR2 publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00236-1 contributor: fullname: DA Kirchgessner – ident: 6001_CR19 – ident: 6001_CR6 – volume: 48 start-page: 5546 year: 2009 ident: 6001_CR29 publication-title: Appl. Opt. doi: 10.1364/AO.48.005546 contributor: fullname: GB Rieker – volume-title: Best management practice: management of fugitive emissions at upstream oil and gas facilities year: 2007 ident: 6001_CR5 contributor: fullname: CAPP – volume-title: Alternative work practice to detect leaks from equipment year: 2008 ident: 6001_CR8 contributor: fullname: EPA Us – volume: 18 start-page: 20059 year: 2010 ident: 6001_CR12 publication-title: Opt. Express doi: 10.1364/OE.18.020059 contributor: fullname: Y He |
SSID | ssj0000688 |
Score | 2.291997 |
Snippet | A tunable diode laser absorption spectroscopy system, employing a 2
f
wavelength modulation spectroscopy measurement scheme, was developed for remote... A tunable diode laser absorption spectroscopy system, employing a 2f wavelength modulation spectroscopy measurement scheme, was developed for remote monitoring... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 133 |
SubjectTerms | Calibration Engineering Fiber optics Lasers Methane Optical Devices Optical fibers Optical sensors Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Strikes Systems stability |
Title | Remote ambient methane monitoring using fiber-optically coupled optical sensors |
URI | https://link.springer.com/article/10.1007/s00340-014-6001-0 https://search.proquest.com/docview/1685773228 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ohqAH0ak4f4wInpRA26RpexxjcygqiIN5Ck2aetnasW4H_3tfulbn0IOXHkoIzZcf772-730BuOZREFvREur4hlHuqYgqoxJqzU3K3CR1XFso_PgkhiN-P_bHlVi0rYXZyN9bsU9mCYgup6Jk_2xDE01waNlbPdFbO3TLKyYxWBEUvWy3TmD-1sVPE_TtV26kQksLMziA_co1JN3VXB7ClslasLcmGNiCnZKwqYsjeH4xCLIh8VTZikZib4KOM0Om5R61rYmltL-T1FJCaD4r_1lPPojOl7OJSUj1hhQYx-bz4hhGg_5rb0iryxGo5owvqIkxtExdZfzAjRNfxIr7QaAVnlc2wc00EzFX6O0pL9FWccdRLI1MyJLIT31PsBNoZHlmToFoFjMhAi3S0OOJwBgoZCJl2gkSh2tXt-GmxkvOVhoY8kvtuARXIrjSgiudNlzViEpcqTb9gKPPl4V0RYhfiAdI2IbbGmpZbZni7x7P_tX6HHZx_P6KXHMBjcV8aS7Rb1ioDjS7d28P_U65cvA58rqfLsS7FA |
link.rule.ids | 315,783,787,27936,27937,41093,41132,41535,42162,42201,42604,51588,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH7RiagH0ak4PyN4UgJt89H2KMMxdZsgG-wWkjT1srVj3Q7-e5Ou0zn04LWEkD5N3o--T54X4JbGoXSiJdhjhmAaqBgroxLs3E1K_CT1fHdRuNvj7QF9HrJhJRbt7sKs1e-d2CdxBESfYl6yfzZhiwbWa7m6LG-uGN2yxaRNVji2Uba_LGD-NsVPF_QdV66VQksP0zqA_So0RA-Lb3kIGyarw96KYGAdtkvCpi6O4PXNWJANkmPlbjQi1wlaZgaNyzPqRiNHaX9HqaOE4HxS_rMefSCdzycjk6DqCSpsHptPi2MYtB77zTaumiNgTQmdYSNtapn6yrDQlwnjUlEWhlpZe-UK3EQTLqmy0Z4KEu0UdzxF0thEJIlZygJOTqCW5Zk5BaSJJJyHmqdRQBNuc6CI8JRoL0w8qn3dgLslXmKy0MAQX2rHJbjCgiscuMJrwM0SUWF3qis_2LfP54XweWRXaA1I1ID7JdSiOjLF3zOe_Wv0Ney0-92O6Dz1Xs5h12LBFkSbC6jNpnNzaWOImboqd88no0S7bw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsQwDLVgEAgO7IhhDRInUIZ2kqadIwKGfRECCU6h2TgA7Yh2DvD1JF3YBAfEtYqixE4cu35-BlinnTB2pCXYCzTBtC06WGihsHtuDPGV8XxXKHx6xg6u6dFNcFP1Oc1qtHudkixrGhxLU5Jv9ZTZei98c7QqDlBFMSswQYMwRB0xUgOGtvdvj_c-GeOi9aQNYhi23rdfJzZ_muTr0_Thb35LkRYvT3cC7uo1l4CTh1Y_Fy35-o3O8R-bmoTxyitF2-UxmoIBnUzD2CeuwmkYLrCiMpuB80tt9atR_CRcMSVyTajjRKOnwjy40cih6e-RcWgUnPaK3-WPL0im_d6jVqj6gjIbQqfP2Sxcd_eudg5w1ZcBS0pojnVso1rjCx2EfqwCFgsahKEU1lS63DqRhMVUWEdTtJV0ZD-eIKajI6I6gQnajMxBI0kTPQ9IkpgwFkpmojZVzIZfEWGGSC9UHpW-bMJGrRLeK-k3-DvRciEvbuXFnby414S1WmncXhKX-bC7T_sZ91lkV2htV9SEzVoRvLqt2e8zLvxp9CqMXOx2-cnh2fEijFpRBCXEZwka-XNfL1vvJRcr1Ql9A8gv5Sc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+ambient+methane+monitoring+using+fiber-optically+coupled+optical+sensors&rft.jtitle=Applied+physics.+B%2C+Lasers+and+optics&rft.au=Schoonbaert%2C+Stephen+B&rft.au=Tyner%2C+David+R&rft.au=Johnson%2C+Matthew+R&rft.date=2015-04-01&rft.issn=0946-2171&rft.eissn=1432-0649&rft.volume=119&rft.issue=1&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1007%2Fs00340-014-6001-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-2171&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-2171&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-2171&client=summon |