A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline

Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 17; no. 2; pp. 1142 - 115
Main Authors Zhao, Jinfeng, Chen, Junsheng, Cui, Yanling, Wang, Jing, Xia, Lixin, Dai, Yumei, Song, Peng, Ma, Fengcai
Format Journal Article
LanguageEnglish
Published England 14.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem. B , 1998, 102 , 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol −1 ) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol −1 ) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated.
AbstractList Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem. B , 1998, 102 , 1053). Instead of the formation of keto–enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol −1 ) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol −1 ) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol super(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol super(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem. B , 1998, 102 , 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol −1 ) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol −1 ) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated.
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.
Author Dai, Yumei
Chen, Junsheng
Ma, Fengcai
Song, Peng
Zhao, Jinfeng
Cui, Yanling
Xia, Lixin
Wang, Jing
AuthorAffiliation Chinese Academy of Sciences
Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials
Liaoning University
College of Physics and College of Chemistry
Shenyang University
Normal College
State Key Lab of Molecular Reaction Dynamics
Dalian Institute of Chemical Physics
AuthorAffiliation_xml – name: Shenyang University
– name: Dalian Institute of Chemical Physics
– name: Liaoning University
– name: College of Physics and College of Chemistry
– name: Chinese Academy of Sciences
– name: State Key Lab of Molecular Reaction Dynamics
– name: Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials
– name: Normal College
Author_xml – sequence: 1
  givenname: Jinfeng
  surname: Zhao
  fullname: Zhao, Jinfeng
– sequence: 2
  givenname: Junsheng
  surname: Chen
  fullname: Chen, Junsheng
– sequence: 3
  givenname: Yanling
  surname: Cui
  fullname: Cui, Yanling
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 5
  givenname: Lixin
  surname: Xia
  fullname: Xia, Lixin
– sequence: 6
  givenname: Yumei
  surname: Dai
  fullname: Dai, Yumei
– sequence: 7
  givenname: Peng
  surname: Song
  fullname: Song, Peng
– sequence: 8
  givenname: Fengcai
  surname: Ma
  fullname: Ma, Fengcai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25418334$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLxDAQB_Agio_Vi3el3kSoJk3SZo9L8QWCHhSPJU0nGGmTNWlh99ubfbiCiHhJQvjNkPznAG1bZwGhY4IvCabjK8XUFDNCud5C-4TlNB1jwbY35yLfQwchvGOMCSd0F-1lnBFBKdtHr5PkY4DQG2dl3UICM2V6aNLQyx6Sxg3xMp161zub9F7aoMEnHag3aU3oEu18QtO3eePdbG6C-xiMda2xcIh2tGwDHK33EXq5uX4u79KHx9v7cvKQKkZZn0LBqaozrjEUYwqcCM1rCSyuXBGZKS5oLgqd10Q0hWhACAyUai4IyVQm6Qidr_rGNy4_UnUmKGhbacENoSI5Hxe5wDz_DyUsyyjHkZ6u6VB30FRTbzrp59VXbhFcrIDyLgQPekMIrhZDqUpWPi2HchMx_oFjxnIReUzUtL-XnK1KfFCb1t9zrqaNjubkL0M_AU4To7s
CitedBy_id crossref_primary_10_1016_j_jlumin_2018_10_077
crossref_primary_10_1002_poc_3729
crossref_primary_10_1007_s11224_018_1161_x
crossref_primary_10_1016_j_comptc_2018_03_016
crossref_primary_10_1016_j_cplett_2019_03_050
crossref_primary_10_1039_C7QO00398F
crossref_primary_10_1039_C9RA04258J
crossref_primary_10_1016_j_molliq_2017_09_019
crossref_primary_10_1007_s10876_015_0893_7
crossref_primary_10_1039_D4RA03443K
crossref_primary_10_1016_j_chemphys_2022_111568
crossref_primary_10_1039_C9CP03752G
crossref_primary_10_1007_s11224_020_01648_z
crossref_primary_10_1002_poc_4020
crossref_primary_10_1021_acsomega_0c02393
crossref_primary_10_1016_j_cplett_2017_10_008
crossref_primary_10_1016_j_orgel_2020_105678
crossref_primary_10_1002_poc_3857
crossref_primary_10_3390_molecules28165951
crossref_primary_10_1016_j_saa_2016_01_025
crossref_primary_10_1016_j_cplett_2022_140217
crossref_primary_10_1002_jccs_201900202
crossref_primary_10_1039_C8QO00688A
crossref_primary_10_1002_poc_4029
crossref_primary_10_1016_j_molliq_2024_124336
crossref_primary_10_1021_acs_jpca_7b01404
crossref_primary_10_1002_poc_3855
crossref_primary_10_1016_j_cplett_2025_142021
crossref_primary_10_1063_1674_0068_cjcp2109163
crossref_primary_10_1039_C6RA26038A
crossref_primary_10_1038_s41598_017_01780_7
crossref_primary_10_1002_jccs_201800380
crossref_primary_10_1002_poc_4033
crossref_primary_10_1016_j_jlumin_2017_11_026
crossref_primary_10_1016_j_jphotochem_2024_116027
crossref_primary_10_1016_j_saa_2017_11_021
crossref_primary_10_1016_j_saa_2019_117416
crossref_primary_10_1002_jccs_201800021
crossref_primary_10_1016_j_chemphys_2021_111280
crossref_primary_10_1515_phys_2016_0067
crossref_primary_10_1039_C5NJ01869B
crossref_primary_10_1021_acs_jpca_5b10180
crossref_primary_10_1016_j_jlumin_2020_117698
crossref_primary_10_1039_C5RA14601A
crossref_primary_10_1002_poc_3828
crossref_primary_10_1515_phys_2016_0071
crossref_primary_10_1007_s00214_016_1827_7
crossref_primary_10_1021_acs_jpca_7b07753
crossref_primary_10_1016_j_comptc_2015_10_020
crossref_primary_10_1039_C7RA05976K
crossref_primary_10_1002_poc_4116
crossref_primary_10_1088_1674_1056_ab8208
crossref_primary_10_1002_poc_3821
crossref_primary_10_1002_poc_3942
crossref_primary_10_1016_j_molstruc_2021_130859
crossref_primary_10_1021_acs_jpca_9b05163
crossref_primary_10_1039_C5RA23261A
crossref_primary_10_1016_j_molliq_2016_09_088
crossref_primary_10_1021_acs_jpca_7b11571
crossref_primary_10_1016_j_jlumin_2021_118260
crossref_primary_10_1016_j_molstruc_2024_139985
crossref_primary_10_1002_jccs_201900401
crossref_primary_10_1016_j_molliq_2021_115309
crossref_primary_10_1002_jccs_201800175
crossref_primary_10_1016_j_colsurfa_2024_134327
crossref_primary_10_1016_j_cplett_2022_139465
crossref_primary_10_1016_j_cplett_2023_140607
crossref_primary_10_1016_j_jlumin_2017_03_056
crossref_primary_10_1007_s00214_016_1986_6
crossref_primary_10_1016_j_chemphys_2019_110553
crossref_primary_10_1016_j_molliq_2023_123765
crossref_primary_10_1016_j_jlumin_2020_117329
crossref_primary_10_1002_poc_4003
crossref_primary_10_1002_poc_4002
crossref_primary_10_1039_C7NJ01325F
crossref_primary_10_1016_j_cplett_2024_141564
crossref_primary_10_1080_00268976_2023_2298241
crossref_primary_10_1002_poc_3954
crossref_primary_10_1016_j_saa_2022_122141
crossref_primary_10_1002_poc_3832
crossref_primary_10_1021_acsabm_9b00818
crossref_primary_10_1016_j_saa_2019_04_053
crossref_primary_10_1021_acs_jpca_7b10492
crossref_primary_10_1039_C8CP05716H
crossref_primary_10_1080_00268976_2024_2370431
crossref_primary_10_1002_poc_4010
crossref_primary_10_1002_jccs_201800045
crossref_primary_10_1021_acs_jpcc_9b01044
crossref_primary_10_1039_D2CP03828E
crossref_primary_10_1002_poc_3803
crossref_primary_10_1002_poc_3924
crossref_primary_10_1007_s00214_017_2088_9
crossref_primary_10_1007_s00214_015_1664_0
crossref_primary_10_1016_j_chemphys_2021_111376
crossref_primary_10_1002_poc_4341
crossref_primary_10_1016_j_saa_2018_04_048
crossref_primary_10_1016_j_saa_2017_06_052
crossref_primary_10_1139_cjc_2017_0463
crossref_primary_10_1038_s41598_017_12146_4
crossref_primary_10_1039_C9NJ05055H
crossref_primary_10_1007_s11224_018_1116_2
crossref_primary_10_1002_poc_4109
crossref_primary_10_1021_acsabm_9b00477
crossref_primary_10_1039_D0NJ01651A
crossref_primary_10_1016_j_cplett_2022_139789
crossref_primary_10_1039_C7QO00367F
crossref_primary_10_1002_jccs_202200405
crossref_primary_10_1016_j_jlumin_2017_06_061
crossref_primary_10_1039_C7QO01076A
crossref_primary_10_1080_00268976_2020_1730990
crossref_primary_10_1039_C8QO00628H
crossref_primary_10_1039_C9QO00634F
crossref_primary_10_1002_jccs_201700446
crossref_primary_10_1002_cjoc_202000604
crossref_primary_10_1002_poc_3931
crossref_primary_10_1002_jccs_202200093
crossref_primary_10_1021_acs_jpca_3c08021
crossref_primary_10_1016_j_saa_2020_119394
crossref_primary_10_1016_j_molliq_2020_113295
crossref_primary_10_1016_j_jlumin_2019_01_057
crossref_primary_10_1016_j_molliq_2020_114145
crossref_primary_10_1016_j_cplett_2020_137896
crossref_primary_10_1007_s10876_016_1122_8
crossref_primary_10_1002_poc_3901
crossref_primary_10_1016_j_jlumin_2018_04_064
crossref_primary_10_1016_j_saa_2019_117321
crossref_primary_10_1016_j_chemphys_2019_110488
crossref_primary_10_1002_poc_4432
crossref_primary_10_1002_poc_4552
crossref_primary_10_1016_j_molliq_2018_04_060
crossref_primary_10_1002_slct_202000550
crossref_primary_10_1002_poc_4320
crossref_primary_10_1016_j_jlumin_2019_116913
crossref_primary_10_1016_j_cplett_2019_06_047
crossref_primary_10_1016_j_cplett_2021_138377
crossref_primary_10_1002_jccs_201900061
crossref_primary_10_1016_j_molliq_2017_11_121
crossref_primary_10_1002_poc_3911
crossref_primary_10_1007_s00214_019_2512_4
crossref_primary_10_1016_j_saa_2018_08_054
crossref_primary_10_1016_j_cplett_2019_136815
crossref_primary_10_1016_j_jlumin_2021_118231
crossref_primary_10_1002_poc_4566
crossref_primary_10_1007_s10876_016_1090_z
crossref_primary_10_1016_j_cplett_2022_140194
crossref_primary_10_1016_j_molstruc_2023_135738
crossref_primary_10_1063_1674_0068_cjcp2111251
crossref_primary_10_1016_j_saa_2020_118719
crossref_primary_10_1021_acs_jpca_7b09593
crossref_primary_10_1039_C6CP07716A
crossref_primary_10_1016_j_chemphys_2020_111081
crossref_primary_10_1021_acs_jpca_7b08266
crossref_primary_10_1016_j_saa_2020_119375
crossref_primary_10_1016_j_saa_2015_06_098
crossref_primary_10_1016_j_saa_2023_122475
crossref_primary_10_1063_4_0000095
crossref_primary_10_1038_srep25568
crossref_primary_10_1002_poc_3684
crossref_primary_10_1016_j_saa_2021_120296
crossref_primary_10_1002_jccs_202400174
crossref_primary_10_1002_jccs_201900032
crossref_primary_10_1016_j_cclet_2022_107940
crossref_primary_10_1039_D2CP04315G
crossref_primary_10_1007_s10876_018_1388_0
crossref_primary_10_1016_j_jphotochem_2020_112753
crossref_primary_10_1016_j_saa_2015_08_028
crossref_primary_10_1002_jccs_201800311
crossref_primary_10_1016_j_jlumin_2022_118914
crossref_primary_10_1016_j_jphotochem_2021_113690
crossref_primary_10_1016_j_jlumin_2017_09_051
crossref_primary_10_1002_masy_202100375
crossref_primary_10_1002_poc_3455
crossref_primary_10_1021_acs_jpca_4c04647
crossref_primary_10_1039_C8RA05812A
crossref_primary_10_1039_C8RA05945D
crossref_primary_10_1016_j_saa_2021_119854
crossref_primary_10_1002_jccs_201700253
crossref_primary_10_1016_j_jiec_2021_04_022
crossref_primary_10_1002_jccs_202200293
crossref_primary_10_1021_acs_jpca_8b04150
crossref_primary_10_1080_00268976_2021_2007307
crossref_primary_10_1038_s41598_020_61804_7
crossref_primary_10_1002_jccs_202000121
crossref_primary_10_1007_s11224_018_1165_6
crossref_primary_10_1002_jccs_202000244
crossref_primary_10_1002_jccs_201800208
crossref_primary_10_1016_j_jphotochem_2018_09_012
crossref_primary_10_1039_C6RA11140H
crossref_primary_10_1080_00268976_2020_1805130
crossref_primary_10_1002_poc_4510
crossref_primary_10_1039_C4CP05651E
crossref_primary_10_1002_jccs_202200255
crossref_primary_10_1016_j_molliq_2016_05_029
crossref_primary_10_1016_j_dyepig_2017_02_047
crossref_primary_10_1038_srep44897
crossref_primary_10_1080_00268976_2024_2304104
crossref_primary_10_1016_j_molliq_2018_03_094
crossref_primary_10_1016_j_chemphys_2019_01_008
crossref_primary_10_1021_acsabm_0c01579
crossref_primary_10_1039_C8NJ01162A
crossref_primary_10_1016_j_cplett_2020_137226
crossref_primary_10_1016_j_saa_2019_117800
crossref_primary_10_1016_j_saa_2018_10_015
crossref_primary_10_1016_j_molliq_2017_06_118
crossref_primary_10_1016_j_saa_2019_117487
crossref_primary_10_1016_j_jlumin_2020_117840
crossref_primary_10_1080_00268976_2019_1662958
crossref_primary_10_1080_07391102_2019_1707121
crossref_primary_10_1016_j_jlumin_2016_11_024
crossref_primary_10_1016_j_chemphys_2022_111761
crossref_primary_10_1016_j_jlumin_2018_06_027
crossref_primary_10_1002_poc_4402
crossref_primary_10_1016_j_dyepig_2015_05_030
crossref_primary_10_1002_jccs_201900140
crossref_primary_10_1016_j_chemphys_2022_111513
crossref_primary_10_1016_j_molstruc_2024_139474
crossref_primary_10_1039_D3CP05837A
crossref_primary_10_3390_molecules28020695
crossref_primary_10_1007_s00894_020_04411_7
crossref_primary_10_1002_jccs_201700350
crossref_primary_10_1080_00268976_2024_2346634
crossref_primary_10_1139_cjc_2017_0533
crossref_primary_10_1080_00268976_2024_2341980
crossref_primary_10_1016_j_comptc_2021_113486
crossref_primary_10_1016_j_saa_2019_117359
crossref_primary_10_1016_j_jphotochem_2019_111874
crossref_primary_10_1016_j_saa_2015_10_038
crossref_primary_10_1007_s10876_017_1232_y
crossref_primary_10_1016_j_jlumin_2022_119016
crossref_primary_10_1007_s00214_020_02696_8
crossref_primary_10_1016_j_jlumin_2023_119772
crossref_primary_10_1007_s00894_024_06029_5
crossref_primary_10_1016_j_molliq_2017_03_038
crossref_primary_10_1021_acs_jpca_9b08646
crossref_primary_10_1016_j_jlumin_2024_120495
crossref_primary_10_1080_00268976_2023_2262062
crossref_primary_10_1088_1674_1056_aba9bb
crossref_primary_10_1021_acsabm_9b00088
crossref_primary_10_1002_jccs_201900480
crossref_primary_10_1002_poc_3894
crossref_primary_10_1139_cjc_2017_0628
crossref_primary_10_1016_j_saa_2021_119810
crossref_primary_10_1039_C9CP05704H
crossref_primary_10_1002_poc_4195
crossref_primary_10_1002_poc_4075
crossref_primary_10_1016_j_cplett_2020_137816
crossref_primary_10_1002_poc_3781
crossref_primary_10_1088_1674_1056_ab4042
crossref_primary_10_1021_acs_jpca_3c02560
crossref_primary_10_1021_jp5120459
crossref_primary_10_1016_j_saa_2023_122814
crossref_primary_10_1016_j_jlumin_2017_07_024
crossref_primary_10_1002_poc_3868
crossref_primary_10_1002_poc_3989
crossref_primary_10_1142_S0219633617500730
crossref_primary_10_1002_poc_3867
crossref_primary_10_1039_C6RA26470K
crossref_primary_10_1039_C9CP06307B
crossref_primary_10_1007_s00214_015_1802_8
crossref_primary_10_1016_j_molstruc_2017_10_079
crossref_primary_10_1021_acs_jpca_5b09430
crossref_primary_10_1016_j_saa_2018_11_021
crossref_primary_10_1016_j_cplett_2021_138409
crossref_primary_10_1002_poc_4162
crossref_primary_10_1002_poc_4283
crossref_primary_10_1139_cjp_2018_0503
crossref_primary_10_1002_jccs_201800490
crossref_primary_10_1039_D4CP02077D
crossref_primary_10_1021_acs_langmuir_2c00677
crossref_primary_10_1016_j_saa_2015_02_098
crossref_primary_10_1021_acs_jpca_7b04051
crossref_primary_10_1039_C6RA16907D
crossref_primary_10_1002_jccs_201800256
crossref_primary_10_1080_00268976_2016_1213436
crossref_primary_10_1016_j_jlumin_2020_117800
crossref_primary_10_1016_j_cplett_2019_07_012
crossref_primary_10_1002_jccs_201900224
crossref_primary_10_1016_j_cplett_2024_141369
crossref_primary_10_1016_j_saa_2021_120383
crossref_primary_10_1016_j_cplett_2024_141245
crossref_primary_10_1002_poc_3756
crossref_primary_10_1002_poc_3513
crossref_primary_10_1016_j_saa_2024_125493
crossref_primary_10_1016_j_molliq_2020_114886
crossref_primary_10_1016_j_molliq_2021_117539
crossref_primary_10_1002_poc_4054
crossref_primary_10_1039_C9NJ01503E
crossref_primary_10_1088_1674_1056_ac21c2
crossref_primary_10_1021_acs_jpca_0c10799
crossref_primary_10_1021_acs_jpca_5b03557
crossref_primary_10_1080_1062936X_2019_1701075
Cites_doi 10.1021/jp983201m
10.1073/pnas.91.18.8627
10.1039/b913336d
10.1021/ja077831q
10.1021/ja111657j
10.1021/j100339a030
10.1021/ja065170b
10.1021/ar200135h
10.1002/jcc.20957
10.1039/a902565k
10.1021/ja401360a
10.1002/jcc.540161202
10.1016/j.jphotochemrev.2010.02.002
10.1021/cr980069d
10.1016/j.jphotochemrev.2008.12.001
10.1021/ja037607a
10.1021/jp0734530
10.1039/j29670000590
10.1103/PhysRevB.37.785
10.1021/jp971959k
10.1039/b924549a
10.1063/1.472651
10.1016/0009-2614(89)87234-3
10.1016/j.jphotochemrev.2007.03.002
10.1021/jo051766q
10.1080/0144235X.2013.811891
10.1002/cphc.200800371
10.1366/0003702944924880
10.1021/jp037312j
10.1021/jp9032172
10.1021/jp973173s
10.1063/1.1508368
10.1021/ja202582x
10.1038/lsa.2013.68
10.1039/c1jm00071c
10.1016/j.saa.2014.04.116
10.1021/jp961081h
10.1021/jo201290a
10.1063/1.464913
10.1039/c1cp21470e
10.1111/j.1751-1097.1995.tb03949.x
10.1016/S0009-2614(02)00546-8
10.1021/jp801811e
10.1016/j.bmcl.2008.11.060
10.1021/jp903200x
10.1038/srep00647
10.1107/S056774087400447X
10.1021/ja010791k
10.1016/j.tet.2004.08.045
10.1002/jcc.21498
10.1021/jp903638n
10.1021/ct900216m
10.1021/jp0719659
10.1039/b816589k
10.1366/0003702914337317
10.4236/cc.2013.11001
10.1063/1.463096
10.1063/1.467146
10.1366/0003702914336589
10.1529/biophysj.107.113738
10.1063/1.474659
10.1063/1.2145747
10.1038/382522a0
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c4cp04135f
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 115
ExternalDocumentID 25418334
10_1039_C4CP04135F
c4cp04135f
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c434t-e753cb25f0e793e518f5bae4f5b5c1a2c583687f6b18d78de880e33f58112c2a3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 01:45:07 EDT 2025
Thu Jul 10 22:41:14 EDT 2025
Mon Jul 21 05:50:09 EDT 2025
Tue Jul 01 02:45:50 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Thu May 19 04:27:12 EDT 2016
Sun Jun 02 15:22:32 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-e753cb25f0e793e518f5bae4f5b5c1a2c583687f6b18d78de880e33f58112c2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25418334
PQID 1651422350
PQPubID 23500
PageCount 9
ParticipantIDs rsc_primary_c4cp04135f
pubmed_primary_25418334
crossref_primary_10_1039_C4CP04135F
crossref_citationtrail_10_1039_C4CP04135F
proquest_miscellaneous_1651422350
proquest_miscellaneous_1659768056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-14
PublicationDateYYYYMMDD 2015-01-14
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2015
References Cances (C4CP04135F-(cit57)/*[position()=1]) 1997; 107
Cammi (C4CP04135F-(cit58)/*[position()=1]) 1995; 16
Sobolewski (C4CP04135F-(cit63)/*[position()=1]) 1999; 1
Xu (C4CP04135F-(cit20)/*[position()=1]) 2011; 21
Schafer (C4CP04135F-(cit53)/*[position()=1]) 1992; 97
Serrano (C4CP04135F-(cit64)/*[position()=1]) 2009; 10
Sags (C4CP04135F-(cit65)/*[position()=1]) 2010; 11
Kubo (C4CP04135F-(cit29)/*[position()=1]) 1996; 382
Li (C4CP04135F-(cit19)/*[position()=1]) 2011; 13
Weller (C4CP04135F-(cit25)/*[position()=1]) 1956; 60
Zhao (C4CP04135F-(cit9)/*[position()=1]) 2008; 29
Evans (C4CP04135F-(cit45)/*[position()=1]) 1967
Zhao (C4CP04135F-(cit61)/*[position()=1]) 2007; 111
Song (C4CP04135F-(cit67)/*[position()=1]) 2013; 32
Chai (C4CP04135F-(cit27)/*[position()=1]) 2009; 11
Liu (C4CP04135F-(cit43)/*[position()=1]) 2013; 1
Furche (C4CP04135F-(cit62)/*[position()=1]) 2002; 117
Dybala (C4CP04135F-(cit22)/*[position()=1]) 2004; 108
Sun (C4CP04135F-(cit14)/*[position()=1]) 2012; 2
Li (C4CP04135F-(cit18)/*[position()=1]) 2010; 31
Chen (C4CP04135F-(cit32)/*[position()=1]) 2013; 10
Kwok (C4CP04135F-(cit1)/*[position()=1]) 2008; 130
Han (C4CP04135F-(cit4)/*[position()=1]) 1996; 105
Catalan (C4CP04135F-(cit36)/*[position()=1]) 1995; 61
Chou (C4CP04135F-(cit42)/*[position()=1]) 1999; 103
Keck (C4CP04135F-(cit38)/*[position()=1]) 1996; 100
Becke (C4CP04135F-(cit50)/*[position()=1]) 1993; 98
Hendricks (C4CP04135F-(cit46)/*[position()=1]) 2009; 19
Mennucci (C4CP04135F-(cit56)/*[position()=1]) 1997; 101
Zhao (C4CP04135F-(cit60)/*[position()=1]) 2008; 9
Zhao (C4CP04135F-(cit10)/*[position()=1]) 2008; 94
Wen (C4CP04135F-(cit16)/*[position()=1]) 2004; 60
Miehlich (C4CP04135F-(cit52)/*[position()=1]) 1989; 157
Han (C4CP04135F-(cit24)/*[position()=1]) 2007; 8
Mehata (C4CP04135F-(cit41)/*[position()=1]) 2008; 112
Ma (C4CP04135F-(cit34)/*[position()=1]) 2002; 358
Yu (C4CP04135F-(cit31)/*[position()=1]) 2013; 20
Miertus (C4CP04135F-(cit59)/*[position()=1]) 1981; 55
Plasser (C4CP04135F-(cit26)/*[position()=1]) 2009; 113
Schafer (C4CP04135F-(cit54)/*[position()=1]) 1994; 100
Sun (C4CP04135F-(cit39)/*[position()=1]) 2013; 2
Chou (C4CP04135F-(cit35)/*[position()=1]) 1991; 45
Jaramillo (C4CP04135F-(cit21)/*[position()=1]) 2009; 113
Peng (C4CP04135F-(cit17)/*[position()=1]) 2005; 70
Lee (C4CP04135F-(cit51)/*[position()=1]) 1988; 37
Zhao (C4CP04135F-(cit11)/*[position()=1]) 2010; 12
Zhao (C4CP04135F-(cit13)/*[position()=1]) 2014; 131
Zhao (C4CP04135F-(cit66)/*[position()=1]) 2012; 45
Chou (C4CP04135F-(cit33)/*[position()=1]) 1994; 48
Sicinska (C4CP04135F-(cit8)/*[position()=1]) 2001; 123
Chou (C4CP04135F-(cit37)/*[position()=1]) 1991; 45
Wei (C4CP04135F-(cit49)/*[position()=1]) 1998; 102
Yu (C4CP04135F-(cit30)/*[position()=1]) 2011; 133
Suh (C4CP04135F-(cit3)/*[position()=1]) 2004; 126
Nimlos (C4CP04135F-(cit48)/*[position()=1]) 1989; 93
Kumari (C4CP04135F-(cit15)/*[position()=1]) 2011; 76
Ammon (C4CP04135F-(cit44)/*[position()=1]) 1974; 30
Sun (C4CP04135F-(cit12)/*[position()=1]) 2006; 124
Li (C4CP04135F-(cit5)/*[position()=1]) 2011; 133
Allan (C4CP04135F-(cit47)/*[position()=1]) 2009; 7
Zhao (C4CP04135F-(cit2)/*[position()=1]) 2009; 5
Zhao (C4CP04135F-(cit6)/*[position()=1]) 2007; 111
Pietrzak (C4CP04135F-(cit23)/*[position()=1]) 2007; 129
Zhao (C4CP04135F-(cit7)/*[position()=1]) 2009; 113
C4CP04135F-(cit40)/*[position()=1]
Sytnik (C4CP04135F-(cit28)/*[position()=1]) 1994; 91
References_xml – issn: 2010
  publication-title: Gaussian Inc.
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox
– volume: 103
  start-page: 1939
  year: 1999
  ident: C4CP04135F-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp983201m
– volume: 91
  start-page: 8627
  year: 1994
  ident: C4CP04135F-(cit28)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.18.8627
– volume: 7
  start-page: 4960
  year: 2009
  ident: C4CP04135F-(cit47)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b913336d
– volume: 130
  start-page: 5131
  year: 2008
  ident: C4CP04135F-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077831q
– volume: 133
  start-page: 7416
  year: 2011
  ident: C4CP04135F-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111657j
– volume: 93
  start-page: 643
  year: 1989
  ident: C4CP04135F-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100339a030
– volume: 129
  start-page: 296
  year: 2007
  ident: C4CP04135F-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065170b
– volume: 45
  start-page: 404
  year: 2012
  ident: C4CP04135F-(cit66)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200135h
– volume: 29
  start-page: 2010
  year: 2008
  ident: C4CP04135F-(cit9)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20957
– volume: 55
  start-page: 117
  year: 1981
  ident: C4CP04135F-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 3065
  year: 1999
  ident: C4CP04135F-(cit63)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a902565k
– volume: 20
  start-page: 7674
  year: 2013
  ident: C4CP04135F-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401360a
– volume: 16
  start-page: 1449
  year: 1995
  ident: C4CP04135F-(cit58)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540161202
– volume: 11
  start-page: 15
  year: 2010
  ident: C4CP04135F-(cit65)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2010.02.002
– ident: C4CP04135F-(cit40)/*[position()=1]
  doi: 10.1021/cr980069d
– volume: 10
  start-page: 21
  year: 2009
  ident: C4CP04135F-(cit64)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2008.12.001
– volume: 10
  start-page: 1039
  year: 2013
  ident: C4CP04135F-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
– volume: 126
  start-page: 2186
  year: 2004
  ident: C4CP04135F-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037607a
– volume: 111
  start-page: 8940
  year: 2007
  ident: C4CP04135F-(cit6)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0734530
– start-page: 590
  year: 1967
  ident: C4CP04135F-(cit45)/*[position()=1]
  publication-title: J. Chem. Soc. B
  doi: 10.1039/j29670000590
– volume: 37
  start-page: 785
  year: 1988
  ident: C4CP04135F-(cit51)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 101
  start-page: 10506
  year: 1997
  ident: C4CP04135F-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp971959k
– volume: 12
  start-page: 8914
  year: 2010
  ident: C4CP04135F-(cit11)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b924549a
– volume: 105
  start-page: 8699
  year: 1996
  ident: C4CP04135F-(cit4)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472651
– volume: 157
  start-page: 200
  year: 1989
  ident: C4CP04135F-(cit52)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)87234-3
– volume: 8
  start-page: 55
  year: 2007
  ident: C4CP04135F-(cit24)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2007.03.002
– volume: 70
  start-page: 10524
  year: 2005
  ident: C4CP04135F-(cit17)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo051766q
– volume: 32
  start-page: 589
  year: 2013
  ident: C4CP04135F-(cit67)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2013.811891
– volume: 9
  start-page: 1842
  year: 2008
  ident: C4CP04135F-(cit60)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800371
– volume: 48
  start-page: 604
  year: 1994
  ident: C4CP04135F-(cit33)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702944924880
– volume: 108
  start-page: 2475
  year: 2004
  ident: C4CP04135F-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp037312j
– volume: 113
  start-page: 8490
  year: 2009
  ident: C4CP04135F-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9032172
– volume: 102
  start-page: 1053
  year: 1998
  ident: C4CP04135F-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973173s
– volume: 117
  start-page: 7433
  year: 2002
  ident: C4CP04135F-(cit62)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1508368
– volume: 133
  start-page: 11030
  year: 2011
  ident: C4CP04135F-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja202582x
– volume: 2
  start-page: e112
  year: 2013
  ident: C4CP04135F-(cit39)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2013.68
– volume: 21
  start-page: 7572
  year: 2011
  ident: C4CP04135F-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm00071c
– volume: 60
  start-page: 1144
  year: 1956
  ident: C4CP04135F-(cit25)/*[position()=1]
  publication-title: Z. Elektrochem.
– volume: 131
  start-page: 282
  year: 2014
  ident: C4CP04135F-(cit13)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2014.04.116
– volume: 100
  start-page: 144468
  year: 1996
  ident: C4CP04135F-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp961081h
– volume: 76
  start-page: 8215
  year: 2011
  ident: C4CP04135F-(cit15)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo201290a
– volume: 98
  start-page: 5648
  year: 1993
  ident: C4CP04135F-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 13
  start-page: 20766
  year: 2011
  ident: C4CP04135F-(cit19)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21470e
– volume: 61
  start-page: 118
  year: 1995
  ident: C4CP04135F-(cit36)/*[position()=1]
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1995.tb03949.x
– volume: 358
  start-page: 24
  year: 2002
  ident: C4CP04135F-(cit34)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00546-8
– volume: 112
  start-page: 8383
  year: 2008
  ident: C4CP04135F-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp801811e
– volume: 19
  start-page: 410
  year: 2009
  ident: C4CP04135F-(cit46)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2008.11.060
– volume: 113
  start-page: 14329
  year: 2009
  ident: C4CP04135F-(cit7)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp903200x
– volume: 2
  start-page: 647
  year: 2012
  ident: C4CP04135F-(cit14)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00647
– volume: 30
  start-page: 1146
  year: 1974
  ident: C4CP04135F-(cit44)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
  doi: 10.1107/S056774087400447X
– volume: 123
  start-page: 7683
  year: 2001
  ident: C4CP04135F-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010791k
– volume: 60
  start-page: 11109
  year: 2004
  ident: C4CP04135F-(cit16)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2004.08.045
– volume: 31
  start-page: 1759
  year: 2010
  ident: C4CP04135F-(cit18)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21498
– volume: 113
  start-page: 12485
  year: 2009
  ident: C4CP04135F-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp903638n
– volume: 5
  start-page: 1955
  year: 2009
  ident: C4CP04135F-(cit2)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900216m
– volume: 111
  start-page: 9218
  year: 2007
  ident: C4CP04135F-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0719659
– volume: 11
  start-page: 4385
  year: 2009
  ident: C4CP04135F-(cit27)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b816589k
– volume: 45
  start-page: 513
  year: 1991
  ident: C4CP04135F-(cit35)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702914337317
– volume: 1
  start-page: 1
  year: 2013
  ident: C4CP04135F-(cit43)/*[position()=1]
  publication-title: Commun. Comput. Chem.
  doi: 10.4236/cc.2013.11001
– volume: 97
  start-page: 2571
  year: 1992
  ident: C4CP04135F-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463096
– volume: 100
  start-page: 5829
  year: 1994
  ident: C4CP04135F-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467146
– volume: 45
  start-page: 918
  year: 1991
  ident: C4CP04135F-(cit37)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702914336589
– volume: 94
  start-page: 38
  year: 2008
  ident: C4CP04135F-(cit10)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.113738
– volume: 107
  start-page: 3032
  year: 1997
  ident: C4CP04135F-(cit57)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474659
– volume: 124
  start-page: 054903
  year: 2006
  ident: C4CP04135F-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2145747
– volume: 382
  start-page: 522
  year: 1996
  ident: C4CP04135F-(cit29)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/382522a0
SSID ssj0001513
Score 2.5853782
Snippet Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1142
SubjectTerms Acetic acid
Acetic Acid - chemistry
Barriers
Cyclohexane
Cyclohexanes - chemistry
Dimerization
Excitation
Ground state
Hydrogen Bonding
Isoquinolines - chemistry
Models, Molecular
Molecular Conformation
Monomers
Protons
Quantum Theory
Quenching
Quinolines - chemistry
Tautomers
Title A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline
URI https://www.ncbi.nlm.nih.gov/pubmed/25418334
https://www.proquest.com/docview/1651422350
https://www.proquest.com/docview/1659768056
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGvZLg8FwQVVWZzYzuNYRbtaVoB66GoXLpHjOOpKbFq1jQT8emacOE1EQMAliiZuovqbjD9P5kHIm5gKKr0M3jTg-i4vFAM7SDM34kxrHYSUm-4NHz8F55f84lpcj0ZFJ2qp2mUn6sdgXsn_oAoywBWzZP8B2famIIBzwBeOgDAc_wrj2dRYdfTmYQKU_qaQQLomSWiaryoQuliIAT8IGIKqN9Nbjbm-2BoDAwyZu_yeYyTLzRZWiJsSW_j0goPmFkdlO8PVZyiqvSJb41WYJ0mbKfZlKevvORjp1ayMJoLAJoKU22VXXpmIgs8Si3a00qvGkX1hZY1rwsMoQLdOCT3RtTnlAXNjWjeBa-1t2NErv2M8Ma130KpThkVRFVdrCmuuKLqD4C-ubw2-sNUF-9S4Rvs1tO2lO-TAh-2EPyYHs9PF-w_tmg28h9nitSx-t38UFotuftxnLr9sR4CcbGzTGENOFg_I_WZX4cxqFXlIRrp8RO4mFrLH5GrmdFXF6amK01MVx6qK06qKA6riDKrKE3J5drpIzt2mp4arOOM7V8P2VGW-KKgGy6yFFxUik5rDUShP-kpELIjCIsi8KA-jXIN914wVIgJirnzJDsm4XJX6iDjAc3Qc-cqjSvI401KEce4FlEtZ5DTOJ-Stna9UNQXnse_J19QEPrA4TXgyN9N8NiGv27HruszK4KhXdtpTmD_8tCVLvaq2qRcIdGYyQf84Brh3BIx_Qp7WmLXPshhPyCGA2Ir3ejAhx8MX0nVeHP_2fs_Ivf2L8ZyMd5tKvwAWu8teNir4E8A1nvY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+questionable+excited-state+double-proton+transfer+mechanism+for+3-hydroxyisoquinoline&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhao%2C+Jinfeng&rft.au=Chen%2C+Junsheng&rft.au=Cui%2C+Yanling&rft.au=Wang%2C+Jing&rft.date=2015-01-14&rft.eissn=1463-9084&rft.volume=17&rft.issue=2&rft.spage=1142&rft_id=info:doi/10.1039%2Fc4cp04135f&rft_id=info%3Apmid%2F25418334&rft.externalDocID=25418334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon