A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 17; no. 2; pp. 1142 - 115 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (
J. Phys. Chem. B
, 1998,
102
, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol
−1
) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol
−1
) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.
Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated. |
---|---|
AbstractList | Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (
J. Phys. Chem. B
, 1998,
102
, 1053). Instead of the formation of keto–enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol
−1
) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol
−1
) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol super(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol super(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously ( J. Phys. Chem. B , 1998, 102 , 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol −1 ) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol −1 ) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed.Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the time-dependent density functional theory (TDDFT), suggesting a different double-proton transfer mechanism from the one proposed previously (J. Phys. Chem. B, 1998, 102, 1053). Instead of the formation of keto-enol complexes for 3HIQ self-association in cyclohexane, our theoretical results predicted that 3HIQ self-association exists in two forms: the normal form (enol/enol) and the tautomer form (keto/keto) in cyclohexane. A high barrier (37.023 kcal mol(-1)) between the 3HIQ enol monomer and 3HIQ keto monomer form indicated that the 3HIQ keto monomer in the ground state should not exist. In addition, the constructed potential energy surfaces of the ground state and excited state have been used to explain the proton transfer process. Upon optical excitation, the enol/enol form is excited to the first excited state, then transfers one proton, in turn, transition to the ground state to transfer another proton. A relatively low barrier (8.98 kcal mol(-1)) demonstrates two stable structures in the ground state. In view of the acetic acid solvent effect, two protons of 3HIQ/ACID transfer along the dihydrogen bonds in the first excited state, which is a different transfer mechanism to 3HIQ self-association. In addition, the proton transfer process provides a possible explanation for the fluorescence quenching observed. |
Author | Dai, Yumei Chen, Junsheng Ma, Fengcai Song, Peng Zhao, Jinfeng Cui, Yanling Xia, Lixin Wang, Jing |
AuthorAffiliation | Chinese Academy of Sciences Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials Liaoning University College of Physics and College of Chemistry Shenyang University Normal College State Key Lab of Molecular Reaction Dynamics Dalian Institute of Chemical Physics |
AuthorAffiliation_xml | – name: Shenyang University – name: Dalian Institute of Chemical Physics – name: Liaoning University – name: College of Physics and College of Chemistry – name: Chinese Academy of Sciences – name: State Key Lab of Molecular Reaction Dynamics – name: Liaoning Key Laboratory of Semiconductor Light Emitting and Photocatalytic Materials – name: Normal College |
Author_xml | – sequence: 1 givenname: Jinfeng surname: Zhao fullname: Zhao, Jinfeng – sequence: 2 givenname: Junsheng surname: Chen fullname: Chen, Junsheng – sequence: 3 givenname: Yanling surname: Cui fullname: Cui, Yanling – sequence: 4 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 5 givenname: Lixin surname: Xia fullname: Xia, Lixin – sequence: 6 givenname: Yumei surname: Dai fullname: Dai, Yumei – sequence: 7 givenname: Peng surname: Song fullname: Song, Peng – sequence: 8 givenname: Fengcai surname: Ma fullname: Ma, Fengcai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25418334$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UtLxDAQB_Agio_Vi3el3kSoJk3SZo9L8QWCHhSPJU0nGGmTNWlh99ubfbiCiHhJQvjNkPznAG1bZwGhY4IvCabjK8XUFDNCud5C-4TlNB1jwbY35yLfQwchvGOMCSd0F-1lnBFBKdtHr5PkY4DQG2dl3UICM2V6aNLQyx6Sxg3xMp161zub9F7aoMEnHag3aU3oEu18QtO3eePdbG6C-xiMda2xcIh2tGwDHK33EXq5uX4u79KHx9v7cvKQKkZZn0LBqaozrjEUYwqcCM1rCSyuXBGZKS5oLgqd10Q0hWhACAyUai4IyVQm6Qidr_rGNy4_UnUmKGhbacENoSI5Hxe5wDz_DyUsyyjHkZ6u6VB30FRTbzrp59VXbhFcrIDyLgQPekMIrhZDqUpWPi2HchMx_oFjxnIReUzUtL-XnK1KfFCb1t9zrqaNjubkL0M_AU4To7s |
CitedBy_id | crossref_primary_10_1016_j_jlumin_2018_10_077 crossref_primary_10_1002_poc_3729 crossref_primary_10_1007_s11224_018_1161_x crossref_primary_10_1016_j_comptc_2018_03_016 crossref_primary_10_1016_j_cplett_2019_03_050 crossref_primary_10_1039_C7QO00398F crossref_primary_10_1039_C9RA04258J crossref_primary_10_1016_j_molliq_2017_09_019 crossref_primary_10_1007_s10876_015_0893_7 crossref_primary_10_1039_D4RA03443K crossref_primary_10_1016_j_chemphys_2022_111568 crossref_primary_10_1039_C9CP03752G crossref_primary_10_1007_s11224_020_01648_z crossref_primary_10_1002_poc_4020 crossref_primary_10_1021_acsomega_0c02393 crossref_primary_10_1016_j_cplett_2017_10_008 crossref_primary_10_1016_j_orgel_2020_105678 crossref_primary_10_1002_poc_3857 crossref_primary_10_3390_molecules28165951 crossref_primary_10_1016_j_saa_2016_01_025 crossref_primary_10_1016_j_cplett_2022_140217 crossref_primary_10_1002_jccs_201900202 crossref_primary_10_1039_C8QO00688A crossref_primary_10_1002_poc_4029 crossref_primary_10_1016_j_molliq_2024_124336 crossref_primary_10_1021_acs_jpca_7b01404 crossref_primary_10_1002_poc_3855 crossref_primary_10_1016_j_cplett_2025_142021 crossref_primary_10_1063_1674_0068_cjcp2109163 crossref_primary_10_1039_C6RA26038A crossref_primary_10_1038_s41598_017_01780_7 crossref_primary_10_1002_jccs_201800380 crossref_primary_10_1002_poc_4033 crossref_primary_10_1016_j_jlumin_2017_11_026 crossref_primary_10_1016_j_jphotochem_2024_116027 crossref_primary_10_1016_j_saa_2017_11_021 crossref_primary_10_1016_j_saa_2019_117416 crossref_primary_10_1002_jccs_201800021 crossref_primary_10_1016_j_chemphys_2021_111280 crossref_primary_10_1515_phys_2016_0067 crossref_primary_10_1039_C5NJ01869B crossref_primary_10_1021_acs_jpca_5b10180 crossref_primary_10_1016_j_jlumin_2020_117698 crossref_primary_10_1039_C5RA14601A crossref_primary_10_1002_poc_3828 crossref_primary_10_1515_phys_2016_0071 crossref_primary_10_1007_s00214_016_1827_7 crossref_primary_10_1021_acs_jpca_7b07753 crossref_primary_10_1016_j_comptc_2015_10_020 crossref_primary_10_1039_C7RA05976K crossref_primary_10_1002_poc_4116 crossref_primary_10_1088_1674_1056_ab8208 crossref_primary_10_1002_poc_3821 crossref_primary_10_1002_poc_3942 crossref_primary_10_1016_j_molstruc_2021_130859 crossref_primary_10_1021_acs_jpca_9b05163 crossref_primary_10_1039_C5RA23261A crossref_primary_10_1016_j_molliq_2016_09_088 crossref_primary_10_1021_acs_jpca_7b11571 crossref_primary_10_1016_j_jlumin_2021_118260 crossref_primary_10_1016_j_molstruc_2024_139985 crossref_primary_10_1002_jccs_201900401 crossref_primary_10_1016_j_molliq_2021_115309 crossref_primary_10_1002_jccs_201800175 crossref_primary_10_1016_j_colsurfa_2024_134327 crossref_primary_10_1016_j_cplett_2022_139465 crossref_primary_10_1016_j_cplett_2023_140607 crossref_primary_10_1016_j_jlumin_2017_03_056 crossref_primary_10_1007_s00214_016_1986_6 crossref_primary_10_1016_j_chemphys_2019_110553 crossref_primary_10_1016_j_molliq_2023_123765 crossref_primary_10_1016_j_jlumin_2020_117329 crossref_primary_10_1002_poc_4003 crossref_primary_10_1002_poc_4002 crossref_primary_10_1039_C7NJ01325F crossref_primary_10_1016_j_cplett_2024_141564 crossref_primary_10_1080_00268976_2023_2298241 crossref_primary_10_1002_poc_3954 crossref_primary_10_1016_j_saa_2022_122141 crossref_primary_10_1002_poc_3832 crossref_primary_10_1021_acsabm_9b00818 crossref_primary_10_1016_j_saa_2019_04_053 crossref_primary_10_1021_acs_jpca_7b10492 crossref_primary_10_1039_C8CP05716H crossref_primary_10_1080_00268976_2024_2370431 crossref_primary_10_1002_poc_4010 crossref_primary_10_1002_jccs_201800045 crossref_primary_10_1021_acs_jpcc_9b01044 crossref_primary_10_1039_D2CP03828E crossref_primary_10_1002_poc_3803 crossref_primary_10_1002_poc_3924 crossref_primary_10_1007_s00214_017_2088_9 crossref_primary_10_1007_s00214_015_1664_0 crossref_primary_10_1016_j_chemphys_2021_111376 crossref_primary_10_1002_poc_4341 crossref_primary_10_1016_j_saa_2018_04_048 crossref_primary_10_1016_j_saa_2017_06_052 crossref_primary_10_1139_cjc_2017_0463 crossref_primary_10_1038_s41598_017_12146_4 crossref_primary_10_1039_C9NJ05055H crossref_primary_10_1007_s11224_018_1116_2 crossref_primary_10_1002_poc_4109 crossref_primary_10_1021_acsabm_9b00477 crossref_primary_10_1039_D0NJ01651A crossref_primary_10_1016_j_cplett_2022_139789 crossref_primary_10_1039_C7QO00367F crossref_primary_10_1002_jccs_202200405 crossref_primary_10_1016_j_jlumin_2017_06_061 crossref_primary_10_1039_C7QO01076A crossref_primary_10_1080_00268976_2020_1730990 crossref_primary_10_1039_C8QO00628H crossref_primary_10_1039_C9QO00634F crossref_primary_10_1002_jccs_201700446 crossref_primary_10_1002_cjoc_202000604 crossref_primary_10_1002_poc_3931 crossref_primary_10_1002_jccs_202200093 crossref_primary_10_1021_acs_jpca_3c08021 crossref_primary_10_1016_j_saa_2020_119394 crossref_primary_10_1016_j_molliq_2020_113295 crossref_primary_10_1016_j_jlumin_2019_01_057 crossref_primary_10_1016_j_molliq_2020_114145 crossref_primary_10_1016_j_cplett_2020_137896 crossref_primary_10_1007_s10876_016_1122_8 crossref_primary_10_1002_poc_3901 crossref_primary_10_1016_j_jlumin_2018_04_064 crossref_primary_10_1016_j_saa_2019_117321 crossref_primary_10_1016_j_chemphys_2019_110488 crossref_primary_10_1002_poc_4432 crossref_primary_10_1002_poc_4552 crossref_primary_10_1016_j_molliq_2018_04_060 crossref_primary_10_1002_slct_202000550 crossref_primary_10_1002_poc_4320 crossref_primary_10_1016_j_jlumin_2019_116913 crossref_primary_10_1016_j_cplett_2019_06_047 crossref_primary_10_1016_j_cplett_2021_138377 crossref_primary_10_1002_jccs_201900061 crossref_primary_10_1016_j_molliq_2017_11_121 crossref_primary_10_1002_poc_3911 crossref_primary_10_1007_s00214_019_2512_4 crossref_primary_10_1016_j_saa_2018_08_054 crossref_primary_10_1016_j_cplett_2019_136815 crossref_primary_10_1016_j_jlumin_2021_118231 crossref_primary_10_1002_poc_4566 crossref_primary_10_1007_s10876_016_1090_z crossref_primary_10_1016_j_cplett_2022_140194 crossref_primary_10_1016_j_molstruc_2023_135738 crossref_primary_10_1063_1674_0068_cjcp2111251 crossref_primary_10_1016_j_saa_2020_118719 crossref_primary_10_1021_acs_jpca_7b09593 crossref_primary_10_1039_C6CP07716A crossref_primary_10_1016_j_chemphys_2020_111081 crossref_primary_10_1021_acs_jpca_7b08266 crossref_primary_10_1016_j_saa_2020_119375 crossref_primary_10_1016_j_saa_2015_06_098 crossref_primary_10_1016_j_saa_2023_122475 crossref_primary_10_1063_4_0000095 crossref_primary_10_1038_srep25568 crossref_primary_10_1002_poc_3684 crossref_primary_10_1016_j_saa_2021_120296 crossref_primary_10_1002_jccs_202400174 crossref_primary_10_1002_jccs_201900032 crossref_primary_10_1016_j_cclet_2022_107940 crossref_primary_10_1039_D2CP04315G crossref_primary_10_1007_s10876_018_1388_0 crossref_primary_10_1016_j_jphotochem_2020_112753 crossref_primary_10_1016_j_saa_2015_08_028 crossref_primary_10_1002_jccs_201800311 crossref_primary_10_1016_j_jlumin_2022_118914 crossref_primary_10_1016_j_jphotochem_2021_113690 crossref_primary_10_1016_j_jlumin_2017_09_051 crossref_primary_10_1002_masy_202100375 crossref_primary_10_1002_poc_3455 crossref_primary_10_1021_acs_jpca_4c04647 crossref_primary_10_1039_C8RA05812A crossref_primary_10_1039_C8RA05945D crossref_primary_10_1016_j_saa_2021_119854 crossref_primary_10_1002_jccs_201700253 crossref_primary_10_1016_j_jiec_2021_04_022 crossref_primary_10_1002_jccs_202200293 crossref_primary_10_1021_acs_jpca_8b04150 crossref_primary_10_1080_00268976_2021_2007307 crossref_primary_10_1038_s41598_020_61804_7 crossref_primary_10_1002_jccs_202000121 crossref_primary_10_1007_s11224_018_1165_6 crossref_primary_10_1002_jccs_202000244 crossref_primary_10_1002_jccs_201800208 crossref_primary_10_1016_j_jphotochem_2018_09_012 crossref_primary_10_1039_C6RA11140H crossref_primary_10_1080_00268976_2020_1805130 crossref_primary_10_1002_poc_4510 crossref_primary_10_1039_C4CP05651E crossref_primary_10_1002_jccs_202200255 crossref_primary_10_1016_j_molliq_2016_05_029 crossref_primary_10_1016_j_dyepig_2017_02_047 crossref_primary_10_1038_srep44897 crossref_primary_10_1080_00268976_2024_2304104 crossref_primary_10_1016_j_molliq_2018_03_094 crossref_primary_10_1016_j_chemphys_2019_01_008 crossref_primary_10_1021_acsabm_0c01579 crossref_primary_10_1039_C8NJ01162A crossref_primary_10_1016_j_cplett_2020_137226 crossref_primary_10_1016_j_saa_2019_117800 crossref_primary_10_1016_j_saa_2018_10_015 crossref_primary_10_1016_j_molliq_2017_06_118 crossref_primary_10_1016_j_saa_2019_117487 crossref_primary_10_1016_j_jlumin_2020_117840 crossref_primary_10_1080_00268976_2019_1662958 crossref_primary_10_1080_07391102_2019_1707121 crossref_primary_10_1016_j_jlumin_2016_11_024 crossref_primary_10_1016_j_chemphys_2022_111761 crossref_primary_10_1016_j_jlumin_2018_06_027 crossref_primary_10_1002_poc_4402 crossref_primary_10_1016_j_dyepig_2015_05_030 crossref_primary_10_1002_jccs_201900140 crossref_primary_10_1016_j_chemphys_2022_111513 crossref_primary_10_1016_j_molstruc_2024_139474 crossref_primary_10_1039_D3CP05837A crossref_primary_10_3390_molecules28020695 crossref_primary_10_1007_s00894_020_04411_7 crossref_primary_10_1002_jccs_201700350 crossref_primary_10_1080_00268976_2024_2346634 crossref_primary_10_1139_cjc_2017_0533 crossref_primary_10_1080_00268976_2024_2341980 crossref_primary_10_1016_j_comptc_2021_113486 crossref_primary_10_1016_j_saa_2019_117359 crossref_primary_10_1016_j_jphotochem_2019_111874 crossref_primary_10_1016_j_saa_2015_10_038 crossref_primary_10_1007_s10876_017_1232_y crossref_primary_10_1016_j_jlumin_2022_119016 crossref_primary_10_1007_s00214_020_02696_8 crossref_primary_10_1016_j_jlumin_2023_119772 crossref_primary_10_1007_s00894_024_06029_5 crossref_primary_10_1016_j_molliq_2017_03_038 crossref_primary_10_1021_acs_jpca_9b08646 crossref_primary_10_1016_j_jlumin_2024_120495 crossref_primary_10_1080_00268976_2023_2262062 crossref_primary_10_1088_1674_1056_aba9bb crossref_primary_10_1021_acsabm_9b00088 crossref_primary_10_1002_jccs_201900480 crossref_primary_10_1002_poc_3894 crossref_primary_10_1139_cjc_2017_0628 crossref_primary_10_1016_j_saa_2021_119810 crossref_primary_10_1039_C9CP05704H crossref_primary_10_1002_poc_4195 crossref_primary_10_1002_poc_4075 crossref_primary_10_1016_j_cplett_2020_137816 crossref_primary_10_1002_poc_3781 crossref_primary_10_1088_1674_1056_ab4042 crossref_primary_10_1021_acs_jpca_3c02560 crossref_primary_10_1021_jp5120459 crossref_primary_10_1016_j_saa_2023_122814 crossref_primary_10_1016_j_jlumin_2017_07_024 crossref_primary_10_1002_poc_3868 crossref_primary_10_1002_poc_3989 crossref_primary_10_1142_S0219633617500730 crossref_primary_10_1002_poc_3867 crossref_primary_10_1039_C6RA26470K crossref_primary_10_1039_C9CP06307B crossref_primary_10_1007_s00214_015_1802_8 crossref_primary_10_1016_j_molstruc_2017_10_079 crossref_primary_10_1021_acs_jpca_5b09430 crossref_primary_10_1016_j_saa_2018_11_021 crossref_primary_10_1016_j_cplett_2021_138409 crossref_primary_10_1002_poc_4162 crossref_primary_10_1002_poc_4283 crossref_primary_10_1139_cjp_2018_0503 crossref_primary_10_1002_jccs_201800490 crossref_primary_10_1039_D4CP02077D crossref_primary_10_1021_acs_langmuir_2c00677 crossref_primary_10_1016_j_saa_2015_02_098 crossref_primary_10_1021_acs_jpca_7b04051 crossref_primary_10_1039_C6RA16907D crossref_primary_10_1002_jccs_201800256 crossref_primary_10_1080_00268976_2016_1213436 crossref_primary_10_1016_j_jlumin_2020_117800 crossref_primary_10_1016_j_cplett_2019_07_012 crossref_primary_10_1002_jccs_201900224 crossref_primary_10_1016_j_cplett_2024_141369 crossref_primary_10_1016_j_saa_2021_120383 crossref_primary_10_1016_j_cplett_2024_141245 crossref_primary_10_1002_poc_3756 crossref_primary_10_1002_poc_3513 crossref_primary_10_1016_j_saa_2024_125493 crossref_primary_10_1016_j_molliq_2020_114886 crossref_primary_10_1016_j_molliq_2021_117539 crossref_primary_10_1002_poc_4054 crossref_primary_10_1039_C9NJ01503E crossref_primary_10_1088_1674_1056_ac21c2 crossref_primary_10_1021_acs_jpca_0c10799 crossref_primary_10_1021_acs_jpca_5b03557 crossref_primary_10_1080_1062936X_2019_1701075 |
Cites_doi | 10.1021/jp983201m 10.1073/pnas.91.18.8627 10.1039/b913336d 10.1021/ja077831q 10.1021/ja111657j 10.1021/j100339a030 10.1021/ja065170b 10.1021/ar200135h 10.1002/jcc.20957 10.1039/a902565k 10.1021/ja401360a 10.1002/jcc.540161202 10.1016/j.jphotochemrev.2010.02.002 10.1021/cr980069d 10.1016/j.jphotochemrev.2008.12.001 10.1021/ja037607a 10.1021/jp0734530 10.1039/j29670000590 10.1103/PhysRevB.37.785 10.1021/jp971959k 10.1039/b924549a 10.1063/1.472651 10.1016/0009-2614(89)87234-3 10.1016/j.jphotochemrev.2007.03.002 10.1021/jo051766q 10.1080/0144235X.2013.811891 10.1002/cphc.200800371 10.1366/0003702944924880 10.1021/jp037312j 10.1021/jp9032172 10.1021/jp973173s 10.1063/1.1508368 10.1021/ja202582x 10.1038/lsa.2013.68 10.1039/c1jm00071c 10.1016/j.saa.2014.04.116 10.1021/jp961081h 10.1021/jo201290a 10.1063/1.464913 10.1039/c1cp21470e 10.1111/j.1751-1097.1995.tb03949.x 10.1016/S0009-2614(02)00546-8 10.1021/jp801811e 10.1016/j.bmcl.2008.11.060 10.1021/jp903200x 10.1038/srep00647 10.1107/S056774087400447X 10.1021/ja010791k 10.1016/j.tet.2004.08.045 10.1002/jcc.21498 10.1021/jp903638n 10.1021/ct900216m 10.1021/jp0719659 10.1039/b816589k 10.1366/0003702914337317 10.4236/cc.2013.11001 10.1063/1.463096 10.1063/1.467146 10.1366/0003702914336589 10.1529/biophysj.107.113738 10.1063/1.474659 10.1063/1.2145747 10.1038/382522a0 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c4cp04135f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 115 |
ExternalDocumentID | 25418334 10_1039_C4CP04135F c4cp04135f |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c434t-e753cb25f0e793e518f5bae4f5b5c1a2c583687f6b18d78de880e33f58112c2a3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 01:45:07 EDT 2025 Thu Jul 10 22:41:14 EDT 2025 Mon Jul 21 05:50:09 EDT 2025 Tue Jul 01 02:45:50 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Thu May 19 04:27:12 EDT 2016 Sun Jun 02 15:22:32 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-e753cb25f0e793e518f5bae4f5b5c1a2c583687f6b18d78de880e33f58112c2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25418334 |
PQID | 1651422350 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | rsc_primary_c4cp04135f pubmed_primary_25418334 crossref_primary_10_1039_C4CP04135F crossref_citationtrail_10_1039_C4CP04135F proquest_miscellaneous_1651422350 proquest_miscellaneous_1659768056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-14 |
PublicationDateYYYYMMDD | 2015-01-14 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2015 |
References | Cances (C4CP04135F-(cit57)/*[position()=1]) 1997; 107 Cammi (C4CP04135F-(cit58)/*[position()=1]) 1995; 16 Sobolewski (C4CP04135F-(cit63)/*[position()=1]) 1999; 1 Xu (C4CP04135F-(cit20)/*[position()=1]) 2011; 21 Schafer (C4CP04135F-(cit53)/*[position()=1]) 1992; 97 Serrano (C4CP04135F-(cit64)/*[position()=1]) 2009; 10 Sags (C4CP04135F-(cit65)/*[position()=1]) 2010; 11 Kubo (C4CP04135F-(cit29)/*[position()=1]) 1996; 382 Li (C4CP04135F-(cit19)/*[position()=1]) 2011; 13 Weller (C4CP04135F-(cit25)/*[position()=1]) 1956; 60 Zhao (C4CP04135F-(cit9)/*[position()=1]) 2008; 29 Evans (C4CP04135F-(cit45)/*[position()=1]) 1967 Zhao (C4CP04135F-(cit61)/*[position()=1]) 2007; 111 Song (C4CP04135F-(cit67)/*[position()=1]) 2013; 32 Chai (C4CP04135F-(cit27)/*[position()=1]) 2009; 11 Liu (C4CP04135F-(cit43)/*[position()=1]) 2013; 1 Furche (C4CP04135F-(cit62)/*[position()=1]) 2002; 117 Dybala (C4CP04135F-(cit22)/*[position()=1]) 2004; 108 Sun (C4CP04135F-(cit14)/*[position()=1]) 2012; 2 Li (C4CP04135F-(cit18)/*[position()=1]) 2010; 31 Chen (C4CP04135F-(cit32)/*[position()=1]) 2013; 10 Kwok (C4CP04135F-(cit1)/*[position()=1]) 2008; 130 Han (C4CP04135F-(cit4)/*[position()=1]) 1996; 105 Catalan (C4CP04135F-(cit36)/*[position()=1]) 1995; 61 Chou (C4CP04135F-(cit42)/*[position()=1]) 1999; 103 Keck (C4CP04135F-(cit38)/*[position()=1]) 1996; 100 Becke (C4CP04135F-(cit50)/*[position()=1]) 1993; 98 Hendricks (C4CP04135F-(cit46)/*[position()=1]) 2009; 19 Mennucci (C4CP04135F-(cit56)/*[position()=1]) 1997; 101 Zhao (C4CP04135F-(cit60)/*[position()=1]) 2008; 9 Zhao (C4CP04135F-(cit10)/*[position()=1]) 2008; 94 Wen (C4CP04135F-(cit16)/*[position()=1]) 2004; 60 Miehlich (C4CP04135F-(cit52)/*[position()=1]) 1989; 157 Han (C4CP04135F-(cit24)/*[position()=1]) 2007; 8 Mehata (C4CP04135F-(cit41)/*[position()=1]) 2008; 112 Ma (C4CP04135F-(cit34)/*[position()=1]) 2002; 358 Yu (C4CP04135F-(cit31)/*[position()=1]) 2013; 20 Miertus (C4CP04135F-(cit59)/*[position()=1]) 1981; 55 Plasser (C4CP04135F-(cit26)/*[position()=1]) 2009; 113 Schafer (C4CP04135F-(cit54)/*[position()=1]) 1994; 100 Sun (C4CP04135F-(cit39)/*[position()=1]) 2013; 2 Chou (C4CP04135F-(cit35)/*[position()=1]) 1991; 45 Jaramillo (C4CP04135F-(cit21)/*[position()=1]) 2009; 113 Peng (C4CP04135F-(cit17)/*[position()=1]) 2005; 70 Lee (C4CP04135F-(cit51)/*[position()=1]) 1988; 37 Zhao (C4CP04135F-(cit11)/*[position()=1]) 2010; 12 Zhao (C4CP04135F-(cit13)/*[position()=1]) 2014; 131 Zhao (C4CP04135F-(cit66)/*[position()=1]) 2012; 45 Chou (C4CP04135F-(cit33)/*[position()=1]) 1994; 48 Sicinska (C4CP04135F-(cit8)/*[position()=1]) 2001; 123 Chou (C4CP04135F-(cit37)/*[position()=1]) 1991; 45 Wei (C4CP04135F-(cit49)/*[position()=1]) 1998; 102 Yu (C4CP04135F-(cit30)/*[position()=1]) 2011; 133 Suh (C4CP04135F-(cit3)/*[position()=1]) 2004; 126 Nimlos (C4CP04135F-(cit48)/*[position()=1]) 1989; 93 Kumari (C4CP04135F-(cit15)/*[position()=1]) 2011; 76 Ammon (C4CP04135F-(cit44)/*[position()=1]) 1974; 30 Sun (C4CP04135F-(cit12)/*[position()=1]) 2006; 124 Li (C4CP04135F-(cit5)/*[position()=1]) 2011; 133 Allan (C4CP04135F-(cit47)/*[position()=1]) 2009; 7 Zhao (C4CP04135F-(cit2)/*[position()=1]) 2009; 5 Zhao (C4CP04135F-(cit6)/*[position()=1]) 2007; 111 Pietrzak (C4CP04135F-(cit23)/*[position()=1]) 2007; 129 Zhao (C4CP04135F-(cit7)/*[position()=1]) 2009; 113 C4CP04135F-(cit40)/*[position()=1] Sytnik (C4CP04135F-(cit28)/*[position()=1]) 1994; 91 |
References_xml | – issn: 2010 publication-title: Gaussian Inc. doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox – volume: 103 start-page: 1939 year: 1999 ident: C4CP04135F-(cit42)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp983201m – volume: 91 start-page: 8627 year: 1994 ident: C4CP04135F-(cit28)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.18.8627 – volume: 7 start-page: 4960 year: 2009 ident: C4CP04135F-(cit47)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/b913336d – volume: 130 start-page: 5131 year: 2008 ident: C4CP04135F-(cit1)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077831q – volume: 133 start-page: 7416 year: 2011 ident: C4CP04135F-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111657j – volume: 93 start-page: 643 year: 1989 ident: C4CP04135F-(cit48)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100339a030 – volume: 129 start-page: 296 year: 2007 ident: C4CP04135F-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065170b – volume: 45 start-page: 404 year: 2012 ident: C4CP04135F-(cit66)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200135h – volume: 29 start-page: 2010 year: 2008 ident: C4CP04135F-(cit9)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20957 – volume: 55 start-page: 117 year: 1981 ident: C4CP04135F-(cit59)/*[position()=1] publication-title: J. Chem. Phys. – volume: 1 start-page: 3065 year: 1999 ident: C4CP04135F-(cit63)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a902565k – volume: 20 start-page: 7674 year: 2013 ident: C4CP04135F-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401360a – volume: 16 start-page: 1449 year: 1995 ident: C4CP04135F-(cit58)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540161202 – volume: 11 start-page: 15 year: 2010 ident: C4CP04135F-(cit65)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2010.02.002 – ident: C4CP04135F-(cit40)/*[position()=1] doi: 10.1021/cr980069d – volume: 10 start-page: 21 year: 2009 ident: C4CP04135F-(cit64)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2008.12.001 – volume: 10 start-page: 1039 year: 2013 ident: C4CP04135F-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. – volume: 126 start-page: 2186 year: 2004 ident: C4CP04135F-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037607a – volume: 111 start-page: 8940 year: 2007 ident: C4CP04135F-(cit6)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0734530 – start-page: 590 year: 1967 ident: C4CP04135F-(cit45)/*[position()=1] publication-title: J. Chem. Soc. B doi: 10.1039/j29670000590 – volume: 37 start-page: 785 year: 1988 ident: C4CP04135F-(cit51)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 101 start-page: 10506 year: 1997 ident: C4CP04135F-(cit56)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp971959k – volume: 12 start-page: 8914 year: 2010 ident: C4CP04135F-(cit11)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b924549a – volume: 105 start-page: 8699 year: 1996 ident: C4CP04135F-(cit4)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.472651 – volume: 157 start-page: 200 year: 1989 ident: C4CP04135F-(cit52)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)87234-3 – volume: 8 start-page: 55 year: 2007 ident: C4CP04135F-(cit24)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2007.03.002 – volume: 70 start-page: 10524 year: 2005 ident: C4CP04135F-(cit17)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo051766q – volume: 32 start-page: 589 year: 2013 ident: C4CP04135F-(cit67)/*[position()=1] publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2013.811891 – volume: 9 start-page: 1842 year: 2008 ident: C4CP04135F-(cit60)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.200800371 – volume: 48 start-page: 604 year: 1994 ident: C4CP04135F-(cit33)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702944924880 – volume: 108 start-page: 2475 year: 2004 ident: C4CP04135F-(cit22)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp037312j – volume: 113 start-page: 8490 year: 2009 ident: C4CP04135F-(cit26)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9032172 – volume: 102 start-page: 1053 year: 1998 ident: C4CP04135F-(cit49)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp973173s – volume: 117 start-page: 7433 year: 2002 ident: C4CP04135F-(cit62)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1508368 – volume: 133 start-page: 11030 year: 2011 ident: C4CP04135F-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202582x – volume: 2 start-page: e112 year: 2013 ident: C4CP04135F-(cit39)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2013.68 – volume: 21 start-page: 7572 year: 2011 ident: C4CP04135F-(cit20)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm00071c – volume: 60 start-page: 1144 year: 1956 ident: C4CP04135F-(cit25)/*[position()=1] publication-title: Z. Elektrochem. – volume: 131 start-page: 282 year: 2014 ident: C4CP04135F-(cit13)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2014.04.116 – volume: 100 start-page: 144468 year: 1996 ident: C4CP04135F-(cit38)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp961081h – volume: 76 start-page: 8215 year: 2011 ident: C4CP04135F-(cit15)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo201290a – volume: 98 start-page: 5648 year: 1993 ident: C4CP04135F-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 13 start-page: 20766 year: 2011 ident: C4CP04135F-(cit19)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21470e – volume: 61 start-page: 118 year: 1995 ident: C4CP04135F-(cit36)/*[position()=1] publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1995.tb03949.x – volume: 358 start-page: 24 year: 2002 ident: C4CP04135F-(cit34)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00546-8 – volume: 112 start-page: 8383 year: 2008 ident: C4CP04135F-(cit41)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp801811e – volume: 19 start-page: 410 year: 2009 ident: C4CP04135F-(cit46)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2008.11.060 – volume: 113 start-page: 14329 year: 2009 ident: C4CP04135F-(cit7)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp903200x – volume: 2 start-page: 647 year: 2012 ident: C4CP04135F-(cit14)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00647 – volume: 30 start-page: 1146 year: 1974 ident: C4CP04135F-(cit44)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. doi: 10.1107/S056774087400447X – volume: 123 start-page: 7683 year: 2001 ident: C4CP04135F-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010791k – volume: 60 start-page: 11109 year: 2004 ident: C4CP04135F-(cit16)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2004.08.045 – volume: 31 start-page: 1759 year: 2010 ident: C4CP04135F-(cit18)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21498 – volume: 113 start-page: 12485 year: 2009 ident: C4CP04135F-(cit21)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp903638n – volume: 5 start-page: 1955 year: 2009 ident: C4CP04135F-(cit2)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900216m – volume: 111 start-page: 9218 year: 2007 ident: C4CP04135F-(cit61)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp0719659 – volume: 11 start-page: 4385 year: 2009 ident: C4CP04135F-(cit27)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b816589k – volume: 45 start-page: 513 year: 1991 ident: C4CP04135F-(cit35)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702914337317 – volume: 1 start-page: 1 year: 2013 ident: C4CP04135F-(cit43)/*[position()=1] publication-title: Commun. Comput. Chem. doi: 10.4236/cc.2013.11001 – volume: 97 start-page: 2571 year: 1992 ident: C4CP04135F-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.463096 – volume: 100 start-page: 5829 year: 1994 ident: C4CP04135F-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.467146 – volume: 45 start-page: 918 year: 1991 ident: C4CP04135F-(cit37)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702914336589 – volume: 94 start-page: 38 year: 2008 ident: C4CP04135F-(cit10)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.107.113738 – volume: 107 start-page: 3032 year: 1997 ident: C4CP04135F-(cit57)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.474659 – volume: 124 start-page: 054903 year: 2006 ident: C4CP04135F-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2145747 – volume: 382 start-page: 522 year: 1996 ident: C4CP04135F-(cit29)/*[position()=1] publication-title: Nature doi: 10.1038/382522a0 |
SSID | ssj0001513 |
Score | 2.5853782 |
Snippet | Two excited state proton transfer mechanisms of 3-hydroxyisoquinoline (3HIQ) in cyclohexane and acetic acid (ACID) were investigated based on the... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1142 |
SubjectTerms | Acetic acid Acetic Acid - chemistry Barriers Cyclohexane Cyclohexanes - chemistry Dimerization Excitation Ground state Hydrogen Bonding Isoquinolines - chemistry Models, Molecular Molecular Conformation Monomers Protons Quantum Theory Quenching Quinolines - chemistry Tautomers |
Title | A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25418334 https://www.proquest.com/docview/1651422350 https://www.proquest.com/docview/1659768056 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGvZLg8FwQVVWZzYzuNYRbtaVoB66GoXLpHjOOpKbFq1jQT8emacOE1EQMAliiZuovqbjD9P5kHIm5gKKr0M3jTg-i4vFAM7SDM34kxrHYSUm-4NHz8F55f84lpcj0ZFJ2qp2mUn6sdgXsn_oAoywBWzZP8B2famIIBzwBeOgDAc_wrj2dRYdfTmYQKU_qaQQLomSWiaryoQuliIAT8IGIKqN9Nbjbm-2BoDAwyZu_yeYyTLzRZWiJsSW_j0goPmFkdlO8PVZyiqvSJb41WYJ0mbKfZlKevvORjp1ayMJoLAJoKU22VXXpmIgs8Si3a00qvGkX1hZY1rwsMoQLdOCT3RtTnlAXNjWjeBa-1t2NErv2M8Ma130KpThkVRFVdrCmuuKLqD4C-ubw2-sNUF-9S4Rvs1tO2lO-TAh-2EPyYHs9PF-w_tmg28h9nitSx-t38UFotuftxnLr9sR4CcbGzTGENOFg_I_WZX4cxqFXlIRrp8RO4mFrLH5GrmdFXF6amK01MVx6qK06qKA6riDKrKE3J5drpIzt2mp4arOOM7V8P2VGW-KKgGy6yFFxUik5rDUShP-kpELIjCIsi8KA-jXIN914wVIgJirnzJDsm4XJX6iDjAc3Qc-cqjSvI401KEce4FlEtZ5DTOJ-Stna9UNQXnse_J19QEPrA4TXgyN9N8NiGv27HruszK4KhXdtpTmD_8tCVLvaq2qRcIdGYyQf84Brh3BIx_Qp7WmLXPshhPyCGA2Ir3ejAhx8MX0nVeHP_2fs_Ivf2L8ZyMd5tKvwAWu8teNir4E8A1nvY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+questionable+excited-state+double-proton+transfer+mechanism+for+3-hydroxyisoquinoline&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhao%2C+Jinfeng&rft.au=Chen%2C+Junsheng&rft.au=Cui%2C+Yanling&rft.au=Wang%2C+Jing&rft.date=2015-01-14&rft.eissn=1463-9084&rft.volume=17&rft.issue=2&rft.spage=1142&rft_id=info:doi/10.1039%2Fc4cp04135f&rft_id=info%3Apmid%2F25418334&rft.externalDocID=25418334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |