Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects
The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusi...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 37; no. 8; pp. 2691 - 2705 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic. |
---|---|
AbstractList | The critical closing pressure (
CrCP
) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone.
CrCP
defines the arterial blood pressure (
ABP
) at which cerebral blood flow approaches zero, and their difference (
ABP
−
CrCP
) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of
CrCP
at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent
ABP
data during the cardiac cycle. Together, the two waveforms permit calculation of
CrCP
via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of
CrCP
by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between
ABP
and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of
CrCP
and assessment of arteriole compliance in the clinic. The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic. The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP - CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic. The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP - CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP - CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic. |
Author | Detre, John A Gannon, Kimberly P Kofke, W Andrew Busch, David R Mullen, Michael T Abramson, Kenneth Mesquita, Rickson C Balu, Ramani Parthasarathy, Ashwin B Greenberg, Joel H Licht, Daniel J Yodh, Arjun G He, Lian Baker, Wesley B Kavuri, Venkaiah C |
AuthorAffiliation | 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA 6 Institute of Physics, University of Campinas, Campinas, Brazil 3 Department of Electrical Engineering, University of South Florida, Tampa, USA 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA 5 Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, USA |
AuthorAffiliation_xml | – name: 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA – name: 6 Institute of Physics, University of Campinas, Campinas, Brazil – name: 3 Department of Electrical Engineering, University of South Florida, Tampa, USA – name: 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA – name: 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA – name: 5 Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, USA |
Author_xml | – sequence: 1 givenname: Wesley B surname: Baker fullname: Baker, Wesley B email: Wesley.Baker@uphs.upenn.edu – sequence: 2 givenname: Ashwin B surname: Parthasarathy fullname: Parthasarathy, Ashwin B – sequence: 3 givenname: Kimberly P surname: Gannon fullname: Gannon, Kimberly P – sequence: 4 givenname: Venkaiah C surname: Kavuri fullname: Kavuri, Venkaiah C – sequence: 5 givenname: David R surname: Busch fullname: Busch, David R – sequence: 6 givenname: Kenneth surname: Abramson fullname: Abramson, Kenneth – sequence: 7 givenname: Lian surname: He fullname: He, Lian – sequence: 8 givenname: Rickson C surname: Mesquita fullname: Mesquita, Rickson C – sequence: 9 givenname: Michael T surname: Mullen fullname: Mullen, Michael T – sequence: 10 givenname: John A surname: Detre fullname: Detre, John A – sequence: 11 givenname: Joel H surname: Greenberg fullname: Greenberg, Joel H – sequence: 12 givenname: Daniel J surname: Licht fullname: Licht, Daniel J – sequence: 13 givenname: Ramani surname: Balu fullname: Balu, Ramani – sequence: 14 givenname: W Andrew surname: Kofke fullname: Kofke, W Andrew – sequence: 15 givenname: Arjun G surname: Yodh fullname: Yodh, Arjun G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28541158$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uc2L1TAQD7Livl29e5IcvXTNJE2aXARZ_FhY9KLgLaTp9G0ebVKT9oH_vS1vV3RBTzP8PmHmgpzFFJGQl8CuAJrmDeMNqEZ_X3dmQKknZAdSmqphoM7IbqOrjT8nF6UcGGNaSPmMnHMtawCpd6T_nGKIR1fCEWma5uDdQMcVm1MOcU9TT30OJ9gPqWzYlLGUJSN1saMuz5hDGpD6NE5DcNEjDZHeLaOLtCztAf1cnpOnvRsKvrifl-Tbh_dfrz9Vt18-3ly_u618Leq5QvDYudaYtumkN4rrru214C20mvNO9Y0xvTadMJo3NVcShHSAAkHWHUAnLsnbU-60tCN2HuOc3WCnHEaXf9rkgv2bieHO7tPRSimUBrEGvL4PyOnHgmW2Yygeh8FFTEuxYBivNWdCrtJXf3b9Lnk47ipQJ4HPqZSMvfVhdnNIW3UYLDC7fdE-_uJqZI-MD9n_sVQnS3F7tIe05Lje-d_6X5znreg |
CitedBy_id | crossref_primary_10_1117_1_NPh_6_3_035013 crossref_primary_10_1007_s13311_019_00744_1 crossref_primary_10_1117_1_NPh_9_S2_S24001 crossref_primary_10_1152_japplphysiol_00743_2022 crossref_primary_10_1177_0271678X211004131 crossref_primary_10_1117_1_NPh_10_2_023522 crossref_primary_10_1117_1_NPh_6_4_045001 crossref_primary_10_1242_dev_204455 crossref_primary_10_1117_1_NPh_7_4_045008 crossref_primary_10_1063_5_0212496 crossref_primary_10_1089_neu_2019_6965 crossref_primary_10_1016_j_injury_2020_07_054 crossref_primary_10_1016_j_neurot_2024_e00520 crossref_primary_10_1038_s41598_023_36074_8 crossref_primary_10_1097_ANA_0000000000000614 crossref_primary_10_1117_1_NPh_10_1_013509 crossref_primary_10_3389_fsurg_2024_1488265 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_03_019 crossref_primary_10_1109_ACCESS_2022_3228439 crossref_primary_10_1117_1_NPh_10_3_035008 crossref_primary_10_1364_BOE_489760 crossref_primary_10_1117_1_NPh_9_3_035004 crossref_primary_10_1016_j_medengphy_2022_103759 crossref_primary_10_1103_PhysRevE_100_033317 crossref_primary_10_1016_j_jpeds_2021_05_024 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_07_010 crossref_primary_10_1038_s41390_019_0403_y crossref_primary_10_3390_fractalfract8070420 crossref_primary_10_1371_journal_pone_0305254 crossref_primary_10_3357_AMHP_5922_2022 crossref_primary_10_1117_1_NPh_11_1_015003 crossref_primary_10_1364_BOE_529150 crossref_primary_10_3390_fractalfract7100755 crossref_primary_10_1007_s12028_023_01690_9 crossref_primary_10_1364_BOE_423071 crossref_primary_10_1364_BOE_401641 crossref_primary_10_3390_ijms222312897 crossref_primary_10_1177_0271678X231153728 crossref_primary_10_3389_fneur_2018_00497 |
Cites_doi | 10.1007/s11910-012-0331-2 10.1152/ajplegacy.1951.164.2.330 10.1186/s13613-015-0085-5 10.3171/jns.1995.83.6.0949 10.1088/0034-4885/73/7/076701 10.1007/s11517-008-0359-2 10.1016/S0895-7061(01)02319-6 10.1117/12.2252824 10.1117/1.JBO.17.8.081406 10.3171/jns.1998.88.5.0802 10.1016/0021-9797(79)90248-0 10.1152/ajpheart.1998.274.1.H233 10.1056/NEJM200009073431007 10.1007/BF02474213 10.1179/016164106X98026 10.1016/0301-5629(94)90074-4 10.1007/s12028-011-9653-1 10.1117/1.JBO.20.12.125005 10.1097/00008506-200007000-00002 10.1016/j.neuroimage.2012.05.069 10.3171/2014.10.JNS14613 10.1117/1.NPh.2.3.035004 10.1007/s12028-016-0258-6 10.1007/s00421-013-2667-y 10.1291/hypres.25.359 10.1146/annurev.fluid.29.1.399 10.1016/j.neuroimage.2013.06.054 10.1093/bja/aet418 10.1088/0967-3334/30/7/009 10.1016/S1350-4533(03)00027-4 10.1038/jcbfm.2014.219 10.1103/PhysRevLett.75.1855 10.1053/euhj.1998.1099 10.1161/STROKEAHA.111.639906 10.1016/j.neuroimage.2013.06.017 10.1364/BOE.2.002068 10.1213/01.ANE.0000047273.85729.A7 10.1364/BOE.4.000978 10.1117/1.NPh.3.3.031412 10.1161/01.STR.0000128411.07036.a9 10.1152/jappl.1963.18.5.924 10.1364/BRAIN.2016.BTh4D.7 10.1081/PRG-100101995 10.1056/NEJMc1004957 10.1364/JOSAA.14.000192 10.1161/01.HYP.13.6.968 10.1109/TAU.1967.1161901 10.1364/AO.46.008506 10.1161/STROKEAHA.110.596874 10.1364/BOE.7.000776 10.1097/00004647-199710000-00015 10.1007/s12028-014-9971-1 10.1117/1.NPh.1.1.011009 10.1038/jcbfm.2013.214 10.1364/JOSAB.7.000015 10.1364/CANCER.2016.JTu1A.1 10.1159/000109078 10.1213/ANE.0b013e318247fa44 10.3171/jns.1974.41.5.0597 10.1007/978-3-642-70971-5_43 10.1016/j.acra.2013.10.012 10.1088/0967-3334/20/3/304 10.1098/rsta.2011.0232 10.1186/2045-8118-8-5 10.1161/01.STR.0000077927.63758.B6 10.1093/bja/aei034 10.3174/ajnr.A1562 10.1117/1.NPh.3.3.031411 10.1038/jcbfm.2011.130 10.1038/pr.2015.67 10.1038/jcbfm.2012.161 10.1038/srep44117 10.1161/01.STR.32.8.1811 10.1016/j.neuroimage.2014.03.023 10.1016/S0895-7061(02)02962-X 10.1016/j.jtcvs.2012.09.057 10.1364/BOE.5.004053 10.1364/BOE.7.003461 10.1007/s00701-014-2250-2 10.1097/00004647-199906000-00012 10.1364/BOE.2.002047 10.1016/j.neuroimage.2015.09.008 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 The Author(s) 2017 2017 International Society for Cerebral Blood Flow and Metabolism |
Copyright_xml | – notice: The Author(s) 2017 – notice: The Author(s) 2017 2017 International Society for Cerebral Blood Flow and Metabolism |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1177/0271678X17709166 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1559-7016 |
EndPage | 2705 |
ExternalDocumentID | PMC5536813 28541158 10_1177_0271678X17709166 10.1177_0271678X17709166 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB015893 – fundername: NINDS NIH HHS grantid: R01 NS082309 |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION AAEJI AAPII AJVBE CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 5PM AJHME |
ID | FETCH-LOGICAL-c434t-e1cedab99b7d5c9628dbf832b1b822d6f799f89d398274265135a1e3e154d11d3 |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 18:25:31 EDT 2025 Fri Jul 11 16:41:57 EDT 2025 Mon Jul 21 06:06:28 EDT 2025 Tue Jul 01 05:20:46 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Tue Jun 17 22:29:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | near infrared spectroscopy Arterioles cerebral blood flow measurement intrinsic optical imaging neurocritical care |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-e1cedab99b7d5c9628dbf832b1b822d6f799f89d398274265135a1e3e154d11d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1177/0271678X17709166 |
PMID | 28541158 |
PQID | 1902482035 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5536813 proquest_miscellaneous_1902482035 pubmed_primary_28541158 crossref_citationtrail_10_1177_0271678X17709166 crossref_primary_10_1177_0271678X17709166 sage_journals_10_1177_0271678X17709166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: Sage UK: London, England |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2017 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Dietsche, Ninck, Ortolf 2007; 46 Goldsmith, Marlow 1979; 71 Pindzola, Balzer, Nemoto 2001; 32 Edouard, Vanhille, Le Moigno 2005; 94 Baker, Parthasarathy, Busch 2014; 5 Jain, Buckley, Licht 2014; 34 Diop, Verdecchia, Lee 2011; 2 Li, Baker, Parthasarathy 2015; 20 Mandeville, Marota, Ayata 1999; 19 Sandsmark, Kumar, Park 2012; 43 Aaslid, Lash, Bardy 2003; 34 Ku 1997; 29 Kato, Pinsky 2015; 5 Elliott, Diop, Morrison 2014; 94 Rashid, McAllister, Yu 2012; 32 Czosnyka, Matta, Smielewski 1998; 88 Mesquita, Durduran, Yu 2011; 369 Welch 1967; 15 Baker, Parthasarathy, Ko 2015; 2 Yonas, Pindzola 2000; 49 Tzeng, Ainslie 2014; 114 Busch, Rusin, Miller-Hance 2016; 7 Pindzola, Sashin, Nemoto 2006; 28 Varsos, Richards, Kasprowicz 2013; 33 Yoshiura, Hiwatashi, Yamashita 2009; 30 Yonas, Pindzola 1993; 6 Avery, Shah, Licht 2010; 363 Warnert, Murphy, Hall 2015; 35 Michel, Hillebrand, von Twickel 1997; 17 Durduran, Yodh 2014; 85 Dewey, Pieper, Hunt 1974; 41 Andresen, Hadi, Petersen 2015; 157 Panerai, Deverson, Mahony 1999; 20 Hancock, Mahajan, Athanassiou 2003; 96 Durduran, Choe, Baker 2010; 73 Rhee, Fraser, Kibler 2015; 78 O’Rourke, Staessen, Vlachopoulos 2002; 15 Maas, de Wilde, Aarts 2012; 114 Carp, Roche-Labarbe, Franceschini 2011; 2 Cardim, Robba, Bohdanowicz 2016; 25 Brott, Bogousslavsky 2000; 343 Yücel, Selb, Boas 2014; 85 Boas, Campbell, Yodh 1995; 75 Zhang, Zuckerman, Giller 1998; 274 Hallacoglu, Sassaroli, Wysocki 2012; 17 Lapi, Marchiafava, Colantuoni 2007; 45 Panerai 2003; 25 Yan, Liu, Smith 2016; 124 Weyland, Buhre, Grund 2000; 12 Nichols, McDonald 1972; 10 Schmidt, Ko, Helbok 2011; 42 Nichol, Girling, Jerrard 1951; 164 Kim, Kasprowicz, Carrera 2009; 30 Giller, Aaslid 1994; 20 Belfort, Tooke-Miller, Varner 2000; 19 Wang, Parthasarathy, Baker 2016; 7 Permutt, Riley 1963; 18 Varsos, Kolias, Smielewski 2015; 123 Boas, Sakadžić, Selb 2016; 3 Le Roux 2013; 13 Westerhof, Lankhaar, Westerhof 2009; 47 Baumbach, Heistad 1989; 13 Fantini, Sassaroli, Tgavalekos 2016; 3 Kirkman, Smith 2014; 112 Yamashina, Tomiyama, Takeda 2002; 25 Varsos, Budohoski, Kolias 2014; 21 Duprez, De Buyzere, Rietzschel 1998; 19 Rosner, Rosner, Johnson 1995; 83 Cheng, Shang, Hayes 2012; 62 Buckley, Parthasarathy, Grant 2014; 1 Mesquita, Schenkel, Minkoff 2013; 4 Buckley, Lynch, Goff 2013; 145 Boas, Yodh 1997; 14 Pannier, Avolio, Hoeks 2002; 15 Wagshul, Eide, Madsen 2011; 8 Soehle, Czosnyka, Pickard 2004; 35 Wu, Pine, Chaikin 1990; 7 Ferradal, Yuki, Vyas 2017; 7 Kasprowicz, Czosnyka, Soehle 2012; 16 Seki, Satomura, Ooi 2006; 34 Kainerstorfer, Sassaroli, Hallacoglu 2014; 21 bibr7-0271678X17709166 bibr88-0271678X17709166 Yonas H (bibr24-0271678X17709166) 1993; 6 bibr37-0271678X17709166 bibr70-0271678X17709166 bibr45-0271678X17709166 bibr62-0271678X17709166 bibr28-0271678X17709166 Nichols W (bibr53-0271678X17709166) 2011 bibr6-0271678X17709166 bibr11-0271678X17709166 bibr54-0271678X17709166 bibr44-0271678X17709166 bibr87-0271678X17709166 bibr71-0271678X17709166 bibr36-0271678X17709166 bibr19-0271678X17709166 bibr10-0271678X17709166 bibr9-0271678X17709166 bibr79-0271678X17709166 bibr27-0271678X17709166 bibr5-0271678X17709166 bibr13-0271678X17709166 bibr18-0271678X17709166 bibr78-0271678X17709166 bibr73-0271678X17709166 bibr65-0271678X17709166 bibr86-0271678X17709166 bibr52-0271678X17709166 bibr39-0271678X17709166 bibr26-0271678X17709166 bibr63-0271678X17709166 bibr8-0271678X17709166 bibr76-0271678X17709166 bibr47-0271678X17709166 bibr60-0271678X17709166 bibr34-0271678X17709166 bibr16-0271678X17709166 bibr42-0271678X17709166 bibr21-0271678X17709166 bibr29-0271678X17709166 bibr55-0271678X17709166 bibr3-0271678X17709166 bibr68-0271678X17709166 bibr81-0271678X17709166 bibr2-0271678X17709166 Horowitz P (bibr61-0271678X17709166) 1980 bibr32-0271678X17709166 bibr75-0271678X17709166 bibr41-0271678X17709166 bibr84-0271678X17709166 bibr15-0271678X17709166 bibr58-0271678X17709166 bibr67-0271678X17709166 bibr1-0271678X17709166 bibr57-0271678X17709166 bibr74-0271678X17709166 bibr31-0271678X17709166 bibr49-0271678X17709166 bibr66-0271678X17709166 bibr23-0271678X17709166 bibr14-0271678X17709166 bibr40-0271678X17709166 bibr83-0271678X17709166 bibr51-0271678X17709166 bibr56-0271678X17709166 bibr43-0271678X17709166 bibr64-0271678X17709166 bibr48-0271678X17709166 bibr30-0271678X17709166 bibr77-0271678X17709166 Yonas H (bibr25-0271678X17709166) 2000; 49 Seki J (bibr80-0271678X17709166) 2006; 34 bibr35-0271678X17709166 bibr22-0271678X17709166 Nichols W (bibr50-0271678X17709166) 2011 bibr4-0271678X17709166 bibr69-0271678X17709166 bibr82-0271678X17709166 bibr20-0271678X17709166 bibr38-0271678X17709166 bibr17-0271678X17709166 bibr33-0271678X17709166 bibr46-0271678X17709166 bibr59-0271678X17709166 bibr85-0271678X17709166 bibr72-0271678X17709166 bibr12-0271678X17709166 17901708 - J Vasc Res. 2008;45(1):69-77 12598272 - Anesth Analg. 2003 Mar;96(3):847-51, table of contents 11118407 - Hypertens Pregnancy. 2000;19(3):331-40 26940914 - Neurocrit Care. 2016 Dec;25(3):473-491 23796546 - Neuroimage. 2014 Jan 15;85 Pt 1:192-201 23770408 - Neuroimage. 2014 Jan 15;85 Pt 1:51-63 10750327 - Keio J Med. 2000 Feb;49 Suppl 1:A4-10 25426330 - Biomed Opt Express. 2014 Oct 28;5(11):4053-75 26364865 - Neuroimage. 2016 Jan 1;124(Pt A):433-41 14063262 - J Appl Physiol. 1963 Sep;18:924-32 21349153 - Fluids Barriers CNS. 2011 Jan 18;8(1):5 7880717 - Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):325-40 27403447 - Neurophotonics. 2016 Jul;3(3):031411 22659481 - Neuroimage. 2012 Sep;62(3):1445-54 9792263 - Eur Heart J. 1998 Sep;19(9):1371-6 26120204 - Rep Prog Phys. 2010 Jul;73(7):null 22426466 - Stroke. 2012 May;43(5):1440-5 12022246 - Am J Hypertens. 2002 May;15(5):426-44 23328942 - Curr Neurol Neurosci Rep. 2013 Mar;13(3):331 9346438 - J Cereb Blood Flow Metab. 1997 Oct;17(10):1127-31 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41 23847725 - Biomed Opt Express. 2013 Jun 03;4(7):978-94 18071383 - Appl Opt. 2007 Dec 10;46(35):8506-14 25515216 - J Cereb Blood Flow Metab. 2015 Mar;35(3):461-8 15118178 - Stroke. 2004 Jun;35(6):1393-8 23737006 - Eur J Appl Physiol. 2014 Mar;114(3):545-59 2737731 - Hypertension. 1989 Jun;13(6 Pt 2):968-72 15591334 - Br J Anaesth. 2005 Feb;94(2):216-21 22006897 - Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4390-406 25307778 - Acta Neurochir (Wien). 2015 Jan;157(1):109-13 23224167 - J Biomed Opt. 2012 Aug;17(8):081406-1 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89 12900178 - Med Eng Phys. 2003 Oct;25(8):621-32 10060408 - Phys Rev Lett. 1995 Aug 28;75(9):1855-1858 7912867 - Ultrasound Med Biol. 1994;20(2):101-5 16543642 - Clin Hemorheol Microcirc. 2006;34(1-2):233-9 28276534 - Sci Rep. 2017 Mar 09;7:44117 11486110 - Stroke. 2001 Aug;32(8):1811-7 26301255 - Neurophotonics. 2015 Jul;2(3):035004 26573630 - Ann Intensive Care. 2015 Dec;5(1):41 19342545 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1388-93 22108783 - Neurocrit Care. 2012 Apr;16(2):213-8 27699112 - Biomed Opt Express. 2016 Aug 15;7(9):3461-3470 26720870 - J Biomed Opt. 2015 ;20(12 ):125005 5043481 - Med Biol Eng. 1972 May;10(3):327-35 25574566 - J Neurosurg. 2015 Sep;123(3):638-48 9576246 - J Neurosurg. 1998 May;88(5):802-8 21750779 - Biomed Opt Express. 2011 Jul 1;2(7):2047-54 27231588 - Biomed Opt Express. 2016 Feb 03;7(3):776-97 10974136 - N Engl J Med. 2000 Sep 7;343(10):710-22 4214313 - J Neurosurg. 1974 Nov;41(5):597-606 21441155 - Stroke. 2011 May;42(5):1351-6 14810938 - Am J Physiol. 1951 Feb;164(2):330-44 22344243 - Anesth Analg. 2012 Apr;114(4):803-10 27335889 - Neurophotonics. 2016 Jul;3(3):031412 12791944 - Stroke. 2003 Jul;34(7):1645-9 10905568 - J Neurosurg Anesthesiol. 2000 Jul;12(3):210-6 24650601 - Neuroimage. 2014 Jul 1;94:303-11 12160200 - Am J Hypertens. 2002 Aug;15(8):743-53 21750781 - Biomed Opt Express. 2011 Jul 1;2(7):2068-81 23111021 - J Thorac Cardiovasc Surg. 2013 Jan;145(1):196-203, 205.e1; discussion 203-5 24439332 - Acad Radiol. 2014 Feb;21(2):185-96 24682849 - Neurocrit Care. 2014 Oct;21(2):266-74 20818852 - N Engl J Med. 2010 Aug 26;363(9):891-3 23149558 - J Cereb Blood Flow Metab. 2013 Feb;33(2):235-43 7490638 - J Neurosurg. 1995 Dec;83(6):949-62 19498218 - Physiol Meas. 2009 Jul;30(7):647-59 21934694 - J Cereb Blood Flow Metab. 2012 Feb;32(2):318-29 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 24326385 - J Cereb Blood Flow Metab. 2014 Mar;34(3):380-8 24293327 - Br J Anaesth. 2014 Jan;112(1):35-46 16551432 - Neurol Res. 2006 Mar;28(2):149-54 10475580 - Physiol Meas. 1999 Aug;20(3):265-75 25826118 - Pediatr Res. 2015 Jul;78(1):71-5 25593978 - Neurophotonics. 2014 Jun 20;1(1):null 12135313 - Hypertens Res. 2002 May;25(3):359-64 |
References_xml | – volume: 34 start-page: 1645 year: 2003 end-page: 1649 article-title: Dynamic pressure–flow velocity relationships in the human cerebral circulation publication-title: Stroke – volume: 96 start-page: 847 year: 2003 end-page: 851 article-title: Noninvasive estimation of cerebral perfusion pressure and zero flow pressure in healthy volunteers: the effects of changes in end-tidal carbon dioxide publication-title: Anesthesia Analgesia – volume: 14 start-page: 192 year: 1997 end-page: 215 article-title: Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation publication-title: J Opt Soc Am A – volume: 62 start-page: 1445 year: 2012 end-page: 1454 article-title: Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics publication-title: Neuroimage – volume: 75 start-page: 1855 year: 1995 end-page: 1858 article-title: Scattering and imaging with diffusing temporal field correlations publication-title: Phys Rev Lett – volume: 21 start-page: 185 year: 2014 end-page: 196 article-title: Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies publication-title: Acad Radiol – volume: 85 start-page: 192 year: 2014 end-page: 201 article-title: Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers publication-title: Neuroimage – volume: 17 year: 2012 article-title: Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy publication-title: J Biomed Opt – volume: 42 start-page: 1351 year: 2011 end-page: 1356 article-title: Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage publication-title: Stroke – volume: 49 start-page: A4 year: 2000 end-page: A10 article-title: Clinical application of cerebrovascular reserve assessment as a strategy for stroke prevention publication-title: Keio J Med – volume: 19 start-page: 1371 year: 1998 end-page: 1376 article-title: Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients publication-title: Eur Heart J – volume: 114 start-page: 545 year: 2014 end-page: 559 article-title: Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges publication-title: Eur J Appl Physiol – volume: 6 start-page: 325 year: 1993 end-page: 340 article-title: Physiological determination of cerebrovascular reserves and its use in clinical management publication-title: Cerebrovasc Brain Metab Rev – volume: 17 start-page: 1127 year: 1997 end-page: 1131 article-title: Frequency dependence of cerebrovascular impedance in preterm neonates: A different view on critical closing pressure publication-title: J Cerebr Blood Flow Metab – volume: 10 start-page: 327 year: 1972 end-page: 335 article-title: Wave-velocity in the proximal aorta publication-title: Med Biol Eng Comput – volume: 25 start-page: 473 year: 2016 end-page: 491 article-title: Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: Is it possible? publication-title: Neurocrit Care – volume: 35 start-page: 1393 year: 2004 end-page: 1398 article-title: Critical closing pressure in subarachnoid hemorrhage effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation publication-title: Stroke – volume: 47 start-page: 131 year: 2009 end-page: 141 article-title: The arterial windkessel publication-title: Med Biol Eng Comput – volume: 13 start-page: 1 year: 2013 end-page: 16 article-title: Physiological monitoring of the severe traumatic brain injury patient in the intensive care unit publication-title: Curr Neurol Neurosci Rep – volume: 5 start-page: 41 year: 2015 end-page: 51 article-title: Personalizing blood pressure management in septic shock publication-title: Ann Intensive Care – volume: 20 start-page: 125005 year: 2015 article-title: Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle publication-title: J Biomed Opt – volume: 21 start-page: 266 year: 2014 end-page: 274 article-title: Relationship of vascular wall tension and autoregulation following traumatic brain injury publication-title: Neurocrit Care – volume: 71 start-page: 383 year: 1979 end-page: 407 article-title: Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells publication-title: J Colloid Interface Sci – volume: 45 start-page: 69 year: 2007 end-page: 77 article-title: Geometric characteristics of arterial network of rat pial microcirculation publication-title: J Vasc Res – volume: 20 start-page: 265 year: 1999 end-page: 275 article-title: Effect of CO on dynamic cerebral autoregulation measurement publication-title: Physiol Measure – volume: 3 start-page: 031411 year: 2016 article-title: Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods publication-title: Neurophotonics – volume: 145 start-page: 196 year: 2013 end-page: 205.e1 article-title: Early postoperative changes in cerebral oxygen metabolism following neonatal cardiac surgery: Effects of surgical duration publication-title: J Thoracic Cardiovasc Surg – volume: 15 start-page: 743 year: 2002 end-page: 753 article-title: Methods and devices for measuring arterial compliance in humans publication-title: Am J Hypertens – volume: 7 start-page: 776 year: 2016 end-page: 797 article-title: Fast blood flow monitoring in deep tissues with real-time software correlators publication-title: Biomed Opt Express – volume: 7 start-page: 15 year: 1990 end-page: 20 article-title: Diffusing-wave spectroscopy in a shear flow publication-title: JOSA B – volume: 16 start-page: 213 year: 2012 end-page: 218 article-title: Vasospasm shortens cerebral arterial time constant publication-title: Neurocrit Care – volume: 83 start-page: 949 year: 1995 end-page: 962 article-title: Cerebral perfusion pressure: management protocol and clinical results publication-title: J Neurosurg – volume: 32 start-page: 318 year: 2012 end-page: 329 article-title: Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus publication-title: J Cerebr Blood Flow Metab – volume: 34 start-page: 233 year: 2006 end-page: 239 article-title: Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography publication-title: Clin Hemorheol Microcirc – volume: 30 start-page: 647 year: 2009 end-page: 659 article-title: The monitoring of relative changes in compartmental compliances of brain publication-title: Physiol Measure – volume: 19 start-page: 679 year: 1999 end-page: 689 article-title: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance publication-title: J Cerebr Blood Flow Metab – volume: 34 start-page: 380 year: 2014 end-page: 388 article-title: Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics publication-title: J Cereb Blood Flow Metab – volume: 157 start-page: 109 year: 2015 end-page: 113 article-title: Effect of postural changes on ICP in healthy and ill subjects publication-title: Acta Neurochirurgica – volume: 85 start-page: 51 issue: Part 1 year: 2014 end-page: 63 article-title: Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement publication-title: NeuroImage – volume: 25 start-page: 359 year: 2002 end-page: 364 article-title: Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement publication-title: Hypertens Res – volume: 25 start-page: 621 year: 2003 end-page: 632 article-title: The critical closing pressure of the cerebral circulation publication-title: Med Eng Phys – volume: 3 start-page: 031412 year: 2016 article-title: Establishing the diffuse correlation spectroscopy signal relationship with blood flow publication-title: Neurophotonics – volume: 5 start-page: 4053 year: 2014 end-page: 4075 article-title: Modified Beer-Lambert law for blood flow publication-title: Biomed Opt Express – volume: 15 start-page: 70 year: 1967 end-page: 73 article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms publication-title: IEEE Trans Audio Electroacoust – volume: 41 start-page: 597 year: 1974 end-page: 606 article-title: Experimental cerebral hemodynamics: Vasomotor tone, critical closing pressure, and vascular bed resistance publication-title: J Neurosurg – volume: 363 start-page: 891 year: 2010 end-page: 893 article-title: Reference range for cerebrospinal fluid opening pressure in children publication-title: New Engl J Med – volume: 164 start-page: 330 year: 1951 end-page: 344 article-title: Fundamental instability of the small blood vessels and critical closing pressures in vascular beds publication-title: Am J Physiol–Legacy Content – volume: 1 start-page: 011009 year: 2014 article-title: Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects publication-title: Neurophotonics – volume: 123 start-page: 638 year: 2015 end-page: 648 article-title: A noninvasive estimation of cerebral perfusion pressure using critical closing pressure publication-title: J Neurosurg – volume: 94 start-page: 303 year: 2014 end-page: 311 article-title: Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method publication-title: NeuroImage – volume: 4 start-page: 978 year: 2013 end-page: 994 article-title: Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions publication-title: Biomed Opt Express – volume: 369 start-page: 4390 year: 2011 end-page: 4406 article-title: Direct measurement of tissue blood flow and metabolism with diffuse optics publication-title: Philos Trans Ser A: Math Phys Eng Sci – volume: 30 start-page: 1388 year: 2009 end-page: 1393 article-title: Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease publication-title: Am J Neuroradiol – volume: 7 start-page: 3461 year: 2016 end-page: 3470 article-title: Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest publication-title: Biomed Opt Express – volume: 2 start-page: 035004 year: 2015 article-title: Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts publication-title: Neurophotonics – volume: 28 start-page: 149 year: 2006 end-page: 154 article-title: Identifying regions of compromised hemodynamics in symptomatic carotid occlusion by cerebrovascular reactivity and oxygen extraction fraction publication-title: Neurol Res – volume: 124 start-page: 433 year: 2016 end-page: 441 article-title: Assessing intracranial vascular compliance using dynamic arterial spin labeling publication-title: NeuroImage – volume: 343 start-page: 710 year: 2000 end-page: 722 article-title: Treatment of acute ischemic stroke publication-title: New Engl J Med – volume: 12 start-page: 210 year: 2000 end-page: 216 article-title: Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension publication-title: J Neurosurg Anesthesiol – volume: 274 start-page: H233 year: 1998 end-page: H241 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am J Physiol-Heart Circ Physiol – volume: 19 start-page: 331 year: 2000 end-page: 340 article-title: Evaluation of a noninvasive transcranial Doppler and blood pressure-based method for the assessment of cerebral perfusion pressure in pregnant women publication-title: Hypertens Pregnancy – volume: 29 start-page: 399 year: 1997 end-page: 434 article-title: Blood flow in arteries publication-title: Annu Rev Fluid Mech – volume: 2 start-page: 2068 year: 2011 end-page: 2081 article-title: Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements publication-title: Biomed Opt Express – volume: 112 start-page: 35 year: 2014 end-page: 46 article-title: Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? publication-title: Br J Anaesthesia – volume: 73 start-page: 076701 year: 2010 article-title: Diffuse optics for tissue monitoring and tomography publication-title: Rep Progr Phys – volume: 7 start-page: 44117 year: 2017 end-page: 44126 article-title: Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: Feasibility and clinical implications publication-title: Sci Rep – volume: 13 start-page: 968 year: 1989 end-page: 972 article-title: Remodeling of cerebral arterioles in chronic hypertension publication-title: Hypertension – volume: 32 start-page: 1811 year: 2001 end-page: 1817 article-title: Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler publication-title: Stroke – volume: 114 start-page: 803 year: 2012 end-page: 810 article-title: Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit publication-title: Anesthesia Analgesia – volume: 43 start-page: 1440 year: 2012 end-page: 1445 article-title: Multimodal monitoring in subarachnoid hemorrhage publication-title: Stroke – volume: 35 start-page: 461 year: 2015 end-page: 468 article-title: Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling publication-title: J Cerebr Blood Flow Metab – volume: 33 start-page: 235 year: 2013 end-page: 243 article-title: Critical closing pressure determined with a model of cerebrovascular impedance publication-title: J Cerebr Blood Flow Metab – volume: 46 start-page: 8506 year: 2007 end-page: 8514 article-title: Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue publication-title: Appl Opt – volume: 20 start-page: 101 year: 1994 end-page: 105 article-title: Estimates of pulse wave velocity and measurement of pulse transit time in the human cerebral circulation publication-title: Ultrasound Med Biol – volume: 15 start-page: 426 year: 2002 end-page: 444 article-title: Clinical applications of arterial stiffness; definitions and reference values publication-title: Am J Hypertens – volume: 18 start-page: 924 year: 1963 end-page: 932 article-title: Hemodynamics of collapsible vessels with tone: the vascular waterfall publication-title: J Appl Physiol – volume: 8 start-page: 1 year: 2011 end-page: 23 article-title: The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility publication-title: Fluids Barriers CNS – volume: 2 start-page: 2047 year: 2011 end-page: 2054 article-title: Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels publication-title: Biomed Opt Express – volume: 88 start-page: 802 year: 1998 end-page: 808 article-title: Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography publication-title: J Neurosurg – volume: 78 start-page: 71 year: 2015 end-page: 75 article-title: Ontogeny of cerebrovascular critical closing pressure publication-title: Pediatr Res – volume: 94 start-page: 216 year: 2005 end-page: 221 article-title: Non-invasive assessment of cerebral perfusion pressure in brain injured patients with moderate intracranial hypertension publication-title: Br J Anaesthesia – ident: bibr2-0271678X17709166 doi: 10.1007/s11910-012-0331-2 – ident: bibr15-0271678X17709166 doi: 10.1152/ajplegacy.1951.164.2.330 – ident: bibr5-0271678X17709166 doi: 10.1186/s13613-015-0085-5 – ident: bibr6-0271678X17709166 doi: 10.3171/jns.1995.83.6.0949 – ident: bibr36-0271678X17709166 doi: 10.1088/0034-4885/73/7/076701 – ident: bibr40-0271678X17709166 doi: 10.1007/s11517-008-0359-2 – ident: bibr57-0271678X17709166 doi: 10.1016/S0895-7061(01)02319-6 – ident: bibr23-0271678X17709166 doi: 10.1117/12.2252824 – ident: bibr88-0271678X17709166 doi: 10.1117/1.JBO.17.8.081406 – ident: bibr17-0271678X17709166 doi: 10.3171/jns.1998.88.5.0802 – ident: bibr85-0271678X17709166 doi: 10.1016/0021-9797(79)90248-0 – volume-title: McDonald's blood flow in arteries: Theoretical, experimental and clinical principles (Table 4.3) year: 2011 ident: bibr53-0271678X17709166 – ident: bibr60-0271678X17709166 doi: 10.1152/ajpheart.1998.274.1.H233 – ident: bibr1-0271678X17709166 doi: 10.1056/NEJM200009073431007 – ident: bibr55-0271678X17709166 doi: 10.1007/BF02474213 – ident: bibr27-0271678X17709166 doi: 10.1179/016164106X98026 – ident: bibr56-0271678X17709166 doi: 10.1016/0301-5629(94)90074-4 – ident: bibr79-0271678X17709166 doi: 10.1007/s12028-011-9653-1 – ident: bibr63-0271678X17709166 doi: 10.1117/1.JBO.20.12.125005 – volume-title: The art of electronics year: 1980 ident: bibr61-0271678X17709166 – ident: bibr11-0271678X17709166 doi: 10.1097/00008506-200007000-00002 – ident: bibr59-0271678X17709166 doi: 10.1016/j.neuroimage.2012.05.069 – ident: bibr18-0271678X17709166 doi: 10.3171/2014.10.JNS14613 – ident: bibr73-0271678X17709166 doi: 10.1117/1.NPh.2.3.035004 – ident: bibr30-0271678X17709166 doi: 10.1007/s12028-016-0258-6 – ident: bibr4-0271678X17709166 doi: 10.1007/s00421-013-2667-y – ident: bibr54-0271678X17709166 doi: 10.1291/hypres.25.359 – ident: bibr66-0271678X17709166 doi: 10.1146/annurev.fluid.29.1.399 – ident: bibr39-0271678X17709166 doi: 10.1016/j.neuroimage.2013.06.054 – ident: bibr8-0271678X17709166 doi: 10.1093/bja/aet418 – ident: bibr75-0271678X17709166 doi: 10.1088/0967-3334/30/7/009 – ident: bibr10-0271678X17709166 doi: 10.1016/S1350-4533(03)00027-4 – ident: bibr76-0271678X17709166 doi: 10.1038/jcbfm.2014.219 – volume: 6 start-page: 325 year: 1993 ident: bibr24-0271678X17709166 publication-title: Cerebrovasc Brain Metab Rev – ident: bibr41-0271678X17709166 doi: 10.1103/PhysRevLett.75.1855 – ident: bibr70-0271678X17709166 doi: 10.1053/euhj.1998.1099 – ident: bibr3-0271678X17709166 doi: 10.1161/STROKEAHA.111.639906 – ident: bibr33-0271678X17709166 doi: 10.1016/j.neuroimage.2013.06.017 – ident: bibr62-0271678X17709166 doi: 10.1364/BOE.2.002068 – ident: bibr28-0271678X17709166 doi: 10.1213/01.ANE.0000047273.85729.A7 – ident: bibr72-0271678X17709166 doi: 10.1364/BOE.4.000978 – volume: 49 start-page: A4 year: 2000 ident: bibr25-0271678X17709166 publication-title: Keio J Med – ident: bibr43-0271678X17709166 doi: 10.1117/1.NPh.3.3.031412 – ident: bibr32-0271678X17709166 doi: 10.1161/01.STR.0000128411.07036.a9 – ident: bibr12-0271678X17709166 doi: 10.1152/jappl.1963.18.5.924 – ident: bibr22-0271678X17709166 doi: 10.1364/BRAIN.2016.BTh4D.7 – ident: bibr19-0271678X17709166 doi: 10.1081/PRG-100101995 – ident: bibr67-0271678X17709166 doi: 10.1056/NEJMc1004957 – ident: bibr42-0271678X17709166 doi: 10.1364/JOSAA.14.000192 – ident: bibr49-0271678X17709166 doi: 10.1161/01.HYP.13.6.968 – ident: bibr58-0271678X17709166 doi: 10.1109/TAU.1967.1161901 – ident: bibr46-0271678X17709166 doi: 10.1364/AO.46.008506 – ident: bibr7-0271678X17709166 doi: 10.1161/STROKEAHA.110.596874 – ident: bibr34-0271678X17709166 doi: 10.1364/BOE.7.000776 – ident: bibr51-0271678X17709166 doi: 10.1097/00004647-199710000-00015 – ident: bibr65-0271678X17709166 doi: 10.1007/s12028-014-9971-1 – ident: bibr35-0271678X17709166 doi: 10.1117/1.NPh.1.1.011009 – ident: bibr45-0271678X17709166 doi: 10.1038/jcbfm.2013.214 – ident: bibr87-0271678X17709166 doi: 10.1364/JOSAB.7.000015 – ident: bibr21-0271678X17709166 doi: 10.1364/CANCER.2016.JTu1A.1 – ident: bibr81-0271678X17709166 doi: 10.1159/000109078 – ident: bibr14-0271678X17709166 doi: 10.1213/ANE.0b013e318247fa44 – ident: bibr9-0271678X17709166 doi: 10.3171/jns.1974.41.5.0597 – ident: bibr16-0271678X17709166 doi: 10.1007/978-3-642-70971-5_43 – ident: bibr82-0271678X17709166 doi: 10.1016/j.acra.2013.10.012 – ident: bibr69-0271678X17709166 doi: 10.1088/0967-3334/20/3/304 – volume-title: McDonald's blood flow in arteries: Theoretical, experimental and clinical principles year: 2011 ident: bibr50-0271678X17709166 – ident: bibr44-0271678X17709166 doi: 10.1098/rsta.2011.0232 – ident: bibr71-0271678X17709166 doi: 10.1186/2045-8118-8-5 – volume: 34 start-page: 233 year: 2006 ident: bibr80-0271678X17709166 publication-title: Clin Hemorheol Microcirc – ident: bibr13-0271678X17709166 doi: 10.1161/01.STR.0000077927.63758.B6 – ident: bibr29-0271678X17709166 doi: 10.1093/bja/aei034 – ident: bibr83-0271678X17709166 doi: 10.3174/ajnr.A1562 – ident: bibr78-0271678X17709166 doi: 10.1117/1.NPh.3.3.031411 – ident: bibr84-0271678X17709166 doi: 10.1038/jcbfm.2011.130 – ident: bibr20-0271678X17709166 doi: 10.1038/pr.2015.67 – ident: bibr47-0271678X17709166 doi: 10.1038/jcbfm.2012.161 – ident: bibr38-0271678X17709166 doi: 10.1038/srep44117 – ident: bibr26-0271678X17709166 doi: 10.1161/01.STR.32.8.1811 – ident: bibr64-0271678X17709166 doi: 10.1016/j.neuroimage.2014.03.023 – ident: bibr74-0271678X17709166 doi: 10.1016/S0895-7061(02)02962-X – ident: bibr37-0271678X17709166 doi: 10.1016/j.jtcvs.2012.09.057 – ident: bibr52-0271678X17709166 doi: 10.1364/BOE.5.004053 – ident: bibr31-0271678X17709166 doi: 10.1364/BOE.7.003461 – ident: bibr68-0271678X17709166 doi: 10.1007/s00701-014-2250-2 – ident: bibr48-0271678X17709166 doi: 10.1097/00004647-199906000-00012 – ident: bibr86-0271678X17709166 doi: 10.1364/BOE.2.002047 – ident: bibr77-0271678X17709166 doi: 10.1016/j.neuroimage.2015.09.008 – reference: 23149558 - J Cereb Blood Flow Metab. 2013 Feb;33(2):235-43 – reference: 10905568 - J Neurosurg Anesthesiol. 2000 Jul;12(3):210-6 – reference: 7912867 - Ultrasound Med Biol. 1994;20(2):101-5 – reference: 26120204 - Rep Prog Phys. 2010 Jul;73(7):null – reference: 22006897 - Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4390-406 – reference: 27403447 - Neurophotonics. 2016 Jul;3(3):031411 – reference: 25574566 - J Neurosurg. 2015 Sep;123(3):638-48 – reference: 15591334 - Br J Anaesth. 2005 Feb;94(2):216-21 – reference: 10060408 - Phys Rev Lett. 1995 Aug 28;75(9):1855-1858 – reference: 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41 – reference: 11118407 - Hypertens Pregnancy. 2000;19(3):331-40 – reference: 23737006 - Eur J Appl Physiol. 2014 Mar;114(3):545-59 – reference: 12135313 - Hypertens Res. 2002 May;25(3):359-64 – reference: 4214313 - J Neurosurg. 1974 Nov;41(5):597-606 – reference: 11486110 - Stroke. 2001 Aug;32(8):1811-7 – reference: 10475580 - Physiol Meas. 1999 Aug;20(3):265-75 – reference: 25826118 - Pediatr Res. 2015 Jul;78(1):71-5 – reference: 5043481 - Med Biol Eng. 1972 May;10(3):327-35 – reference: 15118178 - Stroke. 2004 Jun;35(6):1393-8 – reference: 10750327 - Keio J Med. 2000 Feb;49 Suppl 1:A4-10 – reference: 22659481 - Neuroimage. 2012 Sep;62(3):1445-54 – reference: 21750781 - Biomed Opt Express. 2011 Jul 1;2(7):2068-81 – reference: 12791944 - Stroke. 2003 Jul;34(7):1645-9 – reference: 25515216 - J Cereb Blood Flow Metab. 2015 Mar;35(3):461-8 – reference: 27699112 - Biomed Opt Express. 2016 Aug 15;7(9):3461-3470 – reference: 25307778 - Acta Neurochir (Wien). 2015 Jan;157(1):109-13 – reference: 14063262 - J Appl Physiol. 1963 Sep;18:924-32 – reference: 21750779 - Biomed Opt Express. 2011 Jul 1;2(7):2047-54 – reference: 27335889 - Neurophotonics. 2016 Jul;3(3):031412 – reference: 23111021 - J Thorac Cardiovasc Surg. 2013 Jan;145(1):196-203, 205.e1; discussion 203-5 – reference: 19342545 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1388-93 – reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 – reference: 22108783 - Neurocrit Care. 2012 Apr;16(2):213-8 – reference: 12022246 - Am J Hypertens. 2002 May;15(5):426-44 – reference: 22426466 - Stroke. 2012 May;43(5):1440-5 – reference: 23770408 - Neuroimage. 2014 Jan 15;85 Pt 1:51-63 – reference: 26301255 - Neurophotonics. 2015 Jul;2(3):035004 – reference: 28276534 - Sci Rep. 2017 Mar 09;7:44117 – reference: 26720870 - J Biomed Opt. 2015 ;20(12 ):125005 – reference: 2737731 - Hypertension. 1989 Jun;13(6 Pt 2):968-72 – reference: 12900178 - Med Eng Phys. 2003 Oct;25(8):621-32 – reference: 23328942 - Curr Neurol Neurosci Rep. 2013 Mar;13(3):331 – reference: 21349153 - Fluids Barriers CNS. 2011 Jan 18;8(1):5 – reference: 26364865 - Neuroimage. 2016 Jan 1;124(Pt A):433-41 – reference: 25426330 - Biomed Opt Express. 2014 Oct 28;5(11):4053-75 – reference: 17901708 - J Vasc Res. 2008;45(1):69-77 – reference: 12160200 - Am J Hypertens. 2002 Aug;15(8):743-53 – reference: 24293327 - Br J Anaesth. 2014 Jan;112(1):35-46 – reference: 20818852 - N Engl J Med. 2010 Aug 26;363(9):891-3 – reference: 9792263 - Eur Heart J. 1998 Sep;19(9):1371-6 – reference: 26940914 - Neurocrit Care. 2016 Dec;25(3):473-491 – reference: 21934694 - J Cereb Blood Flow Metab. 2012 Feb;32(2):318-29 – reference: 16543642 - Clin Hemorheol Microcirc. 2006;34(1-2):233-9 – reference: 16551432 - Neurol Res. 2006 Mar;28(2):149-54 – reference: 9346438 - J Cereb Blood Flow Metab. 1997 Oct;17(10):1127-31 – reference: 24326385 - J Cereb Blood Flow Metab. 2014 Mar;34(3):380-8 – reference: 25593978 - Neurophotonics. 2014 Jun 20;1(1):null – reference: 9576246 - J Neurosurg. 1998 May;88(5):802-8 – reference: 14810938 - Am J Physiol. 1951 Feb;164(2):330-44 – reference: 24650601 - Neuroimage. 2014 Jul 1;94:303-11 – reference: 12598272 - Anesth Analg. 2003 Mar;96(3):847-51, table of contents – reference: 7880717 - Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):325-40 – reference: 24682849 - Neurocrit Care. 2014 Oct;21(2):266-74 – reference: 18071383 - Appl Opt. 2007 Dec 10;46(35):8506-14 – reference: 24439332 - Acad Radiol. 2014 Feb;21(2):185-96 – reference: 10974136 - N Engl J Med. 2000 Sep 7;343(10):710-22 – reference: 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89 – reference: 7490638 - J Neurosurg. 1995 Dec;83(6):949-62 – reference: 23796546 - Neuroimage. 2014 Jan 15;85 Pt 1:192-201 – reference: 26573630 - Ann Intensive Care. 2015 Dec;5(1):41 – reference: 22344243 - Anesth Analg. 2012 Apr;114(4):803-10 – reference: 27231588 - Biomed Opt Express. 2016 Feb 03;7(3):776-97 – reference: 23847725 - Biomed Opt Express. 2013 Jun 03;4(7):978-94 – reference: 23224167 - J Biomed Opt. 2012 Aug;17(8):081406-1 – reference: 19498218 - Physiol Meas. 2009 Jul;30(7):647-59 – reference: 21441155 - Stroke. 2011 May;42(5):1351-6 |
SSID | ssj0008355 |
Score | 2.4803853 |
Snippet | The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial... The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial... The critical closing pressure ( CrCP ) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2691 |
SubjectTerms | Adult Blood Flow Velocity - physiology Blood Pressure - physiology Cerebrovascular Circulation - physiology Craniocerebral Trauma - diagnostic imaging Craniocerebral Trauma - physiopathology Healthy Volunteers Humans Intracranial Pressure - physiology Microvessels - diagnostic imaging Microvessels - physiopathology Models, Biological Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Optical Imaging Rapid Communications Sensitivity and Specificity Spectrum Analysis Ultrasonography, Doppler, Transcranial |
Title | Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects |
URI | https://journals.sagepub.com/doi/full/10.1177/0271678X17709166 https://www.ncbi.nlm.nih.gov/pubmed/28541158 https://www.proquest.com/docview/1902482035 https://pubmed.ncbi.nlm.nih.gov/PMC5536813 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeGmRUCWE3NaPtb3HqIJWVFQcWsgt2l2vFauOXcVOUfl7_DFmX3aSpqhwsRJn49d83pmd-WYGofciEzwjufCEjDIvSqLYo3lMPAraPDoQglKu_B1fT-Pj8-jLmIwHg99LrKVFy_fEr415Jf8jVdgHclVZsv8g2e6gsAM-g3xhCxKG7Z1kfKp8qVdMM9DrS-OVnumXdG7JzMJ1MhBl3ZjEc7W8tkEDzedUkXnLLNfpA0VlG_c1C66cNM0t9quQcxV0Lg33_WNe1oZcPJMtAKt0pQm1l9RSN35I5SLvGz1_gwuYskZVHzfCHjXTn3D-bsARqypDCzgpVOeS8rrPRzthVwuTJv9dVhesYFPr8bU-DNCLjkG3HDzb7KYMEt8DhTo2-spO0oR6yYHJ0XSzuCkdY9GaLk_JsWkHZtV7kOg07w2qQwev1fnU6eAbWFLxWpVuu2zaMxXS14beQ_cDWKuoNhpH455nBCau5tG6G-lj5fvrR1i1jW4seG7ydpfIh9oeOnuMHlkg4JFB5RM0kNU22hlVrK1n13gXa2qxjtlsoweHrq3gDsqXQIstaHEPWlzn2IEWW9BiB1oM-MIdaHEPWlxUWIMWO9A-ReefP50dHnu22YcnojBqPekLmTGu5oaMCBoHacZzUDfc52DDZnGeUJqnNAtpqtgFMfFDwnwZSlgDZL6fhc_QFiBSvkA4SiSNWSppInkUhjFnQS4CWFowRvKIhkO07x7zRNhK-KohSznxXfH7NcEM0YfuH5emCsxfxr5zkpvAo1XxN1bJetFMwPYOIrC4QzJEz40ku6OpRGZYnKVDlKzIuBugysCv_lIVU10OnpAwTn24q12Fhomdn5pbL_DlXQe-Qg_7l_U12mrnC_kGTPCWv9UQ_wO_S9sD |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+optical+monitoring+of+critical+closing+pressure+and+arteriole+compliance+in+human+subjects&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Baker%2C+Wesley+B&rft.au=Parthasarathy%2C+Ashwin+B&rft.au=Gannon%2C+Kimberly+P&rft.au=Kavuri%2C+Venkaiah+C&rft.date=2017-08-01&rft.pub=SAGE+Publications&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=37&rft.issue=8&rft.spage=2691&rft.epage=2705&rft_id=info:doi/10.1177%2F0271678X17709166&rft.externalDocID=10.1177_0271678X17709166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |