Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects

The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusi...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 37; no. 8; pp. 2691 - 2705
Main Authors Baker, Wesley B, Parthasarathy, Ashwin B, Gannon, Kimberly P, Kavuri, Venkaiah C, Busch, David R, Abramson, Kenneth, He, Lian, Mesquita, Rickson C, Mullen, Michael T, Detre, John A, Greenberg, Joel H, Licht, Daniel J, Balu, Ramani, Kofke, W Andrew, Yodh, Arjun G
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
AbstractList The critical closing pressure ( CrCP ) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP ) at which cerebral blood flow approaches zero, and their difference ( ABP  −  CrCP ) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure (ABP) at which cerebral blood flow approaches zero, and their difference (ABP − CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP -  CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP -  CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP -  CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
Author Detre, John A
Gannon, Kimberly P
Kofke, W Andrew
Busch, David R
Mullen, Michael T
Abramson, Kenneth
Mesquita, Rickson C
Balu, Ramani
Parthasarathy, Ashwin B
Greenberg, Joel H
Licht, Daniel J
Yodh, Arjun G
He, Lian
Baker, Wesley B
Kavuri, Venkaiah C
AuthorAffiliation 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
6 Institute of Physics, University of Campinas, Campinas, Brazil
3 Department of Electrical Engineering, University of South Florida, Tampa, USA
2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
5 Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, USA
AuthorAffiliation_xml – name: 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
– name: 6 Institute of Physics, University of Campinas, Campinas, Brazil
– name: 3 Department of Electrical Engineering, University of South Florida, Tampa, USA
– name: 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
– name: 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
– name: 5 Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, USA
Author_xml – sequence: 1
  givenname: Wesley B
  surname: Baker
  fullname: Baker, Wesley B
  email: Wesley.Baker@uphs.upenn.edu
– sequence: 2
  givenname: Ashwin B
  surname: Parthasarathy
  fullname: Parthasarathy, Ashwin B
– sequence: 3
  givenname: Kimberly P
  surname: Gannon
  fullname: Gannon, Kimberly P
– sequence: 4
  givenname: Venkaiah C
  surname: Kavuri
  fullname: Kavuri, Venkaiah C
– sequence: 5
  givenname: David R
  surname: Busch
  fullname: Busch, David R
– sequence: 6
  givenname: Kenneth
  surname: Abramson
  fullname: Abramson, Kenneth
– sequence: 7
  givenname: Lian
  surname: He
  fullname: He, Lian
– sequence: 8
  givenname: Rickson C
  surname: Mesquita
  fullname: Mesquita, Rickson C
– sequence: 9
  givenname: Michael T
  surname: Mullen
  fullname: Mullen, Michael T
– sequence: 10
  givenname: John A
  surname: Detre
  fullname: Detre, John A
– sequence: 11
  givenname: Joel H
  surname: Greenberg
  fullname: Greenberg, Joel H
– sequence: 12
  givenname: Daniel J
  surname: Licht
  fullname: Licht, Daniel J
– sequence: 13
  givenname: Ramani
  surname: Balu
  fullname: Balu, Ramani
– sequence: 14
  givenname: W Andrew
  surname: Kofke
  fullname: Kofke, W Andrew
– sequence: 15
  givenname: Arjun G
  surname: Yodh
  fullname: Yodh, Arjun G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28541158$$D View this record in MEDLINE/PubMed
BookMark eNp9Uc2L1TAQD7Livl29e5IcvXTNJE2aXARZ_FhY9KLgLaTp9G0ebVKT9oH_vS1vV3RBTzP8PmHmgpzFFJGQl8CuAJrmDeMNqEZ_X3dmQKknZAdSmqphoM7IbqOrjT8nF6UcGGNaSPmMnHMtawCpd6T_nGKIR1fCEWma5uDdQMcVm1MOcU9TT30OJ9gPqWzYlLGUJSN1saMuz5hDGpD6NE5DcNEjDZHeLaOLtCztAf1cnpOnvRsKvrifl-Tbh_dfrz9Vt18-3ly_u618Leq5QvDYudaYtumkN4rrru214C20mvNO9Y0xvTadMJo3NVcShHSAAkHWHUAnLsnbU-60tCN2HuOc3WCnHEaXf9rkgv2bieHO7tPRSimUBrEGvL4PyOnHgmW2Yygeh8FFTEuxYBivNWdCrtJXf3b9Lnk47ipQJ4HPqZSMvfVhdnNIW3UYLDC7fdE-_uJqZI-MD9n_sVQnS3F7tIe05Lje-d_6X5znreg
CitedBy_id crossref_primary_10_1117_1_NPh_6_3_035013
crossref_primary_10_1007_s13311_019_00744_1
crossref_primary_10_1117_1_NPh_9_S2_S24001
crossref_primary_10_1152_japplphysiol_00743_2022
crossref_primary_10_1177_0271678X211004131
crossref_primary_10_1117_1_NPh_10_2_023522
crossref_primary_10_1117_1_NPh_6_4_045001
crossref_primary_10_1242_dev_204455
crossref_primary_10_1117_1_NPh_7_4_045008
crossref_primary_10_1063_5_0212496
crossref_primary_10_1089_neu_2019_6965
crossref_primary_10_1016_j_injury_2020_07_054
crossref_primary_10_1016_j_neurot_2024_e00520
crossref_primary_10_1038_s41598_023_36074_8
crossref_primary_10_1097_ANA_0000000000000614
crossref_primary_10_1117_1_NPh_10_1_013509
crossref_primary_10_3389_fsurg_2024_1488265
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_03_019
crossref_primary_10_1109_ACCESS_2022_3228439
crossref_primary_10_1117_1_NPh_10_3_035008
crossref_primary_10_1364_BOE_489760
crossref_primary_10_1117_1_NPh_9_3_035004
crossref_primary_10_1016_j_medengphy_2022_103759
crossref_primary_10_1103_PhysRevE_100_033317
crossref_primary_10_1016_j_jpeds_2021_05_024
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_07_010
crossref_primary_10_1038_s41390_019_0403_y
crossref_primary_10_3390_fractalfract8070420
crossref_primary_10_1371_journal_pone_0305254
crossref_primary_10_3357_AMHP_5922_2022
crossref_primary_10_1117_1_NPh_11_1_015003
crossref_primary_10_1364_BOE_529150
crossref_primary_10_3390_fractalfract7100755
crossref_primary_10_1007_s12028_023_01690_9
crossref_primary_10_1364_BOE_423071
crossref_primary_10_1364_BOE_401641
crossref_primary_10_3390_ijms222312897
crossref_primary_10_1177_0271678X231153728
crossref_primary_10_3389_fneur_2018_00497
Cites_doi 10.1007/s11910-012-0331-2
10.1152/ajplegacy.1951.164.2.330
10.1186/s13613-015-0085-5
10.3171/jns.1995.83.6.0949
10.1088/0034-4885/73/7/076701
10.1007/s11517-008-0359-2
10.1016/S0895-7061(01)02319-6
10.1117/12.2252824
10.1117/1.JBO.17.8.081406
10.3171/jns.1998.88.5.0802
10.1016/0021-9797(79)90248-0
10.1152/ajpheart.1998.274.1.H233
10.1056/NEJM200009073431007
10.1007/BF02474213
10.1179/016164106X98026
10.1016/0301-5629(94)90074-4
10.1007/s12028-011-9653-1
10.1117/1.JBO.20.12.125005
10.1097/00008506-200007000-00002
10.1016/j.neuroimage.2012.05.069
10.3171/2014.10.JNS14613
10.1117/1.NPh.2.3.035004
10.1007/s12028-016-0258-6
10.1007/s00421-013-2667-y
10.1291/hypres.25.359
10.1146/annurev.fluid.29.1.399
10.1016/j.neuroimage.2013.06.054
10.1093/bja/aet418
10.1088/0967-3334/30/7/009
10.1016/S1350-4533(03)00027-4
10.1038/jcbfm.2014.219
10.1103/PhysRevLett.75.1855
10.1053/euhj.1998.1099
10.1161/STROKEAHA.111.639906
10.1016/j.neuroimage.2013.06.017
10.1364/BOE.2.002068
10.1213/01.ANE.0000047273.85729.A7
10.1364/BOE.4.000978
10.1117/1.NPh.3.3.031412
10.1161/01.STR.0000128411.07036.a9
10.1152/jappl.1963.18.5.924
10.1364/BRAIN.2016.BTh4D.7
10.1081/PRG-100101995
10.1056/NEJMc1004957
10.1364/JOSAA.14.000192
10.1161/01.HYP.13.6.968
10.1109/TAU.1967.1161901
10.1364/AO.46.008506
10.1161/STROKEAHA.110.596874
10.1364/BOE.7.000776
10.1097/00004647-199710000-00015
10.1007/s12028-014-9971-1
10.1117/1.NPh.1.1.011009
10.1038/jcbfm.2013.214
10.1364/JOSAB.7.000015
10.1364/CANCER.2016.JTu1A.1
10.1159/000109078
10.1213/ANE.0b013e318247fa44
10.3171/jns.1974.41.5.0597
10.1007/978-3-642-70971-5_43
10.1016/j.acra.2013.10.012
10.1088/0967-3334/20/3/304
10.1098/rsta.2011.0232
10.1186/2045-8118-8-5
10.1161/01.STR.0000077927.63758.B6
10.1093/bja/aei034
10.3174/ajnr.A1562
10.1117/1.NPh.3.3.031411
10.1038/jcbfm.2011.130
10.1038/pr.2015.67
10.1038/jcbfm.2012.161
10.1038/srep44117
10.1161/01.STR.32.8.1811
10.1016/j.neuroimage.2014.03.023
10.1016/S0895-7061(02)02962-X
10.1016/j.jtcvs.2012.09.057
10.1364/BOE.5.004053
10.1364/BOE.7.003461
10.1007/s00701-014-2250-2
10.1097/00004647-199906000-00012
10.1364/BOE.2.002047
10.1016/j.neuroimage.2015.09.008
ContentType Journal Article
Copyright The Author(s) 2017
The Author(s) 2017 2017 International Society for Cerebral Blood Flow and Metabolism
Copyright_xml – notice: The Author(s) 2017
– notice: The Author(s) 2017 2017 International Society for Cerebral Blood Flow and Metabolism
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/0271678X17709166
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1559-7016
EndPage 2705
ExternalDocumentID PMC5536813
28541158
10_1177_0271678X17709166
10.1177_0271678X17709166
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB015893
– fundername: NINDS NIH HHS
  grantid: R01 NS082309
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAYXX
AJGYC
CITATION
AAEJI
AAPII
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
AJHME
ID FETCH-LOGICAL-c434t-e1cedab99b7d5c9628dbf832b1b822d6f799f89d398274265135a1e3e154d11d3
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 18:25:31 EDT 2025
Fri Jul 11 16:41:57 EDT 2025
Mon Jul 21 06:06:28 EDT 2025
Tue Jul 01 05:20:46 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Tue Jun 17 22:29:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords near infrared spectroscopy
Arterioles
cerebral blood flow measurement
intrinsic optical imaging
neurocritical care
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-e1cedab99b7d5c9628dbf832b1b822d6f799f89d398274265135a1e3e154d11d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/0271678X17709166
PMID 28541158
PQID 1902482035
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5536813
proquest_miscellaneous_1902482035
pubmed_primary_28541158
crossref_citationtrail_10_1177_0271678X17709166
crossref_primary_10_1177_0271678X17709166
sage_journals_10_1177_0271678X17709166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: Sage UK: London, England
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2017
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Dietsche, Ninck, Ortolf 2007; 46
Goldsmith, Marlow 1979; 71
Pindzola, Balzer, Nemoto 2001; 32
Edouard, Vanhille, Le Moigno 2005; 94
Baker, Parthasarathy, Busch 2014; 5
Jain, Buckley, Licht 2014; 34
Diop, Verdecchia, Lee 2011; 2
Li, Baker, Parthasarathy 2015; 20
Mandeville, Marota, Ayata 1999; 19
Sandsmark, Kumar, Park 2012; 43
Aaslid, Lash, Bardy 2003; 34
Ku 1997; 29
Kato, Pinsky 2015; 5
Elliott, Diop, Morrison 2014; 94
Rashid, McAllister, Yu 2012; 32
Czosnyka, Matta, Smielewski 1998; 88
Mesquita, Durduran, Yu 2011; 369
Welch 1967; 15
Baker, Parthasarathy, Ko 2015; 2
Yonas, Pindzola 2000; 49
Tzeng, Ainslie 2014; 114
Busch, Rusin, Miller-Hance 2016; 7
Pindzola, Sashin, Nemoto 2006; 28
Varsos, Richards, Kasprowicz 2013; 33
Yoshiura, Hiwatashi, Yamashita 2009; 30
Yonas, Pindzola 1993; 6
Avery, Shah, Licht 2010; 363
Warnert, Murphy, Hall 2015; 35
Michel, Hillebrand, von Twickel 1997; 17
Durduran, Yodh 2014; 85
Dewey, Pieper, Hunt 1974; 41
Andresen, Hadi, Petersen 2015; 157
Panerai, Deverson, Mahony 1999; 20
Hancock, Mahajan, Athanassiou 2003; 96
Durduran, Choe, Baker 2010; 73
Rhee, Fraser, Kibler 2015; 78
O’Rourke, Staessen, Vlachopoulos 2002; 15
Maas, de Wilde, Aarts 2012; 114
Carp, Roche-Labarbe, Franceschini 2011; 2
Cardim, Robba, Bohdanowicz 2016; 25
Brott, Bogousslavsky 2000; 343
Yücel, Selb, Boas 2014; 85
Boas, Campbell, Yodh 1995; 75
Zhang, Zuckerman, Giller 1998; 274
Hallacoglu, Sassaroli, Wysocki 2012; 17
Lapi, Marchiafava, Colantuoni 2007; 45
Panerai 2003; 25
Yan, Liu, Smith 2016; 124
Weyland, Buhre, Grund 2000; 12
Nichols, McDonald 1972; 10
Schmidt, Ko, Helbok 2011; 42
Nichol, Girling, Jerrard 1951; 164
Kim, Kasprowicz, Carrera 2009; 30
Giller, Aaslid 1994; 20
Belfort, Tooke-Miller, Varner 2000; 19
Wang, Parthasarathy, Baker 2016; 7
Permutt, Riley 1963; 18
Varsos, Kolias, Smielewski 2015; 123
Boas, Sakadžić, Selb 2016; 3
Le Roux 2013; 13
Westerhof, Lankhaar, Westerhof 2009; 47
Baumbach, Heistad 1989; 13
Fantini, Sassaroli, Tgavalekos 2016; 3
Kirkman, Smith 2014; 112
Yamashina, Tomiyama, Takeda 2002; 25
Varsos, Budohoski, Kolias 2014; 21
Duprez, De Buyzere, Rietzschel 1998; 19
Rosner, Rosner, Johnson 1995; 83
Cheng, Shang, Hayes 2012; 62
Buckley, Parthasarathy, Grant 2014; 1
Mesquita, Schenkel, Minkoff 2013; 4
Buckley, Lynch, Goff 2013; 145
Boas, Yodh 1997; 14
Pannier, Avolio, Hoeks 2002; 15
Wagshul, Eide, Madsen 2011; 8
Soehle, Czosnyka, Pickard 2004; 35
Wu, Pine, Chaikin 1990; 7
Ferradal, Yuki, Vyas 2017; 7
Kasprowicz, Czosnyka, Soehle 2012; 16
Seki, Satomura, Ooi 2006; 34
Kainerstorfer, Sassaroli, Hallacoglu 2014; 21
bibr7-0271678X17709166
bibr88-0271678X17709166
Yonas H (bibr24-0271678X17709166) 1993; 6
bibr37-0271678X17709166
bibr70-0271678X17709166
bibr45-0271678X17709166
bibr62-0271678X17709166
bibr28-0271678X17709166
Nichols W (bibr53-0271678X17709166) 2011
bibr6-0271678X17709166
bibr11-0271678X17709166
bibr54-0271678X17709166
bibr44-0271678X17709166
bibr87-0271678X17709166
bibr71-0271678X17709166
bibr36-0271678X17709166
bibr19-0271678X17709166
bibr10-0271678X17709166
bibr9-0271678X17709166
bibr79-0271678X17709166
bibr27-0271678X17709166
bibr5-0271678X17709166
bibr13-0271678X17709166
bibr18-0271678X17709166
bibr78-0271678X17709166
bibr73-0271678X17709166
bibr65-0271678X17709166
bibr86-0271678X17709166
bibr52-0271678X17709166
bibr39-0271678X17709166
bibr26-0271678X17709166
bibr63-0271678X17709166
bibr8-0271678X17709166
bibr76-0271678X17709166
bibr47-0271678X17709166
bibr60-0271678X17709166
bibr34-0271678X17709166
bibr16-0271678X17709166
bibr42-0271678X17709166
bibr21-0271678X17709166
bibr29-0271678X17709166
bibr55-0271678X17709166
bibr3-0271678X17709166
bibr68-0271678X17709166
bibr81-0271678X17709166
bibr2-0271678X17709166
Horowitz P (bibr61-0271678X17709166) 1980
bibr32-0271678X17709166
bibr75-0271678X17709166
bibr41-0271678X17709166
bibr84-0271678X17709166
bibr15-0271678X17709166
bibr58-0271678X17709166
bibr67-0271678X17709166
bibr1-0271678X17709166
bibr57-0271678X17709166
bibr74-0271678X17709166
bibr31-0271678X17709166
bibr49-0271678X17709166
bibr66-0271678X17709166
bibr23-0271678X17709166
bibr14-0271678X17709166
bibr40-0271678X17709166
bibr83-0271678X17709166
bibr51-0271678X17709166
bibr56-0271678X17709166
bibr43-0271678X17709166
bibr64-0271678X17709166
bibr48-0271678X17709166
bibr30-0271678X17709166
bibr77-0271678X17709166
Yonas H (bibr25-0271678X17709166) 2000; 49
Seki J (bibr80-0271678X17709166) 2006; 34
bibr35-0271678X17709166
bibr22-0271678X17709166
Nichols W (bibr50-0271678X17709166) 2011
bibr4-0271678X17709166
bibr69-0271678X17709166
bibr82-0271678X17709166
bibr20-0271678X17709166
bibr38-0271678X17709166
bibr17-0271678X17709166
bibr33-0271678X17709166
bibr46-0271678X17709166
bibr59-0271678X17709166
bibr85-0271678X17709166
bibr72-0271678X17709166
bibr12-0271678X17709166
17901708 - J Vasc Res. 2008;45(1):69-77
12598272 - Anesth Analg. 2003 Mar;96(3):847-51, table of contents
11118407 - Hypertens Pregnancy. 2000;19(3):331-40
26940914 - Neurocrit Care. 2016 Dec;25(3):473-491
23796546 - Neuroimage. 2014 Jan 15;85 Pt 1:192-201
23770408 - Neuroimage. 2014 Jan 15;85 Pt 1:51-63
10750327 - Keio J Med. 2000 Feb;49 Suppl 1:A4-10
25426330 - Biomed Opt Express. 2014 Oct 28;5(11):4053-75
26364865 - Neuroimage. 2016 Jan 1;124(Pt A):433-41
14063262 - J Appl Physiol. 1963 Sep;18:924-32
21349153 - Fluids Barriers CNS. 2011 Jan 18;8(1):5
7880717 - Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):325-40
27403447 - Neurophotonics. 2016 Jul;3(3):031411
22659481 - Neuroimage. 2012 Sep;62(3):1445-54
9792263 - Eur Heart J. 1998 Sep;19(9):1371-6
26120204 - Rep Prog Phys. 2010 Jul;73(7):null
22426466 - Stroke. 2012 May;43(5):1440-5
12022246 - Am J Hypertens. 2002 May;15(5):426-44
23328942 - Curr Neurol Neurosci Rep. 2013 Mar;13(3):331
9346438 - J Cereb Blood Flow Metab. 1997 Oct;17(10):1127-31
18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41
23847725 - Biomed Opt Express. 2013 Jun 03;4(7):978-94
18071383 - Appl Opt. 2007 Dec 10;46(35):8506-14
25515216 - J Cereb Blood Flow Metab. 2015 Mar;35(3):461-8
15118178 - Stroke. 2004 Jun;35(6):1393-8
23737006 - Eur J Appl Physiol. 2014 Mar;114(3):545-59
2737731 - Hypertension. 1989 Jun;13(6 Pt 2):968-72
15591334 - Br J Anaesth. 2005 Feb;94(2):216-21
22006897 - Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4390-406
25307778 - Acta Neurochir (Wien). 2015 Jan;157(1):109-13
23224167 - J Biomed Opt. 2012 Aug;17(8):081406-1
10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89
12900178 - Med Eng Phys. 2003 Oct;25(8):621-32
10060408 - Phys Rev Lett. 1995 Aug 28;75(9):1855-1858
7912867 - Ultrasound Med Biol. 1994;20(2):101-5
16543642 - Clin Hemorheol Microcirc. 2006;34(1-2):233-9
28276534 - Sci Rep. 2017 Mar 09;7:44117
11486110 - Stroke. 2001 Aug;32(8):1811-7
26301255 - Neurophotonics. 2015 Jul;2(3):035004
26573630 - Ann Intensive Care. 2015 Dec;5(1):41
19342545 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1388-93
22108783 - Neurocrit Care. 2012 Apr;16(2):213-8
27699112 - Biomed Opt Express. 2016 Aug 15;7(9):3461-3470
26720870 - J Biomed Opt. 2015 ;20(12 ):125005
5043481 - Med Biol Eng. 1972 May;10(3):327-35
25574566 - J Neurosurg. 2015 Sep;123(3):638-48
9576246 - J Neurosurg. 1998 May;88(5):802-8
21750779 - Biomed Opt Express. 2011 Jul 1;2(7):2047-54
27231588 - Biomed Opt Express. 2016 Feb 03;7(3):776-97
10974136 - N Engl J Med. 2000 Sep 7;343(10):710-22
4214313 - J Neurosurg. 1974 Nov;41(5):597-606
21441155 - Stroke. 2011 May;42(5):1351-6
14810938 - Am J Physiol. 1951 Feb;164(2):330-44
22344243 - Anesth Analg. 2012 Apr;114(4):803-10
27335889 - Neurophotonics. 2016 Jul;3(3):031412
12791944 - Stroke. 2003 Jul;34(7):1645-9
10905568 - J Neurosurg Anesthesiol. 2000 Jul;12(3):210-6
24650601 - Neuroimage. 2014 Jul 1;94:303-11
12160200 - Am J Hypertens. 2002 Aug;15(8):743-53
21750781 - Biomed Opt Express. 2011 Jul 1;2(7):2068-81
23111021 - J Thorac Cardiovasc Surg. 2013 Jan;145(1):196-203, 205.e1; discussion 203-5
24439332 - Acad Radiol. 2014 Feb;21(2):185-96
24682849 - Neurocrit Care. 2014 Oct;21(2):266-74
20818852 - N Engl J Med. 2010 Aug 26;363(9):891-3
23149558 - J Cereb Blood Flow Metab. 2013 Feb;33(2):235-43
7490638 - J Neurosurg. 1995 Dec;83(6):949-62
19498218 - Physiol Meas. 2009 Jul;30(7):647-59
21934694 - J Cereb Blood Flow Metab. 2012 Feb;32(2):318-29
9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
24326385 - J Cereb Blood Flow Metab. 2014 Mar;34(3):380-8
24293327 - Br J Anaesth. 2014 Jan;112(1):35-46
16551432 - Neurol Res. 2006 Mar;28(2):149-54
10475580 - Physiol Meas. 1999 Aug;20(3):265-75
25826118 - Pediatr Res. 2015 Jul;78(1):71-5
25593978 - Neurophotonics. 2014 Jun 20;1(1):null
12135313 - Hypertens Res. 2002 May;25(3):359-64
References_xml – volume: 34
  start-page: 1645
  year: 2003
  end-page: 1649
  article-title: Dynamic pressure–flow velocity relationships in the human cerebral circulation
  publication-title: Stroke
– volume: 96
  start-page: 847
  year: 2003
  end-page: 851
  article-title: Noninvasive estimation of cerebral perfusion pressure and zero flow pressure in healthy volunteers: the effects of changes in end-tidal carbon dioxide
  publication-title: Anesthesia Analgesia
– volume: 14
  start-page: 192
  year: 1997
  end-page: 215
  article-title: Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation
  publication-title: J Opt Soc Am A
– volume: 62
  start-page: 1445
  year: 2012
  end-page: 1454
  article-title: Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics
  publication-title: Neuroimage
– volume: 75
  start-page: 1855
  year: 1995
  end-page: 1858
  article-title: Scattering and imaging with diffusing temporal field correlations
  publication-title: Phys Rev Lett
– volume: 21
  start-page: 185
  year: 2014
  end-page: 196
  article-title: Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies
  publication-title: Acad Radiol
– volume: 85
  start-page: 192
  year: 2014
  end-page: 201
  article-title: Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers
  publication-title: Neuroimage
– volume: 17
  year: 2012
  article-title: Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy
  publication-title: J Biomed Opt
– volume: 42
  start-page: 1351
  year: 2011
  end-page: 1356
  article-title: Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage
  publication-title: Stroke
– volume: 49
  start-page: A4
  year: 2000
  end-page: A10
  article-title: Clinical application of cerebrovascular reserve assessment as a strategy for stroke prevention
  publication-title: Keio J Med
– volume: 19
  start-page: 1371
  year: 1998
  end-page: 1376
  article-title: Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients
  publication-title: Eur Heart J
– volume: 114
  start-page: 545
  year: 2014
  end-page: 559
  article-title: Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges
  publication-title: Eur J Appl Physiol
– volume: 6
  start-page: 325
  year: 1993
  end-page: 340
  article-title: Physiological determination of cerebrovascular reserves and its use in clinical management
  publication-title: Cerebrovasc Brain Metab Rev
– volume: 17
  start-page: 1127
  year: 1997
  end-page: 1131
  article-title: Frequency dependence of cerebrovascular impedance in preterm neonates: A different view on critical closing pressure
  publication-title: J Cerebr Blood Flow Metab
– volume: 10
  start-page: 327
  year: 1972
  end-page: 335
  article-title: Wave-velocity in the proximal aorta
  publication-title: Med Biol Eng Comput
– volume: 25
  start-page: 473
  year: 2016
  end-page: 491
  article-title: Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: Is it possible?
  publication-title: Neurocrit Care
– volume: 35
  start-page: 1393
  year: 2004
  end-page: 1398
  article-title: Critical closing pressure in subarachnoid hemorrhage effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation
  publication-title: Stroke
– volume: 47
  start-page: 131
  year: 2009
  end-page: 141
  article-title: The arterial windkessel
  publication-title: Med Biol Eng Comput
– volume: 13
  start-page: 1
  year: 2013
  end-page: 16
  article-title: Physiological monitoring of the severe traumatic brain injury patient in the intensive care unit
  publication-title: Curr Neurol Neurosci Rep
– volume: 5
  start-page: 41
  year: 2015
  end-page: 51
  article-title: Personalizing blood pressure management in septic shock
  publication-title: Ann Intensive Care
– volume: 20
  start-page: 125005
  year: 2015
  article-title: Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle
  publication-title: J Biomed Opt
– volume: 21
  start-page: 266
  year: 2014
  end-page: 274
  article-title: Relationship of vascular wall tension and autoregulation following traumatic brain injury
  publication-title: Neurocrit Care
– volume: 71
  start-page: 383
  year: 1979
  end-page: 407
  article-title: Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells
  publication-title: J Colloid Interface Sci
– volume: 45
  start-page: 69
  year: 2007
  end-page: 77
  article-title: Geometric characteristics of arterial network of rat pial microcirculation
  publication-title: J Vasc Res
– volume: 20
  start-page: 265
  year: 1999
  end-page: 275
  article-title: Effect of CO on dynamic cerebral autoregulation measurement
  publication-title: Physiol Measure
– volume: 3
  start-page: 031411
  year: 2016
  article-title: Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods
  publication-title: Neurophotonics
– volume: 145
  start-page: 196
  year: 2013
  end-page: 205.e1
  article-title: Early postoperative changes in cerebral oxygen metabolism following neonatal cardiac surgery: Effects of surgical duration
  publication-title: J Thoracic Cardiovasc Surg
– volume: 15
  start-page: 743
  year: 2002
  end-page: 753
  article-title: Methods and devices for measuring arterial compliance in humans
  publication-title: Am J Hypertens
– volume: 7
  start-page: 776
  year: 2016
  end-page: 797
  article-title: Fast blood flow monitoring in deep tissues with real-time software correlators
  publication-title: Biomed Opt Express
– volume: 7
  start-page: 15
  year: 1990
  end-page: 20
  article-title: Diffusing-wave spectroscopy in a shear flow
  publication-title: JOSA B
– volume: 16
  start-page: 213
  year: 2012
  end-page: 218
  article-title: Vasospasm shortens cerebral arterial time constant
  publication-title: Neurocrit Care
– volume: 83
  start-page: 949
  year: 1995
  end-page: 962
  article-title: Cerebral perfusion pressure: management protocol and clinical results
  publication-title: J Neurosurg
– volume: 32
  start-page: 318
  year: 2012
  end-page: 329
  article-title: Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus
  publication-title: J Cerebr Blood Flow Metab
– volume: 34
  start-page: 233
  year: 2006
  end-page: 239
  article-title: Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography
  publication-title: Clin Hemorheol Microcirc
– volume: 30
  start-page: 647
  year: 2009
  end-page: 659
  article-title: The monitoring of relative changes in compartmental compliances of brain
  publication-title: Physiol Measure
– volume: 19
  start-page: 679
  year: 1999
  end-page: 689
  article-title: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance
  publication-title: J Cerebr Blood Flow Metab
– volume: 34
  start-page: 380
  year: 2014
  end-page: 388
  article-title: Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics
  publication-title: J Cereb Blood Flow Metab
– volume: 157
  start-page: 109
  year: 2015
  end-page: 113
  article-title: Effect of postural changes on ICP in healthy and ill subjects
  publication-title: Acta Neurochirurgica
– volume: 85
  start-page: 51
  issue: Part 1
  year: 2014
  end-page: 63
  article-title: Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
  publication-title: NeuroImage
– volume: 25
  start-page: 359
  year: 2002
  end-page: 364
  article-title: Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement
  publication-title: Hypertens Res
– volume: 25
  start-page: 621
  year: 2003
  end-page: 632
  article-title: The critical closing pressure of the cerebral circulation
  publication-title: Med Eng Phys
– volume: 3
  start-page: 031412
  year: 2016
  article-title: Establishing the diffuse correlation spectroscopy signal relationship with blood flow
  publication-title: Neurophotonics
– volume: 5
  start-page: 4053
  year: 2014
  end-page: 4075
  article-title: Modified Beer-Lambert law for blood flow
  publication-title: Biomed Opt Express
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans Audio Electroacoust
– volume: 41
  start-page: 597
  year: 1974
  end-page: 606
  article-title: Experimental cerebral hemodynamics: Vasomotor tone, critical closing pressure, and vascular bed resistance
  publication-title: J Neurosurg
– volume: 363
  start-page: 891
  year: 2010
  end-page: 893
  article-title: Reference range for cerebrospinal fluid opening pressure in children
  publication-title: New Engl J Med
– volume: 164
  start-page: 330
  year: 1951
  end-page: 344
  article-title: Fundamental instability of the small blood vessels and critical closing pressures in vascular beds
  publication-title: Am J Physiol–Legacy Content
– volume: 1
  start-page: 011009
  year: 2014
  article-title: Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects
  publication-title: Neurophotonics
– volume: 123
  start-page: 638
  year: 2015
  end-page: 648
  article-title: A noninvasive estimation of cerebral perfusion pressure using critical closing pressure
  publication-title: J Neurosurg
– volume: 94
  start-page: 303
  year: 2014
  end-page: 311
  article-title: Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method
  publication-title: NeuroImage
– volume: 4
  start-page: 978
  year: 2013
  end-page: 994
  article-title: Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions
  publication-title: Biomed Opt Express
– volume: 369
  start-page: 4390
  year: 2011
  end-page: 4406
  article-title: Direct measurement of tissue blood flow and metabolism with diffuse optics
  publication-title: Philos Trans Ser A: Math Phys Eng Sci
– volume: 30
  start-page: 1388
  year: 2009
  end-page: 1393
  article-title: Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease
  publication-title: Am J Neuroradiol
– volume: 7
  start-page: 3461
  year: 2016
  end-page: 3470
  article-title: Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest
  publication-title: Biomed Opt Express
– volume: 2
  start-page: 035004
  year: 2015
  article-title: Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts
  publication-title: Neurophotonics
– volume: 28
  start-page: 149
  year: 2006
  end-page: 154
  article-title: Identifying regions of compromised hemodynamics in symptomatic carotid occlusion by cerebrovascular reactivity and oxygen extraction fraction
  publication-title: Neurol Res
– volume: 124
  start-page: 433
  year: 2016
  end-page: 441
  article-title: Assessing intracranial vascular compliance using dynamic arterial spin labeling
  publication-title: NeuroImage
– volume: 343
  start-page: 710
  year: 2000
  end-page: 722
  article-title: Treatment of acute ischemic stroke
  publication-title: New Engl J Med
– volume: 12
  start-page: 210
  year: 2000
  end-page: 216
  article-title: Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension
  publication-title: J Neurosurg Anesthesiol
– volume: 274
  start-page: H233
  year: 1998
  end-page: H241
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am J Physiol-Heart Circ Physiol
– volume: 19
  start-page: 331
  year: 2000
  end-page: 340
  article-title: Evaluation of a noninvasive transcranial Doppler and blood pressure-based method for the assessment of cerebral perfusion pressure in pregnant women
  publication-title: Hypertens Pregnancy
– volume: 29
  start-page: 399
  year: 1997
  end-page: 434
  article-title: Blood flow in arteries
  publication-title: Annu Rev Fluid Mech
– volume: 2
  start-page: 2068
  year: 2011
  end-page: 2081
  article-title: Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements
  publication-title: Biomed Opt Express
– volume: 112
  start-page: 35
  year: 2014
  end-page: 46
  article-title: Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury?
  publication-title: Br J Anaesthesia
– volume: 73
  start-page: 076701
  year: 2010
  article-title: Diffuse optics for tissue monitoring and tomography
  publication-title: Rep Progr Phys
– volume: 7
  start-page: 44117
  year: 2017
  end-page: 44126
  article-title: Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: Feasibility and clinical implications
  publication-title: Sci Rep
– volume: 13
  start-page: 968
  year: 1989
  end-page: 972
  article-title: Remodeling of cerebral arterioles in chronic hypertension
  publication-title: Hypertension
– volume: 32
  start-page: 1811
  year: 2001
  end-page: 1817
  article-title: Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler
  publication-title: Stroke
– volume: 114
  start-page: 803
  year: 2012
  end-page: 810
  article-title: Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit
  publication-title: Anesthesia Analgesia
– volume: 43
  start-page: 1440
  year: 2012
  end-page: 1445
  article-title: Multimodal monitoring in subarachnoid hemorrhage
  publication-title: Stroke
– volume: 35
  start-page: 461
  year: 2015
  end-page: 468
  article-title: Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling
  publication-title: J Cerebr Blood Flow Metab
– volume: 33
  start-page: 235
  year: 2013
  end-page: 243
  article-title: Critical closing pressure determined with a model of cerebrovascular impedance
  publication-title: J Cerebr Blood Flow Metab
– volume: 46
  start-page: 8506
  year: 2007
  end-page: 8514
  article-title: Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue
  publication-title: Appl Opt
– volume: 20
  start-page: 101
  year: 1994
  end-page: 105
  article-title: Estimates of pulse wave velocity and measurement of pulse transit time in the human cerebral circulation
  publication-title: Ultrasound Med Biol
– volume: 15
  start-page: 426
  year: 2002
  end-page: 444
  article-title: Clinical applications of arterial stiffness; definitions and reference values
  publication-title: Am J Hypertens
– volume: 18
  start-page: 924
  year: 1963
  end-page: 932
  article-title: Hemodynamics of collapsible vessels with tone: the vascular waterfall
  publication-title: J Appl Physiol
– volume: 8
  start-page: 1
  year: 2011
  end-page: 23
  article-title: The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility
  publication-title: Fluids Barriers CNS
– volume: 2
  start-page: 2047
  year: 2011
  end-page: 2054
  article-title: Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels
  publication-title: Biomed Opt Express
– volume: 88
  start-page: 802
  year: 1998
  end-page: 808
  article-title: Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography
  publication-title: J Neurosurg
– volume: 78
  start-page: 71
  year: 2015
  end-page: 75
  article-title: Ontogeny of cerebrovascular critical closing pressure
  publication-title: Pediatr Res
– volume: 94
  start-page: 216
  year: 2005
  end-page: 221
  article-title: Non-invasive assessment of cerebral perfusion pressure in brain injured patients with moderate intracranial hypertension
  publication-title: Br J Anaesthesia
– ident: bibr2-0271678X17709166
  doi: 10.1007/s11910-012-0331-2
– ident: bibr15-0271678X17709166
  doi: 10.1152/ajplegacy.1951.164.2.330
– ident: bibr5-0271678X17709166
  doi: 10.1186/s13613-015-0085-5
– ident: bibr6-0271678X17709166
  doi: 10.3171/jns.1995.83.6.0949
– ident: bibr36-0271678X17709166
  doi: 10.1088/0034-4885/73/7/076701
– ident: bibr40-0271678X17709166
  doi: 10.1007/s11517-008-0359-2
– ident: bibr57-0271678X17709166
  doi: 10.1016/S0895-7061(01)02319-6
– ident: bibr23-0271678X17709166
  doi: 10.1117/12.2252824
– ident: bibr88-0271678X17709166
  doi: 10.1117/1.JBO.17.8.081406
– ident: bibr17-0271678X17709166
  doi: 10.3171/jns.1998.88.5.0802
– ident: bibr85-0271678X17709166
  doi: 10.1016/0021-9797(79)90248-0
– volume-title: McDonald's blood flow in arteries: Theoretical, experimental and clinical principles (Table 4.3)
  year: 2011
  ident: bibr53-0271678X17709166
– ident: bibr60-0271678X17709166
  doi: 10.1152/ajpheart.1998.274.1.H233
– ident: bibr1-0271678X17709166
  doi: 10.1056/NEJM200009073431007
– ident: bibr55-0271678X17709166
  doi: 10.1007/BF02474213
– ident: bibr27-0271678X17709166
  doi: 10.1179/016164106X98026
– ident: bibr56-0271678X17709166
  doi: 10.1016/0301-5629(94)90074-4
– ident: bibr79-0271678X17709166
  doi: 10.1007/s12028-011-9653-1
– ident: bibr63-0271678X17709166
  doi: 10.1117/1.JBO.20.12.125005
– volume-title: The art of electronics
  year: 1980
  ident: bibr61-0271678X17709166
– ident: bibr11-0271678X17709166
  doi: 10.1097/00008506-200007000-00002
– ident: bibr59-0271678X17709166
  doi: 10.1016/j.neuroimage.2012.05.069
– ident: bibr18-0271678X17709166
  doi: 10.3171/2014.10.JNS14613
– ident: bibr73-0271678X17709166
  doi: 10.1117/1.NPh.2.3.035004
– ident: bibr30-0271678X17709166
  doi: 10.1007/s12028-016-0258-6
– ident: bibr4-0271678X17709166
  doi: 10.1007/s00421-013-2667-y
– ident: bibr54-0271678X17709166
  doi: 10.1291/hypres.25.359
– ident: bibr66-0271678X17709166
  doi: 10.1146/annurev.fluid.29.1.399
– ident: bibr39-0271678X17709166
  doi: 10.1016/j.neuroimage.2013.06.054
– ident: bibr8-0271678X17709166
  doi: 10.1093/bja/aet418
– ident: bibr75-0271678X17709166
  doi: 10.1088/0967-3334/30/7/009
– ident: bibr10-0271678X17709166
  doi: 10.1016/S1350-4533(03)00027-4
– ident: bibr76-0271678X17709166
  doi: 10.1038/jcbfm.2014.219
– volume: 6
  start-page: 325
  year: 1993
  ident: bibr24-0271678X17709166
  publication-title: Cerebrovasc Brain Metab Rev
– ident: bibr41-0271678X17709166
  doi: 10.1103/PhysRevLett.75.1855
– ident: bibr70-0271678X17709166
  doi: 10.1053/euhj.1998.1099
– ident: bibr3-0271678X17709166
  doi: 10.1161/STROKEAHA.111.639906
– ident: bibr33-0271678X17709166
  doi: 10.1016/j.neuroimage.2013.06.017
– ident: bibr62-0271678X17709166
  doi: 10.1364/BOE.2.002068
– ident: bibr28-0271678X17709166
  doi: 10.1213/01.ANE.0000047273.85729.A7
– ident: bibr72-0271678X17709166
  doi: 10.1364/BOE.4.000978
– volume: 49
  start-page: A4
  year: 2000
  ident: bibr25-0271678X17709166
  publication-title: Keio J Med
– ident: bibr43-0271678X17709166
  doi: 10.1117/1.NPh.3.3.031412
– ident: bibr32-0271678X17709166
  doi: 10.1161/01.STR.0000128411.07036.a9
– ident: bibr12-0271678X17709166
  doi: 10.1152/jappl.1963.18.5.924
– ident: bibr22-0271678X17709166
  doi: 10.1364/BRAIN.2016.BTh4D.7
– ident: bibr19-0271678X17709166
  doi: 10.1081/PRG-100101995
– ident: bibr67-0271678X17709166
  doi: 10.1056/NEJMc1004957
– ident: bibr42-0271678X17709166
  doi: 10.1364/JOSAA.14.000192
– ident: bibr49-0271678X17709166
  doi: 10.1161/01.HYP.13.6.968
– ident: bibr58-0271678X17709166
  doi: 10.1109/TAU.1967.1161901
– ident: bibr46-0271678X17709166
  doi: 10.1364/AO.46.008506
– ident: bibr7-0271678X17709166
  doi: 10.1161/STROKEAHA.110.596874
– ident: bibr34-0271678X17709166
  doi: 10.1364/BOE.7.000776
– ident: bibr51-0271678X17709166
  doi: 10.1097/00004647-199710000-00015
– ident: bibr65-0271678X17709166
  doi: 10.1007/s12028-014-9971-1
– ident: bibr35-0271678X17709166
  doi: 10.1117/1.NPh.1.1.011009
– ident: bibr45-0271678X17709166
  doi: 10.1038/jcbfm.2013.214
– ident: bibr87-0271678X17709166
  doi: 10.1364/JOSAB.7.000015
– ident: bibr21-0271678X17709166
  doi: 10.1364/CANCER.2016.JTu1A.1
– ident: bibr81-0271678X17709166
  doi: 10.1159/000109078
– ident: bibr14-0271678X17709166
  doi: 10.1213/ANE.0b013e318247fa44
– ident: bibr9-0271678X17709166
  doi: 10.3171/jns.1974.41.5.0597
– ident: bibr16-0271678X17709166
  doi: 10.1007/978-3-642-70971-5_43
– ident: bibr82-0271678X17709166
  doi: 10.1016/j.acra.2013.10.012
– ident: bibr69-0271678X17709166
  doi: 10.1088/0967-3334/20/3/304
– volume-title: McDonald's blood flow in arteries: Theoretical, experimental and clinical principles
  year: 2011
  ident: bibr50-0271678X17709166
– ident: bibr44-0271678X17709166
  doi: 10.1098/rsta.2011.0232
– ident: bibr71-0271678X17709166
  doi: 10.1186/2045-8118-8-5
– volume: 34
  start-page: 233
  year: 2006
  ident: bibr80-0271678X17709166
  publication-title: Clin Hemorheol Microcirc
– ident: bibr13-0271678X17709166
  doi: 10.1161/01.STR.0000077927.63758.B6
– ident: bibr29-0271678X17709166
  doi: 10.1093/bja/aei034
– ident: bibr83-0271678X17709166
  doi: 10.3174/ajnr.A1562
– ident: bibr78-0271678X17709166
  doi: 10.1117/1.NPh.3.3.031411
– ident: bibr84-0271678X17709166
  doi: 10.1038/jcbfm.2011.130
– ident: bibr20-0271678X17709166
  doi: 10.1038/pr.2015.67
– ident: bibr47-0271678X17709166
  doi: 10.1038/jcbfm.2012.161
– ident: bibr38-0271678X17709166
  doi: 10.1038/srep44117
– ident: bibr26-0271678X17709166
  doi: 10.1161/01.STR.32.8.1811
– ident: bibr64-0271678X17709166
  doi: 10.1016/j.neuroimage.2014.03.023
– ident: bibr74-0271678X17709166
  doi: 10.1016/S0895-7061(02)02962-X
– ident: bibr37-0271678X17709166
  doi: 10.1016/j.jtcvs.2012.09.057
– ident: bibr52-0271678X17709166
  doi: 10.1364/BOE.5.004053
– ident: bibr31-0271678X17709166
  doi: 10.1364/BOE.7.003461
– ident: bibr68-0271678X17709166
  doi: 10.1007/s00701-014-2250-2
– ident: bibr48-0271678X17709166
  doi: 10.1097/00004647-199906000-00012
– ident: bibr86-0271678X17709166
  doi: 10.1364/BOE.2.002047
– ident: bibr77-0271678X17709166
  doi: 10.1016/j.neuroimage.2015.09.008
– reference: 23149558 - J Cereb Blood Flow Metab. 2013 Feb;33(2):235-43
– reference: 10905568 - J Neurosurg Anesthesiol. 2000 Jul;12(3):210-6
– reference: 7912867 - Ultrasound Med Biol. 1994;20(2):101-5
– reference: 26120204 - Rep Prog Phys. 2010 Jul;73(7):null
– reference: 22006897 - Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4390-406
– reference: 27403447 - Neurophotonics. 2016 Jul;3(3):031411
– reference: 25574566 - J Neurosurg. 2015 Sep;123(3):638-48
– reference: 15591334 - Br J Anaesth. 2005 Feb;94(2):216-21
– reference: 10060408 - Phys Rev Lett. 1995 Aug 28;75(9):1855-1858
– reference: 18543011 - Med Biol Eng Comput. 2009 Feb;47(2):131-41
– reference: 11118407 - Hypertens Pregnancy. 2000;19(3):331-40
– reference: 23737006 - Eur J Appl Physiol. 2014 Mar;114(3):545-59
– reference: 12135313 - Hypertens Res. 2002 May;25(3):359-64
– reference: 4214313 - J Neurosurg. 1974 Nov;41(5):597-606
– reference: 11486110 - Stroke. 2001 Aug;32(8):1811-7
– reference: 10475580 - Physiol Meas. 1999 Aug;20(3):265-75
– reference: 25826118 - Pediatr Res. 2015 Jul;78(1):71-5
– reference: 5043481 - Med Biol Eng. 1972 May;10(3):327-35
– reference: 15118178 - Stroke. 2004 Jun;35(6):1393-8
– reference: 10750327 - Keio J Med. 2000 Feb;49 Suppl 1:A4-10
– reference: 22659481 - Neuroimage. 2012 Sep;62(3):1445-54
– reference: 21750781 - Biomed Opt Express. 2011 Jul 1;2(7):2068-81
– reference: 12791944 - Stroke. 2003 Jul;34(7):1645-9
– reference: 25515216 - J Cereb Blood Flow Metab. 2015 Mar;35(3):461-8
– reference: 27699112 - Biomed Opt Express. 2016 Aug 15;7(9):3461-3470
– reference: 25307778 - Acta Neurochir (Wien). 2015 Jan;157(1):109-13
– reference: 14063262 - J Appl Physiol. 1963 Sep;18:924-32
– reference: 21750779 - Biomed Opt Express. 2011 Jul 1;2(7):2047-54
– reference: 27335889 - Neurophotonics. 2016 Jul;3(3):031412
– reference: 23111021 - J Thorac Cardiovasc Surg. 2013 Jan;145(1):196-203, 205.e1; discussion 203-5
– reference: 19342545 - AJNR Am J Neuroradiol. 2009 Aug;30(7):1388-93
– reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
– reference: 22108783 - Neurocrit Care. 2012 Apr;16(2):213-8
– reference: 12022246 - Am J Hypertens. 2002 May;15(5):426-44
– reference: 22426466 - Stroke. 2012 May;43(5):1440-5
– reference: 23770408 - Neuroimage. 2014 Jan 15;85 Pt 1:51-63
– reference: 26301255 - Neurophotonics. 2015 Jul;2(3):035004
– reference: 28276534 - Sci Rep. 2017 Mar 09;7:44117
– reference: 26720870 - J Biomed Opt. 2015 ;20(12 ):125005
– reference: 2737731 - Hypertension. 1989 Jun;13(6 Pt 2):968-72
– reference: 12900178 - Med Eng Phys. 2003 Oct;25(8):621-32
– reference: 23328942 - Curr Neurol Neurosci Rep. 2013 Mar;13(3):331
– reference: 21349153 - Fluids Barriers CNS. 2011 Jan 18;8(1):5
– reference: 26364865 - Neuroimage. 2016 Jan 1;124(Pt A):433-41
– reference: 25426330 - Biomed Opt Express. 2014 Oct 28;5(11):4053-75
– reference: 17901708 - J Vasc Res. 2008;45(1):69-77
– reference: 12160200 - Am J Hypertens. 2002 Aug;15(8):743-53
– reference: 24293327 - Br J Anaesth. 2014 Jan;112(1):35-46
– reference: 20818852 - N Engl J Med. 2010 Aug 26;363(9):891-3
– reference: 9792263 - Eur Heart J. 1998 Sep;19(9):1371-6
– reference: 26940914 - Neurocrit Care. 2016 Dec;25(3):473-491
– reference: 21934694 - J Cereb Blood Flow Metab. 2012 Feb;32(2):318-29
– reference: 16543642 - Clin Hemorheol Microcirc. 2006;34(1-2):233-9
– reference: 16551432 - Neurol Res. 2006 Mar;28(2):149-54
– reference: 9346438 - J Cereb Blood Flow Metab. 1997 Oct;17(10):1127-31
– reference: 24326385 - J Cereb Blood Flow Metab. 2014 Mar;34(3):380-8
– reference: 25593978 - Neurophotonics. 2014 Jun 20;1(1):null
– reference: 9576246 - J Neurosurg. 1998 May;88(5):802-8
– reference: 14810938 - Am J Physiol. 1951 Feb;164(2):330-44
– reference: 24650601 - Neuroimage. 2014 Jul 1;94:303-11
– reference: 12598272 - Anesth Analg. 2003 Mar;96(3):847-51, table of contents
– reference: 7880717 - Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):325-40
– reference: 24682849 - Neurocrit Care. 2014 Oct;21(2):266-74
– reference: 18071383 - Appl Opt. 2007 Dec 10;46(35):8506-14
– reference: 24439332 - Acad Radiol. 2014 Feb;21(2):185-96
– reference: 10974136 - N Engl J Med. 2000 Sep 7;343(10):710-22
– reference: 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89
– reference: 7490638 - J Neurosurg. 1995 Dec;83(6):949-62
– reference: 23796546 - Neuroimage. 2014 Jan 15;85 Pt 1:192-201
– reference: 26573630 - Ann Intensive Care. 2015 Dec;5(1):41
– reference: 22344243 - Anesth Analg. 2012 Apr;114(4):803-10
– reference: 27231588 - Biomed Opt Express. 2016 Feb 03;7(3):776-97
– reference: 23847725 - Biomed Opt Express. 2013 Jun 03;4(7):978-94
– reference: 23224167 - J Biomed Opt. 2012 Aug;17(8):081406-1
– reference: 19498218 - Physiol Meas. 2009 Jul;30(7):647-59
– reference: 21441155 - Stroke. 2011 May;42(5):1351-6
SSID ssj0008355
Score 2.4803853
Snippet The critical closing pressure (CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial...
The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial...
The critical closing pressure ( CrCP ) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2691
SubjectTerms Adult
Blood Flow Velocity - physiology
Blood Pressure - physiology
Cerebrovascular Circulation - physiology
Craniocerebral Trauma - diagnostic imaging
Craniocerebral Trauma - physiopathology
Healthy Volunteers
Humans
Intracranial Pressure - physiology
Microvessels - diagnostic imaging
Microvessels - physiopathology
Models, Biological
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Optical Imaging
Rapid Communications
Sensitivity and Specificity
Spectrum Analysis
Ultrasonography, Doppler, Transcranial
Title Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects
URI https://journals.sagepub.com/doi/full/10.1177/0271678X17709166
https://www.ncbi.nlm.nih.gov/pubmed/28541158
https://www.proquest.com/docview/1902482035
https://pubmed.ncbi.nlm.nih.gov/PMC5536813
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeGmRUCWE3NaPtb3HqIJWVFQcWsgt2l2vFauOXcVOUfl7_DFmX3aSpqhwsRJn49d83pmd-WYGofciEzwjufCEjDIvSqLYo3lMPAraPDoQglKu_B1fT-Pj8-jLmIwHg99LrKVFy_fEr415Jf8jVdgHclVZsv8g2e6gsAM-g3xhCxKG7Z1kfKp8qVdMM9DrS-OVnumXdG7JzMJ1MhBl3ZjEc7W8tkEDzedUkXnLLNfpA0VlG_c1C66cNM0t9quQcxV0Lg33_WNe1oZcPJMtAKt0pQm1l9RSN35I5SLvGz1_gwuYskZVHzfCHjXTn3D-bsARqypDCzgpVOeS8rrPRzthVwuTJv9dVhesYFPr8bU-DNCLjkG3HDzb7KYMEt8DhTo2-spO0oR6yYHJ0XSzuCkdY9GaLk_JsWkHZtV7kOg07w2qQwev1fnU6eAbWFLxWpVuu2zaMxXS14beQ_cDWKuoNhpH455nBCau5tG6G-lj5fvrR1i1jW4seG7ydpfIh9oeOnuMHlkg4JFB5RM0kNU22hlVrK1n13gXa2qxjtlsoweHrq3gDsqXQIstaHEPWlzn2IEWW9BiB1oM-MIdaHEPWlxUWIMWO9A-ReefP50dHnu22YcnojBqPekLmTGu5oaMCBoHacZzUDfc52DDZnGeUJqnNAtpqtgFMfFDwnwZSlgDZL6fhc_QFiBSvkA4SiSNWSppInkUhjFnQS4CWFowRvKIhkO07x7zRNhK-KohSznxXfH7NcEM0YfuH5emCsxfxr5zkpvAo1XxN1bJetFMwPYOIrC4QzJEz40ku6OpRGZYnKVDlKzIuBugysCv_lIVU10OnpAwTn24q12Fhomdn5pbL_DlXQe-Qg_7l_U12mrnC_kGTPCWv9UQ_wO_S9sD
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+optical+monitoring+of+critical+closing+pressure+and+arteriole+compliance+in+human+subjects&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Baker%2C+Wesley+B&rft.au=Parthasarathy%2C+Ashwin+B&rft.au=Gannon%2C+Kimberly+P&rft.au=Kavuri%2C+Venkaiah+C&rft.date=2017-08-01&rft.pub=SAGE+Publications&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=37&rft.issue=8&rft.spage=2691&rft.epage=2705&rft_id=info:doi/10.1177%2F0271678X17709166&rft.externalDocID=10.1177_0271678X17709166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon