On transposons and totipotency

Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 375; no. 1795; p. 20190339
Main Author Torres-Padilla, Maria-Elena
Format Journal Article
LanguageEnglish
Published England The Royal Society 30.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
AbstractList Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Author Torres-Padilla, Maria-Elena
AuthorAffiliation 2 Faculty of Biology, Ludwig-Maximilians Universität , 82152 München , Germany
1 Institute of Epigenetics and Stem Cells (IES) , Helmholtz Zentrum München, 81377 München , Germany
AuthorAffiliation_xml – name: 1 Institute of Epigenetics and Stem Cells (IES) , Helmholtz Zentrum München, 81377 München , Germany
– name: 2 Faculty of Biology, Ludwig-Maximilians Universität , 82152 München , Germany
Author_xml – sequence: 1
  givenname: Maria-Elena
  orcidid: 0000-0002-1020-2074
  surname: Torres-Padilla
  fullname: Torres-Padilla, Maria-Elena
  organization: Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany, Faculty of Biology, Ludwig-Maximilians Universität, 82152 München, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32075562$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1Lw0AQhhep2A-9eiw9ekmc_Ug2exGk-AWFXvS8bDZTjaS7NbsV-u9NaC0qeJrDPO87wzMmA-cdEnJJIaWgius2xDJlQFUKnKsTMqJC0oQpCQMyApWzpBA8H5JxCO8AoDIpzsiQM5BZlrMRmS7dLLbGhY0P3oWZcdUs-lhvfERnd-fkdGWagBeHOSEv93fP88dksXx4mt8uEiu4iEmFMkOomOVYWUULlJIhkxJLi8BzkxspUJZFBZQppFyVhq9UaVWGBetQPiE3-97Ntlx3Hei6pxq9aeu1aXfam1r_3rj6Tb_6Ty0hp0rxruDqUND6jy2GqNd1sNg0xqHfBs14pgQIoViHTn_eOh75ltIB6R6wrQ-hxdURoaB767q3rnvrurfeBcSfgK2jibXvf62b_2Jfg62HVA
CitedBy_id crossref_primary_10_1038_s41588_023_01476_x
crossref_primary_10_1016_j_stem_2022_06_006
crossref_primary_10_1016_j_celrep_2021_109215
crossref_primary_10_1038_s41576_021_00385_1
crossref_primary_10_1016_j_gendis_2025_101555
crossref_primary_10_3390_ijms23042067
crossref_primary_10_1016_j_ceb_2021_12_004
crossref_primary_10_3390_genes14061232
crossref_primary_10_1016_j_devcel_2024_10_018
crossref_primary_10_1261_rna_078721_121
crossref_primary_10_1242_dev_203046
crossref_primary_10_1016_j_stem_2022_01_010
crossref_primary_10_1098_rstb_2019_0330
crossref_primary_10_1089_scd_2022_0061
crossref_primary_10_1016_j_biosystems_2022_104669
crossref_primary_10_3390_cells10113111
crossref_primary_10_1042_EBC20200028
crossref_primary_10_3390_ncrna10040039
crossref_primary_10_3390_v12101089
crossref_primary_10_1093_nar_gkab1232
crossref_primary_10_1101_gr_268193_120
crossref_primary_10_1038_s41467_022_33147_6
crossref_primary_10_1016_j_bbamcr_2025_119925
crossref_primary_10_1360_TB_2023_0485
crossref_primary_10_1242_dev_189688
crossref_primary_10_1016_j_gde_2020_06_008
crossref_primary_10_3389_fcell_2023_1124266
Cites_doi 10.1038/s41588-019-0418-7
10.1016/j.celrep.2013.04.034
10.1128/MCB.06441-11
10.1038/1841286a0
10.1101/gad.321174.118
10.1126/science.aag1927
10.1038/nature08858
10.1038/s41598-017-08266-6
10.1016/j.gde.2013.06.006
10.1016/j.devcel.2016.02.024
10.1371/journal.pgen.1001181
10.1016/j.stem.2018.10.001
10.1098/rstb.2011.0338
10.7554/eLife.11418
10.1038/ng.3844
10.1371/journal.pone.0205969
10.1016/j.cell.2017.02.005
10.1038/ncomms2780
10.1038/nsmb.2495
10.1038/s41556-018-0147-7
10.1038/s41556-019-0343-0
10.1159/000078195
10.1016/j.stem.2011.04.004
10.1038/ng.3945
10.1016/j.tig.2018.06.006
10.1038/nature11244
10.1101/569434
10.1038/s41586-018-0578-0
10.1016/j.stem.2016.07.018
10.1038/nature18606
10.1093/dnares/dst018
10.1016/j.cell.2018.05.043
10.1126/science.6542249
10.1093/bfgp/elq027
10.1038/ng.3846
10.1038/s41586-018-0051-0
10.7554/eLife.35989
10.1038/ng.3858
10.1016/0092-8674(92)90465-O
10.15252/embr.201847382
10.1016/j.molcel.2019.05.024
10.1016/j.devcel.2004.09.004
10.1038/nsmb.3066
10.1080/15592294.2015.1136774
10.1242/dev.091959
10.1080/2159256X.2015.1006109
10.1101/gad.238881.114
10.1016/j.gde.2009.10.013
10.1016/j.stem.2017.12.011
10.1093/nar/gkx884
10.1038/s41556-018-0093-4
10.1016/j.devcel.2014.08.016
10.1371/journal.pbio.3000324
10.1016/j.celrep.2016.08.087
10.1038/nature10960
10.1016/j.gde.2013.06.003
10.1146/annurev-cellbio-100814-125514
10.1038/s41588-017-0016-5
10.1038/s41580-018-0008-z
10.1038/s41588-018-0060-9
10.1038/nrg.2016.139
ContentType Journal Article
Copyright 2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1098/rstb.2019.0339
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
DocumentTitleAlternate Retrotransposons and cellular plasticity
EISSN 1471-2970
ExternalDocumentID PMC7061993
32075562
10_1098_rstb_2019_0339
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABBHK
ABPLY
ABTLG
ABXSQ
ACPRK
ACSFO
ADBBV
AEUPB
AEXZC
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
DCCCD
DIK
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
SA0
TN5
V1E
W8F
YNT
~02
CGR
CUY
CVF
ECM
EIF
NPM
OP1
7X8
5PM
ID FETCH-LOGICAL-c434t-de75e0d2c3edc918e772e277ebce036a6a74e7b8d0129e139ba3f9bc95e8272e3
ISSN 0962-8436
1471-2970
IngestDate Thu Aug 21 13:39:52 EDT 2025
Fri Jul 11 01:01:23 EDT 2025
Thu Jan 02 22:57:48 EST 2025
Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 03:25:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1795
Keywords reprogramming
LINE-1
pluripotency
transposable elements
MERVL
2-cell-like cells
Language English
License Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-de75e0d2c3edc918e772e277ebce036a6a74e7b8d0129e139ba3f9bc95e8272e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 15 to a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
ORCID 0000-0002-1020-2074
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2019.0339
PMID 32075562
PQID 2359404492
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061993
proquest_miscellaneous_2359404492
pubmed_primary_32075562
crossref_primary_10_1098_rstb_2019_0339
crossref_citationtrail_10_1098_rstb_2019_0339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-30
PublicationDateYYYYMMDD 2020-03-30
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2020
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_45_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_27_2
  doi: 10.1038/s41588-019-0418-7
– ident: e_1_3_5_21_2
  doi: 10.1016/j.celrep.2013.04.034
– ident: e_1_3_5_42_2
  doi: 10.1128/MCB.06441-11
– ident: e_1_3_5_18_2
  doi: 10.1038/1841286a0
– ident: e_1_3_5_31_2
  doi: 10.1101/gad.321174.118
– ident: e_1_3_5_34_2
  doi: 10.1126/science.aag1927
– ident: e_1_3_5_50_2
  doi: 10.1038/nature08858
– ident: e_1_3_5_17_2
  doi: 10.1038/s41598-017-08266-6
– ident: e_1_3_5_13_2
  doi: 10.1016/j.gde.2013.06.006
– ident: e_1_3_5_49_2
  doi: 10.1016/j.devcel.2016.02.024
– ident: e_1_3_5_25_2
  doi: 10.1371/journal.pgen.1001181
– ident: e_1_3_5_45_2
  doi: 10.1016/j.stem.2018.10.001
– ident: e_1_3_5_4_2
  doi: 10.1098/rstb.2011.0338
– ident: e_1_3_5_47_2
  doi: 10.7554/eLife.11418
– ident: e_1_3_5_24_2
  doi: 10.1038/ng.3844
– ident: e_1_3_5_43_2
  doi: 10.1371/journal.pone.0205969
– ident: e_1_3_5_22_2
  doi: 10.1016/j.cell.2017.02.005
– ident: e_1_3_5_44_2
  doi: 10.1038/ncomms2780
– ident: e_1_3_5_8_2
  doi: 10.1038/nsmb.2495
– ident: e_1_3_5_57_2
  doi: 10.1038/s41556-018-0147-7
– ident: e_1_3_5_46_2
  doi: 10.1038/s41556-019-0343-0
– ident: e_1_3_5_7_2
  doi: 10.1159/000078195
– ident: e_1_3_5_51_2
  doi: 10.1016/j.stem.2011.04.004
– ident: e_1_3_5_62_2
  doi: 10.1038/ng.3945
– ident: e_1_3_5_10_2
  doi: 10.1016/j.tig.2018.06.006
– ident: e_1_3_5_19_2
  doi: 10.1038/nature11244
– ident: e_1_3_5_28_2
  doi: 10.1101/569434
– ident: e_1_3_5_58_2
  doi: 10.1038/s41586-018-0578-0
– ident: e_1_3_5_53_2
  doi: 10.1016/j.stem.2016.07.018
– ident: e_1_3_5_37_2
  doi: 10.1038/nature18606
– ident: e_1_3_5_52_2
  doi: 10.1093/dnares/dst018
– ident: e_1_3_5_64_2
  doi: 10.1016/j.cell.2018.05.043
– ident: e_1_3_5_60_2
  doi: 10.1126/science.6542249
– ident: e_1_3_5_6_2
  doi: 10.1093/bfgp/elq027
– ident: e_1_3_5_26_2
  doi: 10.1038/ng.3846
– ident: e_1_3_5_56_2
  doi: 10.1038/s41586-018-0051-0
– ident: e_1_3_5_61_2
  doi: 10.7554/eLife.35989
– ident: e_1_3_5_23_2
  doi: 10.1038/ng.3858
– ident: e_1_3_5_59_2
  doi: 10.1016/0092-8674(92)90465-O
– ident: e_1_3_5_32_2
  doi: 10.15252/embr.201847382
– ident: e_1_3_5_63_2
  doi: 10.1016/j.molcel.2019.05.024
– ident: e_1_3_5_9_2
  doi: 10.1016/j.devcel.2004.09.004
– ident: e_1_3_5_36_2
  doi: 10.1038/nsmb.3066
– ident: e_1_3_5_39_2
  doi: 10.1080/15592294.2015.1136774
– ident: e_1_3_5_15_2
  doi: 10.1242/dev.091959
– ident: e_1_3_5_29_2
  doi: 10.1080/2159256X.2015.1006109
– ident: e_1_3_5_38_2
  doi: 10.1101/gad.238881.114
– ident: e_1_3_5_2_2
  doi: 10.1016/j.gde.2009.10.013
– ident: e_1_3_5_16_2
  doi: 10.1016/j.stem.2017.12.011
– ident: e_1_3_5_41_2
  doi: 10.1093/nar/gkx884
– ident: e_1_3_5_12_2
  doi: 10.1038/s41556-018-0093-4
– ident: e_1_3_5_55_2
– ident: e_1_3_5_54_2
  doi: 10.1016/j.stem.2017.12.011
– ident: e_1_3_5_3_2
  doi: 10.1016/j.devcel.2014.08.016
– ident: e_1_3_5_33_2
  doi: 10.1371/journal.pbio.3000324
– ident: e_1_3_5_35_2
  doi: 10.1016/j.celrep.2016.08.087
– ident: e_1_3_5_11_2
  doi: 10.1038/nature10960
– ident: e_1_3_5_20_2
  doi: 10.1016/j.gde.2013.06.003
– ident: e_1_3_5_5_2
  doi: 10.1146/annurev-cellbio-100814-125514
– ident: e_1_3_5_40_2
  doi: 10.1038/s41588-017-0016-5
– ident: e_1_3_5_14_2
  doi: 10.1038/s41580-018-0008-z
– ident: e_1_3_5_48_2
  doi: 10.1038/s41588-018-0060-9
– ident: e_1_3_5_30_2
  doi: 10.1038/nrg.2016.139
SSID ssj0009574
Score 2.4581547
Snippet Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of...
Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20190339
SubjectTerms Animals
DNA Transposable Elements - genetics
Mammals - genetics
Mammals - metabolism
Opinion Piece
Selection, Genetic
Totipotent Stem Cells - metabolism
Title On transposons and totipotency
URI https://www.ncbi.nlm.nih.gov/pubmed/32075562
https://www.proquest.com/docview/2359404492
https://pubmed.ncbi.nlm.nih.gov/PMC7061993
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0YumL2FPr2VoiCCqyZy67m49HLZWinD3hCn0L2WSLBzV3eOmD_vXO7Ec-WgXtSzhye0mY39xkdnfm9wN4iRjHtN3FVBWHDD0kZkrzkGmJL_8p7XwZSqHZl_jkTHw6l-edvJXpLmnUpPz1x76S26CK5xBX6pL9D2Tbi-IJ_Iz44hERxuM_YXxak8QDkZNvqOLFFEOumuV6RYnwYL927hULDCZNJxK-8UUCdh3BF3HSzoER-phQNMHZ9NsPE6db2fVRll394cKIfLB5UZGKkWsCWhbsGF9qRX9lAaeR1GoXtr6wuH7v_uJhjHFUcEdibUMnvuZYlFkZEB9buZVF8U6UWEHNG2E7zKgVAdNdRcV2RDtrGY56GK6_GxB5hDmOdAF8SJQ9nx0lmJ1gwnUX7kU4a6Cw9_lr2uNgtqTc_uFbDs_03fDWO7Dt7zNMV27MQa6X0vZyk8VDeOAmFcF76yG7cEfXI7hv4fo5gu2ZK6AYwa6L5ZvgtSMcf_MIDk_roOdHAfpR0POjx3D28XhxdMKcbgYrBRcNq3QidVhFJcfnyqapRltoNIhWJA4XF3GRCJ2otKJFSI1TAFXwi0yVmdRphEP5E9iqV7V-CoEqMeGvIj3VmNpH8iIVMuE6wchfcC1kOQbmzZOXjlSetE0uc1vckOZk2Zwsm5Nlx_CqHb-2dCp_HfnCWzvHiEfbWEWtV1ebPOIyE6EQWTSGPWv99loetjEkA1zaAcSmPvymXn4zrOrOd57d-pf7sNP9iw5gq_lxpZ9jxtqoQ-OHvwEy65aU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+transposons+and+totipotency&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Torres-Padilla%2C+Maria-Elena&rft.date=2020-03-30&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=375&rft.issue=1795&rft_id=info:doi/10.1098%2Frstb.2019.0339&rft_id=info%3Apmid%2F32075562&rft.externalDocID=PMC7061993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon