On transposons and totipotency
Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 375; no. 1795; p. 20190339 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
30.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency.
This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’. |
---|---|
AbstractList | Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'. Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'. Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host genome have been documented. Transposons provide a powerful framework for large-scale relatively rapid concerted regulatory activities with the ability to drive evolution. Mammalian totipotency has emerged as one key stage of development in which transposon-mediated regulation of gene expression has taken centre stage in the past few years. During this period, large-scale (epigenetic) reprogramming must be accomplished in order to activate the host genome. In mice and men, one particular element murine endogenous retrovirus with leucine tRNA primer (MERVL) (and its counterpart human ERVL (HERVL)) appears to have acquired roles as a key driving force in this process. Here, I will discuss and interpret the current knowledge and its implications regarding the role of transposons, particularly of long interspersed nuclear elements (LINE-1s) and endogenous retroviruses (ERVs), in the regulation of totipotency. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’. |
Author | Torres-Padilla, Maria-Elena |
AuthorAffiliation | 2 Faculty of Biology, Ludwig-Maximilians Universität , 82152 München , Germany 1 Institute of Epigenetics and Stem Cells (IES) , Helmholtz Zentrum München, 81377 München , Germany |
AuthorAffiliation_xml | – name: 1 Institute of Epigenetics and Stem Cells (IES) , Helmholtz Zentrum München, 81377 München , Germany – name: 2 Faculty of Biology, Ludwig-Maximilians Universität , 82152 München , Germany |
Author_xml | – sequence: 1 givenname: Maria-Elena orcidid: 0000-0002-1020-2074 surname: Torres-Padilla fullname: Torres-Padilla, Maria-Elena organization: Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany, Faculty of Biology, Ludwig-Maximilians Universität, 82152 München, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32075562$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1Lw0AQhhep2A-9eiw9ekmc_Ug2exGk-AWFXvS8bDZTjaS7NbsV-u9NaC0qeJrDPO87wzMmA-cdEnJJIaWgius2xDJlQFUKnKsTMqJC0oQpCQMyApWzpBA8H5JxCO8AoDIpzsiQM5BZlrMRmS7dLLbGhY0P3oWZcdUs-lhvfERnd-fkdGWagBeHOSEv93fP88dksXx4mt8uEiu4iEmFMkOomOVYWUULlJIhkxJLi8BzkxspUJZFBZQppFyVhq9UaVWGBetQPiE3-97Ntlx3Hei6pxq9aeu1aXfam1r_3rj6Tb_6Ty0hp0rxruDqUND6jy2GqNd1sNg0xqHfBs14pgQIoViHTn_eOh75ltIB6R6wrQ-hxdURoaB767q3rnvrurfeBcSfgK2jibXvf62b_2Jfg62HVA |
CitedBy_id | crossref_primary_10_1038_s41588_023_01476_x crossref_primary_10_1016_j_stem_2022_06_006 crossref_primary_10_1016_j_celrep_2021_109215 crossref_primary_10_1038_s41576_021_00385_1 crossref_primary_10_1016_j_gendis_2025_101555 crossref_primary_10_3390_ijms23042067 crossref_primary_10_1016_j_ceb_2021_12_004 crossref_primary_10_3390_genes14061232 crossref_primary_10_1016_j_devcel_2024_10_018 crossref_primary_10_1261_rna_078721_121 crossref_primary_10_1242_dev_203046 crossref_primary_10_1016_j_stem_2022_01_010 crossref_primary_10_1098_rstb_2019_0330 crossref_primary_10_1089_scd_2022_0061 crossref_primary_10_1016_j_biosystems_2022_104669 crossref_primary_10_3390_cells10113111 crossref_primary_10_1042_EBC20200028 crossref_primary_10_3390_ncrna10040039 crossref_primary_10_3390_v12101089 crossref_primary_10_1093_nar_gkab1232 crossref_primary_10_1101_gr_268193_120 crossref_primary_10_1038_s41467_022_33147_6 crossref_primary_10_1016_j_bbamcr_2025_119925 crossref_primary_10_1360_TB_2023_0485 crossref_primary_10_1242_dev_189688 crossref_primary_10_1016_j_gde_2020_06_008 crossref_primary_10_3389_fcell_2023_1124266 |
Cites_doi | 10.1038/s41588-019-0418-7 10.1016/j.celrep.2013.04.034 10.1128/MCB.06441-11 10.1038/1841286a0 10.1101/gad.321174.118 10.1126/science.aag1927 10.1038/nature08858 10.1038/s41598-017-08266-6 10.1016/j.gde.2013.06.006 10.1016/j.devcel.2016.02.024 10.1371/journal.pgen.1001181 10.1016/j.stem.2018.10.001 10.1098/rstb.2011.0338 10.7554/eLife.11418 10.1038/ng.3844 10.1371/journal.pone.0205969 10.1016/j.cell.2017.02.005 10.1038/ncomms2780 10.1038/nsmb.2495 10.1038/s41556-018-0147-7 10.1038/s41556-019-0343-0 10.1159/000078195 10.1016/j.stem.2011.04.004 10.1038/ng.3945 10.1016/j.tig.2018.06.006 10.1038/nature11244 10.1101/569434 10.1038/s41586-018-0578-0 10.1016/j.stem.2016.07.018 10.1038/nature18606 10.1093/dnares/dst018 10.1016/j.cell.2018.05.043 10.1126/science.6542249 10.1093/bfgp/elq027 10.1038/ng.3846 10.1038/s41586-018-0051-0 10.7554/eLife.35989 10.1038/ng.3858 10.1016/0092-8674(92)90465-O 10.15252/embr.201847382 10.1016/j.molcel.2019.05.024 10.1016/j.devcel.2004.09.004 10.1038/nsmb.3066 10.1080/15592294.2015.1136774 10.1242/dev.091959 10.1080/2159256X.2015.1006109 10.1101/gad.238881.114 10.1016/j.gde.2009.10.013 10.1016/j.stem.2017.12.011 10.1093/nar/gkx884 10.1038/s41556-018-0093-4 10.1016/j.devcel.2014.08.016 10.1371/journal.pbio.3000324 10.1016/j.celrep.2016.08.087 10.1038/nature10960 10.1016/j.gde.2013.06.003 10.1146/annurev-cellbio-100814-125514 10.1038/s41588-017-0016-5 10.1038/s41580-018-0008-z 10.1038/s41588-018-0060-9 10.1038/nrg.2016.139 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1098/rstb.2019.0339 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Biology |
DocumentTitleAlternate | Retrotransposons and cellular plasticity |
EISSN | 1471-2970 |
ExternalDocumentID | PMC7061993 32075562 10_1098_rstb_2019_0339 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE AAYXX ABBHK ABPLY ABTLG ABXSQ ACPRK ACSFO ADBBV AEUPB AEXZC AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION DCCCD DIK E3Z EBS F5P GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 MRS MV1 NSAHA O9- OK1 RPM RRY SA0 TN5 V1E W8F YNT ~02 CGR CUY CVF ECM EIF NPM OP1 7X8 5PM |
ID | FETCH-LOGICAL-c434t-de75e0d2c3edc918e772e277ebce036a6a74e7b8d0129e139ba3f9bc95e8272e3 |
ISSN | 0962-8436 1471-2970 |
IngestDate | Thu Aug 21 13:39:52 EDT 2025 Fri Jul 11 01:01:23 EDT 2025 Thu Jan 02 22:57:48 EST 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 03:25:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1795 |
Keywords | reprogramming LINE-1 pluripotency transposable elements MERVL 2-cell-like cells |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-de75e0d2c3edc918e772e277ebce036a6a74e7b8d0129e139ba3f9bc95e8272e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 One contribution of 15 to a discussion meeting issue ‘Crossroads between transposons and gene regulation’. |
ORCID | 0000-0002-1020-2074 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2019.0339 |
PMID | 32075562 |
PQID | 2359404492 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061993 proquest_miscellaneous_2359404492 pubmed_primary_32075562 crossref_primary_10_1098_rstb_2019_0339 crossref_citationtrail_10_1098_rstb_2019_0339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-30 |
PublicationDateYYYYMMDD | 2020-03-30 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
PublicationYear | 2020 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_48_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_42_2 e_1_3_5_63_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_56_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_52_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_45_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_57_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_51_2 e_1_3_5_53_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_27_2 doi: 10.1038/s41588-019-0418-7 – ident: e_1_3_5_21_2 doi: 10.1016/j.celrep.2013.04.034 – ident: e_1_3_5_42_2 doi: 10.1128/MCB.06441-11 – ident: e_1_3_5_18_2 doi: 10.1038/1841286a0 – ident: e_1_3_5_31_2 doi: 10.1101/gad.321174.118 – ident: e_1_3_5_34_2 doi: 10.1126/science.aag1927 – ident: e_1_3_5_50_2 doi: 10.1038/nature08858 – ident: e_1_3_5_17_2 doi: 10.1038/s41598-017-08266-6 – ident: e_1_3_5_13_2 doi: 10.1016/j.gde.2013.06.006 – ident: e_1_3_5_49_2 doi: 10.1016/j.devcel.2016.02.024 – ident: e_1_3_5_25_2 doi: 10.1371/journal.pgen.1001181 – ident: e_1_3_5_45_2 doi: 10.1016/j.stem.2018.10.001 – ident: e_1_3_5_4_2 doi: 10.1098/rstb.2011.0338 – ident: e_1_3_5_47_2 doi: 10.7554/eLife.11418 – ident: e_1_3_5_24_2 doi: 10.1038/ng.3844 – ident: e_1_3_5_43_2 doi: 10.1371/journal.pone.0205969 – ident: e_1_3_5_22_2 doi: 10.1016/j.cell.2017.02.005 – ident: e_1_3_5_44_2 doi: 10.1038/ncomms2780 – ident: e_1_3_5_8_2 doi: 10.1038/nsmb.2495 – ident: e_1_3_5_57_2 doi: 10.1038/s41556-018-0147-7 – ident: e_1_3_5_46_2 doi: 10.1038/s41556-019-0343-0 – ident: e_1_3_5_7_2 doi: 10.1159/000078195 – ident: e_1_3_5_51_2 doi: 10.1016/j.stem.2011.04.004 – ident: e_1_3_5_62_2 doi: 10.1038/ng.3945 – ident: e_1_3_5_10_2 doi: 10.1016/j.tig.2018.06.006 – ident: e_1_3_5_19_2 doi: 10.1038/nature11244 – ident: e_1_3_5_28_2 doi: 10.1101/569434 – ident: e_1_3_5_58_2 doi: 10.1038/s41586-018-0578-0 – ident: e_1_3_5_53_2 doi: 10.1016/j.stem.2016.07.018 – ident: e_1_3_5_37_2 doi: 10.1038/nature18606 – ident: e_1_3_5_52_2 doi: 10.1093/dnares/dst018 – ident: e_1_3_5_64_2 doi: 10.1016/j.cell.2018.05.043 – ident: e_1_3_5_60_2 doi: 10.1126/science.6542249 – ident: e_1_3_5_6_2 doi: 10.1093/bfgp/elq027 – ident: e_1_3_5_26_2 doi: 10.1038/ng.3846 – ident: e_1_3_5_56_2 doi: 10.1038/s41586-018-0051-0 – ident: e_1_3_5_61_2 doi: 10.7554/eLife.35989 – ident: e_1_3_5_23_2 doi: 10.1038/ng.3858 – ident: e_1_3_5_59_2 doi: 10.1016/0092-8674(92)90465-O – ident: e_1_3_5_32_2 doi: 10.15252/embr.201847382 – ident: e_1_3_5_63_2 doi: 10.1016/j.molcel.2019.05.024 – ident: e_1_3_5_9_2 doi: 10.1016/j.devcel.2004.09.004 – ident: e_1_3_5_36_2 doi: 10.1038/nsmb.3066 – ident: e_1_3_5_39_2 doi: 10.1080/15592294.2015.1136774 – ident: e_1_3_5_15_2 doi: 10.1242/dev.091959 – ident: e_1_3_5_29_2 doi: 10.1080/2159256X.2015.1006109 – ident: e_1_3_5_38_2 doi: 10.1101/gad.238881.114 – ident: e_1_3_5_2_2 doi: 10.1016/j.gde.2009.10.013 – ident: e_1_3_5_16_2 doi: 10.1016/j.stem.2017.12.011 – ident: e_1_3_5_41_2 doi: 10.1093/nar/gkx884 – ident: e_1_3_5_12_2 doi: 10.1038/s41556-018-0093-4 – ident: e_1_3_5_55_2 – ident: e_1_3_5_54_2 doi: 10.1016/j.stem.2017.12.011 – ident: e_1_3_5_3_2 doi: 10.1016/j.devcel.2014.08.016 – ident: e_1_3_5_33_2 doi: 10.1371/journal.pbio.3000324 – ident: e_1_3_5_35_2 doi: 10.1016/j.celrep.2016.08.087 – ident: e_1_3_5_11_2 doi: 10.1038/nature10960 – ident: e_1_3_5_20_2 doi: 10.1016/j.gde.2013.06.003 – ident: e_1_3_5_5_2 doi: 10.1146/annurev-cellbio-100814-125514 – ident: e_1_3_5_40_2 doi: 10.1038/s41588-017-0016-5 – ident: e_1_3_5_14_2 doi: 10.1038/s41580-018-0008-z – ident: e_1_3_5_48_2 doi: 10.1038/s41588-018-0060-9 – ident: e_1_3_5_30_2 doi: 10.1038/nrg.2016.139 |
SSID | ssj0009574 |
Score | 2.4581547 |
Snippet | Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of... Our perception of the role of the previously considered 'selfish' or 'junk' DNA has been dramatically altered in the past 20 years or so. A large proportion of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20190339 |
SubjectTerms | Animals DNA Transposable Elements - genetics Mammals - genetics Mammals - metabolism Opinion Piece Selection, Genetic Totipotent Stem Cells - metabolism |
Title | On transposons and totipotency |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32075562 https://www.proquest.com/docview/2359404492 https://pubmed.ncbi.nlm.nih.gov/PMC7061993 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0YumL2FPr2VoiCCqyZy67m49HLZWinD3hCn0L2WSLBzV3eOmD_vXO7Ec-WgXtSzhye0mY39xkdnfm9wN4iRjHtN3FVBWHDD0kZkrzkGmJL_8p7XwZSqHZl_jkTHw6l-edvJXpLmnUpPz1x76S26CK5xBX6pL9D2Tbi-IJ_Iz44hERxuM_YXxak8QDkZNvqOLFFEOumuV6RYnwYL927hULDCZNJxK-8UUCdh3BF3HSzoER-phQNMHZ9NsPE6db2fVRll394cKIfLB5UZGKkWsCWhbsGF9qRX9lAaeR1GoXtr6wuH7v_uJhjHFUcEdibUMnvuZYlFkZEB9buZVF8U6UWEHNG2E7zKgVAdNdRcV2RDtrGY56GK6_GxB5hDmOdAF8SJQ9nx0lmJ1gwnUX7kU4a6Cw9_lr2uNgtqTc_uFbDs_03fDWO7Dt7zNMV27MQa6X0vZyk8VDeOAmFcF76yG7cEfXI7hv4fo5gu2ZK6AYwa6L5ZvgtSMcf_MIDk_roOdHAfpR0POjx3D28XhxdMKcbgYrBRcNq3QidVhFJcfnyqapRltoNIhWJA4XF3GRCJ2otKJFSI1TAFXwi0yVmdRphEP5E9iqV7V-CoEqMeGvIj3VmNpH8iIVMuE6wchfcC1kOQbmzZOXjlSetE0uc1vckOZk2Zwsm5Nlx_CqHb-2dCp_HfnCWzvHiEfbWEWtV1ebPOIyE6EQWTSGPWv99loetjEkA1zaAcSmPvymXn4zrOrOd57d-pf7sNP9iw5gq_lxpZ9jxtqoQ-OHvwEy65aU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+transposons+and+totipotency&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Torres-Padilla%2C+Maria-Elena&rft.date=2020-03-30&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=375&rft.issue=1795&rft_id=info:doi/10.1098%2Frstb.2019.0339&rft_id=info%3Apmid%2F32075562&rft.externalDocID=PMC7061993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |