A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors
This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 23; p. 8938 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for the FD and CM of rotating machines are first visited, and then its orientation towards intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together with their advancements to date. In particular, the emphasis is given to motor current signature analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engineering. Consequently, the statistical procedures and machine learning techniques (stemming from artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of neural- and non-neural-based approaches are discussed concerning major faults in rotating machines. Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical drives, several open problems are identified and discussed. The paper concludes with important recommendations on where to divert the research focus considering the current advancements in the FD and CM of rotating machines. |
---|---|
AbstractList | This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for the FD and CM of rotating machines are first visited, and then its orientation towards intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together with their advancements to date. In particular, the emphasis is given to motor current signature analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engineering. Consequently, the statistical procedures and machine learning techniques (stemming from artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of neural- and non-neural-based approaches are discussed concerning major faults in rotating machines. Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical drives, several open problems are identified and discussed. The paper concludes with important recommendations on where to divert the research focus considering the current advancements in the FD and CM of rotating machines. |
Audience | Academic |
Author | Cirrincione, Giansalvo Andriollo, Mauro Cirrincione, Maurizio Tortella, Andrea Kumar, Rahul R. |
Author_xml | – sequence: 1 givenname: Rahul R. orcidid: 0000-0002-9287-7197 surname: Kumar fullname: Kumar, Rahul R. – sequence: 2 givenname: Mauro orcidid: 0000-0002-4288-9472 surname: Andriollo fullname: Andriollo, Mauro – sequence: 3 givenname: Giansalvo surname: Cirrincione fullname: Cirrincione, Giansalvo – sequence: 4 givenname: Maurizio surname: Cirrincione fullname: Cirrincione, Maurizio – sequence: 5 givenname: Andrea orcidid: 0000-0001-5974-5830 surname: Tortella fullname: Tortella, Andrea |
BackLink | https://u-picardie.hal.science/hal-03915636$$DView record in HAL |
BookMark | eNptUtuO0zAQjdAisZR94Qss8QRSFtuTmx9DYXcrFSEheI4ce5K6Su1iu0V8BP-Ms1ktFzF-sHV0zpnxzDzPLqyzmGUvGb0GEPQtWlZyaAQ0T7JLJkSVM1rDxR_vZ9lVCHuaAoABwGX2syVrdzh63KEN5ozkM54NfiduSLg9o43GWTkRaTXZ2IjTZEa0CvN3MqAm7fHonVQ7DGRwnsQdkht5miJ5b-RoXTDhXpmstJmdyEdnTXTe2HFOsbH6pB7whIYX2dNBTgGvHu5V9vXmw5f1Xb79dLtZt9tcFVDEXEsqh0bVwBmfQyNlQg2KNSAQ-kZwrrSmuuorqTlwzRosa97XpazroqewyjaLr3Zy3x29OUj_o3PSdPeA82MnfTRqwk4rzrCXqhdVXSgBfVWAHpqClUoJkTKusteL105Of1ndtdtuxigIVlZQnVnivlq4qWvfThhit3cnn_obOl4XTQll1fDEul5Yo0wFGDu46KVKR-PBqDTzwSS8rYuySv8WRRK8WQTKuxA8Do91MNrNq9H9Xo1Epv-QlYlyHkLKYqb_SX4BFfC9Bg |
CitedBy_id | crossref_primary_10_1038_s41598_024_61180_6 crossref_primary_10_3390_en17225538 crossref_primary_10_1007_s10845_023_02103_6 crossref_primary_10_1016_j_cie_2024_109907 crossref_primary_10_1109_ACCESS_2023_3348245 crossref_primary_10_3390_app14073105 crossref_primary_10_3390_machines12120928 crossref_primary_10_3390_en16124780 crossref_primary_10_3390_s23052585 crossref_primary_10_3390_en17153723 crossref_primary_10_3390_electronics13193946 crossref_primary_10_3390_s23167109 crossref_primary_10_3390_math12244032 crossref_primary_10_3390_s24103080 crossref_primary_10_3390_vibration7040054 crossref_primary_10_54021_seesv5n3_035 crossref_primary_10_3390_en16145551 crossref_primary_10_1016_j_measurement_2025_117057 crossref_primary_10_3390_drones7060380 crossref_primary_10_3390_electronics13193850 crossref_primary_10_3390_info14060329 crossref_primary_10_3390_en17133265 crossref_primary_10_3390_en16155628 crossref_primary_10_3390_machines12120890 |
Cites_doi | 10.1109/TEC.2020.2978155 10.1049/ip-epa:20060060 10.1007/978-981-15-9199-0 10.1109/TEC.2005.847955 10.1080/073135600268261 10.1109/DEMPED.2019.8864915 10.1109/MIE.2013.2287651 10.1109/TIA.2022.3142712 10.1109/28.968182 10.1109/ISIE.2007.4374743 10.1109/WEMDCD.2017.7947755 10.1109/TIE.2014.2375853 10.1109/TIE.2008.2007527 10.1109/TIE.2012.2216242 10.1109/TPEL.2012.2192503 10.1109/28.980363 10.1109/28.491498 10.1049/elp2.12008 10.1109/TIE.2012.2219838 10.1109/28.738983 10.1109/TEC.2004.837304 10.1109/ICEMS.2017.8056240 10.1016/j.epsr.2010.12.003 10.1109/TIA.2004.830762 10.1080/07313569208909598 10.1109/28.148460 10.1109/TIE.2009.2016517 10.1109/TIA.1986.4504850 10.1109/IECON.2013.6700038 10.1016/j.isatra.2011.06.003 10.1109/28.845047 10.1109/TPAMI.2003.1217609 10.1109/DEMPED.2013.6645767 10.1109/ICElMach.2012.6350234 10.1109/TIE.2010.2089937 10.1109/28.952496 10.1109/DEMPED.2013.6645742 10.1109/IECON.2013.6700356 10.1109/60.969469 10.3390/ma15175940 10.1109/TAP.1986.1143830 10.1109/60.790920 10.3390/en15166000 10.5772/15377 10.1109/TKDE.2009.191 10.3390/s18072097 10.1109/IECON.2013.6699595 10.1109/TIA.2019.2958908 10.1109/IJCNN.2015.7280318 10.1109/TIE.2016.2570741 10.1002/9780470611760.ch8 10.1109/TPEL.2014.2348194 10.1109/TEC.2003.815832 10.1109/ICElMach.2012.6350115 10.1109/TIE.2007.899826 10.1109/60.9364 10.1049/PBPO108E 10.1109/TIE.2008.2004378 10.1109/60.815083 10.1109/ACCESS.2020.2972859 10.1049/PBPO056E 10.1109/28.767022 10.1109/TSMC.2022.3151185 10.1109/72.554199 10.1109/28.952499 10.1109/TIA.1984.4504392 10.1007/s00521-010-0512-3 10.1109/TII.2014.2307013 10.1109/TIA.2020.3032944 10.1109/TEC.2012.2194148 10.1109/TIM.2014.2330494 10.1109/TMECH.2008.918535 10.1109/41.873206 10.1016/S0378-7796(02)00172-4 10.1007/978-981-13-8950-4 10.1109/TPEL.2014.2342506 10.1093/biomet/57.3.519 10.1109/TIE.2012.2230598 10.1109/60.849118 10.1109/TIA.2010.2090839 10.1109/WEMDCD.2013.6525182 10.1155/2017/8617315 10.2478/aee-2014-0035 10.3390/en10121962 10.1007/978-0-387-39351-3 10.1109/TEC.2003.811741 10.1109/TIE.2012.2236992 10.1016/j.epsr.2012.05.001 10.1016/0005-1098(93)90088-B 10.1109/IECON.2011.6119868 10.1109/IAS.1991.178138 10.1002/eej.22350 10.1109/DEMPED.2013.6645762 10.1109/TIE.2010.2051398 10.1016/j.measurement.2021.110181 10.1109/AQTR.2014.6857843 10.1109/TEC.1987.4765843 10.1049/ip-b.1986.0019 10.1016/j.ymssp.2010.06.010 10.1016/j.procir.2018.12.008 10.1002/9780470061626.shm118 10.1109/TIE.2015.2417501 10.1049/ip-b.1986.0024 10.1109/TIA.2013.2252597 10.1016/j.jcp.2012.01.031 10.3390/machines10070563 10.1109/ACCESS.2020.3047202 10.1109/63.737588 10.1109/TPEL.2003.810848 10.1109/TEC.2008.2003207 10.1002/etep.4450140202 10.1016/j.ymssp.2013.03.008 10.1109/TIA.2009.2018975 10.1016/j.apacoust.2021.108463 10.1109/28.740850 10.3390/app12030972 10.1109/TE.2002.808234 10.1109/TIE.2006.885131 10.24084/repqj11.318 10.1016/0378-7796(95)00979-5 10.1109/ECCE.2012.6342276 10.1109/TIE.2012.2235393 10.1109/28.245712 10.1109/TIA.2010.2049623 10.1109/TIE.2012.2213566 10.1109/IECON.2007.4460176 10.1016/0893-6080(89)90044-0 10.1109/TII.2013.2242084 10.7551/mitpress/3717.001.0001 10.1109/TEC.2020.3032532 10.1109/ICSPS.2010.5555247 10.1109/28.777188 10.1109/IECON.2012.6389272 10.1109/ICElMach.2012.6350128 10.1109/28.871294 10.1007/978-981-10-0624-1 10.1002/9780470117842 10.1109/WEMDCD.2013.6525180 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 1XC DOA |
DOI | 10.3390/en15238938 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918 oai_HAL_hal_03915636v1 A745601994 10_3390_en15238938 |
GeographicLocations | Fiji |
GeographicLocations_xml | – name: Fiji |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 1XC C1A IPNFZ RIG PUEGO |
ID | FETCH-LOGICAL-c434t-da0af8c732122222de019cfc1839e3b8922cdd0d6b6ad232d18e572b75a774b03 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:26:46 EDT 2025 Fri May 09 12:17:50 EDT 2025 Mon Jun 30 11:13:22 EDT 2025 Tue Jun 10 21:04:07 EDT 2025 Tue Jul 01 01:58:38 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-da0af8c732122222de019cfc1839e3b8922cdd0d6b6ad232d18e572b75a774b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4288-9472 0000-0002-9287-7197 0000-0001-5974-5830 0000-0002-2894-4164 |
OpenAccessLink | https://doaj.org/article/dc21ebacb9674c93b643df8415cc9918 |
PQID | 2748535682 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918 hal_primary_oai_HAL_hal_03915636v1 proquest_journals_2748535682 gale_infotracacademiconefile_A745601994 crossref_primary_10_3390_en15238938 crossref_citationtrail_10_3390_en15238938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_93 ref_136 ref_92 Nejjari (ref_61) 2000; 36 ref_91 ref_138 ref_90 Bispo (ref_157) 2001; 37 (ref_169) 1992; 20 Immovilli (ref_139) 2013; 60 ref_13 Isermann (ref_83) 1993; 29 Cruz (ref_56) 2001; 37 ref_98 ref_133 ref_97 ref_132 Maruthi (ref_23) 2013; 3 ref_134 Stefani (ref_105) 2009; 56 Riley (ref_51) 1999; 35 Escobar (ref_175) 2012; 91 Benbouzid (ref_53) 2003; 18 Zhang (ref_114) 2020; 8 Boumegoura (ref_87) 2004; 14 Ukil (ref_163) 2011; 81 Karabacak (ref_39) 2022; 186 Lipo (ref_154) 1984; IA-20 Gritli (ref_102) 2013; 60 ref_126 Benbouzid (ref_9) 2000; 47 ref_128 Trzynadlowski (ref_109) 1999; 14 ref_129 Drozdowski (ref_72) 2014; 63 Kato (ref_161) 2014; 186 ref_22 Gaeid (ref_68) 2010; 4 ref_122 ref_20 Said (ref_77) 2000; 15 Bonnett (ref_28) 1992; 28 Lee (ref_31) 2022; 58 ref_123 Sanger (ref_125) 1989; 2 Kliman (ref_10) 1988; 3 Prieto (ref_121) 2013; 60 ref_27 Boukra (ref_120) 2013; 60 Supangat (ref_70) 2006; 153 Eftekharnejad (ref_36) 2011; 25 (ref_67) 2009; 24 Lee (ref_159) 2003; 18 ref_71 Schmidt (ref_174) 1986; 34 Oviedo (ref_64) 2011; 78 Bellini (ref_65) 2001; 37 Siddique (ref_12) 2005; 20 Li (ref_26) 2004; 46 ref_78 ref_153 ref_152 Benbouzid (ref_60) 2008; 13 ref_75 Bmiet (ref_111) 2018; 2 Song (ref_183) 2013; 28 ref_74 Cruz (ref_62) 2000; 28 Henao (ref_3) 2014; 8 Jung (ref_54) 2006; 53 Demartines (ref_135) 1997; 8 Drif (ref_106) 2014; 10 McInerny (ref_25) 2003; 46 Singh (ref_7) 2003; 64 Choqueuse (ref_2) 2015; 3 Benbouzid (ref_167) 1998; 5 Namdar (ref_79) 2022; 187 ref_148 ref_82 ref_147 Immovilli (ref_180) 2010; 46 Trachi (ref_118) 2016; 63 Penman (ref_168) 1986; 133 ref_140 ref_89 ref_142 ref_88 ref_141 Kumar (ref_131) 2021; 9 ref_144 ref_86 ref_143 ref_84 Kumar (ref_48) 2021; 57 Kia (ref_103) 2009; 45 Soualhi (ref_146) 2013; 60 Eren (ref_151) 2017; 2017 Povinelli (ref_35) 2013; 9 Cardoso (ref_55) 1999; 14 Grezmak (ref_149) 2019; 80 (ref_104) 2008; 55 Pan (ref_115) 2009; 22 Faiz (ref_156) 1995; 34 ref_50 ref_58 Hicken (ref_85) 2012; 231 ref_173 ref_177 Deng (ref_81) 2014; 30 Mardia (ref_178) 1970; 57 ref_179 Cardoso (ref_57) 1993; 29 Cirrincione (ref_38) 2020; 35 Zarri (ref_182) 2013; 60 Tetrault (ref_30) 1999; 35 Kumar (ref_47) 2021; 36 ref_59 ref_181 Postma (ref_124) 2009; 10 Su (ref_24) 2011; 20 Jlassi (ref_80) 2014; 30 Haji (ref_16) 2001; 16 Nandi (ref_158) 2002; 38 Bonnett (ref_15) 2000; 36 Nandi (ref_11) 2005; 20 Alshorman (ref_165) 2021; 11 ref_162 ref_164 Zhang (ref_8) 2010; 47 ref_63 Bonnett (ref_66) 1986; IA-22 Stone (ref_29) 1996; 32 Weng (ref_127) 2003; 25 Kia (ref_73) 2007; 54 ref_171 ref_170 Duan (ref_96) 2013; 49 Kral (ref_99) 2004; 40 Martinetz (ref_130) 1991; 1 ref_117 ref_116 ref_119 (ref_19) 2011; 58 Zidani (ref_166) 2003; 18 Andria (ref_155) 1987; EC-2 ref_34 ref_33 ref_32 ref_110 Benbouzid (ref_52) 1999; 14 ref_113 Yuan (ref_137) 2013; 38 Soualhi (ref_18) 2014; 64 ref_112 Gandhi (ref_69) 2010; 58 He (ref_145) 2013; 60 ref_37 Kowalski (ref_76) 2013; 54 Li (ref_42) 2022; 52 Gao (ref_101) 2015; 62 Li (ref_176) 2011; 50 ref_108 Group (ref_14) 1985; 1 ref_107 ref_46 ref_45 Bento (ref_41) 2021; 15 ref_43 ref_100 ref_40 ref_1 Bellini (ref_17) 2008; 12 Liang (ref_95) 2019; 56 Xu (ref_172) 2012; 27 ref_49 Capolino (ref_44) 2015; 62 Cash (ref_160) 1998; 34 Chen (ref_150) 2015; 2015 ref_5 ref_4 Thorsen (ref_21) 1999; 35 ref_6 |
References_xml | – volume: 35 start-page: 1338 year: 2020 ident: ref_38 article-title: Shallow versus Deep Neural Networks in Gear Fault Diagnosis publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2020.2978155 – volume: 153 start-page: 848 year: 2006 ident: ref_70 article-title: Detection of broken rotor bars in induction motor using starting-current analysis and effects of loading publication-title: IEE Proc.-Electr. Power Appl. doi: 10.1049/ip-epa:20060060 – ident: ref_90 doi: 10.1007/978-981-15-9199-0 – volume: 20 start-page: 719 year: 2005 ident: ref_11 article-title: Condition monitoring and fault diagnosis of electrical motors-a review publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2005.847955 – volume: 28 start-page: 289 year: 2000 ident: ref_62 article-title: Rotor cage fault diagnosis in three-phase induction motors by extended Park’s vector approach publication-title: Electr. Mach. Power Syst. doi: 10.1080/073135600268261 – ident: ref_100 – ident: ref_117 doi: 10.1109/DEMPED.2019.8864915 – volume: 8 start-page: 31 year: 2014 ident: ref_3 article-title: Trends in fault diagnosis for electrical machines: A review of diagnostic techniques publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2013.2287651 – ident: ref_88 – volume: 10 start-page: 66 year: 2009 ident: ref_124 article-title: Dimensionality reduction: A comparative publication-title: J. Mach. Learn Res. – volume: 58 start-page: 2088 year: 2022 ident: ref_31 article-title: Inverter-Embedded Partial Discharge Testing for Reliability Enhancement of Stator Winding Insulation in Low Voltage Machines publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2022.3142712 – volume: 37 start-page: 1710 year: 2001 ident: ref_157 article-title: A new strategy for induction machine modeling taking into account the magnetic saturation publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.968182 – ident: ref_107 doi: 10.1109/ISIE.2007.4374743 – ident: ref_1 doi: 10.1109/WEMDCD.2017.7947755 – ident: ref_71 – volume: 62 start-page: 1746 year: 2015 ident: ref_44 article-title: Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2375853 – ident: ref_94 – volume: 12 start-page: 4109 year: 2008 ident: ref_17 article-title: Advances in diagnostic techniques for induction machines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.2007527 – volume: 60 start-page: 4034 year: 2013 ident: ref_120 article-title: Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2216242 – volume: 28 start-page: 591 year: 2013 ident: ref_183 article-title: Survey on reliability of power electronic systems publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2012.2192503 – volume: 38 start-page: 101 year: 2002 ident: ref_158 article-title: Novel frequency-domain-based technique to detect stator interturn faults in induction machines using stator-induced voltages after switch-off publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.980363 – volume: 32 start-page: 459 year: 1996 ident: ref_29 article-title: Application of partial discharge testing to motor and generator stator winding maintenance publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.491498 – volume: 15 start-page: 51 year: 2021 ident: ref_41 article-title: On the risk of failure to prevent induction motors permanent damage, due to the short available time-to-diagnosis of inter-turn short-circuit faults publication-title: IET Electr. Power Appl. doi: 10.1049/elp2.12008 – volume: 60 start-page: 3398 year: 2013 ident: ref_121 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2219838 – volume: 34 start-page: 1234 year: 1998 ident: ref_160 article-title: Insulation failure prediction in AC machines using line-neutral voltages publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.738983 – volume: 20 start-page: 106 year: 2005 ident: ref_12 article-title: A review of stator fault monitoring techniques of induction motors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2004.837304 – ident: ref_134 doi: 10.1109/ICEMS.2017.8056240 – volume: 81 start-page: 1036 year: 2011 ident: ref_163 article-title: Detection of stator short circuit faults in three-phase induction motors using motor current zero crossing instants publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2010.12.003 – volume: 40 start-page: 1101 year: 2004 ident: ref_99 article-title: Detection of mechanical imbalances of induction machines without spectral analysis of time-domain signals publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2004.830762 – ident: ref_152 – ident: ref_13 – volume: 20 start-page: 339 year: 1992 ident: ref_169 article-title: Noise test on rotating electrical motors under load publication-title: Electr. Mach. Power Syst. doi: 10.1080/07313569208909598 – volume: 28 start-page: 921 year: 1992 ident: ref_28 article-title: Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.148460 – ident: ref_45 – volume: 56 start-page: 4548 year: 2009 ident: ref_105 article-title: Diagnosis of induction machines’ rotor faults in time-varying conditions publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2016517 – ident: ref_59 – volume: IA-22 start-page: 1165 year: 1986 ident: ref_66 article-title: Rotor failures in squirrel cage induction motors publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.1986.4504850 – volume: 1 start-page: 865 year: 1985 ident: ref_14 article-title: Report of large motor reliability survey of industrial and commercial installations, Part I publication-title: IEEE Trans. Ind. Appl. – ident: ref_147 doi: 10.1109/IECON.2013.6700038 – volume: 50 start-page: 599 year: 2011 ident: ref_176 article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection publication-title: ISA Trans. doi: 10.1016/j.isatra.2011.06.003 – volume: 36 start-page: 730 year: 2000 ident: ref_61 article-title: Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.845047 – volume: 4 start-page: 227 year: 2010 ident: ref_68 article-title: Diagnosis and fault tolerant control of the induction motors techniques a review publication-title: Aust. J. Basic Appl. Sci. – volume: 25 start-page: 1034 year: 2003 ident: ref_127 article-title: Candid covariance-free incremental principal component analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1217609 – ident: ref_141 doi: 10.1109/DEMPED.2013.6645767 – ident: ref_170 doi: 10.1109/ICElMach.2012.6350234 – volume: 58 start-page: 1564 year: 2010 ident: ref_69 article-title: Recent advances in modeling and online detection of stator interturn faults in electrical motors publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2089937 – volume: 37 start-page: 1227 year: 2001 ident: ref_56 article-title: Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.952496 – ident: ref_86 – ident: ref_142 doi: 10.1109/DEMPED.2013.6645742 – ident: ref_177 – ident: ref_144 doi: 10.1109/IECON.2013.6700356 – volume: 16 start-page: 312 year: 2001 ident: ref_16 article-title: Pattern recognition-a technique for induction machines rotor broken bar detection publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.969469 – ident: ref_37 doi: 10.3390/ma15175940 – volume: 34 start-page: 276 year: 1986 ident: ref_174 article-title: Multiple emitter location and signal parameter estimation publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1986.1143830 – volume: 14 start-page: 595 year: 1999 ident: ref_55 article-title: Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park’s vector approach publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.790920 – ident: ref_92 – ident: ref_129 – ident: ref_43 doi: 10.3390/en15166000 – ident: ref_40 doi: 10.5772/15377 – volume: 22 start-page: 1345 year: 2009 ident: ref_115 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: ref_138 doi: 10.3390/s18072097 – ident: ref_148 doi: 10.1109/IECON.2013.6699595 – volume: 56 start-page: 1205 year: 2019 ident: ref_95 article-title: Induction Motors Fault Diagnosis Using Finite Element Method: A Review publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2958908 – ident: ref_132 doi: 10.1109/IJCNN.2015.7280318 – volume: 63 start-page: 5641 year: 2016 ident: ref_118 article-title: Induction machines fault detection based on subspace spectral estimation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2570741 – volume: 54 start-page: 348 year: 2013 ident: ref_76 article-title: Stator and rotor faults monitoring of the inverter-fed induction motor drive using state estimators publication-title: Autom. Časopis Za Autom. Mjer. Elektron. Računarstvo I Komun. – ident: ref_89 doi: 10.1002/9780470611760.ch8 – volume: 30 start-page: 2721 year: 2014 ident: ref_81 article-title: Fault detection and localization method for modular multilevel converters publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2014.2348194 – ident: ref_6 – ident: ref_75 – ident: ref_50 – volume: 18 start-page: 469 year: 2003 ident: ref_166 article-title: Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2003.815832 – ident: ref_112 – ident: ref_140 doi: 10.1109/ICElMach.2012.6350115 – volume: 54 start-page: 2305 year: 2007 ident: ref_73 article-title: A high-resolution frequency estimation method for three-phase induction machine fault detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2007.899826 – volume: 3 start-page: 873 year: 1988 ident: ref_10 article-title: Noninvasive detection of broken rotor bars in operating induction motors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.9364 – ident: ref_93 doi: 10.1049/PBPO108E – volume: 55 start-page: 4167 year: 2008 ident: ref_104 article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.2004378 – volume: 14 start-page: 1417 year: 1999 ident: ref_109 article-title: Diagnostics of mechanical abnormalities in induction motors using instantaneous electric power publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.815083 – volume: 2 start-page: 1 year: 2018 ident: ref_111 article-title: Industrial Revolution–From Industry 1.0 to Industry 4.0 publication-title: J. Adv. Comput. Intell. Commun. Technol. – volume: 3 start-page: 357 year: 2013 ident: ref_23 article-title: An experimental investigation on broken rotor bar in three phase induction motor by vibration signature analysis using MEMS accelerometer publication-title: Int. J. Emerg. Technol. Adv. Eng. – volume: 8 start-page: 29857 year: 2020 ident: ref_114 article-title: Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972859 – ident: ref_179 – ident: ref_22 doi: 10.1049/PBPO056E – volume: 35 start-page: 682 year: 1999 ident: ref_30 article-title: Monitoring partial discharges on 4-kV motor windings publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.767022 – volume: 52 start-page: 7328 year: 2022 ident: ref_42 article-title: Highly Efficient Fault Diagnosis of Rotating Machinery Under Time-Varying Speeds Using LSISMM and Small Infrared Thermal Images publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3151185 – volume: 8 start-page: 148 year: 1997 ident: ref_135 article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554199 – volume: 37 start-page: 1248 year: 2001 ident: ref_65 article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.952499 – volume: IA-20 start-page: 180 year: 1984 ident: ref_154 article-title: Modeling and simulation of induction motors with saturable leakage reactances publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.1984.4504392 – ident: ref_126 – volume: 20 start-page: 183 year: 2011 ident: ref_24 article-title: Vibration signal analysis for electrical fault detection of induction machine using neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0512-3 – volume: 11 start-page: 2820 year: 2021 ident: ref_165 article-title: A review of intelligent methods for condition monitoring and fault diagnosis of stator and rotor faults of induction machines publication-title: Int. J. Electr. Comput. Eng. – volume: 10 start-page: 1348 year: 2014 ident: ref_106 article-title: Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2307013 – volume: 57 start-page: 272 year: 2021 ident: ref_48 article-title: A Topological Neural-Based Scheme for Classification of Faults in Induction Machines publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2020.3032944 – volume: 27 start-page: 654 year: 2012 ident: ref_172 article-title: An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2012.2194148 – volume: 64 start-page: 52 year: 2014 ident: ref_18 article-title: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2014.2330494 – volume: 13 start-page: 257 year: 2008 ident: ref_60 article-title: Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2008.918535 – ident: ref_78 – volume: 1 start-page: 397 year: 1991 ident: ref_130 article-title: A “neural-gas” network learns topologies publication-title: Artif. Neural Netw. – volume: 47 start-page: 984 year: 2000 ident: ref_9 article-title: A review of induction motors signature analysis as a medium for faults detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.873206 – volume: 64 start-page: 145 year: 2003 ident: ref_7 article-title: Induction machine drive condition monitoring and diagnostic research—A survey publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(02)00172-4 – ident: ref_49 – ident: ref_116 doi: 10.1007/978-981-13-8950-4 – ident: ref_5 – volume: 30 start-page: 2689 year: 2014 ident: ref_80 article-title: Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2014.2342506 – volume: 57 start-page: 519 year: 1970 ident: ref_178 article-title: Measures of multivariate skewness and kurtosis with applications publication-title: Biometrika doi: 10.1093/biomet/57.3.519 – ident: ref_84 – ident: ref_136 – volume: 60 start-page: 4053 year: 2013 ident: ref_146 article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2230598 – volume: 15 start-page: 66 year: 2000 ident: ref_77 article-title: Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.849118 – volume: 47 start-page: 34 year: 2010 ident: ref_8 article-title: A survey of condition monitoring and protection methods for medium-voltage induction motors publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2010.2090839 – ident: ref_119 doi: 10.1109/WEMDCD.2013.6525182 – volume: 2017 start-page: 8617315 year: 2017 ident: ref_151 article-title: Bearing fault detection by one-dimensional convolutional neural networks publication-title: Math. Probl. Eng. doi: 10.1155/2017/8617315 – volume: 63 start-page: 489 year: 2014 ident: ref_72 article-title: Influence of magnetic saturation effects on the fault detection of induction motors publication-title: Arch. Electr. Eng. doi: 10.2478/aee-2014-0035 – ident: ref_97 doi: 10.3390/en10121962 – ident: ref_122 doi: 10.1007/978-0-387-39351-3 – volume: 18 start-page: 238 year: 2003 ident: ref_53 article-title: What stator current processing-based technique to use for induction motor rotor faults diagnosis? publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2003.811741 – volume: 60 start-page: 4012 year: 2013 ident: ref_102 article-title: Advanced diagnosis of electrical faults in wound-rotor induction machines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2236992 – volume: 91 start-page: 28 year: 2012 ident: ref_175 article-title: Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.05.001 – volume: 46 start-page: 473 year: 2004 ident: ref_26 article-title: Induction motor fault detection using vibration and stator current methods publication-title: Insight-Non-Destr. Test. Cond. Monit. – volume: 29 start-page: 815 year: 1993 ident: ref_83 article-title: Fault diagnosis of machines via parameter estimation and knowledge processing—Tutorial paper publication-title: Automatica doi: 10.1016/0005-1098(93)90088-B – ident: ref_173 doi: 10.1109/IECON.2011.6119868 – ident: ref_58 doi: 10.1109/IAS.1991.178138 – volume: 186 start-page: 75 year: 2014 ident: ref_161 article-title: Diagnosis of Stator-Winding-Turn Faults of Induction Motor by Direct Detection of Negative Sequence Currents publication-title: Electr. Eng. Jpn. doi: 10.1002/eej.22350 – ident: ref_181 doi: 10.1109/DEMPED.2013.6645762 – volume: 58 start-page: 2002 year: 2011 ident: ref_19 article-title: The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2051398 – ident: ref_98 – volume: 187 start-page: 110181 year: 2022 ident: ref_79 article-title: A robust stator inter-turn fault detection in induction motor utilizing Kalman filter-based algorithm publication-title: Measurement doi: 10.1016/j.measurement.2021.110181 – ident: ref_110 doi: 10.1109/AQTR.2014.6857843 – volume: EC-2 start-page: 285 year: 1987 ident: ref_155 article-title: Improvement in modeling and testing of induction motors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.1987.4765843 – volume: 133 start-page: 142 year: 1986 ident: ref_168 article-title: Condition monitoring of electrical drives publication-title: IEE Proc. B-Electr. Power Appl. doi: 10.1049/ip-b.1986.0019 – volume: 25 start-page: 266 year: 2011 ident: ref_36 article-title: The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.06.010 – volume: 80 start-page: 476 year: 2019 ident: ref_149 article-title: Explainable Convolutional Neural Network for Gearbox Fault Diagnosis publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.12.008 – ident: ref_113 doi: 10.1002/9780470061626.shm118 – volume: 60 start-page: 3429 year: 2013 ident: ref_145 article-title: Plastic bearing fault diagnosis based on a two-step data mining approach publication-title: IEEE Trans. Ind. Electron. – volume: 62 start-page: 3757 year: 2015 ident: ref_101 article-title: A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2417501 – ident: ref_33 doi: 10.1049/ip-b.1986.0024 – volume: 49 start-page: 1268 year: 2013 ident: ref_96 article-title: A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2013.2252597 – volume: 231 start-page: 3828 year: 2012 ident: ref_85 article-title: Output error estimation for summation-by-parts finite-difference schemes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.031 – ident: ref_32 doi: 10.3390/machines10070563 – volume: 9 start-page: 2201 year: 2021 ident: ref_131 article-title: Induction Machine Stator Fault Tracking Using the Growing Curvilinear Component Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047202 – volume: 14 start-page: 14 year: 1999 ident: ref_52 article-title: Induction motors’ faults detection and localization using stator current advanced signal processing techniques publication-title: IEEE Trans. Power Electron. doi: 10.1109/63.737588 – volume: 18 start-page: 865 year: 2003 ident: ref_159 article-title: A robust, on-line turn-fault detection technique for induction machines based on monitoring the sequence component impedance matrix publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2003.810848 – ident: ref_162 – volume: 24 start-page: 52 year: 2009 ident: ref_67 article-title: Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2008.2003207 – volume: 14 start-page: 71 year: 2004 ident: ref_87 article-title: Rotor induction machine failure: Analysis and diagnosis publication-title: Eur. Trans. Electr. Power doi: 10.1002/etep.4450140202 – volume: 38 start-page: 615 year: 2013 ident: ref_137 article-title: Semi-supervised learning and condition fusion for fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.03.008 – volume: 45 start-page: 1395 year: 2009 ident: ref_103 article-title: Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2009.2018975 – volume: 186 start-page: 108463 year: 2022 ident: ref_39 article-title: Intelligent worm gearbox fault diagnosis under various working conditions using vibration, sound and thermal features publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108463 – volume: 3 start-page: 76 year: 2015 ident: ref_2 article-title: Induction machine diagnosis using stator current advanced signal processing publication-title: Int. J. Energy Convers. – volume: 35 start-page: 94 year: 1999 ident: ref_51 article-title: Stator current harmonics and their causal vibrations: A preliminary investigation of sensorless vibration monitoring applications publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.740850 – ident: ref_82 – ident: ref_27 doi: 10.3390/app12030972 – volume: 46 start-page: 149 year: 2003 ident: ref_25 article-title: Basic vibration signal processing for bearing fault detection publication-title: IEEE Trans. Educ. doi: 10.1109/TE.2002.808234 – volume: 53 start-page: 1842 year: 2006 ident: ref_54 article-title: Online diagnosis of induction motors using MCSA publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2006.885131 – ident: ref_108 doi: 10.24084/repqj11.318 – volume: 34 start-page: 205 year: 1995 ident: ref_156 article-title: Dynamic analysis of induction motors with saturable inductances publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(95)00979-5 – ident: ref_34 doi: 10.1109/ECCE.2012.6342276 – volume: 60 start-page: 3506 year: 2013 ident: ref_182 article-title: Detection and localization of stator resistance dissymmetry based on multiple reference frame controllers in multiphase induction motor drives publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2235393 – ident: ref_153 – ident: ref_63 – volume: 29 start-page: 897 year: 1993 ident: ref_57 article-title: Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park’s vector approach publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.245712 – volume: 2015 start-page: 390134 year: 2015 ident: ref_150 article-title: Gearbox fault identification and classification with convolutional neural networks publication-title: Shock Vib. – volume: 46 start-page: 1350 year: 2010 ident: ref_180 article-title: Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2010.2049623 – volume: 60 start-page: 3408 year: 2013 ident: ref_139 article-title: Bearing fault model for induction motor with externally induced vibration publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2213566 – ident: ref_164 doi: 10.1109/IECON.2007.4460176 – volume: 2 start-page: 459 year: 1989 ident: ref_125 article-title: Optimal unsupervised learning in a single-layer linear feedforward neural network publication-title: Neural. Netw. doi: 10.1016/0893-6080(89)90044-0 – volume: 9 start-page: 2274 year: 2013 ident: ref_35 article-title: Rotor bar fault monitoring method based on analysis of air-gap torques of induction motors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2013.2242084 – ident: ref_46 – ident: ref_123 doi: 10.7551/mitpress/3717.001.0001 – volume: 36 start-page: 1070 year: 2021 ident: ref_47 article-title: Induction Machine Fault Detection and Classification Using Non-Parametric, Statistical-Frequency Features and Shallow Neural Networks publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2020.3032532 – volume: 5 start-page: 15 year: 1998 ident: ref_167 article-title: Induction motor interturn short-circuit and bearing wear detection using artificial neural networks publication-title: Electromotion – ident: ref_91 – ident: ref_128 doi: 10.1109/ICSPS.2010.5555247 – volume: 35 start-page: 810 year: 1999 ident: ref_21 article-title: Failure identification and analysis for high-voltage induction motors in the petrochemical industry publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.777188 – ident: ref_133 – ident: ref_143 doi: 10.1109/IECON.2012.6389272 – ident: ref_171 doi: 10.1109/ICElMach.2012.6350128 – volume: 36 start-page: 1435 year: 2000 ident: ref_15 article-title: Root cause AC motor failure analysis with a focus on shaft failures publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.871294 – ident: ref_20 doi: 10.1007/978-981-10-0624-1 – volume: 78 start-page: 214 year: 2011 ident: ref_64 article-title: Motor current signature analysis and negative sequence current based stator winding short fault detection in an induction motor publication-title: Dyna – ident: ref_74 doi: 10.1002/9780470117842 – ident: ref_4 doi: 10.1109/WEMDCD.2013.6525180 |
SSID | ssj0000331333 |
Score | 2.4681017 |
SecondaryResourceType | review_article |
Snippet | This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8938 |
SubjectTerms | artificial intelligence classical techniques data-driven Electric fault location Engineering Sciences Failure Fault diagnosis Induction electric motors Machine learning Maintenance costs Methods model-based motor Preventive maintenance Signal processing |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELX4uLSHirZU3RYqq62EOEQkseM4J5RtWS1VhSoEEjfLHjuAhLJ0d-m_6H9mJvHuAkLkFDlO7GTsmTfO-A1j37MGGrR7aaKhUImUeOYQlifCKo_wPgD2nqItTtT4XP66KC7igtsshlUudGKnqP0EaI38AL0ntCyF0vnh7d-EskbR39WYQmOdbaIK1uh8bQ6PTv6cLldZUiHQCRM9L6lA__4gtGixyErrR5aoI-xfquX1K4qKfKKcO4sz2mJvIlTkdS_bt2wttO_Y6wcEgu_Z_5rThJ6Gqz4OnfdL_XzSYPkqnJzb1vPjB-SbyRCNl-d1JBQPM47YlSMW5CN7dzPnP_sAvOtZdyc-yneRXbzXANQ2NUFpPyCWU9KebXY-Ojr7MU5igoUEpJDzxNvUNhpKgR-PDh8Q8EEDhJqCcLrKc_A-9cop6xF6-UyHosxdWVhEjS4VH9hGO2nDR8YRFpVV5kMmoZJOhwpdJUv5_kqQVohiwPYXH9tAZB-nJBg3Br0QEoxZCWbAvi3r3vacG8_WGpLMljWIJ7srmEwvTZx2xkOeBWfBVarEngmHAMw3GlELACJjfMgeSdzQbMbugI2bEvCliBfL1KUkl7Wq5IB9xUHxqLVx_dtQWUeyr4T6lw3YzmLMmKgLZmY1cj-9fPkze5XT5oouWGaHbcynd2EXIc_cfYnj-h4RWgFA priority: 102 providerName: ProQuest |
Title | A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors |
URI | https://www.proquest.com/docview/2748535682 https://u-picardie.hal.science/hal-03915636 https://doaj.org/article/dc21ebacb9674c93b643df8415cc9918 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3ycWkPoU1a6jZdRFsoPZisLVmWj94mm00pIZQG9ib0ZRIITslu8i_6nzsjOZtNKPTSPSyLkC2tZ6T3xozeAHwqOtch7o1z5SqZC4G_LNLynBvpkd4Hh7OnbItTOTsX3-bVfK3UF-WEJXng9OAOvCuLYI2zjayFa7hFCPWdQtxxDrlNPOaLmLcWTMU9mHMMvnjSI-UY1x-EHpGK0Fk9QqAo1L_ajjcvKBvyyaYckWb6AnYGisjaNLWXsBH6XXi-Jhy4B79bRgv5Jlyk_HOWXvGz6w7bH9LImek9O1kT3cwnCFqetYOQeFgw5KwMOSCbmturJTtMiXeXi3gl3srHjC6WVj6NTUNQuQ83tFOxnldwPj36-XWWD4UVcie4WObejE2nXM0Rt-jjAxI91zliS4Fb1ZSl837spZXGI-XyhQpVXdq6MsgW7Zi_hq3-ug9vgCEdqpvChwJtI6wKDYZIhur81U4YzqsMvtw_bO0G1XEqfnGlMfogw-gHw2TwcdX3V9La-GuvCdls1YP0sWMDeo0evEb_y2sy-EwW17SKcTrODIcR8E-RHpZua0GhatOIDD6gUzwabdZ-19QWxfUll3dFBvv3PqOHPWChMd5HLlRJVb79H1N-B89KOnoRU2n2YWt5cxveIyFa2hFsqunxCLYnR6dnP0ZxJeD38bz4A4oIDEg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAcEE81tMCKhxAHq7Z3vbYPCLmUkNDQUyv1tuzLFKly2iQF8SP4K_xGZtZ20iLErTlF683uxjM78409-w3Ay6S2Nfq9OCpsJiMh8JtBWB5xLR3Ce29x9ZRtcSBHR-LTcXa8Br_7szCUVtnbxGCo3dTSM_IdjJ7Qs2SySN-dnUdUNYrervYlNFq12Pc_f2DINn873kP5vkrT4YfD96OoqyoQWcHFInI61nVhc45Gmz7OI8qxtSWo4LkpyjS1zsVOGqkd4g2XFD7LU5NnGqGSiTmOuw43BOcl7ahi-HH5TCfmHEM-3rKg4vV4xzfoHwkTFFf8XigPsHQC6yeUg_mXKwj-bXgX7nTAlFWtJt2DNd_ch9uX6AofwK-KkfmY-ZM26521LxbYtMb2VfI6041j40tUn9EuukrHqo6-3M8ZImWGyJMN9cXpgu216X7f5uGXOJQLeWSstTc0N01BRUZs104lgh7C0bXc-Eew0UwbvwkMQVheJs4nwpbCFL7EwExTdcHcCs15NoA3_c1WtuM6p5IbpwpjHhKMWglmAC-Wfc9aho9_9tolmS17ECt3aJjOvqpukytn08QbbU0pc1wZNwj3XF0gRrIWcTgO8pokrsh24HKs7o5A4J8iFi5V5YIC5LIUA3iOSnFltlE1UdQWKP0ll9-TAWz3OqM6yzNXq33y-P-Xn8HN0eHniZqMD_a34FZKxzpCms42bCxmF_4Jgq2FeRo0nMGX695SfwDJBTxU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qYTggHiqgQIrHkIcrNje9euAkEMaJbSKKkSl3pZ9mSJVTklSED-CP8SvY8ZeJy1C3JpTtN7sbjyzM9_Y384AvIwqU6HfC4PcJGkgBH7TCMsDrlKL8N4ZXD2xLWbp5Fh8OElOtuB3dxaGaJWdTWwMtZ0bekY-wOgJPUuS5vGg8rSIo9H43fm3gCpI0ZvWrpxGqyIH7ucPDN-Wb6cjlPWrOB7vf3o_CXyFgcAILlaBVaGqcpNxNOD0sQ4Rj6kMwQbHdV7EsbE2tKlOlUXsYaPcJVmss0QhbNIhx3G3YSfDqCjswc5wf3b0cf2EJ-QcA0De5kTlvAgHrkZvSQghv-IFm2IBa5ewfUqMzL8cQ-PtxnfgtoeprGz16i5sufoe3LqUvPA-_CoZGZOFO2058Kx9zcDmFbZvqOxM1ZZNLyX-DIboOC0rfTJzt2SImxniUDZWF2crNmrJf1-XzS9xKNuwylhrfWhumoJKjhjfTgWDHsDxtdz6h9Cr57XbBYaQLCsi6yJhCqFzV2CYpqjWYGaE4jzpw5vuZkvjM59TAY4ziREQCUZuBNOHF-u-522-j3_2GpLM1j0oR3fTMF98kX7LS2viyGlldJFmuDKuEfzZKkfEZAyichzkNUlckiXB5RjlD0Tgn6KcXLLMBIXLRSH68ByV4spsk_JQUluT4D_l6feoD3udzkhvh5Zys2se_f_yM7iB20keTmcHj-FmTGc8Gs7OHvRWiwv3BJHXSj_1Ks7g83Xvqj-8mEHm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Conventional+and+Intelligence-Based+Approaches+for+the+Fault+Diagnosis+and+Condition+Monitoring+of+Induction+Motors&rft.jtitle=Energies+%28Basel%29&rft.au=Rahul+R.+Kumar&rft.au=Mauro+Andriollo&rft.au=Giansalvo+Cirrincione&rft.au=Maurizio+Cirrincione&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=23&rft.spage=8938&rft_id=info:doi/10.3390%2Fen15238938&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |