A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors

This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 23; p. 8938
Main Authors Kumar, Rahul R., Andriollo, Mauro, Cirrincione, Giansalvo, Cirrincione, Maurizio, Tortella, Andrea
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for the FD and CM of rotating machines are first visited, and then its orientation towards intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together with their advancements to date. In particular, the emphasis is given to motor current signature analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engineering. Consequently, the statistical procedures and machine learning techniques (stemming from artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of neural- and non-neural-based approaches are discussed concerning major faults in rotating machines. Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical drives, several open problems are identified and discussed. The paper concludes with important recommendations on where to divert the research focus considering the current advancements in the FD and CM of rotating machines.
AbstractList This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for the FD and CM of rotating machines are first visited, and then its orientation towards intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together with their advancements to date. In particular, the emphasis is given to motor current signature analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engineering. Consequently, the statistical procedures and machine learning techniques (stemming from artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of neural- and non-neural-based approaches are discussed concerning major faults in rotating machines. Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical drives, several open problems are identified and discussed. The paper concludes with important recommendations on where to divert the research focus considering the current advancements in the FD and CM of rotating machines.
Audience Academic
Author Cirrincione, Giansalvo
Andriollo, Mauro
Cirrincione, Maurizio
Tortella, Andrea
Kumar, Rahul R.
Author_xml – sequence: 1
  givenname: Rahul R.
  orcidid: 0000-0002-9287-7197
  surname: Kumar
  fullname: Kumar, Rahul R.
– sequence: 2
  givenname: Mauro
  orcidid: 0000-0002-4288-9472
  surname: Andriollo
  fullname: Andriollo, Mauro
– sequence: 3
  givenname: Giansalvo
  surname: Cirrincione
  fullname: Cirrincione, Giansalvo
– sequence: 4
  givenname: Maurizio
  surname: Cirrincione
  fullname: Cirrincione, Maurizio
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0001-5974-5830
  surname: Tortella
  fullname: Tortella, Andrea
BackLink https://u-picardie.hal.science/hal-03915636$$DView record in HAL
BookMark eNptUtuO0zAQjdAisZR94Qss8QRSFtuTmx9DYXcrFSEheI4ce5K6Su1iu0V8BP-Ms1ktFzF-sHV0zpnxzDzPLqyzmGUvGb0GEPQtWlZyaAQ0T7JLJkSVM1rDxR_vZ9lVCHuaAoABwGX2syVrdzh63KEN5ozkM54NfiduSLg9o43GWTkRaTXZ2IjTZEa0CvN3MqAm7fHonVQ7DGRwnsQdkht5miJ5b-RoXTDhXpmstJmdyEdnTXTe2HFOsbH6pB7whIYX2dNBTgGvHu5V9vXmw5f1Xb79dLtZt9tcFVDEXEsqh0bVwBmfQyNlQg2KNSAQ-kZwrrSmuuorqTlwzRosa97XpazroqewyjaLr3Zy3x29OUj_o3PSdPeA82MnfTRqwk4rzrCXqhdVXSgBfVWAHpqClUoJkTKusteL105Of1ndtdtuxigIVlZQnVnivlq4qWvfThhit3cnn_obOl4XTQll1fDEul5Yo0wFGDu46KVKR-PBqDTzwSS8rYuySv8WRRK8WQTKuxA8Do91MNrNq9H9Xo1Epv-QlYlyHkLKYqb_SX4BFfC9Bg
CitedBy_id crossref_primary_10_1038_s41598_024_61180_6
crossref_primary_10_3390_en17225538
crossref_primary_10_1007_s10845_023_02103_6
crossref_primary_10_1016_j_cie_2024_109907
crossref_primary_10_1109_ACCESS_2023_3348245
crossref_primary_10_3390_app14073105
crossref_primary_10_3390_machines12120928
crossref_primary_10_3390_en16124780
crossref_primary_10_3390_s23052585
crossref_primary_10_3390_en17153723
crossref_primary_10_3390_electronics13193946
crossref_primary_10_3390_s23167109
crossref_primary_10_3390_math12244032
crossref_primary_10_3390_s24103080
crossref_primary_10_3390_vibration7040054
crossref_primary_10_54021_seesv5n3_035
crossref_primary_10_3390_en16145551
crossref_primary_10_1016_j_measurement_2025_117057
crossref_primary_10_3390_drones7060380
crossref_primary_10_3390_electronics13193850
crossref_primary_10_3390_info14060329
crossref_primary_10_3390_en17133265
crossref_primary_10_3390_en16155628
crossref_primary_10_3390_machines12120890
Cites_doi 10.1109/TEC.2020.2978155
10.1049/ip-epa:20060060
10.1007/978-981-15-9199-0
10.1109/TEC.2005.847955
10.1080/073135600268261
10.1109/DEMPED.2019.8864915
10.1109/MIE.2013.2287651
10.1109/TIA.2022.3142712
10.1109/28.968182
10.1109/ISIE.2007.4374743
10.1109/WEMDCD.2017.7947755
10.1109/TIE.2014.2375853
10.1109/TIE.2008.2007527
10.1109/TIE.2012.2216242
10.1109/TPEL.2012.2192503
10.1109/28.980363
10.1109/28.491498
10.1049/elp2.12008
10.1109/TIE.2012.2219838
10.1109/28.738983
10.1109/TEC.2004.837304
10.1109/ICEMS.2017.8056240
10.1016/j.epsr.2010.12.003
10.1109/TIA.2004.830762
10.1080/07313569208909598
10.1109/28.148460
10.1109/TIE.2009.2016517
10.1109/TIA.1986.4504850
10.1109/IECON.2013.6700038
10.1016/j.isatra.2011.06.003
10.1109/28.845047
10.1109/TPAMI.2003.1217609
10.1109/DEMPED.2013.6645767
10.1109/ICElMach.2012.6350234
10.1109/TIE.2010.2089937
10.1109/28.952496
10.1109/DEMPED.2013.6645742
10.1109/IECON.2013.6700356
10.1109/60.969469
10.3390/ma15175940
10.1109/TAP.1986.1143830
10.1109/60.790920
10.3390/en15166000
10.5772/15377
10.1109/TKDE.2009.191
10.3390/s18072097
10.1109/IECON.2013.6699595
10.1109/TIA.2019.2958908
10.1109/IJCNN.2015.7280318
10.1109/TIE.2016.2570741
10.1002/9780470611760.ch8
10.1109/TPEL.2014.2348194
10.1109/TEC.2003.815832
10.1109/ICElMach.2012.6350115
10.1109/TIE.2007.899826
10.1109/60.9364
10.1049/PBPO108E
10.1109/TIE.2008.2004378
10.1109/60.815083
10.1109/ACCESS.2020.2972859
10.1049/PBPO056E
10.1109/28.767022
10.1109/TSMC.2022.3151185
10.1109/72.554199
10.1109/28.952499
10.1109/TIA.1984.4504392
10.1007/s00521-010-0512-3
10.1109/TII.2014.2307013
10.1109/TIA.2020.3032944
10.1109/TEC.2012.2194148
10.1109/TIM.2014.2330494
10.1109/TMECH.2008.918535
10.1109/41.873206
10.1016/S0378-7796(02)00172-4
10.1007/978-981-13-8950-4
10.1109/TPEL.2014.2342506
10.1093/biomet/57.3.519
10.1109/TIE.2012.2230598
10.1109/60.849118
10.1109/TIA.2010.2090839
10.1109/WEMDCD.2013.6525182
10.1155/2017/8617315
10.2478/aee-2014-0035
10.3390/en10121962
10.1007/978-0-387-39351-3
10.1109/TEC.2003.811741
10.1109/TIE.2012.2236992
10.1016/j.epsr.2012.05.001
10.1016/0005-1098(93)90088-B
10.1109/IECON.2011.6119868
10.1109/IAS.1991.178138
10.1002/eej.22350
10.1109/DEMPED.2013.6645762
10.1109/TIE.2010.2051398
10.1016/j.measurement.2021.110181
10.1109/AQTR.2014.6857843
10.1109/TEC.1987.4765843
10.1049/ip-b.1986.0019
10.1016/j.ymssp.2010.06.010
10.1016/j.procir.2018.12.008
10.1002/9780470061626.shm118
10.1109/TIE.2015.2417501
10.1049/ip-b.1986.0024
10.1109/TIA.2013.2252597
10.1016/j.jcp.2012.01.031
10.3390/machines10070563
10.1109/ACCESS.2020.3047202
10.1109/63.737588
10.1109/TPEL.2003.810848
10.1109/TEC.2008.2003207
10.1002/etep.4450140202
10.1016/j.ymssp.2013.03.008
10.1109/TIA.2009.2018975
10.1016/j.apacoust.2021.108463
10.1109/28.740850
10.3390/app12030972
10.1109/TE.2002.808234
10.1109/TIE.2006.885131
10.24084/repqj11.318
10.1016/0378-7796(95)00979-5
10.1109/ECCE.2012.6342276
10.1109/TIE.2012.2235393
10.1109/28.245712
10.1109/TIA.2010.2049623
10.1109/TIE.2012.2213566
10.1109/IECON.2007.4460176
10.1016/0893-6080(89)90044-0
10.1109/TII.2013.2242084
10.7551/mitpress/3717.001.0001
10.1109/TEC.2020.3032532
10.1109/ICSPS.2010.5555247
10.1109/28.777188
10.1109/IECON.2012.6389272
10.1109/ICElMach.2012.6350128
10.1109/28.871294
10.1007/978-981-10-0624-1
10.1002/9780470117842
10.1109/WEMDCD.2013.6525180
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
1XC
DOA
DOI 10.3390/en15238938
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918
oai_HAL_hal_03915636v1
A745601994
10_3390_en15238938
GeographicLocations Fiji
GeographicLocations_xml – name: Fiji
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
1XC
C1A
IPNFZ
RIG
PUEGO
ID FETCH-LOGICAL-c434t-da0af8c732122222de019cfc1839e3b8922cdd0d6b6ad232d18e572b75a774b03
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:26:46 EDT 2025
Fri May 09 12:17:50 EDT 2025
Mon Jun 30 11:13:22 EDT 2025
Tue Jun 10 21:04:07 EDT 2025
Tue Jul 01 01:58:38 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-da0af8c732122222de019cfc1839e3b8922cdd0d6b6ad232d18e572b75a774b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4288-9472
0000-0002-9287-7197
0000-0001-5974-5830
0000-0002-2894-4164
OpenAccessLink https://doaj.org/article/dc21ebacb9674c93b643df8415cc9918
PQID 2748535682
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918
hal_primary_oai_HAL_hal_03915636v1
proquest_journals_2748535682
gale_infotracacademiconefile_A745601994
crossref_primary_10_3390_en15238938
crossref_citationtrail_10_3390_en15238938
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_93
ref_136
ref_92
Nejjari (ref_61) 2000; 36
ref_91
ref_138
ref_90
Bispo (ref_157) 2001; 37
(ref_169) 1992; 20
Immovilli (ref_139) 2013; 60
ref_13
Isermann (ref_83) 1993; 29
Cruz (ref_56) 2001; 37
ref_98
ref_133
ref_97
ref_132
Maruthi (ref_23) 2013; 3
ref_134
Stefani (ref_105) 2009; 56
Riley (ref_51) 1999; 35
Escobar (ref_175) 2012; 91
Benbouzid (ref_53) 2003; 18
Zhang (ref_114) 2020; 8
Boumegoura (ref_87) 2004; 14
Ukil (ref_163) 2011; 81
Karabacak (ref_39) 2022; 186
Lipo (ref_154) 1984; IA-20
Gritli (ref_102) 2013; 60
ref_126
Benbouzid (ref_9) 2000; 47
ref_128
Trzynadlowski (ref_109) 1999; 14
ref_129
Drozdowski (ref_72) 2014; 63
Kato (ref_161) 2014; 186
ref_22
Gaeid (ref_68) 2010; 4
ref_122
ref_20
Said (ref_77) 2000; 15
Bonnett (ref_28) 1992; 28
Lee (ref_31) 2022; 58
ref_123
Sanger (ref_125) 1989; 2
Kliman (ref_10) 1988; 3
Prieto (ref_121) 2013; 60
ref_27
Boukra (ref_120) 2013; 60
Supangat (ref_70) 2006; 153
Eftekharnejad (ref_36) 2011; 25
(ref_67) 2009; 24
Lee (ref_159) 2003; 18
ref_71
Schmidt (ref_174) 1986; 34
Oviedo (ref_64) 2011; 78
Bellini (ref_65) 2001; 37
Siddique (ref_12) 2005; 20
Li (ref_26) 2004; 46
ref_78
ref_153
ref_152
Benbouzid (ref_60) 2008; 13
ref_75
Bmiet (ref_111) 2018; 2
Song (ref_183) 2013; 28
ref_74
Cruz (ref_62) 2000; 28
Henao (ref_3) 2014; 8
Jung (ref_54) 2006; 53
Demartines (ref_135) 1997; 8
Drif (ref_106) 2014; 10
McInerny (ref_25) 2003; 46
Singh (ref_7) 2003; 64
Choqueuse (ref_2) 2015; 3
Benbouzid (ref_167) 1998; 5
Namdar (ref_79) 2022; 187
ref_148
ref_82
ref_147
Immovilli (ref_180) 2010; 46
Trachi (ref_118) 2016; 63
Penman (ref_168) 1986; 133
ref_140
ref_89
ref_142
ref_88
ref_141
Kumar (ref_131) 2021; 9
ref_144
ref_86
ref_143
ref_84
Kumar (ref_48) 2021; 57
Kia (ref_103) 2009; 45
Soualhi (ref_146) 2013; 60
Eren (ref_151) 2017; 2017
Povinelli (ref_35) 2013; 9
Cardoso (ref_55) 1999; 14
Grezmak (ref_149) 2019; 80
(ref_104) 2008; 55
Pan (ref_115) 2009; 22
Faiz (ref_156) 1995; 34
ref_50
ref_58
Hicken (ref_85) 2012; 231
ref_173
ref_177
Deng (ref_81) 2014; 30
Mardia (ref_178) 1970; 57
ref_179
Cardoso (ref_57) 1993; 29
Cirrincione (ref_38) 2020; 35
Zarri (ref_182) 2013; 60
Tetrault (ref_30) 1999; 35
Kumar (ref_47) 2021; 36
ref_59
ref_181
Postma (ref_124) 2009; 10
Su (ref_24) 2011; 20
Jlassi (ref_80) 2014; 30
Haji (ref_16) 2001; 16
Nandi (ref_158) 2002; 38
Bonnett (ref_15) 2000; 36
Nandi (ref_11) 2005; 20
Alshorman (ref_165) 2021; 11
ref_162
ref_164
Zhang (ref_8) 2010; 47
ref_63
Bonnett (ref_66) 1986; IA-22
Stone (ref_29) 1996; 32
Weng (ref_127) 2003; 25
Kia (ref_73) 2007; 54
ref_171
ref_170
Duan (ref_96) 2013; 49
Kral (ref_99) 2004; 40
Martinetz (ref_130) 1991; 1
ref_117
ref_116
ref_119
(ref_19) 2011; 58
Zidani (ref_166) 2003; 18
Andria (ref_155) 1987; EC-2
ref_34
ref_33
ref_32
ref_110
Benbouzid (ref_52) 1999; 14
ref_113
Yuan (ref_137) 2013; 38
Soualhi (ref_18) 2014; 64
ref_112
Gandhi (ref_69) 2010; 58
He (ref_145) 2013; 60
ref_37
Kowalski (ref_76) 2013; 54
Li (ref_42) 2022; 52
Gao (ref_101) 2015; 62
Li (ref_176) 2011; 50
ref_108
Group (ref_14) 1985; 1
ref_107
ref_46
ref_45
Bento (ref_41) 2021; 15
ref_43
ref_100
ref_40
ref_1
Bellini (ref_17) 2008; 12
Liang (ref_95) 2019; 56
Xu (ref_172) 2012; 27
ref_49
Capolino (ref_44) 2015; 62
Cash (ref_160) 1998; 34
Chen (ref_150) 2015; 2015
ref_5
ref_4
Thorsen (ref_21) 1999; 35
ref_6
References_xml – volume: 35
  start-page: 1338
  year: 2020
  ident: ref_38
  article-title: Shallow versus Deep Neural Networks in Gear Fault Diagnosis
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2020.2978155
– volume: 153
  start-page: 848
  year: 2006
  ident: ref_70
  article-title: Detection of broken rotor bars in induction motor using starting-current analysis and effects of loading
  publication-title: IEE Proc.-Electr. Power Appl.
  doi: 10.1049/ip-epa:20060060
– ident: ref_90
  doi: 10.1007/978-981-15-9199-0
– volume: 20
  start-page: 719
  year: 2005
  ident: ref_11
  article-title: Condition monitoring and fault diagnosis of electrical motors-a review
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.847955
– volume: 28
  start-page: 289
  year: 2000
  ident: ref_62
  article-title: Rotor cage fault diagnosis in three-phase induction motors by extended Park’s vector approach
  publication-title: Electr. Mach. Power Syst.
  doi: 10.1080/073135600268261
– ident: ref_100
– ident: ref_117
  doi: 10.1109/DEMPED.2019.8864915
– volume: 8
  start-page: 31
  year: 2014
  ident: ref_3
  article-title: Trends in fault diagnosis for electrical machines: A review of diagnostic techniques
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2013.2287651
– ident: ref_88
– volume: 10
  start-page: 66
  year: 2009
  ident: ref_124
  article-title: Dimensionality reduction: A comparative
  publication-title: J. Mach. Learn Res.
– volume: 58
  start-page: 2088
  year: 2022
  ident: ref_31
  article-title: Inverter-Embedded Partial Discharge Testing for Reliability Enhancement of Stator Winding Insulation in Low Voltage Machines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2022.3142712
– volume: 37
  start-page: 1710
  year: 2001
  ident: ref_157
  article-title: A new strategy for induction machine modeling taking into account the magnetic saturation
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.968182
– ident: ref_107
  doi: 10.1109/ISIE.2007.4374743
– ident: ref_1
  doi: 10.1109/WEMDCD.2017.7947755
– ident: ref_71
– volume: 62
  start-page: 1746
  year: 2015
  ident: ref_44
  article-title: Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2375853
– ident: ref_94
– volume: 12
  start-page: 4109
  year: 2008
  ident: ref_17
  article-title: Advances in diagnostic techniques for induction machines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.2007527
– volume: 60
  start-page: 4034
  year: 2013
  ident: ref_120
  article-title: Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2216242
– volume: 28
  start-page: 591
  year: 2013
  ident: ref_183
  article-title: Survey on reliability of power electronic systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2012.2192503
– volume: 38
  start-page: 101
  year: 2002
  ident: ref_158
  article-title: Novel frequency-domain-based technique to detect stator interturn faults in induction machines using stator-induced voltages after switch-off
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.980363
– volume: 32
  start-page: 459
  year: 1996
  ident: ref_29
  article-title: Application of partial discharge testing to motor and generator stator winding maintenance
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.491498
– volume: 15
  start-page: 51
  year: 2021
  ident: ref_41
  article-title: On the risk of failure to prevent induction motors permanent damage, due to the short available time-to-diagnosis of inter-turn short-circuit faults
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/elp2.12008
– volume: 60
  start-page: 3398
  year: 2013
  ident: ref_121
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2219838
– volume: 34
  start-page: 1234
  year: 1998
  ident: ref_160
  article-title: Insulation failure prediction in AC machines using line-neutral voltages
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.738983
– volume: 20
  start-page: 106
  year: 2005
  ident: ref_12
  article-title: A review of stator fault monitoring techniques of induction motors
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2004.837304
– ident: ref_134
  doi: 10.1109/ICEMS.2017.8056240
– volume: 81
  start-page: 1036
  year: 2011
  ident: ref_163
  article-title: Detection of stator short circuit faults in three-phase induction motors using motor current zero crossing instants
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2010.12.003
– volume: 40
  start-page: 1101
  year: 2004
  ident: ref_99
  article-title: Detection of mechanical imbalances of induction machines without spectral analysis of time-domain signals
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2004.830762
– ident: ref_152
– ident: ref_13
– volume: 20
  start-page: 339
  year: 1992
  ident: ref_169
  article-title: Noise test on rotating electrical motors under load
  publication-title: Electr. Mach. Power Syst.
  doi: 10.1080/07313569208909598
– volume: 28
  start-page: 921
  year: 1992
  ident: ref_28
  article-title: Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.148460
– ident: ref_45
– volume: 56
  start-page: 4548
  year: 2009
  ident: ref_105
  article-title: Diagnosis of induction machines’ rotor faults in time-varying conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2016517
– ident: ref_59
– volume: IA-22
  start-page: 1165
  year: 1986
  ident: ref_66
  article-title: Rotor failures in squirrel cage induction motors
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.1986.4504850
– volume: 1
  start-page: 865
  year: 1985
  ident: ref_14
  article-title: Report of large motor reliability survey of industrial and commercial installations, Part I
  publication-title: IEEE Trans. Ind. Appl.
– ident: ref_147
  doi: 10.1109/IECON.2013.6700038
– volume: 50
  start-page: 599
  year: 2011
  ident: ref_176
  article-title: A weighted multi-scale morphological gradient filter for rolling element bearing fault detection
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2011.06.003
– volume: 36
  start-page: 730
  year: 2000
  ident: ref_61
  article-title: Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.845047
– volume: 4
  start-page: 227
  year: 2010
  ident: ref_68
  article-title: Diagnosis and fault tolerant control of the induction motors techniques a review
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 25
  start-page: 1034
  year: 2003
  ident: ref_127
  article-title: Candid covariance-free incremental principal component analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1217609
– ident: ref_141
  doi: 10.1109/DEMPED.2013.6645767
– ident: ref_170
  doi: 10.1109/ICElMach.2012.6350234
– volume: 58
  start-page: 1564
  year: 2010
  ident: ref_69
  article-title: Recent advances in modeling and online detection of stator interturn faults in electrical motors
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2089937
– volume: 37
  start-page: 1227
  year: 2001
  ident: ref_56
  article-title: Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.952496
– ident: ref_86
– ident: ref_142
  doi: 10.1109/DEMPED.2013.6645742
– ident: ref_177
– ident: ref_144
  doi: 10.1109/IECON.2013.6700356
– volume: 16
  start-page: 312
  year: 2001
  ident: ref_16
  article-title: Pattern recognition-a technique for induction machines rotor broken bar detection
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.969469
– ident: ref_37
  doi: 10.3390/ma15175940
– volume: 34
  start-page: 276
  year: 1986
  ident: ref_174
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
– volume: 14
  start-page: 595
  year: 1999
  ident: ref_55
  article-title: Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park’s vector approach
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.790920
– ident: ref_92
– ident: ref_129
– ident: ref_43
  doi: 10.3390/en15166000
– ident: ref_40
  doi: 10.5772/15377
– volume: 22
  start-page: 1345
  year: 2009
  ident: ref_115
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_138
  doi: 10.3390/s18072097
– ident: ref_148
  doi: 10.1109/IECON.2013.6699595
– volume: 56
  start-page: 1205
  year: 2019
  ident: ref_95
  article-title: Induction Motors Fault Diagnosis Using Finite Element Method: A Review
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2958908
– ident: ref_132
  doi: 10.1109/IJCNN.2015.7280318
– volume: 63
  start-page: 5641
  year: 2016
  ident: ref_118
  article-title: Induction machines fault detection based on subspace spectral estimation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2570741
– volume: 54
  start-page: 348
  year: 2013
  ident: ref_76
  article-title: Stator and rotor faults monitoring of the inverter-fed induction motor drive using state estimators
  publication-title: Autom. Časopis Za Autom. Mjer. Elektron. Računarstvo I Komun.
– ident: ref_89
  doi: 10.1002/9780470611760.ch8
– volume: 30
  start-page: 2721
  year: 2014
  ident: ref_81
  article-title: Fault detection and localization method for modular multilevel converters
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2348194
– ident: ref_6
– ident: ref_75
– ident: ref_50
– volume: 18
  start-page: 469
  year: 2003
  ident: ref_166
  article-title: Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2003.815832
– ident: ref_112
– ident: ref_140
  doi: 10.1109/ICElMach.2012.6350115
– volume: 54
  start-page: 2305
  year: 2007
  ident: ref_73
  article-title: A high-resolution frequency estimation method for three-phase induction machine fault detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2007.899826
– volume: 3
  start-page: 873
  year: 1988
  ident: ref_10
  article-title: Noninvasive detection of broken rotor bars in operating induction motors
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.9364
– ident: ref_93
  doi: 10.1049/PBPO108E
– volume: 55
  start-page: 4167
  year: 2008
  ident: ref_104
  article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.2004378
– volume: 14
  start-page: 1417
  year: 1999
  ident: ref_109
  article-title: Diagnostics of mechanical abnormalities in induction motors using instantaneous electric power
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.815083
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_111
  article-title: Industrial Revolution–From Industry 1.0 to Industry 4.0
  publication-title: J. Adv. Comput. Intell. Commun. Technol.
– volume: 3
  start-page: 357
  year: 2013
  ident: ref_23
  article-title: An experimental investigation on broken rotor bar in three phase induction motor by vibration signature analysis using MEMS accelerometer
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 8
  start-page: 29857
  year: 2020
  ident: ref_114
  article-title: Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972859
– ident: ref_179
– ident: ref_22
  doi: 10.1049/PBPO056E
– volume: 35
  start-page: 682
  year: 1999
  ident: ref_30
  article-title: Monitoring partial discharges on 4-kV motor windings
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.767022
– volume: 52
  start-page: 7328
  year: 2022
  ident: ref_42
  article-title: Highly Efficient Fault Diagnosis of Rotating Machinery Under Time-Varying Speeds Using LSISMM and Small Infrared Thermal Images
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3151185
– volume: 8
  start-page: 148
  year: 1997
  ident: ref_135
  article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554199
– volume: 37
  start-page: 1248
  year: 2001
  ident: ref_65
  article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.952499
– volume: IA-20
  start-page: 180
  year: 1984
  ident: ref_154
  article-title: Modeling and simulation of induction motors with saturable leakage reactances
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.1984.4504392
– ident: ref_126
– volume: 20
  start-page: 183
  year: 2011
  ident: ref_24
  article-title: Vibration signal analysis for electrical fault detection of induction machine using neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0512-3
– volume: 11
  start-page: 2820
  year: 2021
  ident: ref_165
  article-title: A review of intelligent methods for condition monitoring and fault diagnosis of stator and rotor faults of induction machines
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 10
  start-page: 1348
  year: 2014
  ident: ref_106
  article-title: Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2307013
– volume: 57
  start-page: 272
  year: 2021
  ident: ref_48
  article-title: A Topological Neural-Based Scheme for Classification of Faults in Induction Machines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.3032944
– volume: 27
  start-page: 654
  year: 2012
  ident: ref_172
  article-title: An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2012.2194148
– volume: 64
  start-page: 52
  year: 2014
  ident: ref_18
  article-title: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2330494
– volume: 13
  start-page: 257
  year: 2008
  ident: ref_60
  article-title: Induction motor bearing failure detection and diagnosis: Park and concordia transform approaches comparative study
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2008.918535
– ident: ref_78
– volume: 1
  start-page: 397
  year: 1991
  ident: ref_130
  article-title: A “neural-gas” network learns topologies
  publication-title: Artif. Neural Netw.
– volume: 47
  start-page: 984
  year: 2000
  ident: ref_9
  article-title: A review of induction motors signature analysis as a medium for faults detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.873206
– volume: 64
  start-page: 145
  year: 2003
  ident: ref_7
  article-title: Induction machine drive condition monitoring and diagnostic research—A survey
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(02)00172-4
– ident: ref_49
– ident: ref_116
  doi: 10.1007/978-981-13-8950-4
– ident: ref_5
– volume: 30
  start-page: 2689
  year: 2014
  ident: ref_80
  article-title: Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2342506
– volume: 57
  start-page: 519
  year: 1970
  ident: ref_178
  article-title: Measures of multivariate skewness and kurtosis with applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.3.519
– ident: ref_84
– ident: ref_136
– volume: 60
  start-page: 4053
  year: 2013
  ident: ref_146
  article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2230598
– volume: 15
  start-page: 66
  year: 2000
  ident: ref_77
  article-title: Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.849118
– volume: 47
  start-page: 34
  year: 2010
  ident: ref_8
  article-title: A survey of condition monitoring and protection methods for medium-voltage induction motors
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2010.2090839
– ident: ref_119
  doi: 10.1109/WEMDCD.2013.6525182
– volume: 2017
  start-page: 8617315
  year: 2017
  ident: ref_151
  article-title: Bearing fault detection by one-dimensional convolutional neural networks
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/8617315
– volume: 63
  start-page: 489
  year: 2014
  ident: ref_72
  article-title: Influence of magnetic saturation effects on the fault detection of induction motors
  publication-title: Arch. Electr. Eng.
  doi: 10.2478/aee-2014-0035
– ident: ref_97
  doi: 10.3390/en10121962
– ident: ref_122
  doi: 10.1007/978-0-387-39351-3
– volume: 18
  start-page: 238
  year: 2003
  ident: ref_53
  article-title: What stator current processing-based technique to use for induction motor rotor faults diagnosis?
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2003.811741
– volume: 60
  start-page: 4012
  year: 2013
  ident: ref_102
  article-title: Advanced diagnosis of electrical faults in wound-rotor induction machines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2236992
– volume: 91
  start-page: 28
  year: 2012
  ident: ref_175
  article-title: Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.05.001
– volume: 46
  start-page: 473
  year: 2004
  ident: ref_26
  article-title: Induction motor fault detection using vibration and stator current methods
  publication-title: Insight-Non-Destr. Test. Cond. Monit.
– volume: 29
  start-page: 815
  year: 1993
  ident: ref_83
  article-title: Fault diagnosis of machines via parameter estimation and knowledge processing—Tutorial paper
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90088-B
– ident: ref_173
  doi: 10.1109/IECON.2011.6119868
– ident: ref_58
  doi: 10.1109/IAS.1991.178138
– volume: 186
  start-page: 75
  year: 2014
  ident: ref_161
  article-title: Diagnosis of Stator-Winding-Turn Faults of Induction Motor by Direct Detection of Negative Sequence Currents
  publication-title: Electr. Eng. Jpn.
  doi: 10.1002/eej.22350
– ident: ref_181
  doi: 10.1109/DEMPED.2013.6645762
– volume: 58
  start-page: 2002
  year: 2011
  ident: ref_19
  article-title: The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2051398
– ident: ref_98
– volume: 187
  start-page: 110181
  year: 2022
  ident: ref_79
  article-title: A robust stator inter-turn fault detection in induction motor utilizing Kalman filter-based algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110181
– ident: ref_110
  doi: 10.1109/AQTR.2014.6857843
– volume: EC-2
  start-page: 285
  year: 1987
  ident: ref_155
  article-title: Improvement in modeling and testing of induction motors
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.1987.4765843
– volume: 133
  start-page: 142
  year: 1986
  ident: ref_168
  article-title: Condition monitoring of electrical drives
  publication-title: IEE Proc. B-Electr. Power Appl.
  doi: 10.1049/ip-b.1986.0019
– volume: 25
  start-page: 266
  year: 2011
  ident: ref_36
  article-title: The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.06.010
– volume: 80
  start-page: 476
  year: 2019
  ident: ref_149
  article-title: Explainable Convolutional Neural Network for Gearbox Fault Diagnosis
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.12.008
– ident: ref_113
  doi: 10.1002/9780470061626.shm118
– volume: 60
  start-page: 3429
  year: 2013
  ident: ref_145
  article-title: Plastic bearing fault diagnosis based on a two-step data mining approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 62
  start-page: 3757
  year: 2015
  ident: ref_101
  article-title: A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– ident: ref_33
  doi: 10.1049/ip-b.1986.0024
– volume: 49
  start-page: 1268
  year: 2013
  ident: ref_96
  article-title: A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2252597
– volume: 231
  start-page: 3828
  year: 2012
  ident: ref_85
  article-title: Output error estimation for summation-by-parts finite-difference schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.031
– ident: ref_32
  doi: 10.3390/machines10070563
– volume: 9
  start-page: 2201
  year: 2021
  ident: ref_131
  article-title: Induction Machine Stator Fault Tracking Using the Growing Curvilinear Component Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047202
– volume: 14
  start-page: 14
  year: 1999
  ident: ref_52
  article-title: Induction motors’ faults detection and localization using stator current advanced signal processing techniques
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/63.737588
– volume: 18
  start-page: 865
  year: 2003
  ident: ref_159
  article-title: A robust, on-line turn-fault detection technique for induction machines based on monitoring the sequence component impedance matrix
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2003.810848
– ident: ref_162
– volume: 24
  start-page: 52
  year: 2009
  ident: ref_67
  article-title: Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2008.2003207
– volume: 14
  start-page: 71
  year: 2004
  ident: ref_87
  article-title: Rotor induction machine failure: Analysis and diagnosis
  publication-title: Eur. Trans. Electr. Power
  doi: 10.1002/etep.4450140202
– volume: 38
  start-page: 615
  year: 2013
  ident: ref_137
  article-title: Semi-supervised learning and condition fusion for fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.03.008
– volume: 45
  start-page: 1395
  year: 2009
  ident: ref_103
  article-title: Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2009.2018975
– volume: 186
  start-page: 108463
  year: 2022
  ident: ref_39
  article-title: Intelligent worm gearbox fault diagnosis under various working conditions using vibration, sound and thermal features
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108463
– volume: 3
  start-page: 76
  year: 2015
  ident: ref_2
  article-title: Induction machine diagnosis using stator current advanced signal processing
  publication-title: Int. J. Energy Convers.
– volume: 35
  start-page: 94
  year: 1999
  ident: ref_51
  article-title: Stator current harmonics and their causal vibrations: A preliminary investigation of sensorless vibration monitoring applications
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.740850
– ident: ref_82
– ident: ref_27
  doi: 10.3390/app12030972
– volume: 46
  start-page: 149
  year: 2003
  ident: ref_25
  article-title: Basic vibration signal processing for bearing fault detection
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2002.808234
– volume: 53
  start-page: 1842
  year: 2006
  ident: ref_54
  article-title: Online diagnosis of induction motors using MCSA
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2006.885131
– ident: ref_108
  doi: 10.24084/repqj11.318
– volume: 34
  start-page: 205
  year: 1995
  ident: ref_156
  article-title: Dynamic analysis of induction motors with saturable inductances
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(95)00979-5
– ident: ref_34
  doi: 10.1109/ECCE.2012.6342276
– volume: 60
  start-page: 3506
  year: 2013
  ident: ref_182
  article-title: Detection and localization of stator resistance dissymmetry based on multiple reference frame controllers in multiphase induction motor drives
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2235393
– ident: ref_153
– ident: ref_63
– volume: 29
  start-page: 897
  year: 1993
  ident: ref_57
  article-title: Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park’s vector approach
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.245712
– volume: 2015
  start-page: 390134
  year: 2015
  ident: ref_150
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock Vib.
– volume: 46
  start-page: 1350
  year: 2010
  ident: ref_180
  article-title: Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2010.2049623
– volume: 60
  start-page: 3408
  year: 2013
  ident: ref_139
  article-title: Bearing fault model for induction motor with externally induced vibration
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2213566
– ident: ref_164
  doi: 10.1109/IECON.2007.4460176
– volume: 2
  start-page: 459
  year: 1989
  ident: ref_125
  article-title: Optimal unsupervised learning in a single-layer linear feedforward neural network
  publication-title: Neural. Netw.
  doi: 10.1016/0893-6080(89)90044-0
– volume: 9
  start-page: 2274
  year: 2013
  ident: ref_35
  article-title: Rotor bar fault monitoring method based on analysis of air-gap torques of induction motors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2013.2242084
– ident: ref_46
– ident: ref_123
  doi: 10.7551/mitpress/3717.001.0001
– volume: 36
  start-page: 1070
  year: 2021
  ident: ref_47
  article-title: Induction Machine Fault Detection and Classification Using Non-Parametric, Statistical-Frequency Features and Shallow Neural Networks
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2020.3032532
– volume: 5
  start-page: 15
  year: 1998
  ident: ref_167
  article-title: Induction motor interturn short-circuit and bearing wear detection using artificial neural networks
  publication-title: Electromotion
– ident: ref_91
– ident: ref_128
  doi: 10.1109/ICSPS.2010.5555247
– volume: 35
  start-page: 810
  year: 1999
  ident: ref_21
  article-title: Failure identification and analysis for high-voltage induction motors in the petrochemical industry
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.777188
– ident: ref_133
– ident: ref_143
  doi: 10.1109/IECON.2012.6389272
– ident: ref_171
  doi: 10.1109/ICElMach.2012.6350128
– volume: 36
  start-page: 1435
  year: 2000
  ident: ref_15
  article-title: Root cause AC motor failure analysis with a focus on shaft failures
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.871294
– ident: ref_20
  doi: 10.1007/978-981-10-0624-1
– volume: 78
  start-page: 214
  year: 2011
  ident: ref_64
  article-title: Motor current signature analysis and negative sequence current based stator winding short fault detection in an induction motor
  publication-title: Dyna
– ident: ref_74
  doi: 10.1002/9780470117842
– ident: ref_4
  doi: 10.1109/WEMDCD.2013.6525180
SSID ssj0000331333
Score 2.4681017
SecondaryResourceType review_article
Snippet This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8938
SubjectTerms artificial intelligence
classical techniques
data-driven
Electric fault location
Engineering Sciences
Failure
Fault diagnosis
Induction electric motors
Machine learning
Maintenance costs
Methods
model-based
motor
Preventive maintenance
Signal processing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELX4uLSHirZU3RYqq62EOEQkseM4J5RtWS1VhSoEEjfLHjuAhLJ0d-m_6H9mJvHuAkLkFDlO7GTsmTfO-A1j37MGGrR7aaKhUImUeOYQlifCKo_wPgD2nqItTtT4XP66KC7igtsshlUudGKnqP0EaI38AL0ntCyF0vnh7d-EskbR39WYQmOdbaIK1uh8bQ6PTv6cLldZUiHQCRM9L6lA__4gtGixyErrR5aoI-xfquX1K4qKfKKcO4sz2mJvIlTkdS_bt2wttO_Y6wcEgu_Z_5rThJ6Gqz4OnfdL_XzSYPkqnJzb1vPjB-SbyRCNl-d1JBQPM47YlSMW5CN7dzPnP_sAvOtZdyc-yneRXbzXANQ2NUFpPyCWU9KebXY-Ojr7MU5igoUEpJDzxNvUNhpKgR-PDh8Q8EEDhJqCcLrKc_A-9cop6xF6-UyHosxdWVhEjS4VH9hGO2nDR8YRFpVV5kMmoZJOhwpdJUv5_kqQVohiwPYXH9tAZB-nJBg3Br0QEoxZCWbAvi3r3vacG8_WGpLMljWIJ7srmEwvTZx2xkOeBWfBVarEngmHAMw3GlELACJjfMgeSdzQbMbugI2bEvCliBfL1KUkl7Wq5IB9xUHxqLVx_dtQWUeyr4T6lw3YzmLMmKgLZmY1cj-9fPkze5XT5oouWGaHbcynd2EXIc_cfYnj-h4RWgFA
  priority: 102
  providerName: ProQuest
Title A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors
URI https://www.proquest.com/docview/2748535682
https://u-picardie.hal.science/hal-03915636
https://doaj.org/article/dc21ebacb9674c93b643df8415cc9918
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3ycWkPoU1a6jZdRFsoPZisLVmWj94mm00pIZQG9ib0ZRIITslu8i_6nzsjOZtNKPTSPSyLkC2tZ6T3xozeAHwqOtch7o1z5SqZC4G_LNLynBvpkd4Hh7OnbItTOTsX3-bVfK3UF-WEJXng9OAOvCuLYI2zjayFa7hFCPWdQtxxDrlNPOaLmLcWTMU9mHMMvnjSI-UY1x-EHpGK0Fk9QqAo1L_ajjcvKBvyyaYckWb6AnYGisjaNLWXsBH6XXi-Jhy4B79bRgv5Jlyk_HOWXvGz6w7bH9LImek9O1kT3cwnCFqetYOQeFgw5KwMOSCbmturJTtMiXeXi3gl3srHjC6WVj6NTUNQuQ83tFOxnldwPj36-XWWD4UVcie4WObejE2nXM0Rt-jjAxI91zliS4Fb1ZSl837spZXGI-XyhQpVXdq6MsgW7Zi_hq3-ug9vgCEdqpvChwJtI6wKDYZIhur81U4YzqsMvtw_bO0G1XEqfnGlMfogw-gHw2TwcdX3V9La-GuvCdls1YP0sWMDeo0evEb_y2sy-EwW17SKcTrODIcR8E-RHpZua0GhatOIDD6gUzwabdZ-19QWxfUll3dFBvv3PqOHPWChMd5HLlRJVb79H1N-B89KOnoRU2n2YWt5cxveIyFa2hFsqunxCLYnR6dnP0ZxJeD38bz4A4oIDEg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAcEE81tMCKhxAHq7Z3vbYPCLmUkNDQUyv1tuzLFKly2iQF8SP4K_xGZtZ20iLErTlF683uxjM78409-w3Ay6S2Nfq9OCpsJiMh8JtBWB5xLR3Ce29x9ZRtcSBHR-LTcXa8Br_7szCUVtnbxGCo3dTSM_IdjJ7Qs2SySN-dnUdUNYrervYlNFq12Pc_f2DINn873kP5vkrT4YfD96OoqyoQWcHFInI61nVhc45Gmz7OI8qxtSWo4LkpyjS1zsVOGqkd4g2XFD7LU5NnGqGSiTmOuw43BOcl7ahi-HH5TCfmHEM-3rKg4vV4xzfoHwkTFFf8XigPsHQC6yeUg_mXKwj-bXgX7nTAlFWtJt2DNd_ch9uX6AofwK-KkfmY-ZM26521LxbYtMb2VfI6041j40tUn9EuukrHqo6-3M8ZImWGyJMN9cXpgu216X7f5uGXOJQLeWSstTc0N01BRUZs104lgh7C0bXc-Eew0UwbvwkMQVheJs4nwpbCFL7EwExTdcHcCs15NoA3_c1WtuM6p5IbpwpjHhKMWglmAC-Wfc9aho9_9tolmS17ECt3aJjOvqpukytn08QbbU0pc1wZNwj3XF0gRrIWcTgO8pokrsh24HKs7o5A4J8iFi5V5YIC5LIUA3iOSnFltlE1UdQWKP0ll9-TAWz3OqM6yzNXq33y-P-Xn8HN0eHniZqMD_a34FZKxzpCms42bCxmF_4Jgq2FeRo0nMGX695SfwDJBTxU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qYTggHiqgQIrHkIcrNje9euAkEMaJbSKKkSl3pZ9mSJVTklSED-CP8SvY8ZeJy1C3JpTtN7sbjyzM9_Y384AvIwqU6HfC4PcJGkgBH7TCMsDrlKL8N4ZXD2xLWbp5Fh8OElOtuB3dxaGaJWdTWwMtZ0bekY-wOgJPUuS5vGg8rSIo9H43fm3gCpI0ZvWrpxGqyIH7ucPDN-Wb6cjlPWrOB7vf3o_CXyFgcAILlaBVaGqcpNxNOD0sQ4Rj6kMwQbHdV7EsbE2tKlOlUXsYaPcJVmss0QhbNIhx3G3YSfDqCjswc5wf3b0cf2EJ-QcA0De5kTlvAgHrkZvSQghv-IFm2IBa5ewfUqMzL8cQ-PtxnfgtoeprGz16i5sufoe3LqUvPA-_CoZGZOFO2058Kx9zcDmFbZvqOxM1ZZNLyX-DIboOC0rfTJzt2SImxniUDZWF2crNmrJf1-XzS9xKNuwylhrfWhumoJKjhjfTgWDHsDxtdz6h9Cr57XbBYaQLCsi6yJhCqFzV2CYpqjWYGaE4jzpw5vuZkvjM59TAY4ziREQCUZuBNOHF-u-522-j3_2GpLM1j0oR3fTMF98kX7LS2viyGlldJFmuDKuEfzZKkfEZAyichzkNUlckiXB5RjlD0Tgn6KcXLLMBIXLRSH68ByV4spsk_JQUluT4D_l6feoD3udzkhvh5Zys2se_f_yM7iB20keTmcHj-FmTGc8Gs7OHvRWiwv3BJHXSj_1Ks7g83Xvqj-8mEHm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Conventional+and+Intelligence-Based+Approaches+for+the+Fault+Diagnosis+and+Condition+Monitoring+of+Induction+Motors&rft.jtitle=Energies+%28Basel%29&rft.au=Rahul+R.+Kumar&rft.au=Mauro+Andriollo&rft.au=Giansalvo+Cirrincione&rft.au=Maurizio+Cirrincione&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=23&rft.spage=8938&rft_id=info:doi/10.3390%2Fen15238938&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc21ebacb9674c93b643df8415cc9918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon