TF-YOLO: A Transformer–Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in Autonomous Driving Scenes
Recent research demonstrates that the fusion of multimodal images can improve the performance of pedestrian detectors under low-illumination environments. However, existing multimodal pedestrian detectors cannot adapt to the variability of environmental illumination. When the lighting conditions of...
Saved in:
Published in | World electric vehicle journal Vol. 14; no. 12; p. 352 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent research demonstrates that the fusion of multimodal images can improve the performance of pedestrian detectors under low-illumination environments. However, existing multimodal pedestrian detectors cannot adapt to the variability of environmental illumination. When the lighting conditions of the application environment do not match the experimental data illumination conditions, the detection performance is likely to be stuck significantly. To resolve this problem, we propose a novel transformer–fusion-based YOLO detector to detect pedestrians under various illumination environments, such as nighttime, smog, and heavy rain. Specifically, we develop a novel transformer–fusion module embedded in a two-stream backbone network to robustly integrate the latent interactions between multimodal images (visible and infrared images). This enables the multimodal pedestrian detector to adapt to changing illumination conditions. Experimental results on two well-known datasets demonstrate that the proposed approach exhibits superior performance. The proposed TF-YOLO drastically improves the average precision of the state-of-the-art approach by 3.3% and reduces the miss rate of the state-of-the-art approach by about 6% on the challenging multi-scenario multi-modality dataset. |
---|---|
AbstractList | Recent research demonstrates that the fusion of multimodal images can improve the performance of pedestrian detectors under low-illumination environments. However, existing multimodal pedestrian detectors cannot adapt to the variability of environmental illumination. When the lighting conditions of the application environment do not match the experimental data illumination conditions, the detection performance is likely to be stuck significantly. To resolve this problem, we propose a novel transformer–fusion-based YOLO detector to detect pedestrians under various illumination environments, such as nighttime, smog, and heavy rain. Specifically, we develop a novel transformer–fusion module embedded in a two-stream backbone network to robustly integrate the latent interactions between multimodal images (visible and infrared images). This enables the multimodal pedestrian detector to adapt to changing illumination conditions. Experimental results on two well-known datasets demonstrate that the proposed approach exhibits superior performance. The proposed TF-YOLO drastically improves the average precision of the state-of-the-art approach by 3.3% and reduces the miss rate of the state-of-the-art approach by about 6% on the challenging multi-scenario multi-modality dataset. |
Author | Chen, Yunfan Ye, Jinxing Wan, Xiangkui |
Author_xml | – sequence: 1 givenname: Yunfan orcidid: 0000-0003-4808-6352 surname: Chen fullname: Chen, Yunfan – sequence: 2 givenname: Jinxing surname: Ye fullname: Ye, Jinxing – sequence: 3 givenname: Xiangkui surname: Wan fullname: Wan, Xiangkui |
BookMark | eNptkc1uUzEQhS3USpS2Ox7AElsu-D_X7EJLoFKqIBEWrKzJtV05urGL7duKHe_AG_IkOKRIFepqRqPvHJ2ZeYGOYooOoZeUvOFck7f37m5LBWWES_YMnbTKOqUkP3rUP0fnpWwJIYwKTSk9QXW96L6tlqt3eI7XGWLxKe9c_v3z12IqIcXuPRRn8R7Bl666oaaMG4Ovp7GGXbIw4s_OulJzgPiANB0OEc-nmmLapangyxzuQrzBXwYXXTlDxx7G4s4f6in6uviwvvjULVcfry7my24QXNTOzhT1RLGZbdGtBwFaSio4IxvhpadK9sQK8JuZHqztVc8Z94pabp2VG8X4Kbo6-NoEW3Obww7yD5MgmL-DlG8M5BqG0RmtvNTCSk11L1STc6e1AGWVB6VBNq9XB6_bnL5PbV-zTVOOLb5hmgjNe8Z5o9iBGnIqJTtvhlBhf5CaIYyGErN_lnn8rCZ6_Z_oX9Qn8T9bMJgL |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3526458 crossref_primary_10_3390_fire8020038 crossref_primary_10_3390_s24072080 crossref_primary_10_1016_j_engappai_2024_109705 crossref_primary_10_3390_s25051375 |
Cites_doi | 10.1016/j.isprsjprs.2019.02.005 10.1109/WACV48630.2021.00012 10.1109/CVPR52729.2023.00721 10.1109/TITS.2020.2993926 10.1109/CVPR.2019.00075 10.1109/CVPR52688.2022.00098 10.1109/CVPR.2015.7298706 10.5244/C.30.73 10.1145/3126686.3126727 10.1049/iet-cvi.2018.5315 10.23919/MVA51890.2021.9511366 10.3390/ijgi8050226 10.1109/CVPR52688.2022.00571 10.1016/j.asoc.2023.110768 10.1016/j.patcog.2018.08.005 10.1109/TITS.2023.3281393 10.1364/JOSAA.386410 10.1007/s11063-022-10991-7 10.1109/WACV51458.2022.00339 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/wevj14120352 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2032-6653 |
ExternalDocumentID | oai_doaj_org_article_96f594d5919846d5b3e994a6d6fa69a5 10_3390_wevj14120352 |
GroupedDBID | AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c434t-d761f0627d653dfa4a95514320b4f5f16580d4afb79cdd868323f61d3ded5b623 |
IEDL.DBID | BENPR |
ISSN | 2032-6653 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Fri Jul 25 09:35:32 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Tue Jul 01 00:22:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-d761f0627d653dfa4a95514320b4f5f16580d4afb79cdd868323f61d3ded5b623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4808-6352 |
OpenAccessLink | https://www.proquest.com/docview/2904938233?pq-origsite=%requestingapplication% |
PQID | 2904938233 |
PQPubID | 5046847 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_96f594d5919846d5b3e994a6d6fa69a5 proquest_journals_2904938233 crossref_citationtrail_10_3390_wevj14120352 crossref_primary_10_3390_wevj14120352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | World electric vehicle journal |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mehmood (ref_2) 2020; 28 Chen (ref_10) 2018; 12 ref_14 ref_12 ref_30 Hu (ref_21) 2023; 147 ref_19 ref_17 Chen (ref_13) 2020; 37 ref_15 Chen (ref_3) 2021; 22 Li (ref_11) 2019; 85 ref_25 Zuo (ref_18) 2023; 55 ref_24 ref_23 ref_22 ref_20 ref_1 ref_29 ref_28 ref_27 Zhang (ref_4) 2023; 24 ref_26 ref_9 ref_8 Cao (ref_16) 2019; 150 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_7 – volume: 150 start-page: 70 year: 2019 ident: ref_16 article-title: Box-level segmentation supervised deep neural networks for accurate and real-time multispectral pedestrian detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.005 – ident: ref_28 – ident: ref_9 – ident: ref_5 – ident: ref_14 doi: 10.1109/WACV48630.2021.00012 – ident: ref_22 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_26 – volume: 22 start-page: 3234 year: 2021 ident: ref_3 article-title: Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2993926 – ident: ref_27 doi: 10.1109/CVPR.2019.00075 – ident: ref_25 doi: 10.1109/CVPR52688.2022.00098 – ident: ref_6 doi: 10.1109/CVPR.2015.7298706 – ident: ref_23 – ident: ref_8 doi: 10.5244/C.30.73 – ident: ref_30 doi: 10.1145/3126686.3126727 – volume: 12 start-page: 1179 year: 2018 ident: ref_10 article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2018.5315 – ident: ref_20 doi: 10.23919/MVA51890.2021.9511366 – volume: 28 start-page: 619 year: 2020 ident: ref_2 article-title: Extraction of naturalistic driving patterns with geographic information systems publication-title: Mob. Netw. Appl. – ident: ref_1 doi: 10.3390/ijgi8050226 – ident: ref_29 – ident: ref_24 doi: 10.1109/CVPR52688.2022.00571 – ident: ref_12 – volume: 147 start-page: 110768 year: 2023 ident: ref_21 article-title: Joint dual-stream interaction and multi-scale feature extraction network for multi-spectral pedestrian detection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110768 – volume: 85 start-page: 161 year: 2019 ident: ref_11 article-title: Illumination-aware faster R-CNN for robust multispectral pedestrian detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.005 – volume: 24 start-page: 10279 year: 2023 ident: ref_4 article-title: Pedestrian Behavior Prediction Using Deep Learning Methods for Urban Scenarios: A Review publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3281393 – volume: 37 start-page: 768 year: 2020 ident: ref_13 article-title: Multispectral image fusion based pedestrian detection using a multilayer fused deconvolutional single-shot detector publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.386410 – volume: 55 start-page: 2935 year: 2023 ident: ref_18 article-title: LGADet: Light-weight anchor-free multispectral pedestrian detection with mixed local and global attention publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-10991-7 – ident: ref_15 – ident: ref_19 – ident: ref_17 doi: 10.1109/WACV51458.2022.00339 |
SSID | ssj0002149111 |
Score | 2.3414803 |
Snippet | Recent research demonstrates that the fusion of multimodal images can improve the performance of pedestrian detectors under low-illumination environments.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 352 |
SubjectTerms | Computer networks convolutional neural network Datasets deep learning Detectors Illumination Infrared imagery Light Lighting Methods multimodal images Neural networks pedestrian detection Pedestrians Performance enhancement Sensors Smog Transformers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXyUFPUtxuptnG2_pYRHyBCnoqbScBRbuydvXqf_Af-kucSbtSEPHitUzaMplkvklmvhFiSxOkD6GnAoJEOgDo2MAAcJKjMwiMYRUXCp-d6-MbOLmNbhutvjgnrKIHrhS3a7SLDGBkKDoGjVGmrDGQatQu1Sb17KXk8xrBFO_BXQL-tIqrTHdFcf3um319CCHsdnyNUcMHear-Hzuxdy-DeTFX40LZr_5nQUzZYlHMNtgCl0RJlnR3cXqxJ_vyeoI37ejz_WMw5jOvYJ88EkoWkYe29MfxkmSkL7J9GiK9_9Ki9Z06ilqExsn7QvbHJVc3DMcv8nB0z4cM8irnbXBZ3AyOrg-Og7ppQpCDgjLAng4dcw-jjhS6FFLjQVG3k4GLXEiIo4OQuqxncsRY04pWToeo0JJyCQytiOliWNhVIS3GYRrFWtkoA4U61jTOkocP4zylyLYldiZqTPKaUZwbWzwmFFmw0pOm0lti-1v6uWLS-EVun2fkW4b5r_0DsoqktorkL6toifZkPpN6Ub4kXUPhEN97qrX_-Ma6mOHe81VuS1tMl6Ox3SCEUmab3hi_AGgI4tQ priority: 102 providerName: Directory of Open Access Journals |
Title | TF-YOLO: A Transformer–Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in Autonomous Driving Scenes |
URI | https://www.proquest.com/docview/2904938233 https://doaj.org/article/96f594d5919846d5b3e994a6d6fa69a5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF4VuNAD6gPU8Ij20J6QRTb7iJcLSgoBVeWhAhKcLNuzW1G1NiROe-1_4B_2l3RmswmRUHu1Zy1rZ2fmm9l5MPbeIKQXqicThEQmUarjEqsUJTl6C4owrKRC4dMzc3KtPt3omxhwG8e0yplODIoa6pJi5Htdi1iWLq3kwf1DQlOj6HY1jtBYYiuoglN0vlYGR2cXX-ZRli46ACjN04x3if793i_385tQotsJtUYLtii07H-mkYOZGb5iaxEf8v6Uoa_ZC1e9YS8Xuga-ZQ2eqNvzz-f7vM-vZrjTjf78fhxOKPaVDNAyAScSfuiaEJbnSMNDse2PGvD7Fw5cmNhRRRJcx-8q3p80VOVQT8b8cHRHwQZ-WZI6XGfXw6OrjydJHJ6QlEqqJoGeEZ56EIPREnyuchvAUbdTKK-9QOTRAZX7omdLgNSgZEtvBEhwoAsERRtsuaor945xB6nIdWqk04WSYFKD6xxaepGWOXq4LbY728asjJ3FacDF9ww9DNr0bHHTW-zDnPp-2lHjH3QD4sichvpghwf16GsWxSqzxmurQFthEUjhj0tnrcoNGJ8bm-sW257xM4vCOc6ejtLm_19vsVWaLj_NXtlmy81o4nYQgzRFmy2lw-N2PG7t4Mn_BWQY3ew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V7QE4oPInAgX2QE_Iqu39qRepqlJCSGnaIpFK5WRszy5qVeySOFTceAfeg4fiSZhZ2yESgluv9qxlzc7OfDM7P4w91wjpI7ktAoREOpAytIGRkpIcnQFJGFZQofDhkR6dyLen6nSF_exqYSitstOJXlFDVVCMfCs2iGXp0krsXn4JaGoU3a52IzQasTiw367QZZvt7A9wfzfjePh68moUtFMFgkIKWQeAjruj5ryglQCXycx41BCHuXTKRWiSQ5CZy7dNAZBoFHnhdAQCLKhcU6MDVPlrUghDJyoZvlnEdGJ0N1B3NPn1-D7curJfzyMZxaGvbFqyfH5AwF_63xu14Tq73aJR3m_E5w5bseVddmupR-E9VqP8fjgeH7_kfT7pUK6d_vr-YzinSFuwh3YQOJHwga39JQBHGu5Lez9XgN9_Z8H6-SBlS4Lr-FnJ-_Oaaiqq-YwPpmcU2uDvC1K-99nJtTD1AVstq9I-ZNxCEmUq0cKqXArQicZ1FnFFlBQZ-tM99qJjY1q0fcxpnMZFiv4MMT1dZnqPbS6oL5v-Hf-g26MdWdBQ123_oJp-SttDnBrtlJGgTGQQtuGPC2uMzDRol2mTqR7b6PYzbVXBLP0juI_-__oZuzGaHI7T8f7RwWN2k-baN3kzG2y1ns7tE0Q_df7UixxnH69bxn8Df6UXEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTgUJWXSCmwB3pCVmzvI16kCiWkUUtLGkErlZOxPbuoVbFL4lBx4z_wb_g5_BJm_AiRENx6tceWtft55pvZeTD2XCOlD2RfeEiJtCelbz0jJSU5OgOSOKygQuG3E71_Kt-cqbM19rOthaG0ylYnVooaioxi5L3QIJelQyvRc01axHQ0fnX1xaMJUnTS2o7TqCFyaL9do_s23z0Y4V7vhOF47-T1vtdMGPAyKWTpATrxjhr1glYCXCITUzGI0E-lUy5A8-yDTFzaNxlApBH-wukABFhQqaamB6j-1_voFfkdtj7cm0zfLSM8ITofqEnqbHshjN-7tl8vAhmEflXntGIHq3EBf1mDysSNN9lGw035oAbTXbZm83vszkrHwvusRDR_OD46fskH_KTlvHb26_uP8YLibt4QrSJwEuEjW1ZHAhxleFXo-7kAfP_Ugq2mheSNCD7Hz3M-WJRUYVEs5nw0O6dAB3-fkSp-wE5vZFkfsk5e5PYR4xaiIFGRFlalUoCOND5nkWUEUZagd91lL9pljLOmqzkN17iM0buhRY9XF73LdpbSV3U3j3_IDWlHljLUg7u6UMw-xc0vHRvtlJGgTGCQxOGHC2uMTDRol2iTqC7bbvczbhTDPP4D463_337GbiG-46ODyeFjdpuG3NdJNNusU84W9glSoTJ92mCOs483DfPf9nocog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TF-YOLO%3A+A+Transformer%E2%80%93Fusion-Based+YOLO+Detector+for+Multimodal+Pedestrian+Detection+in+Autonomous+Driving+Scenes&rft.jtitle=World+electric+vehicle+journal&rft.au=Chen%2C+Yunfan&rft.au=Ye%2C+Jinxing&rft.au=Wan%2C+Xiangkui&rft.date=2023-12-01&rft.issn=2032-6653&rft.eissn=2032-6653&rft.volume=14&rft.issue=12&rft.spage=352&rft_id=info:doi/10.3390%2Fwevj14120352&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_wevj14120352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-6653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-6653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-6653&client=summon |