Active learning of linearly parametrized interatomic potentials

[Display omitted] This paper introduces an active learning approach to the fitting of machine learning interatomic potentials. Our approach is based on the D-optimality criterion for selecting atomic configurations on which the potential is fitted. It is shown that the proposed active learning appro...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 140; pp. 171 - 180
Main Authors Podryabinkin, Evgeny V., Shapeev, Alexander V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] This paper introduces an active learning approach to the fitting of machine learning interatomic potentials. Our approach is based on the D-optimality criterion for selecting atomic configurations on which the potential is fitted. It is shown that the proposed active learning approach is highly efficient in training potentials on the fly, ensuring that no extrapolation is attempted and leading to a completely reliable atomistic simulation without any significant decrease in accuracy. We apply our approach to molecular dynamics and structure relaxation, and we argue that it can be applied, in principle, to any other type of atomistic simulation. The software, test cases, and examples of usage are published at http://gitlab.skoltech.ru/shapeev/mlip/.
AbstractList [Display omitted] This paper introduces an active learning approach to the fitting of machine learning interatomic potentials. Our approach is based on the D-optimality criterion for selecting atomic configurations on which the potential is fitted. It is shown that the proposed active learning approach is highly efficient in training potentials on the fly, ensuring that no extrapolation is attempted and leading to a completely reliable atomistic simulation without any significant decrease in accuracy. We apply our approach to molecular dynamics and structure relaxation, and we argue that it can be applied, in principle, to any other type of atomistic simulation. The software, test cases, and examples of usage are published at http://gitlab.skoltech.ru/shapeev/mlip/.
Author Podryabinkin, Evgeny V.
Shapeev, Alexander V.
Author_xml – sequence: 1
  givenname: Evgeny V.
  surname: Podryabinkin
  fullname: Podryabinkin, Evgeny V.
  email: e.podryabinkin@skoltech.ru
– sequence: 2
  givenname: Alexander V.
  surname: Shapeev
  fullname: Shapeev, Alexander V.
  email: a.shapeev@skoltech.ru
BookMark eNqNkE1LAzEQhoNUsK3-BvcP7DrZz-xBpBStQsGLnkM2mZUpu0nJhkL99aZUPHjRw_AyMM8L8yzYzDqLjN1yyDjw-m6XaTeOKkyashx4k4HIoOAXbM5F06YggM_YHNq8SSGv6iu2mKYdRLIV-Zw9rHSgAyYDKm_JfiSuTwaycRuOyV55NWLw9IkmIRvQq-BG0sneBbSB1DBds8s-Bt5855K9Pz2-rZ_T7evmZb3aprosypAaQF0ZLDBH5KhU17QV78uy01gr1VZVF0crYXgpdNeKhuu8AVN0vYG6hKJYsvtzr_Zumjz2UlNQgZwNXtEgOciTDbmTPzbkyYYEIaONyDe_-L2nUfnjP8jVmcT43oHQy3iBVqMhjzpI4-jPji_KMIP0
CitedBy_id crossref_primary_10_1103_PhysRevB_109_115430
crossref_primary_10_1063_5_0135269
crossref_primary_10_1038_s41524_020_0283_z
crossref_primary_10_1038_s41524_024_01321_7
crossref_primary_10_1088_2632_2153_ad5074
crossref_primary_10_1039_D3MH00125C
crossref_primary_10_1063_1_5078687
crossref_primary_10_1016_j_cpc_2019_02_007
crossref_primary_10_1063_5_0188905
crossref_primary_10_1016_j_commatsci_2021_110360
crossref_primary_10_1016_j_actamat_2024_120199
crossref_primary_10_1063_5_0139611
crossref_primary_10_1038_s41467_023_44525_z
crossref_primary_10_1016_j_est_2025_116099
crossref_primary_10_1038_s43246_024_00487_3
crossref_primary_10_1016_j_carbon_2024_119533
crossref_primary_10_1080_08927022_2018_1447107
crossref_primary_10_1038_s41467_023_37115_6
crossref_primary_10_1038_s41467_018_06169_2
crossref_primary_10_1016_j_jallcom_2019_06_318
crossref_primary_10_1002_adma_202102807
crossref_primary_10_1021_acs_jpcc_4c02309
crossref_primary_10_1021_acsmaterialsau_2c00057
crossref_primary_10_1038_s41524_021_00510_y
crossref_primary_10_1103_PhysRevMaterials_8_033601
crossref_primary_10_1038_s41524_021_00630_5
crossref_primary_10_1149_1945_7111_ad7326
crossref_primary_10_1021_acs_chemmater_4c01351
crossref_primary_10_1021_acs_jctc_3c00488
crossref_primary_10_1111_jace_17779
crossref_primary_10_1016_j_mtnano_2022_100280
crossref_primary_10_1039_D1SC01000J
crossref_primary_10_1039_D4NH00487F
crossref_primary_10_1021_acs_chemrev_0c00004
crossref_primary_10_1103_PhysRevB_100_104110
crossref_primary_10_1002_cjoc_202100299
crossref_primary_10_1557_mrs_2020_163
crossref_primary_10_1016_j_jmst_2024_03_027
crossref_primary_10_1021_acs_jctc_2c00643
crossref_primary_10_1063_5_0216220
crossref_primary_10_1021_acs_chemrev_8b00026
crossref_primary_10_1021_acs_jpcc_4c00028
crossref_primary_10_1016_j_commatsci_2022_111709
crossref_primary_10_1021_acs_jpclett_9b03664
crossref_primary_10_1063_5_0106617
crossref_primary_10_1103_PhysRevMaterials_4_113602
crossref_primary_10_1063_5_0069443
crossref_primary_10_1103_PhysRevB_99_064114
crossref_primary_10_1039_D2RA08086A
crossref_primary_10_1039_D3SC02482B
crossref_primary_10_1063_5_0160326
crossref_primary_10_1103_PhysRevB_100_014105
crossref_primary_10_1149_1945_7111_ad9991
crossref_primary_10_1021_acs_jpclett_8b01939
crossref_primary_10_1016_j_carbon_2023_118293
crossref_primary_10_1016_j_flatc_2022_100446
crossref_primary_10_7566_JPSJ_92_074002
crossref_primary_10_1021_acs_jctc_1c00166
crossref_primary_10_1021_acs_jpcc_9b08691
crossref_primary_10_1063_1_5023802
crossref_primary_10_1088_2632_2153_ace418
crossref_primary_10_1038_s41524_023_00988_8
crossref_primary_10_1111_jace_19932
crossref_primary_10_1007_s40843_023_2836_0
crossref_primary_10_1038_s41524_023_01073_w
crossref_primary_10_1103_PhysRevMaterials_7_093802
crossref_primary_10_1021_acs_chemmater_2c03658
crossref_primary_10_1021_acs_jctc_8b00110
crossref_primary_10_1016_j_commatsci_2021_110567
crossref_primary_10_1107_S1600576724009282
crossref_primary_10_1103_PhysRevB_110_214202
crossref_primary_10_1016_j_jnoncrysol_2025_123486
crossref_primary_10_1021_acs_jpca_2c05459
crossref_primary_10_1007_s00339_024_08237_5
crossref_primary_10_1016_j_commatsci_2019_109333
crossref_primary_10_1016_j_jnucmat_2021_153113
crossref_primary_10_1103_PhysRevB_102_041121
crossref_primary_10_1016_j_actamat_2023_118734
crossref_primary_10_31857_S1234567824110090
crossref_primary_10_1038_s41597_020_0473_z
crossref_primary_10_1103_PhysRevB_104_104102
crossref_primary_10_1016_j_flatc_2022_100347
crossref_primary_10_1038_s41524_023_00967_z
crossref_primary_10_1103_PhysRevB_108_174103
crossref_primary_10_1016_j_fuel_2022_125340
crossref_primary_10_1016_j_mtphys_2021_100463
crossref_primary_10_1103_PhysRevB_100_174101
crossref_primary_10_1063_5_0087165
crossref_primary_10_1134_S0012501622700026
crossref_primary_10_26599_JAC_2024_9220935
crossref_primary_10_1016_j_carbon_2021_12_039
crossref_primary_10_1038_s41467_021_21376_0
crossref_primary_10_1063_5_0246178
crossref_primary_10_1103_PhysRevLett_126_156002
crossref_primary_10_1038_s41524_021_00685_4
crossref_primary_10_1016_j_molliq_2024_125402
crossref_primary_10_1021_acs_jctc_3c00279
crossref_primary_10_1063_1_5019779
crossref_primary_10_1016_j_jmst_2023_04_074
crossref_primary_10_1021_acs_jpca_1c02529
crossref_primary_10_1039_D1TA04987A
crossref_primary_10_1088_1361_651X_ad93ec
crossref_primary_10_1038_s41524_024_01333_3
crossref_primary_10_1039_D2CP04411K
crossref_primary_10_1557_s43578_023_01239_8
crossref_primary_10_1016_j_actamat_2025_120748
crossref_primary_10_1021_acsami_3c15399
crossref_primary_10_1093_nsr_nwad128
crossref_primary_10_1557_s43579_022_00221_5
crossref_primary_10_3367_UFNe_2021_05_039187
crossref_primary_10_1021_acs_jctc_9b00805
crossref_primary_10_1021_acs_jpcc_3c06648
crossref_primary_10_1016_j_commatsci_2024_113409
crossref_primary_10_1080_08927022_2022_2156561
crossref_primary_10_1088_1367_2630_abc392
crossref_primary_10_1021_acs_jpca_9b08723
crossref_primary_10_1039_D1NR06449E
crossref_primary_10_1063_5_0096645
crossref_primary_10_1016_j_molliq_2022_120803
crossref_primary_10_1038_s41529_024_00536_9
crossref_primary_10_1007_s40843_024_3114_4
crossref_primary_10_1021_acsami_1c04583
crossref_primary_10_1146_annurev_chembioeng_092120_020803
crossref_primary_10_1063_5_0121805
crossref_primary_10_1063_5_0187892
crossref_primary_10_1103_PhysRevB_101_115132
crossref_primary_10_1039_D3CP01348K
crossref_primary_10_1063_5_0057051
crossref_primary_10_1038_s41524_022_00856_x
crossref_primary_10_1021_acs_jpcc_4c04575
crossref_primary_10_1016_j_actamat_2022_117988
crossref_primary_10_1063_5_0099929
crossref_primary_10_1016_j_ceramint_2022_11_319
crossref_primary_10_3390_cryst13050756
crossref_primary_10_1039_D1SC01825F
crossref_primary_10_1063_5_0214588
crossref_primary_10_1103_PhysRevApplied_19_024058
crossref_primary_10_1002_adts_202301171
crossref_primary_10_1038_s41524_024_01506_0
crossref_primary_10_1103_PhysRevMaterials_6_013804
crossref_primary_10_1103_PhysRevB_102_184305
crossref_primary_10_1038_s41524_023_01104_6
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1038_s41524_021_00508_6
crossref_primary_10_1016_j_commatsci_2023_112376
crossref_primary_10_1039_D4DD00183D
crossref_primary_10_1146_annurev_matsci_100520_015716
crossref_primary_10_1021_jacs_2c07482
crossref_primary_10_1016_j_actamat_2024_120124
crossref_primary_10_1021_acs_jctc_1c00821
crossref_primary_10_1002_jcc_26790
crossref_primary_10_1021_acs_chemrev_4c00572
crossref_primary_10_1063_5_0025310
crossref_primary_10_1016_j_chemphys_2021_111347
crossref_primary_10_1016_j_apmt_2020_100685
crossref_primary_10_1016_j_ijthermalsci_2025_109876
crossref_primary_10_1103_PhysRevB_107_104103
crossref_primary_10_1039_D0MH00787K
crossref_primary_10_1002_batt_202000262
crossref_primary_10_1039_D3YA00057E
crossref_primary_10_1038_s41524_024_01252_3
crossref_primary_10_1063_5_0023005
crossref_primary_10_1021_acs_jctc_3c01051
crossref_primary_10_1016_j_commatsci_2021_110796
crossref_primary_10_1039_D2CP05976B
crossref_primary_10_1021_acs_jcim_1c00007
crossref_primary_10_1039_D3CP04729F
crossref_primary_10_1080_27660400_2023_2269948
crossref_primary_10_1063_1_5016317
crossref_primary_10_1063_1_5017641
crossref_primary_10_1088_2632_2153_aba373
crossref_primary_10_1021_acs_jcim_1c01125
crossref_primary_10_1039_D3CP03845A
crossref_primary_10_1063_5_0237656
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121589
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1038_s41524_024_01342_2
crossref_primary_10_1016_j_commatsci_2024_113331
crossref_primary_10_1038_s41524_019_0236_6
crossref_primary_10_1134_S0021364024601155
crossref_primary_10_1016_j_commatsci_2024_113459
crossref_primary_10_1038_s41524_024_01278_7
crossref_primary_10_1103_PhysRevB_107_125160
crossref_primary_10_1134_S1063776123120208
crossref_primary_10_1016_j_ensm_2023_103023
crossref_primary_10_1063_5_0244175
crossref_primary_10_1016_j_commatsci_2025_113719
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1063_1_5121519
crossref_primary_10_1016_j_commatsci_2024_113422
crossref_primary_10_1007_s00894_024_06084_y
crossref_primary_10_1038_s41467_019_12875_2
crossref_primary_10_1063_5_0255385
crossref_primary_10_1103_PhysRevMaterials_7_113606
crossref_primary_10_1103_PhysRevB_97_184307
crossref_primary_10_1016_j_carbon_2020_05_105
crossref_primary_10_3390_ma16010235
crossref_primary_10_1103_PhysRevMaterials_7_033803
crossref_primary_10_1063_5_0038516
crossref_primary_10_1088_2515_7639_ab8c2d
crossref_primary_10_1016_j_commatsci_2024_113433
crossref_primary_10_1007_s44379_024_00008_6
crossref_primary_10_1038_s41524_024_01254_1
crossref_primary_10_1063_5_0155621
crossref_primary_10_1063_5_0027643
crossref_primary_10_1021_acs_chemrev_0c01303
crossref_primary_10_1063_5_0155618
crossref_primary_10_1021_acsnano_3c10201
crossref_primary_10_1021_acs_jctc_8b00524
crossref_primary_10_1038_s41598_017_08455_3
crossref_primary_10_1021_prechem_4c00051
crossref_primary_10_1103_PhysRevB_100_144308
crossref_primary_10_1021_acs_jpclett_4c02934
crossref_primary_10_1063_1_5011181
crossref_primary_10_1021_acs_jctc_3c00822
crossref_primary_10_1021_acs_jctc_3c00944
crossref_primary_10_1063_5_0222355
crossref_primary_10_1021_acs_jctc_1c00527
crossref_primary_10_1021_acs_jctc_1c00769
crossref_primary_10_3389_fenrg_2022_1043064
crossref_primary_10_1002_pssr_202100632
crossref_primary_10_1021_acs_chemmater_2c01954
crossref_primary_10_1002_adma_202204038
crossref_primary_10_1021_acs_jpcc_9b04207
crossref_primary_10_1021_acs_jctc_4c00474
crossref_primary_10_1103_PhysRevLett_120_156001
crossref_primary_10_1021_acsami_0c17285
crossref_primary_10_1063_5_0143211
crossref_primary_10_1038_s41563_020_0777_6
crossref_primary_10_1038_s41524_020_00477_2
crossref_primary_10_1002_adma_202200924
crossref_primary_10_1016_j_taml_2023_100481
crossref_primary_10_1002_adma_201902765
crossref_primary_10_1063_5_0158710
crossref_primary_10_1146_annurev_physchem_082720_034254
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1016_j_mser_2021_100642
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1103_PhysRevB_105_165141
crossref_primary_10_1103_PhysRevB_109_075201
crossref_primary_10_1038_s41524_023_01123_3
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1038_s41467_024_45840_9
crossref_primary_10_1021_acs_chemrev_1c00107
crossref_primary_10_1021_acs_chemmater_0c01894
crossref_primary_10_1039_D4CP04578E
crossref_primary_10_1021_acs_jctc_1c00783
crossref_primary_10_1039_D2DD00078D
crossref_primary_10_1021_acs_chemrev_1c00022
crossref_primary_10_1016_j_commatsci_2023_112535
crossref_primary_10_1103_PhysRevMaterials_7_043801
crossref_primary_10_1063_1_5051772
crossref_primary_10_1021_acs_jpclett_0c02357
crossref_primary_10_1016_j_eng_2023_02_019
crossref_primary_10_1002_wcms_1564
crossref_primary_10_1038_s43246_023_00389_w
crossref_primary_10_1063_5_0155887
crossref_primary_10_1039_D4CP01801J
crossref_primary_10_1088_2632_2153_abc9fe
crossref_primary_10_1103_PhysRevMaterials_6_033801
crossref_primary_10_1063_5_0036097
crossref_primary_10_1063_5_0013059
crossref_primary_10_1088_2632_2153_ad9fce
crossref_primary_10_1016_j_actamat_2021_116980
crossref_primary_10_1088_1361_651X_ada050
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1038_s41597_023_02200_4
crossref_primary_10_1021_acs_jctc_4c01552
crossref_primary_10_1088_2752_5724_acb506
crossref_primary_10_1039_D3MH00736G
crossref_primary_10_1021_acs_chemmater_9b04663
crossref_primary_10_1103_PhysRevB_109_075426
crossref_primary_10_1016_j_matt_2023_05_035
crossref_primary_10_1016_j_commatsci_2018_09_031
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1016_j_cpc_2020_107679
crossref_primary_10_1021_acs_jpcb_8b11905
crossref_primary_10_1016_j_molliq_2024_126152
crossref_primary_10_1063_5_0021965
crossref_primary_10_1134_S0022476624040188
crossref_primary_10_1134_S0031918X24602178
crossref_primary_10_1021_acs_chemrev_0c00868
crossref_primary_10_1134_S0021364023600234
crossref_primary_10_1021_acs_chemrev_0c00749
crossref_primary_10_1021_acs_jctc_4c00039
crossref_primary_10_1039_D0RE00232A
crossref_primary_10_1103_PhysRevLett_131_236101
crossref_primary_10_1038_s43588_023_00407_4
crossref_primary_10_1016_j_jnucmat_2022_154183
crossref_primary_10_1016_j_cpc_2020_107206
crossref_primary_10_1103_PhysRevMaterials_5_073801
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_1021_acs_jpclett_4c00322
crossref_primary_10_1038_s41524_024_01251_4
crossref_primary_10_1016_j_cplett_2024_141620
crossref_primary_10_3389_fmats_2024_1466793
crossref_primary_10_1021_acsaem_3c01429
crossref_primary_10_1021_acs_jctc_8b00908
crossref_primary_10_1103_PhysRevMaterials_7_053804
crossref_primary_10_1038_s41467_020_20212_1
crossref_primary_10_1016_j_drudis_2024_103985
crossref_primary_10_1116_6_0004288
crossref_primary_10_1021_acs_jpcc_2c09008
crossref_primary_10_1038_s41524_022_00721_x
crossref_primary_10_3390_batteries8100194
crossref_primary_10_1016_j_actamat_2024_120200
crossref_primary_10_1021_jacs_1c10640
crossref_primary_10_1016_j_carbon_2022_03_068
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125404
crossref_primary_10_1557_s43578_022_00783_z
crossref_primary_10_1039_D2CP03893E
crossref_primary_10_1063_5_0005347
crossref_primary_10_1103_PhysRevMaterials_3_043605
crossref_primary_10_1039_C8CP06919K
crossref_primary_10_1103_PhysRevB_105_075107
crossref_primary_10_1088_1361_651X_ad9d63
crossref_primary_10_1002_adfm_202418750
crossref_primary_10_1016_j_patter_2023_100863
crossref_primary_10_1021_acs_jctc_4c01582
crossref_primary_10_1021_acs_jctc_4c01225
crossref_primary_10_1016_j_mtla_2023_101718
crossref_primary_10_1016_j_commt_2024_100018
crossref_primary_10_1063_5_0016004
crossref_primary_10_1038_s43588_023_00406_5
crossref_primary_10_1103_PhysRevMaterials_6_040301
crossref_primary_10_1038_s41524_019_0218_8
crossref_primary_10_1063_5_0063534
crossref_primary_10_1002_adfm_202417891
crossref_primary_10_1126_sciadv_aav6490
crossref_primary_10_1088_2632_2153_abe663
crossref_primary_10_1021_acs_jctc_3c00710
crossref_primary_10_1038_s41524_023_01120_6
crossref_primary_10_1103_PhysRevMaterials_8_025402
crossref_primary_10_1021_acsami_2c16254
crossref_primary_10_1039_C8CP06037A
crossref_primary_10_1039_D3CP00746D
crossref_primary_10_1038_s41524_024_01227_4
crossref_primary_10_1021_acs_chemmater_2c01430
crossref_primary_10_1038_s41467_021_21488_7
crossref_primary_10_1016_j_commatsci_2019_03_049
crossref_primary_10_1016_j_commatsci_2023_112715
crossref_primary_10_1063_5_0158783
crossref_primary_10_1103_PhysRevB_105_245404
crossref_primary_10_1103_PhysRevB_109_094120
crossref_primary_10_1063_5_0006498
crossref_primary_10_1140_epjb_s10051_021_00156_1
crossref_primary_10_1021_acs_jctc_9b00001
crossref_primary_10_1557_s43578_023_01194_4
crossref_primary_10_1016_j_ijpvp_2021_104514
crossref_primary_10_1063_5_0208577
crossref_primary_10_1038_s41467_020_19093_1
crossref_primary_10_1016_j_commatsci_2022_111330
crossref_primary_10_1103_PhysRevB_104_235205
crossref_primary_10_1016_j_carbon_2022_08_077
crossref_primary_10_1103_PhysRevB_109_094117
crossref_primary_10_1063_5_0007473
crossref_primary_10_1063_1_5126336
crossref_primary_10_1103_PhysRevB_103_094116
crossref_primary_10_1021_acsami_3c07242
crossref_primary_10_1103_PhysRevMaterials_5_113802
crossref_primary_10_1038_s41524_025_01563_z
crossref_primary_10_1103_PhysRevB_102_075427
crossref_primary_10_31857_S004445102312012X
crossref_primary_10_1063_5_0033778
crossref_primary_10_1021_acs_chemrev_0c01060
crossref_primary_10_1557_s43579_023_00478_4
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1063_5_0133023
crossref_primary_10_31857_S1234567823050099
crossref_primary_10_1016_j_mtphys_2024_101590
crossref_primary_10_1016_j_tsf_2021_138927
crossref_primary_10_1103_PhysRevX_8_041048
crossref_primary_10_1103_PhysRevB_99_184305
crossref_primary_10_1016_j_commatsci_2024_113074
crossref_primary_10_1021_acs_jctc_1c01001
crossref_primary_10_1063_1_5116420
crossref_primary_10_1103_PhysRevMaterials_3_023804
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1063_1_5127561
crossref_primary_10_1103_PhysRevResearch_5_013180
crossref_primary_10_1016_j_cap_2024_07_001
crossref_primary_10_1063_5_0008309
crossref_primary_10_1103_PhysRevB_105_045403
crossref_primary_10_1038_s41467_022_32294_0
crossref_primary_10_1103_PhysRevB_104_094310
crossref_primary_10_1088_2515_7639_ab7cbb
crossref_primary_10_1021_acscatal_1c05419
crossref_primary_10_1021_acs_jpcb_2c03746
crossref_primary_10_1088_2632_2153_abfd96
crossref_primary_10_1103_PhysRevLett_124_086102
crossref_primary_10_1088_1361_6528_ac5cfd
crossref_primary_10_1021_acs_chemmater_3c00993
crossref_primary_10_1016_j_polymer_2024_127416
crossref_primary_10_1039_D2DD00133K
crossref_primary_10_1088_2632_2153_abe294
crossref_primary_10_1103_PhysRevMaterials_8_115407
crossref_primary_10_1557_jmr_2019_50
crossref_primary_10_1021_acs_jctc_7b01195
crossref_primary_10_1021_acs_jpcc_3c04950
crossref_primary_10_1103_PhysRevE_102_052125
crossref_primary_10_1134_S0022476624080109
crossref_primary_10_1103_PhysRevMaterials_5_103803
crossref_primary_10_1016_j_commatsci_2019_04_043
crossref_primary_10_1103_PhysRevB_106_L161110
crossref_primary_10_1103_PhysRevB_100_104103
crossref_primary_10_1038_s41598_022_18366_7
crossref_primary_10_1038_s41524_019_0153_8
crossref_primary_10_1103_PhysRevMaterials_5_053805
crossref_primary_10_1103_PhysRevB_107_144103
crossref_primary_10_1103_PhysRevB_110_014427
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_1088_0256_307X_41_6_066101
crossref_primary_10_29141_2949_477X_2023_2_4_2
crossref_primary_10_1039_D2DD00034B
crossref_primary_10_1002_aenm_201903242
crossref_primary_10_1021_acs_jpclett_0c01061
crossref_primary_10_1039_D2TA02202H
crossref_primary_10_1039_D2CP05793J
crossref_primary_10_1063_5_0136574
crossref_primary_10_1021_acs_jpcb_3c07187
crossref_primary_10_1063_5_0065694
crossref_primary_10_1088_2516_1075_ac572f
crossref_primary_10_1073_pnas_2110077118
crossref_primary_10_1021_acs_jpclett_3c00293
crossref_primary_10_1063_5_0206215
crossref_primary_10_1021_acs_jpca_3c07129
crossref_primary_10_1038_s41467_024_47422_1
crossref_primary_10_1039_D0CE01260B
crossref_primary_10_1016_j_actamat_2024_119742
crossref_primary_10_1103_PhysRevMaterials_6_063802
crossref_primary_10_1016_j_corsci_2024_112541
crossref_primary_10_1021_acs_jpcc_0c00047
crossref_primary_10_1038_s41524_022_00872_x
crossref_primary_10_3390_coatings12081171
crossref_primary_10_1126_science_adr8450
crossref_primary_10_1063_1_5005095
crossref_primary_10_1016_j_carbon_2021_10_059
crossref_primary_10_1038_s41524_024_01390_8
Cites_doi 10.1103/PhysRevLett.114.096405
10.1016/j.commatsci.2015.07.046
10.1103/PhysRevLett.104.136403
10.1103/PhysRevB.92.094306
10.1016/0039-6028(94)00731-4
10.1039/c1cp21668f
10.1016/0927-0256(96)00008-0
10.1063/1.1839852
10.1103/PhysRevB.57.R13985
10.1103/PhysRevLett.93.165501
10.1103/PhysRevB.90.104108
10.1016/j.jcp.2014.12.018
10.1021/acs.jctc.5b00211
10.1103/PhysRevLett.108.058301
10.1103/PhysRevLett.108.253002
10.1002/qua.24795
10.1103/PhysRevLett.77.3865
10.1039/C4CP04751F
10.1016/j.commatsci.2016.12.007
10.1103/PhysRevB.54.11169
10.1002/qua.24836
10.1002/qua.25115
10.1103/PhysRevB.95.094203
10.1103/PhysRevLett.98.146401
10.1063/1.4961886
10.1214/aoms/1177729893
10.1103/PhysRevB.88.054104
10.1103/PhysRevB.95.214302
10.1103/PhysRevB.50.17953
10.1016/j.commatsci.2015.11.047
10.1103/PhysRevB.47.558
10.1002/qua.24917
10.1063/1.3553717
10.1103/PhysRevB.87.184115
10.1137/15M1054183
10.1103/PhysRevLett.93.175503
10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2017.08.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 180
ExternalDocumentID 10_1016_j_commatsci_2017_08_031
S0927025617304536
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c434t-d0ec5de3e2ee1eaab7951f44bce6aa955b955ca8d148cb9871c270d3bfd064033
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 02:00:52 EDT 2025
Fri Feb 23 02:27:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Atomistic simulation
Interatomic potential
Active learning
Learning on the fly
Moment tensor potentials
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-d0ec5de3e2ee1eaab7951f44bce6aa955b955ca8d148cb9871c270d3bfd064033
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2017_08_031
crossref_primary_10_1016_j_commatsci_2017_08_031
elsevier_sciencedirect_doi_10_1016_j_commatsci_2017_08_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational materials science
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Boes, Groenenboom, Keith, Kitchin (b0055) 2016; 116
Kresse, Furthmüller (b0205) 1996; 54
Behler (b0045) 2014; 26
Behler, Parrinello (b0050) 2007; 98
Li, Kermode, De Vita (b0145) 2015; 114
Perdew, Burke, Ernzerhof (b0215) 1996; 77
Skylaris, Haynes, Mostofi, Payne (b0010) 2005; 122
Finnis (b0020) 2003; vol. 1
Kresse, Furthmüller (b0200) 1996; 6
Kresse, Hafner (b0195) 1993; 47
Natarajan, Morawietz, Behler (b0075) 2015; 17
Artrith, Urban (b0130) 2016; 114
De Vita, Car (b0180) 1997; vol. 491
Sherman, Morrison (b0190) 1950; 21
Artacho, Sánchez-Portal, Ordejón, García, Soler (b0005) 1999; 215
Artrith, Kolpak (b0025) 2015; 110
Voter, Sørensen (b0230) 1998; vol. 538
Voter (b0220) 1998; 57
Mills, Jónsson, Schenter (b0225) 1995; 324
Szlachta, Bartók, Csányi (b0085) 2014; 90
Botu, Chapman, Ramprasad (b0170) 2017; 129
Goreinov, Oseledets, Savostyanov, Tyrtyshnikov, Zamarashkin (b0175) 2010
Shapeev (b0080) 2016; 14
Botu, Ramprasad (b0140) 2015; 92
Csányi, Albaret, Payne, De Vita (b0185) 2004; 93
B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009.
Bartók, Payne, Kondor, Csányi (b0035) 2010; 104
Glielmo, Sollich, De Vita (b0150) 2017; 95
Dolgirev, Kruglov, Oganov (b0060) 2016; 6
Rupp, Tkatchenko, Müller, Von Lilienfeld (b0100) 2012; 108
Smith, Isayev, Roitberg (b0125) 2017; 21
Deringer, Csányi (b0135) 2017; 95
Frederiksen, Jacobsen, Brown, Sethna (b0160) 2004; 93
Manzhos, Dawes, Carrington (b0070) 2015; 115
Behler (b0040) 2011; 13
T. Mueller, A.G. Kusne, R. Ramprasad, Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
Bartók, Gillan, Manby, Csányi (b0030) 2013; 88
Faber, Lindmaa, von Lilienfeld, Armiento (b0095) 2015; 115
Behler (b0120) 2011; 134
Botu, Ramprasad (b0165) 2015; 115
Bartók, Kondor, Csányi (b0115) 2013; 87
Bowler, Miyazaki (b0015) 2010; 22
Thompson, Swiler, Trott, Foiles, Tucker (b0090) 2015; 285
Gastegger, Marquetand (b0065) 2015; 11
Snyder, Rupp, Hansen, Müller, Burke (b0105) 2012; 108
Blöchl (b0210) 1994; 50
Boes (10.1016/j.commatsci.2017.08.031_b0055) 2016; 116
Kresse (10.1016/j.commatsci.2017.08.031_b0200) 1996; 6
Thompson (10.1016/j.commatsci.2017.08.031_b0090) 2015; 285
Behler (10.1016/j.commatsci.2017.08.031_b0050) 2007; 98
Li (10.1016/j.commatsci.2017.08.031_b0145) 2015; 114
Goreinov (10.1016/j.commatsci.2017.08.031_b0175) 2010
Bowler (10.1016/j.commatsci.2017.08.031_b0015) 2010; 22
Voter (10.1016/j.commatsci.2017.08.031_b0220) 1998; 57
Behler (10.1016/j.commatsci.2017.08.031_b0040) 2011; 13
Deringer (10.1016/j.commatsci.2017.08.031_b0135) 2017; 95
Artacho (10.1016/j.commatsci.2017.08.031_b0005) 1999; 215
Botu (10.1016/j.commatsci.2017.08.031_b0140) 2015; 92
Artrith (10.1016/j.commatsci.2017.08.031_b0025) 2015; 110
Natarajan (10.1016/j.commatsci.2017.08.031_b0075) 2015; 17
Csányi (10.1016/j.commatsci.2017.08.031_b0185) 2004; 93
Artrith (10.1016/j.commatsci.2017.08.031_b0130) 2016; 114
Finnis (10.1016/j.commatsci.2017.08.031_b0020) 2003; vol. 1
Blöchl (10.1016/j.commatsci.2017.08.031_b0210) 1994; 50
Bartók (10.1016/j.commatsci.2017.08.031_b0115) 2013; 87
Skylaris (10.1016/j.commatsci.2017.08.031_b0010) 2005; 122
Botu (10.1016/j.commatsci.2017.08.031_b0165) 2015; 115
Shapeev (10.1016/j.commatsci.2017.08.031_b0080) 2016; 14
Rupp (10.1016/j.commatsci.2017.08.031_b0100) 2012; 108
Kresse (10.1016/j.commatsci.2017.08.031_b0195) 1993; 47
Frederiksen (10.1016/j.commatsci.2017.08.031_b0160) 2004; 93
De Vita (10.1016/j.commatsci.2017.08.031_b0180) 1997; vol. 491
Sherman (10.1016/j.commatsci.2017.08.031_b0190) 1950; 21
Smith (10.1016/j.commatsci.2017.08.031_b0125) 2017; 21
Dolgirev (10.1016/j.commatsci.2017.08.031_b0060) 2016; 6
Behler (10.1016/j.commatsci.2017.08.031_b0045) 2014; 26
Botu (10.1016/j.commatsci.2017.08.031_b0170) 2017; 129
Voter (10.1016/j.commatsci.2017.08.031_b0230) 1998; vol. 538
Perdew (10.1016/j.commatsci.2017.08.031_b0215) 1996; 77
10.1016/j.commatsci.2017.08.031_b0110
Gastegger (10.1016/j.commatsci.2017.08.031_b0065) 2015; 11
10.1016/j.commatsci.2017.08.031_b0155
Snyder (10.1016/j.commatsci.2017.08.031_b0105) 2012; 108
Mills (10.1016/j.commatsci.2017.08.031_b0225) 1995; 324
Manzhos (10.1016/j.commatsci.2017.08.031_b0070) 2015; 115
Faber (10.1016/j.commatsci.2017.08.031_b0095) 2015; 115
Glielmo (10.1016/j.commatsci.2017.08.031_b0150) 2017; 95
Behler (10.1016/j.commatsci.2017.08.031_b0120) 2011; 134
Szlachta (10.1016/j.commatsci.2017.08.031_b0085) 2014; 90
Kresse (10.1016/j.commatsci.2017.08.031_b0205) 1996; 54
Bartók (10.1016/j.commatsci.2017.08.031_b0030) 2013; 88
Bartók (10.1016/j.commatsci.2017.08.031_b0035) 2010; 104
References_xml – volume: 215
  start-page: 809
  year: 1999
  end-page: 817
  ident: b0005
  article-title: Linear-scaling ab-initio calculations for large and complex systems
  publication-title: Physica Status Solidi (b)
– volume: 98
  start-page: 146401
  year: 2007
  ident: b0050
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
– volume: vol. 1
  year: 2003
  ident: b0020
  publication-title: Interatomic Forces in Condensed Matter
– volume: 95
  start-page: 214302
  year: 2017
  ident: b0150
  article-title: Accurate interatomic force fields via machine learning with covariant kernels
  publication-title: Phys. Rev. B
– volume: vol. 538
  start-page: 427
  year: 1998
  ident: b0230
  article-title: Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics
  publication-title: MRS Proceedings
– volume: 13
  start-page: 17930
  year: 2011
  end-page: 17955
  ident: b0040
  article-title: Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 8356
  year: 2015
  end-page: 8371
  ident: b0075
  article-title: Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0200
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 88
  start-page: 054104
  year: 2013
  ident: b0030
  article-title: Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water
  publication-title: Phys. Rev. B
– volume: 87
  start-page: 184115
  year: 2013
  ident: b0115
  article-title: On representing chemical environments
  publication-title: Phys. Rev. B
– volume: 324
  start-page: 305
  year: 1995
  end-page: 337
  ident: b0225
  article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen
  publication-title: Surface Sci.
– volume: 129
  start-page: 332
  year: 2017
  end-page: 335
  ident: b0170
  article-title: A study of adatom ripening on an al (111) surface with machine learning force fields
  publication-title: Comput. Mater. Sci.
– volume: 22
  start-page: 074207
  year: 2010
  ident: b0015
  article-title: Calculations for millions of atoms with density functional theory: linear scaling shows its potential
  publication-title: J. Phys.: Condensed Matter
– volume: 21
  start-page: 124
  year: 1950
  end-page: 127
  ident: b0190
  article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
  publication-title: Ann. Math. Stat.
– volume: 77
  start-page: 3865
  year: 1996
  ident: b0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: R13985
  year: 1998
  ident: b0220
  article-title: Parallel replica method for dynamics of infrequent events
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 074106
  year: 2011
  ident: b0120
  article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials
  publication-title: J. Chem. Phys.
– reference: T. Mueller, A.G. Kusne, R. Ramprasad, Machine learning in materials science: recent progress and emerging applications, Rev. Comput. Chem.
– start-page: 247
  year: 2010
  end-page: 256
  ident: b0175
  article-title: How to find a good submatrix
  publication-title: Matrix Methods: Theory, Algorithms, Applications
– volume: 90
  start-page: 104108
  year: 2014
  ident: b0085
  article-title: Accuracy and transferability of Gaussian approximation potential models for tungsten
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 085318
  year: 2016
  ident: b0060
  article-title: Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
  publication-title: AIP Adv.
– volume: 92
  start-page: 094306
  year: 2015
  ident: b0140
  article-title: Learning scheme to predict atomic forces and accelerate materials simulations
  publication-title: Phys. Rev. B
– reference: B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009.
– volume: 11
  start-page: 2187
  year: 2015
  end-page: 2198
  ident: b0065
  article-title: High-dimensional neural network potentials for organic reactions and an improved training algorithm
  publication-title: J. Chem. Theory Comput.
– volume: 14
  start-page: 1153
  year: 2016
  end-page: 1173
  ident: b0080
  article-title: Moment tensor potentials
  publication-title: Multiscale Model. Simul.
– volume: 93
  start-page: 165501
  year: 2004
  ident: b0160
  article-title: Bayesian ensemble approach to error estimation of interatomic potentials
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 1074
  year: 2015
  end-page: 1083
  ident: b0165
  article-title: Adaptive machine learning framework to accelerate ab initio molecular dynamics
  publication-title: Int. J. Quantum Chem.
– volume: 47
  start-page: 558
  year: 1993
  ident: b0195
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 116
  start-page: 979
  year: 2016
  end-page: 987
  ident: b0055
  article-title: Neural network and ReaxFF comparison for Au properties
  publication-title: Int. J. Quantum Chem.
– volume: vol. 491
  start-page: 473
  year: 1997
  ident: b0180
  article-title: A novel scheme for accurate MD simulations of large systems
  publication-title: MRS Proceedings
– volume: 114
  start-page: 135
  year: 2016
  end-page: 150
  ident: b0130
  article-title: An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2
  publication-title: Comput. Mater. Sci.
– volume: 108
  start-page: 253002
  year: 2012
  ident: b0105
  article-title: Finding density functionals with machine learning
  publication-title: Phys. Rev. Lett.
– volume: 122
  start-page: 084119
  year: 2005
  ident: b0010
  article-title: Introducing ONETEP: linear-scaling density functional simulations on parallel computers
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 096405
  year: 2015
  ident: b0145
  article-title: Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
  publication-title: Phys. Rev. Lett.
– volume: 104
  start-page: 136403
  year: 2010
  ident: b0035
  article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 058301
  year: 2012
  ident: b0100
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
– volume: 285
  start-page: 316
  year: 2015
  end-page: 330
  ident: b0090
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 183001
  year: 2014
  ident: b0045
  article-title: Representing potential energy surfaces by high-dimensional neural network potentials
  publication-title: J. Phys.: Condensed Matter
– volume: 93
  start-page: 175503
  year: 2004
  ident: b0185
  article-title: Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 1012
  year: 2015
  end-page: 1020
  ident: b0070
  article-title: Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
  publication-title: Int. J. Quantum Chem.
– volume: 50
  start-page: 17953
  year: 1994
  ident: b0210
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 110
  start-page: 20
  year: 2015
  end-page: 28
  ident: b0025
  article-title: Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials
  publication-title: Comput. Mater. Sci.
– volume: 115
  start-page: 1094
  year: 2015
  end-page: 1101
  ident: b0095
  article-title: Crystal structure representations for machine learning models of formation energies
  publication-title: Int. J. Quantum Chem.
– volume: 21
  start-page: 124
  year: 2017
  end-page: 127
  ident: b0125
  article-title: Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem. Sci.
– volume: 54
  start-page: 11169
  year: 1996
  ident: b0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 094203
  year: 2017
  ident: b0135
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys. Rev. B
– volume: 114
  start-page: 096405
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0145
  article-title: Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.096405
– volume: 110
  start-page: 20
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0025
  article-title: Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.07.046
– volume: 104
  start-page: 136403
  year: 2010
  ident: 10.1016/j.commatsci.2017.08.031_b0035
  article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136403
– volume: 92
  start-page: 094306
  issue: 9
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0140
  article-title: Learning scheme to predict atomic forces and accelerate materials simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.094306
– volume: 324
  start-page: 305
  issue: 2–3
  year: 1995
  ident: 10.1016/j.commatsci.2017.08.031_b0225
  article-title: Reversible work transition state theory: application to dissociative adsorption of hydrogen
  publication-title: Surface Sci.
  doi: 10.1016/0039-6028(94)00731-4
– volume: 13
  start-page: 17930
  issue: 40
  year: 2011
  ident: 10.1016/j.commatsci.2017.08.031_b0040
  article-title: Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21668f
– ident: 10.1016/j.commatsci.2017.08.031_b0110
– volume: vol. 538
  start-page: 427
  year: 1998
  ident: 10.1016/j.commatsci.2017.08.031_b0230
  article-title: Accelerating atomistic simulations of defect dynamics: hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  ident: 10.1016/j.commatsci.2017.08.031_b0200
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 122
  start-page: 084119
  issue: 8
  year: 2005
  ident: 10.1016/j.commatsci.2017.08.031_b0010
  article-title: Introducing ONETEP: linear-scaling density functional simulations on parallel computers
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1839852
– volume: 57
  start-page: R13985
  issue: 22
  year: 1998
  ident: 10.1016/j.commatsci.2017.08.031_b0220
  article-title: Parallel replica method for dynamics of infrequent events
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.R13985
– volume: 21
  start-page: 124
  issue: 1
  year: 2017
  ident: 10.1016/j.commatsci.2017.08.031_b0125
  article-title: Ani-1: an extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem. Sci.
– volume: 93
  start-page: 165501
  issue: 16
  year: 2004
  ident: 10.1016/j.commatsci.2017.08.031_b0160
  article-title: Bayesian ensemble approach to error estimation of interatomic potentials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.165501
– volume: 90
  start-page: 104108
  issue: 10
  year: 2014
  ident: 10.1016/j.commatsci.2017.08.031_b0085
  article-title: Accuracy and transferability of Gaussian approximation potential models for tungsten
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.104108
– volume: 285
  start-page: 316
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0090
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.018
– volume: 11
  start-page: 2187
  issue: 5
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0065
  article-title: High-dimensional neural network potentials for organic reactions and an improved training algorithm
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00211
– volume: 108
  start-page: 058301
  issue: 5
  year: 2012
  ident: 10.1016/j.commatsci.2017.08.031_b0100
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 108
  start-page: 253002
  issue: 25
  year: 2012
  ident: 10.1016/j.commatsci.2017.08.031_b0105
  article-title: Finding density functionals with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.253002
– volume: vol. 1
  year: 2003
  ident: 10.1016/j.commatsci.2017.08.031_b0020
– start-page: 247
  year: 2010
  ident: 10.1016/j.commatsci.2017.08.031_b0175
  article-title: How to find a good submatrix
– volume: 115
  start-page: 1012
  issue: 16
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0070
  article-title: Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24795
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.commatsci.2017.08.031_b0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 26
  start-page: 183001
  issue: 18
  year: 2014
  ident: 10.1016/j.commatsci.2017.08.031_b0045
  article-title: Representing potential energy surfaces by high-dimensional neural network potentials
  publication-title: J. Phys.: Condensed Matter
– volume: 17
  start-page: 8356
  issue: 13
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0075
  article-title: Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04751F
– volume: 129
  start-page: 332
  year: 2017
  ident: 10.1016/j.commatsci.2017.08.031_b0170
  article-title: A study of adatom ripening on an al (111) surface with machine learning force fields
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.12.007
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: 10.1016/j.commatsci.2017.08.031_b0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 115
  start-page: 1074
  issue: 16
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0165
  article-title: Adaptive machine learning framework to accelerate ab initio molecular dynamics
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24836
– volume: 116
  start-page: 979
  issue: 13
  year: 2016
  ident: 10.1016/j.commatsci.2017.08.031_b0055
  article-title: Neural network and ReaxFF comparison for Au properties
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25115
– volume: 95
  start-page: 094203
  year: 2017
  ident: 10.1016/j.commatsci.2017.08.031_b0135
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.094203
– volume: 98
  start-page: 146401
  issue: 14
  year: 2007
  ident: 10.1016/j.commatsci.2017.08.031_b0050
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– volume: 6
  start-page: 085318
  issue: 8
  year: 2016
  ident: 10.1016/j.commatsci.2017.08.031_b0060
  article-title: Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
  publication-title: AIP Adv.
  doi: 10.1063/1.4961886
– ident: 10.1016/j.commatsci.2017.08.031_b0155
– volume: 21
  start-page: 124
  issue: 1
  year: 1950
  ident: 10.1016/j.commatsci.2017.08.031_b0190
  article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729893
– volume: 22
  start-page: 074207
  issue: 7
  year: 2010
  ident: 10.1016/j.commatsci.2017.08.031_b0015
  article-title: Calculations for millions of atoms with density functional theory: linear scaling shows its potential
  publication-title: J. Phys.: Condensed Matter
– volume: 88
  start-page: 054104
  issue: 5
  year: 2013
  ident: 10.1016/j.commatsci.2017.08.031_b0030
  article-title: Machine-learning approach for one-and two-body corrections to density functional theory: applications to molecular and condensed water
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.054104
– volume: 95
  start-page: 214302
  year: 2017
  ident: 10.1016/j.commatsci.2017.08.031_b0150
  article-title: Accurate interatomic force fields via machine learning with covariant kernels
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.214302
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: 10.1016/j.commatsci.2017.08.031_b0210
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 114
  start-page: 135
  year: 2016
  ident: 10.1016/j.commatsci.2017.08.031_b0130
  article-title: An implementation of artificial neural-network potentials for atomistic materials simulations: performance for tio 2
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.11.047
– volume: vol. 491
  start-page: 473
  year: 1997
  ident: 10.1016/j.commatsci.2017.08.031_b0180
  article-title: A novel scheme for accurate MD simulations of large systems
– volume: 47
  start-page: 558
  issue: 1
  year: 1993
  ident: 10.1016/j.commatsci.2017.08.031_b0195
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 115
  start-page: 1094
  issue: 16
  year: 2015
  ident: 10.1016/j.commatsci.2017.08.031_b0095
  article-title: Crystal structure representations for machine learning models of formation energies
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24917
– volume: 134
  start-page: 074106
  issue: 7
  year: 2011
  ident: 10.1016/j.commatsci.2017.08.031_b0120
  article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– volume: 87
  start-page: 184115
  issue: 18
  year: 2013
  ident: 10.1016/j.commatsci.2017.08.031_b0115
  article-title: On representing chemical environments
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.184115
– volume: 14
  start-page: 1153
  issue: 3
  year: 2016
  ident: 10.1016/j.commatsci.2017.08.031_b0080
  article-title: Moment tensor potentials
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/15M1054183
– volume: 93
  start-page: 175503
  issue: 17
  year: 2004
  ident: 10.1016/j.commatsci.2017.08.031_b0185
  article-title: Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.175503
– volume: 215
  start-page: 809
  issue: 1
  year: 1999
  ident: 10.1016/j.commatsci.2017.08.031_b0005
  article-title: Linear-scaling ab-initio calculations for large and complex systems
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0
SSID ssj0016982
Score 2.6435528
Snippet [Display omitted] This paper introduces an active learning approach to the fitting of machine learning interatomic potentials. Our approach is based on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Active learning
Atomistic simulation
Interatomic potential
Learning on the fly
Machine learning
Moment tensor potentials
Title Active learning of linearly parametrized interatomic potentials
URI https://dx.doi.org/10.1016/j.commatsci.2017.08.031
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KvehBfGJ9lBy8xu5usi8vUoqlKvaihd6WTTaRiu0WWS8e_O3O7KO0IPTgYQ-7ZMIyTL5MmMn3AVzb2FM60jHXrme5tGHKUxH5PDOktxo5vipLMc_jYDSRj1N_2oJBcxeG2ipr7K8wvUTr-kuv9mZvOZv1XpyY7lLh_h9StU8Q7baUIUX5zc-qzcMN4lIwigZzGr3R44VzY16Is1OPV1hyeQr37x1qbdcZHsB-nS6yfvVHh9AyiyPYWyMRPIa7fglZrNZ_eGO5ZZQ7EnMxI2bvOYlmfZuMETUEVdXnM82WeUF9Qhh8JzAZ3r8ORryWReBaClnwzDHaR18azxjXpKkKMUuyUiptgjSNfV_ho9Mow5OOVjGeiDQ6KhPKZlS2E-IU2ot8Yc6ABSJUgUCE0yqUuBQR7BzlZB6RkllMrDoQNK5IdM0ZTtIVH0nTHPaerHyYkA8TErUUbgecleGyos3YbnLb-DrZiIAEwX2b8fl_jC9gl96qJpVLaBefX-YKU41CdctY6sJO_-FpNP4Ft4LWQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrMwevS5Nunl6kFEtqHxdb6G3JbjZSsQ8kXvz1ziSb0oLgwUMuSSYJH5tvZ5nZ7wN4yKK2VKGKmHLaGXOzIGEJDz2WavJbDW1PFqWY0diPp-7LzJvVoFvthaG2SsP9JacXbG3OtAyarfV83nq1I9pLhfN_QNU-7u9Bg9SpvDo0Ov1BPN4UE_yo8Iyi-xkF7LR54eMxNcQXUJtXUMh5cuf3SWpr4ukdw5HJGK1O-VEnUNPLUzjc0hE8g6dOwVqWsYB4s1aZRekjiRdbJO69IN-sb51apA5BhfXFXFnrVU6tQjj-zmHae550Y2acEZhyuZuz1NbKQzh1W2tHJ4kMMFHKXFcq7SdJ5HkSD5WEKS52lIxwUaQQq5TLLKXKHecXUF-ulvoSLJ8H0udIckoGLv6NyHe2tNM26ZJlmFs1wa-gEMrIhpN7xYeo-sPexQZDQRgK8rXkThPsTeC6VM74O-SxwlrsDAKB_P5X8NV_gu9hP56MhmLYHw-u4YCulD0rN1DPP7_0LWYeubwzI-sHFiTY8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+of+linearly+parametrized+interatomic+potentials&rft.jtitle=Computational+materials+science&rft.au=Podryabinkin%2C+Evgeny+V.&rft.au=Shapeev%2C+Alexander+V.&rft.date=2017-12-01&rft.issn=0927-0256&rft.volume=140&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1016%2Fj.commatsci.2017.08.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2017_08_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon