Modulation of physical properties of supramolecular hydrogels based on a hydrophobic core

We demonstrate herein the variation in viscoelastic properties of supramolecular hydrogels (SMGs) composed of two amphiphiles, N -Palmitoyl-Gly-His (PalGH) and sodium palmitate (PalNa). PalGH molecules in water form lamellar-like assemblies, which stack into sheet-shaped aggregates, resulting in the...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 17; no. 3; pp. 2192 - 2198
Main Authors Matsumoto, Keigo, Shundo, Atsuomi, Ohno, Masashi, Fujita, Shun, Saruhashi, Kowichiro, Miyachi, Nobuhide, Miyaji, Katsuaki, Tanaka, Keiji
Format Journal Article
LanguageEnglish
Published England 21.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate herein the variation in viscoelastic properties of supramolecular hydrogels (SMGs) composed of two amphiphiles, N -Palmitoyl-Gly-His (PalGH) and sodium palmitate (PalNa). PalGH molecules in water form lamellar-like assemblies, which stack into sheet-shaped aggregates, resulting in the evolution of three-dimensional network structures. Once PalNa is added to PalGH, the alkyl groups of PalNa incorporate themselves into the hydrophobic cores of PalGH lamellar-like assemblies, resulting in a change in the assembly from lamellar-like to fibrous micelle-like. Consequently, sheet-shaped aggregates turn into flexible fibrils, which form bundles, resulting in network structures. Mixed hydrogel network structures differ in morphology from those in homogenous PalGH and PalNa hydrogels. Changes in the network structure eventually alter the bulk viscoelastic properties of hydrogels. These results demonstrate that the viscoelastic properties of supramolecular hydrogels can be tuned by controlling the aggregation states. We demonstrate herein the variation in viscoelastic properties of supramolecular hydrogels (SMG) composed of two amphiphiles, N -Palmitoyl-Gly-His (PalGH) and sodium palmitate (PalNa).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp04395b