Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliabl...
Saved in:
Published in | Nanoscale Vol. 7; no. 41; pp. 17195 - 1721 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
07.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.
This review summarizes the wet chemical synthesis strategies, properties, and applications of copper nanowires. |
---|---|
AbstractList | Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives. Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in ‘see-through’ and/or ‘deformable’ future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives. Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives. This review summarizes the wet chemical synthesis strategies, properties, and applications of copper nanowires. |
Author | Woo, Kyoohee Ravi Kumar, D. V Moon, Jooho |
AuthorAffiliation | Yonsei University Department of Materials Science and Engineering Korea Institute of Machinery and Materials Advanced Manufacturing Systems Research Division |
AuthorAffiliation_xml | – name: Korea Institute of Machinery and Materials – name: Yonsei University – name: Advanced Manufacturing Systems Research Division – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: D. V surname: Ravi Kumar fullname: Ravi Kumar, D. V – sequence: 2 givenname: Kyoohee surname: Woo fullname: Woo, Kyoohee – sequence: 3 givenname: Jooho surname: Moon fullname: Moon, Jooho |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26439751$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1r3DAQxUVJyVdzyT1FvYXCtpJGsuxjWJp-ENoSkrOR5fFGwZZcSUtI__oq2WQLpZSeNKDfe8O8d0B2fPBIyDFn7ziD5r1VPjLFob59QfYFk2wBoMXOdq7kHjlI6ZaxqoEKdsmeqCQ0WvF9Yr7HMLnk_IreYab2BidnzUhTjibjymGiOdB07_MNJvcT6XJNvfHhzsXyNYRIccK4etDjiDbH4J2lZp7HYpNd8OkVeTmYMeHR03tIrs8_XC0_LS6-ffy8PLtYWAkyLyyYGqw0AAgWeKcG1kMjldSsN1UjtdVY807XzSBFLbntlNKobcd1bxgyOCSnG985hh9rTLktd1kcR-MxrFPLtWYghYDmP1AhGqHK-oK-fkLX3YR9O0c3mXjfPidYgLcbwMaQUsRhi3DWPtTTLtXXy8d6vhSY_QFblx9jKnG78e-SNxtJTHZr_bvxdu6Hwpz8i4Ff67Kntw |
CitedBy_id | crossref_primary_10_1038_s43586_024_00373_9 crossref_primary_10_1002_aenm_201602751 crossref_primary_10_1039_C7NR04739H crossref_primary_10_1021_acsanm_0c00708 crossref_primary_10_1016_j_apsusc_2019_06_289 crossref_primary_10_1038_s41598_017_02511_8 crossref_primary_10_1002_smll_202104690 crossref_primary_10_1016_j_nanoso_2019_100285 crossref_primary_10_1039_C8NR02736F crossref_primary_10_1002_smll_201800047 crossref_primary_10_1016_j_jcis_2018_07_036 crossref_primary_10_1007_s11051_017_3784_z crossref_primary_10_1039_C6NR00444J crossref_primary_10_1002_slct_201701173 crossref_primary_10_3390_polym11020384 crossref_primary_10_1016_j_optlaseng_2021_106605 crossref_primary_10_1039_C7NR02478A crossref_primary_10_3390_nano12234144 crossref_primary_10_1002_aenm_202400999 crossref_primary_10_1021_acs_jpcc_7b07861 crossref_primary_10_1021_acsomega_2c00359 crossref_primary_10_1007_s10853_024_09834_8 crossref_primary_10_1088_1674_4926_39_1_011002 crossref_primary_10_1080_14786435_2017_1330562 crossref_primary_10_1021_acsami_6b09293 crossref_primary_10_1142_S0218625X19501713 crossref_primary_10_1002_adfm_202200651 crossref_primary_10_1002_adma_201902807 crossref_primary_10_1039_C9NR01470E crossref_primary_10_1039_D2NR03990G crossref_primary_10_1016_j_colsurfa_2022_129692 crossref_primary_10_1039_C6NR05460A crossref_primary_10_1021_acsomega_3c02048 crossref_primary_10_1021_acsami_6b04579 crossref_primary_10_1021_jacs_6b10653 crossref_primary_10_1186_s11671_017_2343_y crossref_primary_10_1016_j_colsurfa_2019_123939 crossref_primary_10_1155_2018_1698357 crossref_primary_10_1016_j_matchemphys_2020_124109 crossref_primary_10_1002_slct_202202022 crossref_primary_10_1016_j_conbuildmat_2018_05_159 crossref_primary_10_1039_D1DT03464B crossref_primary_10_1007_s00339_019_3087_6 crossref_primary_10_1016_j_ijhydene_2024_01_289 crossref_primary_10_1039_C6DT04656H crossref_primary_10_1016_j_cjche_2021_03_003 crossref_primary_10_1007_s10854_016_5337_0 crossref_primary_10_1021_acsnano_1c02209 crossref_primary_10_1016_j_mtener_2019_05_007 crossref_primary_10_1039_C7NR09667D crossref_primary_10_3390_ma15031135 crossref_primary_10_1038_s41598_022_24672_x crossref_primary_10_1007_s10854_024_12303_2 crossref_primary_10_1016_j_apsusc_2018_10_136 crossref_primary_10_1021_acsami_6b09717 crossref_primary_10_1007_s11595_019_2028_8 crossref_primary_10_1002_aelm_201600510 crossref_primary_10_1002_ente_202000744 crossref_primary_10_1088_2053_1591_ab3b8b crossref_primary_10_1016_j_rechem_2023_101258 crossref_primary_10_1002_jccs_201700276 crossref_primary_10_1016_j_jcis_2016_02_049 crossref_primary_10_1039_D0NR04778C crossref_primary_10_1039_D2TA07668C crossref_primary_10_1021_acsami_7b15332 crossref_primary_10_1007_s10853_020_05617_z crossref_primary_10_1007_s12039_022_02056_y crossref_primary_10_1039_D3RA03462C crossref_primary_10_1007_s10854_017_6852_3 |
Cites_doi | 10.1002/adma.201100639 10.1021/nl0608543 10.1166/jnn.2015.9493 10.1002/adfm.201101775 10.1038/nnano.2008.83 10.1039/c3nr05496a 10.1016/j.snb.2013.03.065 10.1016/j.ijhydene.2014.03.017 10.1039/C3TC31647E 10.1002/adma.201001811 10.1002/adma.201304611 10.1038/nnano.2011.36 10.1038/nature07719 10.1021/la050220w 10.1039/c2ra21224b 10.1021/acsnano.5b01243 10.1039/C4CP03880K 10.1002/adma.201400009 10.1039/c2nr30126a 10.1016/j.apsusc.2009.06.062 10.1021/jp036023s 10.1002/adma.201102284 10.1002/adma.200701460 10.1021/la4036198 10.1002/smll.201402295 10.1002/adma.200901775 10.1039/c3nr33560g 10.1002/anie.201105539 10.1002/aenm.201300737 10.1021/nn502702a 10.1039/c3ta11699a 10.1002/smll.201303005 10.1021/nl301168r 10.1021/acsnano.5b00053 10.1039/C3CC48561G 10.1021/am5011354 10.1038/am.2014.88 10.1021/nn3060175 10.1002/adfm.201203802 10.1002/adma.201101986 10.1038/srep04788 10.1021/nl401070p 10.1021/ja0722224 10.1002/adma.201500917 10.1021/ja049217+ 10.1002/adma.201503244 10.1021/nn504883m 10.1002/adfm.201400972 10.1016/j.bios.2011.11.006 10.1021/ja505741e 10.1038/srep02323 10.1002/smll.201401276 10.1039/c2nr31254a 10.1039/b603442j 10.1039/c2ra22360k 10.1039/C4GC01566E 10.1126/science.1101243 10.1007/s10853-013-8005-2 10.1002/chem.201002987 10.1021/nn900348c 10.1039/C4TC00375F 10.1021/nl203385u 10.1021/ja3050184 10.1039/c4nr01024h 10.1039/b417803n 10.1002/adfm.201303108 10.1007/s10853-013-7219-7 10.1038/am.2014.36 10.1557/mrs.2011.234 10.1016/j.stam.2005.06.008 10.1021/la101385e 10.1016/j.surfcoat.2007.04.014 10.1016/j.jcrysgro.2006.11.221 10.1021/nn5070937 10.1021/ic500094b 10.1021/nn504308n 10.1002/adma.201200359 10.1007/s00604-012-0923-1 10.1021/acsnano.5b02790 10.1021/acs.nanolett.5b01505 10.1039/C4TC01632G 10.1039/c3nr33142c 10.1002/adma.201000775 10.1021/nl102725k 10.1021/nl034016+ 10.1002/adma.201400474 10.1021/nn1005232 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 H8G JG9 L7M |
DOI | 10.1039/c5nr05138j |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Copper Technical Reference Library Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1721 |
ExternalDocumentID | 26439751 10_1039_C5NR05138J c5nr05138j |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 H8G JG9 L7M |
ID | FETCH-LOGICAL-c434t-c3a83c4a33e3c31b5f0d3945470da6947c7e81b789f42841cb557e7cb17da0e03 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 09:09:16 EDT 2025 Fri Jul 11 10:24:10 EDT 2025 Mon Jul 21 05:51:27 EDT 2025 Tue Jul 01 00:33:25 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Thu May 19 04:22:45 EDT 2016 Wed Jun 05 04:38:36 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-c3a83c4a33e3c31b5f0d3945470da6947c7e81b789f42841cb557e7cb17da0e03 |
Notes | Dr D. V. Ravi Kumar obtained his M.Sc. (Master of Science) degree in physical chemistry from Andhra University, Visakhapatnam, Andhra Pradesh, India. Later, for his PhD, he joined the National Chemical Laboratory, Pune (NCL, Pune), under the guidance of Dr B. L. V. Prasad and Amol A. Kulkarni, where he worked on the development of continuous flow methods for the synthesis of nanomaterials. After obtaining his PhD degree in 2013, he joined Prof. Moon's lab as a postdoctoral fellow and he worked on the synthesis of Cu nanowires. His research interests expand to the areas of synthesis, nucleation-growth kinetics and applications of different nanomaterials. Jooho Moon is a professor in the Department of Materials Science and Engineering at the Yonsei University, Seoul, Korea. He holds an MS and a PhD in materials science and engineering from the University of Florida. He did his postdoctoral research at the Materials Processing Center at MIT from 1996 to 1998. He was awarded a Japan Society for the Promotion of Science (JSPS) fellowship in 1998. He joined the faculty at Yonsei University as an assistant professor in 2000, and was promoted to professor in 2009. His research interests include ink-jet printing of self-assembling colloids and functional nanoparticles, printed electronics and displays, micro solid oxide fuel cells, solar cells, and organic-inorganic hybrid materials. He has co-authored more than 170 publications in peer-reviewed articles on basic and applied research topics, and is named in 35 patents or disclosures. Kyoohee Woo is a senior researcher at the Korea Institute of Machinery & Materials (KIMM), Daejeon, Korea. He received his BS in 2007 and a PhD in 2013 from the Department of Materials Science and Engineering at Yonsei University. He joined the material R&D team at LG Display working as a senior research engineer from 2013 to 2014. His research interests focus mainly on nanomaterial synthesis, light-assisted material processing and flexible device fabrication based on various printing/coating techniques. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26439751 |
PQID | 1722925394 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1770342239 crossref_citationtrail_10_1039_C5NR05138J proquest_miscellaneous_1722925394 pubmed_primary_26439751 crossref_primary_10_1039_C5NR05138J rsc_primary_c5nr05138j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-07 |
PublicationDateYYYYMMDD | 2015-11-07 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2015 |
References | Yamada (C5NR05138J-(cit6)/*[position()=1]) 2011; 6 Chang (C5NR05138J-(cit37)/*[position()=1]) 2014; 39 Rathmell (C5NR05138J-(cit75)/*[position()=1]) 2011; 23 Khalil (C5NR05138J-(cit49)/*[position()=1]) 2014; 49 Hu (C5NR05138J-(cit15)/*[position()=1]) 2011; 36 Won (C5NR05138J-(cit79)/*[position()=1]) 2014; 6 Nam (C5NR05138J-(cit18)/*[position()=1]) 2014; 4 Shin (C5NR05138J-(cit22)/*[position()=1]) 2014; 26 Choi (C5NR05138J-(cit30)/*[position()=1]) 2015; 9 Lee (C5NR05138J-(cit35)/*[position()=1]) 2013; 23 Ye (C5NR05138J-(cit63)/*[position()=1]) 2011; 17 Tang (C5NR05138J-(cit84)/*[position()=1]) 2014; 8 Chen (C5NR05138J-(cit77)/*[position()=1]) 2014; 8 Choi (C5NR05138J-(cit46)/*[position()=1]) 2004; 126 Wu (C5NR05138J-(cit50)/*[position()=1]) 2010; 10 Geng (C5NR05138J-(cit10)/*[position()=1]) 2007; 129 Cheng (C5NR05138J-(cit29)/*[position()=1]) 2015; 9 Guo (C5NR05138J-(cit74)/*[position()=1]) 2013; 5 Mohl (C5NR05138J-(cit58)/*[position()=1]) 2010; 26 De (C5NR05138J-(cit17)/*[position()=1]) 2009; 3 Haase (C5NR05138J-(cit48)/*[position()=1]) 2007; 201 Monson (C5NR05138J-(cit55)/*[position()=1]) 2003; 3 Sachse (C5NR05138J-(cit43)/*[position()=1]) 2014; 4 Rathmell (C5NR05138J-(cit76)/*[position()=1]) 2012; 12 Kim (C5NR05138J-(cit36)/*[position()=1]) 2015; 15 Chang (C5NR05138J-(cit38)/*[position()=1]) 2013; 1 Chang (C5NR05138J-(cit66)/*[position()=1]) 2005; 21 Li (C5NR05138J-(cit62)/*[position()=1]) 2014; 53 Meng (C5NR05138J-(cit68)/*[position()=1]) 2012; 12 Han (C5NR05138J-(cit80)/*[position()=1]) 2014; 26 Hyun (C5NR05138J-(cit19)/*[position()=1]) 2011; 23 Cheng (C5NR05138J-(cit72)/*[position()=1]) 2014; 2 Wu (C5NR05138J-(cit4)/*[position()=1]) 2004; 305 Yu (C5NR05138J-(cit9)/*[position()=1]) 2009; 21 Kim (C5NR05138J-(cit47)/*[position()=1]) 2008; 20 Yang (C5NR05138J-(cit64)/*[position()=1]) 2014; 30 Vosgueritchian (C5NR05138J-(cit1)/*[position()=1]) 2012; 22 Wang (C5NR05138J-(cit87)/*[position()=1]) 2013; 180 Kirchmeyer (C5NR05138J-(cit2)/*[position()=1]) 2005; 15 Yu (C5NR05138J-(cit7)/*[position()=1]) 2011; 23 Lee (C5NR05138J-(cit16)/*[position()=1]) 2012; 24 Ye (C5NR05138J-(cit39)/*[position()=1]) 2014; 50 Gelves (C5NR05138J-(cit53)/*[position()=1]) 2006; 16 Hsu (C5NR05138J-(cit51)/*[position()=1]) 2014; 136 Zhang (C5NR05138J-(cit71)/*[position()=1]) 2012; 134 Im (C5NR05138J-(cit83)/*[position()=1]) 2014; 8 Eda (C5NR05138J-(cit13)/*[position()=1]) 2008; 3 Ye (C5NR05138J-(cit69)/*[position()=1]) 2014; 10 Dinh (C5NR05138J-(cit24)/*[position()=1]) 2013; 2 Hong (C5NR05138J-(cit33)/*[position()=1]) 2015; 27 Liu (C5NR05138J-(cit56)/*[position()=1]) 2003; 107 Park (C5NR05138J-(cit11)/*[position()=1]) 2013; 5 Han (C5NR05138J-(cit81)/*[position()=1]) 2015 Lee (C5NR05138J-(cit32)/*[position()=1]) 2014; 24 Hong (C5NR05138J-(cit34)/*[position()=1]) 2015; 15 Ahn (C5NR05138J-(cit45)/*[position()=1]) 2015; 9 Lee (C5NR05138J-(cit28)/*[position()=1]) 2013; 13 Stewart (C5NR05138J-(cit82)/*[position()=1]) 2014; 6 Hu (C5NR05138J-(cit20)/*[position()=1]) 2010; 4 Zilberberg (C5NR05138J-(cit27)/*[position()=1]) 2014; 24 Gao (C5NR05138J-(cit14)/*[position()=1]) 2015; 9 Won (C5NR05138J-(cit85)/*[position()=1]) 2014; 6 Inguanta (C5NR05138J-(cit52)/*[position()=1]) 2009; 255 Ravi Kumar (C5NR05138J-(cit61)/*[position()=1]) 2014; 16 Zeng (C5NR05138J-(cit21)/*[position()=1]) 2010; 22 Jin (C5NR05138J-(cit65)/*[position()=1]) 2011; 50 Yin (C5NR05138J-(cit41)/*[position()=1]) 2014; 10 Yao (C5NR05138J-(cit25)/*[position()=1]) 2014; 6 Zhao (C5NR05138J-(cit70)/*[position()=1]) 2012; 2 Kim (C5NR05138J-(cit12)/*[position()=1]) 2009; 457 Shi (C5NR05138J-(cit57)/*[position()=1]) 2005; 6 Kim (C5NR05138J-(cit3)/*[position()=1]) 2014; 26 Zhang (C5NR05138J-(cit8)/*[position()=1]) 2006; 6 Yu (C5NR05138J-(cit5)/*[position()=1]) 2009; 21 Wang (C5NR05138J-(cit60)/*[position()=1]) 2007; 299 Bergin (C5NR05138J-(cit23)/*[position()=1]) 2012; 4 Huang (C5NR05138J-(cit89)/*[position()=1]) 2013; 182 Zhang (C5NR05138J-(cit88)/*[position()=1]) 2012; 31 Rathmell (C5NR05138J-(cit67)/*[position()=1]) 2010; 22 Kholmanov (C5NR05138J-(cit78)/*[position()=1]) 2013; 7 Bhanushali (C5NR05138J-(cit42)/*[position()=1]) 2015; 11 Pate (C5NR05138J-(cit54)/*[position()=1]) 2014; 2 Jia (C5NR05138J-(cit59)/*[position()=1]) 2013; 48 Guo (C5NR05138J-(cit73)/*[position()=1]) 2013; 3 Si (C5NR05138J-(cit86)/*[position()=1]) 2013; 3 Kevin (C5NR05138J-(cit40)/*[position()=1]) 2015; 17 Cheong (C5NR05138J-(cit26)/*[position()=1]) 2014; 6 Hu (C5NR05138J-(cit44)/*[position()=1]) 2014; 2 Lee (C5NR05138J-(cit31)/*[position()=1]) 2012; 4 |
References_xml | – volume: 23 start-page: 2946 year: 2011 ident: C5NR05138J-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100639 – volume: 6 start-page: 1880 year: 2006 ident: C5NR05138J-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0608543 – volume: 15 start-page: 2317 year: 2015 ident: C5NR05138J-(cit34)/*[position()=1] publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2015.9493 – volume: 22 start-page: 421 year: 2012 ident: C5NR05138J-(cit1)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101775 – volume: 3 start-page: 270 year: 2008 ident: C5NR05138J-(cit13)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.83 – volume: 6 start-page: 2345 year: 2014 ident: C5NR05138J-(cit25)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr05496a – volume: 182 start-page: 618 year: 2013 ident: C5NR05138J-(cit89)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.03.065 – volume: 39 start-page: 7422 year: 2014 ident: C5NR05138J-(cit37)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.017 – volume: 2 start-page: 1298 year: 2014 ident: C5NR05138J-(cit44)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31647E – volume: 22 start-page: 4484 year: 2010 ident: C5NR05138J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201001811 – volume: 2 start-page: 1 year: 2013 ident: C5NR05138J-(cit24)/*[position()=1] publication-title: Rev. Adv. Sci. Eng. – volume: 26 start-page: 2268 year: 2014 ident: C5NR05138J-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304611 – volume: 6 start-page: 296 year: 2011 ident: C5NR05138J-(cit6)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.36 – volume: 457 start-page: 706 year: 2009 ident: C5NR05138J-(cit12)/*[position()=1] publication-title: Nature doi: 10.1038/nature07719 – volume: 21 start-page: 3746 year: 2005 ident: C5NR05138J-(cit66)/*[position()=1] publication-title: Langmuir doi: 10.1021/la050220w – volume: 2 start-page: 11544 year: 2012 ident: C5NR05138J-(cit70)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra21224b – volume: 9 start-page: 5440 year: 2015 ident: C5NR05138J-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01243 – volume: 16 start-page: 22107 year: 2014 ident: C5NR05138J-(cit61)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03880K – volume: 26 start-page: 3706 year: 2014 ident: C5NR05138J-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400009 – volume: 4 start-page: 1996 year: 2012 ident: C5NR05138J-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30126a – volume: 255 start-page: 8816 year: 2009 ident: C5NR05138J-(cit52)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.06.062 – volume: 107 start-page: 12658 year: 2003 ident: C5NR05138J-(cit56)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp036023s – volume: 23 start-page: 4798 year: 2011 ident: C5NR05138J-(cit75)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201102284 – volume: 20 start-page: 1859 year: 2008 ident: C5NR05138J-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200701460 – volume: 30 start-page: 602 year: 2014 ident: C5NR05138J-(cit64)/*[position()=1] publication-title: Langmuir doi: 10.1021/la4036198 – volume: 11 start-page: 1232 year: 2015 ident: C5NR05138J-(cit42)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402295 – volume: 21 start-page: 4793 year: 2009 ident: C5NR05138J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200901775 – volume: 5 start-page: 1727 year: 2013 ident: C5NR05138J-(cit11)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr33560g – volume: 50 start-page: 10560 year: 2011 ident: C5NR05138J-(cit65)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105539 – volume: 4 start-page: 1300737 year: 2014 ident: C5NR05138J-(cit43)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300737 – volume: 8 start-page: 5707 year: 2014 ident: C5NR05138J-(cit84)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn502702a – volume: 1 start-page: 8541 year: 2013 ident: C5NR05138J-(cit38)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11699a – volume: 10 start-page: 1771 year: 2014 ident: C5NR05138J-(cit69)/*[position()=1] publication-title: Small doi: 10.1002/smll.201303005 – volume: 12 start-page: 3193 year: 2012 ident: C5NR05138J-(cit76)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl301168r – volume: 9 start-page: 3125 year: 2015 ident: C5NR05138J-(cit45)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b00053 – volume: 50 start-page: 2562 year: 2014 ident: C5NR05138J-(cit39)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC48561G – volume: 6 start-page: 7846 year: 2014 ident: C5NR05138J-(cit26)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5011354 – volume: 6 start-page: e132 year: 2014 ident: C5NR05138J-(cit85)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2014.88 – volume: 7 start-page: 1811 year: 2013 ident: C5NR05138J-(cit78)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3060175 – volume: 23 start-page: 4171 year: 2013 ident: C5NR05138J-(cit35)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203802 – volume: 23 start-page: 3989 year: 2011 ident: C5NR05138J-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201101986 – volume: 4 start-page: 4788 year: 2014 ident: C5NR05138J-(cit18)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep04788 – volume: 13 start-page: 2814 year: 2013 ident: C5NR05138J-(cit28)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401070p – volume: 129 start-page: 7758 year: 2007 ident: C5NR05138J-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0722224 – volume: 27 start-page: 4744 year: 2015 ident: C5NR05138J-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500917 – volume: 126 start-page: 6248 year: 2004 ident: C5NR05138J-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049217+ – year: 2015 ident: C5NR05138J-(cit81)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503244 – volume: 8 start-page: 10973 year: 2014 ident: C5NR05138J-(cit83)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn504883m – volume: 24 start-page: 5671 year: 2014 ident: C5NR05138J-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400972 – volume: 31 start-page: 426 year: 2012 ident: C5NR05138J-(cit88)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.11.006 – volume: 136 start-page: 10593 year: 2014 ident: C5NR05138J-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505741e – volume: 3 start-page: 2323 year: 2013 ident: C5NR05138J-(cit73)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep02323 – volume: 10 start-page: 5047 year: 2014 ident: C5NR05138J-(cit41)/*[position()=1] publication-title: Small doi: 10.1002/smll.201401276 – volume: 4 start-page: 6408 year: 2012 ident: C5NR05138J-(cit31)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31254a – volume: 16 start-page: 3075 year: 2006 ident: C5NR05138J-(cit53)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b603442j – volume: 3 start-page: 3487 year: 2013 ident: C5NR05138J-(cit86)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra22360k – volume: 17 start-page: 1120 year: 2015 ident: C5NR05138J-(cit40)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C4GC01566E – volume: 305 start-page: 1273 year: 2004 ident: C5NR05138J-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1101243 – volume: 49 start-page: 3052 year: 2014 ident: C5NR05138J-(cit49)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-8005-2 – volume: 17 start-page: 3074 year: 2011 ident: C5NR05138J-(cit63)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201002987 – volume: 3 start-page: 1767 year: 2009 ident: C5NR05138J-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900348c – volume: 2 start-page: 5309 year: 2014 ident: C5NR05138J-(cit72)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00375F – volume: 12 start-page: 234 year: 2012 ident: C5NR05138J-(cit68)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl203385u – volume: 134 start-page: 14283 year: 2012 ident: C5NR05138J-(cit71)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3050184 – volume: 6 start-page: 5980 year: 2014 ident: C5NR05138J-(cit82)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c4nr01024h – volume: 15 start-page: 2077 year: 2005 ident: C5NR05138J-(cit2)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b417803n – volume: 24 start-page: 1671 year: 2014 ident: C5NR05138J-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303108 – volume: 48 start-page: 4073 year: 2013 ident: C5NR05138J-(cit59)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7219-7 – volume: 6 start-page: e105 year: 2014 ident: C5NR05138J-(cit79)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2014.36 – volume: 36 start-page: 760 year: 2011 ident: C5NR05138J-(cit15)/*[position()=1] publication-title: Mater. Res. Soc. Bull. doi: 10.1557/mrs.2011.234 – volume: 6 start-page: 761 year: 2005 ident: C5NR05138J-(cit57)/*[position()=1] publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2005.06.008 – volume: 26 start-page: 16496 year: 2010 ident: C5NR05138J-(cit58)/*[position()=1] publication-title: Langmuir doi: 10.1021/la101385e – volume: 201 start-page: 9184 year: 2007 ident: C5NR05138J-(cit48)/*[position()=1] publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.04.014 – volume: 299 start-page: 158 year: 2007 ident: C5NR05138J-(cit60)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.11.221 – volume: 9 start-page: 3887 year: 2015 ident: C5NR05138J-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5070937 – volume: 53 start-page: 4440 year: 2014 ident: C5NR05138J-(cit62)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500094b – volume: 8 start-page: 9673 year: 2014 ident: C5NR05138J-(cit77)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn504308n – volume: 24 start-page: 3326 year: 2012 ident: C5NR05138J-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200359 – volume: 21 start-page: 4793 year: 2009 ident: C5NR05138J-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200901775 – volume: 180 start-page: 161 year: 2013 ident: C5NR05138J-(cit87)/*[position()=1] publication-title: Microchim. Acta doi: 10.1007/s00604-012-0923-1 – volume: 9 start-page: 6626 year: 2015 ident: C5NR05138J-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b02790 – volume: 15 start-page: 5240 year: 2015 ident: C5NR05138J-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01505 – volume: 2 start-page: 9265 year: 2014 ident: C5NR05138J-(cit54)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01632G – volume: 5 start-page: 2394 year: 2013 ident: C5NR05138J-(cit74)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr33142c – volume: 22 start-page: 3558 year: 2010 ident: C5NR05138J-(cit67)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201000775 – volume: 10 start-page: 4242 year: 2010 ident: C5NR05138J-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl102725k – volume: 3 start-page: 359 year: 2003 ident: C5NR05138J-(cit55)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl034016+ – volume: 26 start-page: 5808 year: 2014 ident: C5NR05138J-(cit80)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400474 – volume: 4 start-page: 2955 year: 2010 ident: C5NR05138J-(cit20)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1005232 |
SSID | ssj0069363 |
Score | 2.4472568 |
SecondaryResourceType | review_article |
Snippet | Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable'... Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in ‘see-through’ and/or ‘deformable’... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17195 |
SubjectTerms | APPLICATIONS Copper Electrodes ELECTRONIC PRODUCTS Electronics MECHANICAL PROPERTIES MICA MICROWIRE Nanowires Precursors Production methods Strategy Synthesis (chemistry) |
Title | Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26439751 https://www.proquest.com/docview/1722925394 https://www.proquest.com/docview/1770342239 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4lVIecgILmiVJcnE6_WxLI9qKyqEWrW3KH5EFKG42mQrtb-ecV5OxYKAS7Sa2Jtdf854xp75hpDXWqLKi7gMmz2mVBdJKCKtQ1WYuSjmzEDuEpw_H80OTtLlGTvzhROb7JJaTtX1xryS_0EVZYiry5L9B2SHL0UBfkZ88YoI4_WvMP6ysghTs51q6onqc_-ruud_cJZldVWikVedX5vJYj0p89I6euKq5fp2yZeu_6gazvhI258CXZ5Phmjs91MfGntqm73WwytrvxkfR2vbw_wlSu14YyFmTYYd9_onccGGAC3J-NSMZfyGAuWjedKyWHXaMOZxW0GzW1qdu7lRbUfgWE8VK1eoI2D-3S9OQ8igv3mbbCfoE6BS294_fPfptF94ZwKawnnD7-7ZaEG89b1v2h-_OBVoYqz60i-NiXF8j-x0vgHdb4G-T26Z8gG5O2KMfEjyAXKKkNMecuohp7WlHnK6WNMBcoqQ0x5y6iGnY8gfkZOPH44XB2FXJSNUKaR1qCCfg0pzAAMKYsmKSINwPG2Rzmci5Yob9E04vnroaqaxkoxxw5WMuc4jE8Eu2SptaZ4QigM3k4AeLJp5aZorKYXmoEFq1PPFrAjIm37sMtVRyLtKJj-yJpQBRLZgR1-bcV4G5NXQ9qIlTtnY6mUPQYaj5w6r8tLYdZXhXElEwvCf_KkNdwyWCYiAPG7xG56VNKY2iwOyi4AOYj8RArK3-UZ2oYu93_V6Su74d-UZ2apXa_MczdJavuim409ReY-K |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promising+wet+chemical+strategies+to+synthesize+Cu+nanowires+for+emerging+electronic+applications&rft.au=Ravi+Kumar%2C+D.+V&rft.au=Woo%2C+Kyoohee&rft.au=Moon%2C+Jooho&rft.date=2015-11-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=7&rft.issue=41&rft.spage=17195&rft.epage=1721&rft_id=info:doi/10.1039%2Fc5nr05138j&rft.externalDocID=c5nr05138j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |