Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications

Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliabl...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 7; no. 41; pp. 17195 - 1721
Main Authors Ravi Kumar, D. V, Woo, Kyoohee, Moon, Jooho
Format Journal Article
LanguageEnglish
Published England 07.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives. This review summarizes the wet chemical synthesis strategies, properties, and applications of copper nanowires.
AbstractList Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in ‘see-through’ and/or ‘deformable’ future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives. This review summarizes the wet chemical synthesis strategies, properties, and applications of copper nanowires.
Author Woo, Kyoohee
Ravi Kumar, D. V
Moon, Jooho
AuthorAffiliation Yonsei University
Department of Materials Science and Engineering
Korea Institute of Machinery and Materials
Advanced Manufacturing Systems Research Division
AuthorAffiliation_xml – name: Korea Institute of Machinery and Materials
– name: Yonsei University
– name: Advanced Manufacturing Systems Research Division
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: D. V
  surname: Ravi Kumar
  fullname: Ravi Kumar, D. V
– sequence: 2
  givenname: Kyoohee
  surname: Woo
  fullname: Woo, Kyoohee
– sequence: 3
  givenname: Jooho
  surname: Moon
  fullname: Moon, Jooho
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26439751$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAQxUVJyVdzyT1FvYXCtpJGsuxjWJp-ENoSkrOR5fFGwZZcSUtI__oq2WQLpZSeNKDfe8O8d0B2fPBIyDFn7ziD5r1VPjLFob59QfYFk2wBoMXOdq7kHjlI6ZaxqoEKdsmeqCQ0WvF9Yr7HMLnk_IreYab2BidnzUhTjibjymGiOdB07_MNJvcT6XJNvfHhzsXyNYRIccK4etDjiDbH4J2lZp7HYpNd8OkVeTmYMeHR03tIrs8_XC0_LS6-ffy8PLtYWAkyLyyYGqw0AAgWeKcG1kMjldSsN1UjtdVY807XzSBFLbntlNKobcd1bxgyOCSnG985hh9rTLktd1kcR-MxrFPLtWYghYDmP1AhGqHK-oK-fkLX3YR9O0c3mXjfPidYgLcbwMaQUsRhi3DWPtTTLtXXy8d6vhSY_QFblx9jKnG78e-SNxtJTHZr_bvxdu6Hwpz8i4Ff67Kntw
CitedBy_id crossref_primary_10_1038_s43586_024_00373_9
crossref_primary_10_1002_aenm_201602751
crossref_primary_10_1039_C7NR04739H
crossref_primary_10_1021_acsanm_0c00708
crossref_primary_10_1016_j_apsusc_2019_06_289
crossref_primary_10_1038_s41598_017_02511_8
crossref_primary_10_1002_smll_202104690
crossref_primary_10_1016_j_nanoso_2019_100285
crossref_primary_10_1039_C8NR02736F
crossref_primary_10_1002_smll_201800047
crossref_primary_10_1016_j_jcis_2018_07_036
crossref_primary_10_1007_s11051_017_3784_z
crossref_primary_10_1039_C6NR00444J
crossref_primary_10_1002_slct_201701173
crossref_primary_10_3390_polym11020384
crossref_primary_10_1016_j_optlaseng_2021_106605
crossref_primary_10_1039_C7NR02478A
crossref_primary_10_3390_nano12234144
crossref_primary_10_1002_aenm_202400999
crossref_primary_10_1021_acs_jpcc_7b07861
crossref_primary_10_1021_acsomega_2c00359
crossref_primary_10_1007_s10853_024_09834_8
crossref_primary_10_1088_1674_4926_39_1_011002
crossref_primary_10_1080_14786435_2017_1330562
crossref_primary_10_1021_acsami_6b09293
crossref_primary_10_1142_S0218625X19501713
crossref_primary_10_1002_adfm_202200651
crossref_primary_10_1002_adma_201902807
crossref_primary_10_1039_C9NR01470E
crossref_primary_10_1039_D2NR03990G
crossref_primary_10_1016_j_colsurfa_2022_129692
crossref_primary_10_1039_C6NR05460A
crossref_primary_10_1021_acsomega_3c02048
crossref_primary_10_1021_acsami_6b04579
crossref_primary_10_1021_jacs_6b10653
crossref_primary_10_1186_s11671_017_2343_y
crossref_primary_10_1016_j_colsurfa_2019_123939
crossref_primary_10_1155_2018_1698357
crossref_primary_10_1016_j_matchemphys_2020_124109
crossref_primary_10_1002_slct_202202022
crossref_primary_10_1016_j_conbuildmat_2018_05_159
crossref_primary_10_1039_D1DT03464B
crossref_primary_10_1007_s00339_019_3087_6
crossref_primary_10_1016_j_ijhydene_2024_01_289
crossref_primary_10_1039_C6DT04656H
crossref_primary_10_1016_j_cjche_2021_03_003
crossref_primary_10_1007_s10854_016_5337_0
crossref_primary_10_1021_acsnano_1c02209
crossref_primary_10_1016_j_mtener_2019_05_007
crossref_primary_10_1039_C7NR09667D
crossref_primary_10_3390_ma15031135
crossref_primary_10_1038_s41598_022_24672_x
crossref_primary_10_1007_s10854_024_12303_2
crossref_primary_10_1016_j_apsusc_2018_10_136
crossref_primary_10_1021_acsami_6b09717
crossref_primary_10_1007_s11595_019_2028_8
crossref_primary_10_1002_aelm_201600510
crossref_primary_10_1002_ente_202000744
crossref_primary_10_1088_2053_1591_ab3b8b
crossref_primary_10_1016_j_rechem_2023_101258
crossref_primary_10_1002_jccs_201700276
crossref_primary_10_1016_j_jcis_2016_02_049
crossref_primary_10_1039_D0NR04778C
crossref_primary_10_1039_D2TA07668C
crossref_primary_10_1021_acsami_7b15332
crossref_primary_10_1007_s10853_020_05617_z
crossref_primary_10_1007_s12039_022_02056_y
crossref_primary_10_1039_D3RA03462C
crossref_primary_10_1007_s10854_017_6852_3
Cites_doi 10.1002/adma.201100639
10.1021/nl0608543
10.1166/jnn.2015.9493
10.1002/adfm.201101775
10.1038/nnano.2008.83
10.1039/c3nr05496a
10.1016/j.snb.2013.03.065
10.1016/j.ijhydene.2014.03.017
10.1039/C3TC31647E
10.1002/adma.201001811
10.1002/adma.201304611
10.1038/nnano.2011.36
10.1038/nature07719
10.1021/la050220w
10.1039/c2ra21224b
10.1021/acsnano.5b01243
10.1039/C4CP03880K
10.1002/adma.201400009
10.1039/c2nr30126a
10.1016/j.apsusc.2009.06.062
10.1021/jp036023s
10.1002/adma.201102284
10.1002/adma.200701460
10.1021/la4036198
10.1002/smll.201402295
10.1002/adma.200901775
10.1039/c3nr33560g
10.1002/anie.201105539
10.1002/aenm.201300737
10.1021/nn502702a
10.1039/c3ta11699a
10.1002/smll.201303005
10.1021/nl301168r
10.1021/acsnano.5b00053
10.1039/C3CC48561G
10.1021/am5011354
10.1038/am.2014.88
10.1021/nn3060175
10.1002/adfm.201203802
10.1002/adma.201101986
10.1038/srep04788
10.1021/nl401070p
10.1021/ja0722224
10.1002/adma.201500917
10.1021/ja049217+
10.1002/adma.201503244
10.1021/nn504883m
10.1002/adfm.201400972
10.1016/j.bios.2011.11.006
10.1021/ja505741e
10.1038/srep02323
10.1002/smll.201401276
10.1039/c2nr31254a
10.1039/b603442j
10.1039/c2ra22360k
10.1039/C4GC01566E
10.1126/science.1101243
10.1007/s10853-013-8005-2
10.1002/chem.201002987
10.1021/nn900348c
10.1039/C4TC00375F
10.1021/nl203385u
10.1021/ja3050184
10.1039/c4nr01024h
10.1039/b417803n
10.1002/adfm.201303108
10.1007/s10853-013-7219-7
10.1038/am.2014.36
10.1557/mrs.2011.234
10.1016/j.stam.2005.06.008
10.1021/la101385e
10.1016/j.surfcoat.2007.04.014
10.1016/j.jcrysgro.2006.11.221
10.1021/nn5070937
10.1021/ic500094b
10.1021/nn504308n
10.1002/adma.201200359
10.1007/s00604-012-0923-1
10.1021/acsnano.5b02790
10.1021/acs.nanolett.5b01505
10.1039/C4TC01632G
10.1039/c3nr33142c
10.1002/adma.201000775
10.1021/nl102725k
10.1021/nl034016+
10.1002/adma.201400474
10.1021/nn1005232
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
H8G
JG9
L7M
DOI 10.1039/c5nr05138j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Copper Technical Reference Library
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1721
ExternalDocumentID 26439751
10_1039_C5NR05138J
c5nr05138j
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
H8G
JG9
L7M
ID FETCH-LOGICAL-c434t-c3a83c4a33e3c31b5f0d3945470da6947c7e81b789f42841cb557e7cb17da0e03
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 09:09:16 EDT 2025
Fri Jul 11 10:24:10 EDT 2025
Mon Jul 21 05:51:27 EDT 2025
Tue Jul 01 00:33:25 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Thu May 19 04:22:45 EDT 2016
Wed Jun 05 04:38:36 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-c3a83c4a33e3c31b5f0d3945470da6947c7e81b789f42841cb557e7cb17da0e03
Notes Dr D. V. Ravi Kumar obtained his M.Sc. (Master of Science) degree in physical chemistry from Andhra University, Visakhapatnam, Andhra Pradesh, India. Later, for his PhD, he joined the National Chemical Laboratory, Pune (NCL, Pune), under the guidance of Dr B. L. V. Prasad and Amol A. Kulkarni, where he worked on the development of continuous flow methods for the synthesis of nanomaterials. After obtaining his PhD degree in 2013, he joined Prof. Moon's lab as a postdoctoral fellow and he worked on the synthesis of Cu nanowires. His research interests expand to the areas of synthesis, nucleation-growth kinetics and applications of different nanomaterials.
Jooho Moon is a professor in the Department of Materials Science and Engineering at the Yonsei University, Seoul, Korea. He holds an MS and a PhD in materials science and engineering from the University of Florida. He did his postdoctoral research at the Materials Processing Center at MIT from 1996 to 1998. He was awarded a Japan Society for the Promotion of Science (JSPS) fellowship in 1998. He joined the faculty at Yonsei University as an assistant professor in 2000, and was promoted to professor in 2009. His research interests include ink-jet printing of self-assembling colloids and functional nanoparticles, printed electronics and displays, micro solid oxide fuel cells, solar cells, and organic-inorganic hybrid materials. He has co-authored more than 170 publications in peer-reviewed articles on basic and applied research topics, and is named in 35 patents or disclosures.
Kyoohee Woo is a senior researcher at the Korea Institute of Machinery & Materials (KIMM), Daejeon, Korea. He received his BS in 2007 and a PhD in 2013 from the Department of Materials Science and Engineering at Yonsei University. He joined the material R&D team at LG Display working as a senior research engineer from 2013 to 2014. His research interests focus mainly on nanomaterial synthesis, light-assisted material processing and flexible device fabrication based on various printing/coating techniques.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26439751
PQID 1722925394
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1770342239
crossref_citationtrail_10_1039_C5NR05138J
proquest_miscellaneous_1722925394
pubmed_primary_26439751
crossref_primary_10_1039_C5NR05138J
rsc_primary_c5nr05138j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-07
PublicationDateYYYYMMDD 2015-11-07
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2015
References Yamada (C5NR05138J-(cit6)/*[position()=1]) 2011; 6
Chang (C5NR05138J-(cit37)/*[position()=1]) 2014; 39
Rathmell (C5NR05138J-(cit75)/*[position()=1]) 2011; 23
Khalil (C5NR05138J-(cit49)/*[position()=1]) 2014; 49
Hu (C5NR05138J-(cit15)/*[position()=1]) 2011; 36
Won (C5NR05138J-(cit79)/*[position()=1]) 2014; 6
Nam (C5NR05138J-(cit18)/*[position()=1]) 2014; 4
Shin (C5NR05138J-(cit22)/*[position()=1]) 2014; 26
Choi (C5NR05138J-(cit30)/*[position()=1]) 2015; 9
Lee (C5NR05138J-(cit35)/*[position()=1]) 2013; 23
Ye (C5NR05138J-(cit63)/*[position()=1]) 2011; 17
Tang (C5NR05138J-(cit84)/*[position()=1]) 2014; 8
Chen (C5NR05138J-(cit77)/*[position()=1]) 2014; 8
Choi (C5NR05138J-(cit46)/*[position()=1]) 2004; 126
Wu (C5NR05138J-(cit50)/*[position()=1]) 2010; 10
Geng (C5NR05138J-(cit10)/*[position()=1]) 2007; 129
Cheng (C5NR05138J-(cit29)/*[position()=1]) 2015; 9
Guo (C5NR05138J-(cit74)/*[position()=1]) 2013; 5
Mohl (C5NR05138J-(cit58)/*[position()=1]) 2010; 26
De (C5NR05138J-(cit17)/*[position()=1]) 2009; 3
Haase (C5NR05138J-(cit48)/*[position()=1]) 2007; 201
Monson (C5NR05138J-(cit55)/*[position()=1]) 2003; 3
Sachse (C5NR05138J-(cit43)/*[position()=1]) 2014; 4
Rathmell (C5NR05138J-(cit76)/*[position()=1]) 2012; 12
Kim (C5NR05138J-(cit36)/*[position()=1]) 2015; 15
Chang (C5NR05138J-(cit38)/*[position()=1]) 2013; 1
Chang (C5NR05138J-(cit66)/*[position()=1]) 2005; 21
Li (C5NR05138J-(cit62)/*[position()=1]) 2014; 53
Meng (C5NR05138J-(cit68)/*[position()=1]) 2012; 12
Han (C5NR05138J-(cit80)/*[position()=1]) 2014; 26
Hyun (C5NR05138J-(cit19)/*[position()=1]) 2011; 23
Cheng (C5NR05138J-(cit72)/*[position()=1]) 2014; 2
Wu (C5NR05138J-(cit4)/*[position()=1]) 2004; 305
Yu (C5NR05138J-(cit9)/*[position()=1]) 2009; 21
Kim (C5NR05138J-(cit47)/*[position()=1]) 2008; 20
Yang (C5NR05138J-(cit64)/*[position()=1]) 2014; 30
Vosgueritchian (C5NR05138J-(cit1)/*[position()=1]) 2012; 22
Wang (C5NR05138J-(cit87)/*[position()=1]) 2013; 180
Kirchmeyer (C5NR05138J-(cit2)/*[position()=1]) 2005; 15
Yu (C5NR05138J-(cit7)/*[position()=1]) 2011; 23
Lee (C5NR05138J-(cit16)/*[position()=1]) 2012; 24
Ye (C5NR05138J-(cit39)/*[position()=1]) 2014; 50
Gelves (C5NR05138J-(cit53)/*[position()=1]) 2006; 16
Hsu (C5NR05138J-(cit51)/*[position()=1]) 2014; 136
Zhang (C5NR05138J-(cit71)/*[position()=1]) 2012; 134
Im (C5NR05138J-(cit83)/*[position()=1]) 2014; 8
Eda (C5NR05138J-(cit13)/*[position()=1]) 2008; 3
Ye (C5NR05138J-(cit69)/*[position()=1]) 2014; 10
Dinh (C5NR05138J-(cit24)/*[position()=1]) 2013; 2
Hong (C5NR05138J-(cit33)/*[position()=1]) 2015; 27
Liu (C5NR05138J-(cit56)/*[position()=1]) 2003; 107
Park (C5NR05138J-(cit11)/*[position()=1]) 2013; 5
Han (C5NR05138J-(cit81)/*[position()=1]) 2015
Lee (C5NR05138J-(cit32)/*[position()=1]) 2014; 24
Hong (C5NR05138J-(cit34)/*[position()=1]) 2015; 15
Ahn (C5NR05138J-(cit45)/*[position()=1]) 2015; 9
Lee (C5NR05138J-(cit28)/*[position()=1]) 2013; 13
Stewart (C5NR05138J-(cit82)/*[position()=1]) 2014; 6
Hu (C5NR05138J-(cit20)/*[position()=1]) 2010; 4
Zilberberg (C5NR05138J-(cit27)/*[position()=1]) 2014; 24
Gao (C5NR05138J-(cit14)/*[position()=1]) 2015; 9
Won (C5NR05138J-(cit85)/*[position()=1]) 2014; 6
Inguanta (C5NR05138J-(cit52)/*[position()=1]) 2009; 255
Ravi Kumar (C5NR05138J-(cit61)/*[position()=1]) 2014; 16
Zeng (C5NR05138J-(cit21)/*[position()=1]) 2010; 22
Jin (C5NR05138J-(cit65)/*[position()=1]) 2011; 50
Yin (C5NR05138J-(cit41)/*[position()=1]) 2014; 10
Yao (C5NR05138J-(cit25)/*[position()=1]) 2014; 6
Zhao (C5NR05138J-(cit70)/*[position()=1]) 2012; 2
Kim (C5NR05138J-(cit12)/*[position()=1]) 2009; 457
Shi (C5NR05138J-(cit57)/*[position()=1]) 2005; 6
Kim (C5NR05138J-(cit3)/*[position()=1]) 2014; 26
Zhang (C5NR05138J-(cit8)/*[position()=1]) 2006; 6
Yu (C5NR05138J-(cit5)/*[position()=1]) 2009; 21
Wang (C5NR05138J-(cit60)/*[position()=1]) 2007; 299
Bergin (C5NR05138J-(cit23)/*[position()=1]) 2012; 4
Huang (C5NR05138J-(cit89)/*[position()=1]) 2013; 182
Zhang (C5NR05138J-(cit88)/*[position()=1]) 2012; 31
Rathmell (C5NR05138J-(cit67)/*[position()=1]) 2010; 22
Kholmanov (C5NR05138J-(cit78)/*[position()=1]) 2013; 7
Bhanushali (C5NR05138J-(cit42)/*[position()=1]) 2015; 11
Pate (C5NR05138J-(cit54)/*[position()=1]) 2014; 2
Jia (C5NR05138J-(cit59)/*[position()=1]) 2013; 48
Guo (C5NR05138J-(cit73)/*[position()=1]) 2013; 3
Si (C5NR05138J-(cit86)/*[position()=1]) 2013; 3
Kevin (C5NR05138J-(cit40)/*[position()=1]) 2015; 17
Cheong (C5NR05138J-(cit26)/*[position()=1]) 2014; 6
Hu (C5NR05138J-(cit44)/*[position()=1]) 2014; 2
Lee (C5NR05138J-(cit31)/*[position()=1]) 2012; 4
References_xml – volume: 23
  start-page: 2946
  year: 2011
  ident: C5NR05138J-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100639
– volume: 6
  start-page: 1880
  year: 2006
  ident: C5NR05138J-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0608543
– volume: 15
  start-page: 2317
  year: 2015
  ident: C5NR05138J-(cit34)/*[position()=1]
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.9493
– volume: 22
  start-page: 421
  year: 2012
  ident: C5NR05138J-(cit1)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101775
– volume: 3
  start-page: 270
  year: 2008
  ident: C5NR05138J-(cit13)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.83
– volume: 6
  start-page: 2345
  year: 2014
  ident: C5NR05138J-(cit25)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr05496a
– volume: 182
  start-page: 618
  year: 2013
  ident: C5NR05138J-(cit89)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.03.065
– volume: 39
  start-page: 7422
  year: 2014
  ident: C5NR05138J-(cit37)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.017
– volume: 2
  start-page: 1298
  year: 2014
  ident: C5NR05138J-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31647E
– volume: 22
  start-page: 4484
  year: 2010
  ident: C5NR05138J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001811
– volume: 2
  start-page: 1
  year: 2013
  ident: C5NR05138J-(cit24)/*[position()=1]
  publication-title: Rev. Adv. Sci. Eng.
– volume: 26
  start-page: 2268
  year: 2014
  ident: C5NR05138J-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304611
– volume: 6
  start-page: 296
  year: 2011
  ident: C5NR05138J-(cit6)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.36
– volume: 457
  start-page: 706
  year: 2009
  ident: C5NR05138J-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 21
  start-page: 3746
  year: 2005
  ident: C5NR05138J-(cit66)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la050220w
– volume: 2
  start-page: 11544
  year: 2012
  ident: C5NR05138J-(cit70)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21224b
– volume: 9
  start-page: 5440
  year: 2015
  ident: C5NR05138J-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01243
– volume: 16
  start-page: 22107
  year: 2014
  ident: C5NR05138J-(cit61)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03880K
– volume: 26
  start-page: 3706
  year: 2014
  ident: C5NR05138J-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400009
– volume: 4
  start-page: 1996
  year: 2012
  ident: C5NR05138J-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30126a
– volume: 255
  start-page: 8816
  year: 2009
  ident: C5NR05138J-(cit52)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.06.062
– volume: 107
  start-page: 12658
  year: 2003
  ident: C5NR05138J-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036023s
– volume: 23
  start-page: 4798
  year: 2011
  ident: C5NR05138J-(cit75)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102284
– volume: 20
  start-page: 1859
  year: 2008
  ident: C5NR05138J-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701460
– volume: 30
  start-page: 602
  year: 2014
  ident: C5NR05138J-(cit64)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la4036198
– volume: 11
  start-page: 1232
  year: 2015
  ident: C5NR05138J-(cit42)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402295
– volume: 21
  start-page: 4793
  year: 2009
  ident: C5NR05138J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901775
– volume: 5
  start-page: 1727
  year: 2013
  ident: C5NR05138J-(cit11)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr33560g
– volume: 50
  start-page: 10560
  year: 2011
  ident: C5NR05138J-(cit65)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105539
– volume: 4
  start-page: 1300737
  year: 2014
  ident: C5NR05138J-(cit43)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300737
– volume: 8
  start-page: 5707
  year: 2014
  ident: C5NR05138J-(cit84)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn502702a
– volume: 1
  start-page: 8541
  year: 2013
  ident: C5NR05138J-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11699a
– volume: 10
  start-page: 1771
  year: 2014
  ident: C5NR05138J-(cit69)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201303005
– volume: 12
  start-page: 3193
  year: 2012
  ident: C5NR05138J-(cit76)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl301168r
– volume: 9
  start-page: 3125
  year: 2015
  ident: C5NR05138J-(cit45)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00053
– volume: 50
  start-page: 2562
  year: 2014
  ident: C5NR05138J-(cit39)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC48561G
– volume: 6
  start-page: 7846
  year: 2014
  ident: C5NR05138J-(cit26)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5011354
– volume: 6
  start-page: e132
  year: 2014
  ident: C5NR05138J-(cit85)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.88
– volume: 7
  start-page: 1811
  year: 2013
  ident: C5NR05138J-(cit78)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3060175
– volume: 23
  start-page: 4171
  year: 2013
  ident: C5NR05138J-(cit35)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203802
– volume: 23
  start-page: 3989
  year: 2011
  ident: C5NR05138J-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101986
– volume: 4
  start-page: 4788
  year: 2014
  ident: C5NR05138J-(cit18)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep04788
– volume: 13
  start-page: 2814
  year: 2013
  ident: C5NR05138J-(cit28)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401070p
– volume: 129
  start-page: 7758
  year: 2007
  ident: C5NR05138J-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0722224
– volume: 27
  start-page: 4744
  year: 2015
  ident: C5NR05138J-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500917
– volume: 126
  start-page: 6248
  year: 2004
  ident: C5NR05138J-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049217+
– year: 2015
  ident: C5NR05138J-(cit81)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503244
– volume: 8
  start-page: 10973
  year: 2014
  ident: C5NR05138J-(cit83)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn504883m
– volume: 24
  start-page: 5671
  year: 2014
  ident: C5NR05138J-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400972
– volume: 31
  start-page: 426
  year: 2012
  ident: C5NR05138J-(cit88)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.11.006
– volume: 136
  start-page: 10593
  year: 2014
  ident: C5NR05138J-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505741e
– volume: 3
  start-page: 2323
  year: 2013
  ident: C5NR05138J-(cit73)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep02323
– volume: 10
  start-page: 5047
  year: 2014
  ident: C5NR05138J-(cit41)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201401276
– volume: 4
  start-page: 6408
  year: 2012
  ident: C5NR05138J-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31254a
– volume: 16
  start-page: 3075
  year: 2006
  ident: C5NR05138J-(cit53)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b603442j
– volume: 3
  start-page: 3487
  year: 2013
  ident: C5NR05138J-(cit86)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra22360k
– volume: 17
  start-page: 1120
  year: 2015
  ident: C5NR05138J-(cit40)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C4GC01566E
– volume: 305
  start-page: 1273
  year: 2004
  ident: C5NR05138J-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1101243
– volume: 49
  start-page: 3052
  year: 2014
  ident: C5NR05138J-(cit49)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-8005-2
– volume: 17
  start-page: 3074
  year: 2011
  ident: C5NR05138J-(cit63)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201002987
– volume: 3
  start-page: 1767
  year: 2009
  ident: C5NR05138J-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900348c
– volume: 2
  start-page: 5309
  year: 2014
  ident: C5NR05138J-(cit72)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00375F
– volume: 12
  start-page: 234
  year: 2012
  ident: C5NR05138J-(cit68)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl203385u
– volume: 134
  start-page: 14283
  year: 2012
  ident: C5NR05138J-(cit71)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3050184
– volume: 6
  start-page: 5980
  year: 2014
  ident: C5NR05138J-(cit82)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c4nr01024h
– volume: 15
  start-page: 2077
  year: 2005
  ident: C5NR05138J-(cit2)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b417803n
– volume: 24
  start-page: 1671
  year: 2014
  ident: C5NR05138J-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303108
– volume: 48
  start-page: 4073
  year: 2013
  ident: C5NR05138J-(cit59)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7219-7
– volume: 6
  start-page: e105
  year: 2014
  ident: C5NR05138J-(cit79)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.36
– volume: 36
  start-page: 760
  year: 2011
  ident: C5NR05138J-(cit15)/*[position()=1]
  publication-title: Mater. Res. Soc. Bull.
  doi: 10.1557/mrs.2011.234
– volume: 6
  start-page: 761
  year: 2005
  ident: C5NR05138J-(cit57)/*[position()=1]
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/j.stam.2005.06.008
– volume: 26
  start-page: 16496
  year: 2010
  ident: C5NR05138J-(cit58)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la101385e
– volume: 201
  start-page: 9184
  year: 2007
  ident: C5NR05138J-(cit48)/*[position()=1]
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.04.014
– volume: 299
  start-page: 158
  year: 2007
  ident: C5NR05138J-(cit60)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2006.11.221
– volume: 9
  start-page: 3887
  year: 2015
  ident: C5NR05138J-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5070937
– volume: 53
  start-page: 4440
  year: 2014
  ident: C5NR05138J-(cit62)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500094b
– volume: 8
  start-page: 9673
  year: 2014
  ident: C5NR05138J-(cit77)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn504308n
– volume: 24
  start-page: 3326
  year: 2012
  ident: C5NR05138J-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200359
– volume: 21
  start-page: 4793
  year: 2009
  ident: C5NR05138J-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901775
– volume: 180
  start-page: 161
  year: 2013
  ident: C5NR05138J-(cit87)/*[position()=1]
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-012-0923-1
– volume: 9
  start-page: 6626
  year: 2015
  ident: C5NR05138J-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02790
– volume: 15
  start-page: 5240
  year: 2015
  ident: C5NR05138J-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01505
– volume: 2
  start-page: 9265
  year: 2014
  ident: C5NR05138J-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01632G
– volume: 5
  start-page: 2394
  year: 2013
  ident: C5NR05138J-(cit74)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr33142c
– volume: 22
  start-page: 3558
  year: 2010
  ident: C5NR05138J-(cit67)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000775
– volume: 10
  start-page: 4242
  year: 2010
  ident: C5NR05138J-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl102725k
– volume: 3
  start-page: 359
  year: 2003
  ident: C5NR05138J-(cit55)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl034016+
– volume: 26
  start-page: 5808
  year: 2014
  ident: C5NR05138J-(cit80)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400474
– volume: 4
  start-page: 2955
  year: 2010
  ident: C5NR05138J-(cit20)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1005232
SSID ssj0069363
Score 2.4472568
SecondaryResourceType review_article
Snippet Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable'...
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in ‘see-through’ and/or ‘deformable’...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17195
SubjectTerms APPLICATIONS
Copper
Electrodes
ELECTRONIC PRODUCTS
Electronics
MECHANICAL PROPERTIES
MICA
MICROWIRE
Nanowires
Precursors
Production methods
Strategy
Synthesis (chemistry)
Title Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications
URI https://www.ncbi.nlm.nih.gov/pubmed/26439751
https://www.proquest.com/docview/1722925394
https://www.proquest.com/docview/1770342239
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4lVIecgILmiVJcnE6_WxLI9qKyqEWrW3KH5EFKG42mQrtb-ecV5OxYKAS7Sa2Jtdf854xp75hpDXWqLKi7gMmz2mVBdJKCKtQ1WYuSjmzEDuEpw_H80OTtLlGTvzhROb7JJaTtX1xryS_0EVZYiry5L9B2SHL0UBfkZ88YoI4_WvMP6ysghTs51q6onqc_-ruud_cJZldVWikVedX5vJYj0p89I6euKq5fp2yZeu_6gazvhI258CXZ5Phmjs91MfGntqm73WwytrvxkfR2vbw_wlSu14YyFmTYYd9_onccGGAC3J-NSMZfyGAuWjedKyWHXaMOZxW0GzW1qdu7lRbUfgWE8VK1eoI2D-3S9OQ8igv3mbbCfoE6BS294_fPfptF94ZwKawnnD7-7ZaEG89b1v2h-_OBVoYqz60i-NiXF8j-x0vgHdb4G-T26Z8gG5O2KMfEjyAXKKkNMecuohp7WlHnK6WNMBcoqQ0x5y6iGnY8gfkZOPH44XB2FXJSNUKaR1qCCfg0pzAAMKYsmKSINwPG2Rzmci5Yob9E04vnroaqaxkoxxw5WMuc4jE8Eu2SptaZ4QigM3k4AeLJp5aZorKYXmoEFq1PPFrAjIm37sMtVRyLtKJj-yJpQBRLZgR1-bcV4G5NXQ9qIlTtnY6mUPQYaj5w6r8tLYdZXhXElEwvCf_KkNdwyWCYiAPG7xG56VNKY2iwOyi4AOYj8RArK3-UZ2oYu93_V6Su74d-UZ2apXa_MczdJavuim409ReY-K
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promising+wet+chemical+strategies+to+synthesize+Cu+nanowires+for+emerging+electronic+applications&rft.au=Ravi+Kumar%2C+D.+V&rft.au=Woo%2C+Kyoohee&rft.au=Moon%2C+Jooho&rft.date=2015-11-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=7&rft.issue=41&rft.spage=17195&rft.epage=1721&rft_id=info:doi/10.1039%2Fc5nr05138j&rft.externalDocID=c5nr05138j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon