Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location

Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy....

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 11; no. 2; p. 141
Main Authors Yang, Junhyuk, Park, Kiwon
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy. Given the limited research on the effects of camera location and orientation on data collection accuracy, this study investigates how camera placement affects gait assessment accuracy utilizing five smartphones. This study aimed to explore the differences in data collection accuracy between marker-based systems and pose estimation, as well as to assess the impact of camera location and orientation on accuracy in pose estimation. The results showed that the differences in joint angles between pose estimation and marker-based systems are below 5°, an acceptable level for gait analysis, with a strong correlation between the two datasets supporting the effectiveness of pose estimation in gait analysis. In addition, hip and knee angles were accurately measured at the front diagonal of the subject and ankle angle at the lateral side. This research highlights the significance of careful camera placement for reliable gait analysis using pose estimation, serving as a concise reference to guide future efforts in enhancing the quantitative accuracy of gait analysis.
AbstractList Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy. Given the limited research on the effects of camera location and orientation on data collection accuracy, this study investigates how camera placement affects gait assessment accuracy utilizing five smartphones. This study aimed to explore the differences in data collection accuracy between marker-based systems and pose estimation, as well as to assess the impact of camera location and orientation on accuracy in pose estimation. The results showed that the differences in joint angles between pose estimation and marker-based systems are below 5°, an acceptable level for gait analysis, with a strong correlation between the two datasets supporting the effectiveness of pose estimation in gait analysis. In addition, hip and knee angles were accurately measured at the front diagonal of the subject and ankle angle at the lateral side. This research highlights the significance of careful camera placement for reliable gait analysis using pose estimation, serving as a concise reference to guide future efforts in enhancing the quantitative accuracy of gait analysis.
Audience Academic
Author Park, Kiwon
Yang, Junhyuk
Author_xml – sequence: 1
  givenname: Junhyuk
  orcidid: 0000-0003-0666-2235
  surname: Yang
  fullname: Yang, Junhyuk
  organization: Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Republic of Korea
– sequence: 2
  givenname: Kiwon
  orcidid: 0000-0002-3188-000X
  surname: Park
  fullname: Park, Kiwon
  organization: Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38391625$$D View this record in MEDLINE/PubMed
BookMark eNptUdtuUzEQtFARvdBfqCzxnOLb8eUxVKVECgKJ8mzZPnsShxw72Ceg_j1u0xaQKj94tbszmp05RUcpJ0DogpJLzg1572OGtIoJoMS0opQwQgV9hU4YJ3LW8U4c_VMfo_NaN4QQylnHpHiDjrnmhkrWnSC7GHcl_2o0-MbFCc-T297VWPEthHWKP_dQ8e84rfFnV35A2UKt-GuugK_rFEc3xZzwB1ehx634Nroy7dZNLF7m8DB8i14Pblvh_PE_Q98_Xt9efZotv9wsrubLWRBcTDPPKDG9IMF4yr3wOrggvNLcUeF7UNLx0AWjnPGkM4ME1uZaaiJgkIZzfoYWB94-u43dlaat3Nnson1o5LKyTVsMW7CSKeqhG4JWXnTeeAPe6MEo71XzyDWudweu5sy9AZPd5H1pxlTLidCKUmXE362Va6QxDXkqLoyxBjtXWhAuGaVt6_KFrfZ6GGNoTg2x9f8DyAMglFxrgeH5GErsffr25fQb8OJR9d6P0D_DnrLmfwAbqq97
Cites_doi 10.1142/S0219519416300039
10.1080/10255842.2020.1856372
10.1109/TIM.2009.2016801
10.1016/j.gaitpost.2008.09.003
10.1016/j.gaitpost.2017.06.019
10.3390/s22207992
10.1145/3533384
10.3390/s140203362
10.1109/IOTM.002.2200022
10.1109/CVPRW53098.2021.00382
10.1016/j.imavis.2021.104282
10.3390/s22052011
10.1109/ICMEW.2018.8551559
10.1007/s10462-016-9514-6
10.1007/978-3-319-46478-7_44
10.23919/MIPRO55190.2022.9803531
10.1109/ACCESS.2020.3030086
10.1016/j.vrih.2020.04.005
10.1016/j.jbiomech.2014.11.048
10.1155/2022/7020804
10.7243/2055-2386-4-6
10.3390/s23146489
10.1016/j.jbiomech.2021.110665
10.1016/j.gaitpost.2013.01.018
10.3390/fi14120380
10.1016/j.cviu.2021.103225
10.1109/TNSRE.2021.3135879
10.1016/j.medengphy.2020.08.009
10.1101/782367
10.3390/sym12050744
10.1093/ptj/65.7.1027
10.3389/fphys.2021.784865
10.1016/j.gaitpost.2021.02.006
10.3390/app13042700
10.1007/s12652-022-03910-0
10.1371/journal.pcbi.1008935
10.3390/app11094183
10.1109/SCOReD57082.2022.9974096
10.1109/Humanoids53995.2022.10000133
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/bioengineering11020141
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_6271be5fc87b45b9b9eb98f97bb7013a
A784036211
10_3390_bioengineering11020141
38391625
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Ministry of Science and ICT
  grantid: RS-2023-00222406
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
ABDBF
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c434t-b2109d40c9b13b4b8cac4b783a14bde76a3c5c97a9b059f6e2ac486804ef69333
IEDL.DBID DOA
ISSN 2306-5354
IngestDate Tue Oct 22 15:14:37 EDT 2024
Fri Nov 08 20:45:41 EST 2024
Wed Jul 10 17:13:57 EDT 2024
Tue Nov 12 23:38:48 EST 2024
Thu Sep 26 18:04:06 EDT 2024
Sat Nov 02 12:00:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords kinematics
human pose estimation
markerless
gait analysis
lower extremity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-b2109d40c9b13b4b8cac4b783a14bde76a3c5c97a9b059f6e2ac486804ef69333
ORCID 0000-0002-3188-000X
0000-0003-0666-2235
OpenAccessLink https://doaj.org/article/6271be5fc87b45b9b9eb98f97bb7013a
PMID 38391625
PQID 3048711794
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_6271be5fc87b45b9b9eb98f97bb7013a
proquest_journals_3048711794
gale_infotracmisc_A784036211
gale_infotracacademiconefile_A784036211
crossref_primary_10_3390_bioengineering11020141
pubmed_primary_38391625
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_3) 2014; 14
Ziegler (ref_8) 2020; 84
McGinley (ref_39) 2009; 29
Akhloufi (ref_20) 2021; 114
Ota (ref_31) 2021; 85
Roberts (ref_2) 2017; 4
ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
Topham (ref_21) 2023; 55
ref_19
Wang (ref_22) 2021; 210
ref_18
Ji (ref_23) 2020; 2
ref_17
ref_16
ref_38
ref_37
Garg (ref_13) 2022; 14
ref_25
Takeda (ref_30) 2021; 24
ref_42
ref_40
Yamamoto (ref_41) 2021; 29
ref_1
Krishnan (ref_9) 2015; 48
Caldas (ref_6) 2017; 57
Viswakumar (ref_28) 2021; 12
Khaleghi (ref_15) 2022; 5
ref_27
ref_26
Rohan (ref_29) 2020; 8
Krebs (ref_7) 1985; 65
Ugbolue (ref_24) 2013; 38
Prakash (ref_4) 2018; 49
Ferreira (ref_5) 2009; 58
References_xml – ident: ref_1
  doi: 10.1142/S0219519416300039
– volume: 24
  start-page: 864
  year: 2021
  ident: ref_30
  article-title: Artificial Intelligence-Assisted motion capture for medical applications: A comparative study between markerless and passive marker motion capture
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2020.1856372
  contributor:
    fullname: Takeda
– volume: 58
  start-page: 2979
  year: 2009
  ident: ref_5
  article-title: Human gait acquisition and characterization
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2016801
  contributor:
    fullname: Ferreira
– volume: 29
  start-page: 360
  year: 2009
  ident: ref_39
  article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.09.003
  contributor:
    fullname: McGinley
– ident: ref_11
– volume: 57
  start-page: 204
  year: 2017
  ident: ref_6
  article-title: A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.06.019
  contributor:
    fullname: Caldas
– ident: ref_12
  doi: 10.3390/s22207992
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_21
  article-title: Human body pose estimation for gait identification: A comprehensive survey of datasets and models: A comprehensive survey of datasets and models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3533384
  contributor:
    fullname: Topham
– volume: 14
  start-page: 3362
  year: 2014
  ident: ref_3
  article-title: Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications
  publication-title: Sensors
  doi: 10.3390/s140203362
– volume: 5
  start-page: 54
  year: 2022
  ident: ref_15
  article-title: Touchless control of heavy equipment using low-cost hand gesture recognition
  publication-title: IEEE Internet Things Mag.
  doi: 10.1109/IOTM.002.2200022
  contributor:
    fullname: Khaleghi
– ident: ref_16
  doi: 10.1109/CVPRW53098.2021.00382
– volume: 114
  start-page: 104282
  year: 2021
  ident: ref_20
  article-title: A review of deep learning techniques for 2D and 3D human pose estimation
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104282
  contributor:
    fullname: Akhloufi
– ident: ref_37
– ident: ref_42
  doi: 10.3390/s22052011
– ident: ref_33
  doi: 10.1109/ICMEW.2018.8551559
– volume: 49
  start-page: 1
  year: 2018
  ident: ref_4
  article-title: Recent developments in human gait research: Parameters, approaches, applications, machine learning techniques, datasets and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9514-6
  contributor:
    fullname: Prakash
– ident: ref_10
  doi: 10.1007/978-3-319-46478-7_44
– ident: ref_14
  doi: 10.23919/MIPRO55190.2022.9803531
– volume: 8
  start-page: 191542
  year: 2020
  ident: ref_29
  article-title: Human pose estimation-based real-time gait analysis using convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030086
  contributor:
    fullname: Rohan
– volume: 2
  start-page: 471
  year: 2020
  ident: ref_23
  article-title: A survey on monocular 3D human pose estimation
  publication-title: Virtual Real. Intell. Hardw.
  doi: 10.1016/j.vrih.2020.04.005
  contributor:
    fullname: Ji
– volume: 48
  start-page: 544
  year: 2015
  ident: ref_9
  article-title: A low cost real-time motion tracking approach using webcam technology
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.11.048
  contributor:
    fullname: Krishnan
– ident: ref_25
  doi: 10.1155/2022/7020804
– volume: 4
  start-page: 6
  year: 2017
  ident: ref_2
  article-title: Biomechanical parameters for gait analysis: A systematic review of healthy human gait
  publication-title: Phys. Ther. Rehabil.
  doi: 10.7243/2055-2386-4-6
  contributor:
    fullname: Roberts
– ident: ref_32
  doi: 10.3390/s23146489
– ident: ref_40
  doi: 10.1016/j.jbiomech.2021.110665
– volume: 38
  start-page: 483
  year: 2013
  ident: ref_24
  article-title: The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.01.018
  contributor:
    fullname: Ugbolue
– ident: ref_36
  doi: 10.3390/fi14120380
– volume: 210
  start-page: 103225
  year: 2021
  ident: ref_22
  article-title: Deep 3D human pose estimation: A review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103225
  contributor:
    fullname: Wang
– volume: 29
  start-page: 2666
  year: 2021
  ident: ref_41
  article-title: Accuracy of temporo-spatial and lower limb joint kinematics parameters using OpenPose for various gait patterns with orthosis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3135879
  contributor:
    fullname: Yamamoto
– volume: 84
  start-page: 193
  year: 2020
  ident: ref_8
  article-title: Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.08.009
  contributor:
    fullname: Ziegler
– ident: ref_26
  doi: 10.1101/782367
– ident: ref_18
  doi: 10.3390/sym12050744
– volume: 65
  start-page: 1027
  year: 1985
  ident: ref_7
  article-title: Reliability of observational kinematic gait analysis
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/65.7.1027
  contributor:
    fullname: Krebs
– volume: 12
  start-page: 784865
  year: 2021
  ident: ref_28
  article-title: Development of a robust, simple, and affordable human gait analysis system using bottom-up pose estimation with a smartphone camera
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.784865
  contributor:
    fullname: Viswakumar
– volume: 85
  start-page: 290
  year: 2021
  ident: ref_31
  article-title: Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.02.006
  contributor:
    fullname: Ota
– ident: ref_34
  doi: 10.3390/app13042700
– ident: ref_38
– volume: 14
  start-page: 16551
  year: 2022
  ident: ref_13
  article-title: Yoga pose classification: A CNN and MediaPipe inspired deep learning approach for real-world application
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-022-03910-0
  contributor:
    fullname: Garg
– ident: ref_27
  doi: 10.1371/journal.pcbi.1008935
– ident: ref_19
  doi: 10.3390/app11094183
– ident: ref_35
  doi: 10.1109/SCOReD57082.2022.9974096
– ident: ref_17
  doi: 10.1109/Humanoids53995.2022.10000133
SSID ssj0001325264
Score 2.2916079
Snippet Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless...
SourceID doaj
proquest
gale
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 141
SubjectTerms Accuracy
Analysis
Ankle
Cameras
Cost analysis
Data collection
Data entry
Datasets
Deep learning
Efficiency
Fitness equipment
Gait
gait analysis
human pose estimation
Investigations
Kinematics
lower extremity
markerless
Medical research
Medicine, Experimental
Motion capture
Neural networks
Placement
Pose estimation
Running
Smart phones
Smartphones
Three dimensional motion
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6uNAD4s1CQT5U4hTt-pE4PqEWdVshQJVopd6sjDNBPdCUTfj_zMTJLktRb1HsyM6Mx_PwzGchjrBBr_LGZ95AkVnd1BmU1mSoElwWouIC56_fivMr-_k6vx4Dbt2YVjnticNGXbeRY-RzcrvJtufl8_HuV8a3RvHp6niFxq7YV9o5dr7K5dkmxmJ0Tgo_FQYb8u7ncNPiBuePVJ_mRMctnTRA99_foP8xOwf1s3wiHo92ozxOjH4qdvD2mTj4C03wuQjrAIE8q256OeGNyMsJp7WTHHaVXJ-DfMjeyYu2Q3lKYp4qGOUJKbVa0sP3n7SmOG8d5Zc2hfVeiKvl6eWn82y8PyGL1tg-A3LnfG0X0YMyYKGMVbTgSlMpCzW6ojIxj95VHsjIagrU1F4W5cJiU3hjzEuxd0vjvBZS67JxiJacx8o2mINd1BhrVcfCoHHVTMwnCoa7BJMRyL1gmof_03wmTpjQ694Mcz28aFc_wig1odBOAXKamQObgweP4MvGOwBH3KVhPzCbAgtjv6ro_1JNAU2aYa3CsSP_lVS0ouEOt3qSEMXt5onRYRTiLmyW3Ey8SsxfT5ccezKsdf7m4Q_fikearKAUszkUe_3qN74jK6aH98NS_QNZSvMU
  priority: 102
  providerName: ProQuest
Title Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location
URI https://www.ncbi.nlm.nih.gov/pubmed/38391625
https://www.proquest.com/docview/3048711794
https://doaj.org/article/6271be5fc87b45b9b9eb98f97bb7013a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoEDKi2P5bHyoRKnaDe2E8fHTbsLqlqEKEjcrIwzkTjAIjb8f8bx7na3VOLSU6LYku2Z2PPNZOYLwFdqyKZZYxOrME-0bOoEC60SSiNdFlEaCpx_XeYXt_rHXXa38quvkBMW6YGj4Aa5NClSyDQyqDO0aAlt0ViDaBi-RGg0tCvOVBddUTJjUx9LghX79QO8n9Ifhj82ejKkOK5Zo460_-3R_Bfg7AzP5BPszBGjGMWZ7sIHevwM2ys8gl_ALUMD4ry6b8WCaUTcLBhaZyIEXEWozKHweX0mrqYzEmPe4LF2UZRszmrBN78fWCghY53Ez2kM6O3B7WR88-0imf85IfFa6TbBIJJaD73FVKHGwldeoylUlWqsyeSV8pm3prLI8KrJSXJ7kRdDTU1ulVL7sPnI4xyCkLJoDJFmt7HSDWWohzX5Oq19rkiZqgeDhQTdUyTIcOxYBJm7f8u8B2UQ9LJ3ILjuHrDa3Vzt7j219-AsqMmFbdg-V7y-WE3Akw6EVm5k2HNl45zycCdrPXn7-PXmhaLdfPvOnOJzzXTkeT04iMpfTpddeobUMjv6H8s4hi3JKCnGdE5gs31-oVNGOS32YaOYnPfh46j8Xk74Wo4vr6773Wv-CgUJACo
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgewAeEN8UBvgBiaeoje3E8RNaUUeBrpqgk_Zm5ZzLtAeW0YT_n7s6aSkg3qLYkZ07n-_Ddz8L8RZrdGlWu8RpyBOj6iqBwugE0wiXhZhygfPpMp-fm88X2UUfcGv7tMphT9xs1FUTOEY-JrebbHtePu9vfiR8axSfrvZXaNwWhwxVRc7X4XS2PPu6i7JolZHKj6XBmvz7MVw1uEP6I-WnONVxTyttwPv_3qL_MDw3CujkgbjfW47yOLL6obiF14_Evd_wBB8Lvw0RyI_lVScHxBG5GpBaW8mBV8kVOsjH7K08a1qUMxL0WMMop6TWKkkP377TquLMdZSLJgb2nojzk9nqwzzpb1BIgtGmS4AcOleZSXCQajBQhDIYsIUuUwMV2rzUIQvOlg7IzKpzVNRe5MXEYJ07rfVTcXBN4zwXUqmitoiG3MfS1JiBmVQYqrQKuUZty5EYDxT0NxEow5ODwTT3_6b5SEyZ0NveDHS9edGsL30vNz5XNgXkRDMLJgMHDsEVtbMAlrhLw75jNnkWx25d0v_FqgKaNANb-WNLHiwp6ZSGO9rrSWIU9psHRvtejFu_W3Qj8Swyfztdcu3JtFbZi_9_-Ebcma9OF37xafnlpbiryCaKEZwjcdCtf-Irsmk6eN0v3F8A2_dl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxA8ID5HYYAfkHiK2tiOHT-hFVoGjKqCTdqblXPOaA8sown_P-c6aSkg3qLYkR3fne_Ddz8z9goD2rwINrMSdKZEqDMolcwwT3BZiHkscP681Cfn6uNFcdHnP7V9WuWwJ2426rrxMUY-IbebbPvIPpPQp0Ws3i3eXP_I4g1S8aS1v07jJjswSsvpiB3M5svVl13ERYqC1H8qE5bk60_gssEd6h8pQhHTHvc01AbI_-_t-g8jdKOMFvfY3d6K5MeJ7PfZDbx6wO78hi34kLltuIC_ry47PqCP8LMBtbXlMQjLY7UOxiP3lq-aFvmchD7VM_IZqbia08PX78RhMYsd-WmTgnyP2Plifvb2JOtvU8i8kqrLgJw7W6upt5BLUFD6yiswpaxyBTUaXUlfeGsqC2RyBY2C2ktdThUGbaWUj9noisZ5wrgQZTCIilzJSgUsQE1r9HVeey1RmmrMJsMKuusEmuHI2Yhr7v695mM2iwu97R1BrzcvmvU318uQ08LkgDHpzIAqwIJFsGWwBsAQdWnY15FMLopmt67o_1KFAU06gly5Y0PeLCnsnIY72utJIuX3mwdCu16kW7djwDE7TMTfTpfcfDKzRfH0_x--ZLeIZ93ph-WnZ-y2IPMoBXOO2Khb_8TnZN508KLn219kVvuT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Gait+Analysis+Techniques+with+Markerless+Pose+Estimation+Based+on+Smartphone+Location&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Yang%2C+Junhyuk&rft.au=Park%2C+Kiwon&rft.date=2024-01-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=2&rft.spage=141&rft_id=info:doi/10.3390%2Fbioengineering11020141&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11020141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon