Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location
Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy....
Saved in:
Published in | Bioengineering (Basel) Vol. 11; no. 2; p. 141 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy. Given the limited research on the effects of camera location and orientation on data collection accuracy, this study investigates how camera placement affects gait assessment accuracy utilizing five smartphones. This study aimed to explore the differences in data collection accuracy between marker-based systems and pose estimation, as well as to assess the impact of camera location and orientation on accuracy in pose estimation. The results showed that the differences in joint angles between pose estimation and marker-based systems are below 5°, an acceptable level for gait analysis, with a strong correlation between the two datasets supporting the effectiveness of pose estimation in gait analysis. In addition, hip and knee angles were accurately measured at the front diagonal of the subject and ankle angle at the lateral side. This research highlights the significance of careful camera placement for reliable gait analysis using pose estimation, serving as a concise reference to guide future efforts in enhancing the quantitative accuracy of gait analysis. |
---|---|
AbstractList | Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless pose estimation has emerged as a convenient and cost-effective alternative for gait analysis, challenges remain in achieving optimal accuracy. Given the limited research on the effects of camera location and orientation on data collection accuracy, this study investigates how camera placement affects gait assessment accuracy utilizing five smartphones. This study aimed to explore the differences in data collection accuracy between marker-based systems and pose estimation, as well as to assess the impact of camera location and orientation on accuracy in pose estimation. The results showed that the differences in joint angles between pose estimation and marker-based systems are below 5°, an acceptable level for gait analysis, with a strong correlation between the two datasets supporting the effectiveness of pose estimation in gait analysis. In addition, hip and knee angles were accurately measured at the front diagonal of the subject and ankle angle at the lateral side. This research highlights the significance of careful camera placement for reliable gait analysis using pose estimation, serving as a concise reference to guide future efforts in enhancing the quantitative accuracy of gait analysis. |
Audience | Academic |
Author | Park, Kiwon Yang, Junhyuk |
Author_xml | – sequence: 1 givenname: Junhyuk orcidid: 0000-0003-0666-2235 surname: Yang fullname: Yang, Junhyuk organization: Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Republic of Korea – sequence: 2 givenname: Kiwon orcidid: 0000-0002-3188-000X surname: Park fullname: Park, Kiwon organization: Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38391625$$D View this record in MEDLINE/PubMed |
BookMark | eNptUdtuUzEQtFARvdBfqCzxnOLb8eUxVKVECgKJ8mzZPnsShxw72Ceg_j1u0xaQKj94tbszmp05RUcpJ0DogpJLzg1572OGtIoJoMS0opQwQgV9hU4YJ3LW8U4c_VMfo_NaN4QQylnHpHiDjrnmhkrWnSC7GHcl_2o0-MbFCc-T297VWPEthHWKP_dQ8e84rfFnV35A2UKt-GuugK_rFEc3xZzwB1ehx634Nroy7dZNLF7m8DB8i14Pblvh_PE_Q98_Xt9efZotv9wsrubLWRBcTDPPKDG9IMF4yr3wOrggvNLcUeF7UNLx0AWjnPGkM4ME1uZaaiJgkIZzfoYWB94-u43dlaat3Nnson1o5LKyTVsMW7CSKeqhG4JWXnTeeAPe6MEo71XzyDWudweu5sy9AZPd5H1pxlTLidCKUmXE362Va6QxDXkqLoyxBjtXWhAuGaVt6_KFrfZ6GGNoTg2x9f8DyAMglFxrgeH5GErsffr25fQb8OJR9d6P0D_DnrLmfwAbqq97 |
Cites_doi | 10.1142/S0219519416300039 10.1080/10255842.2020.1856372 10.1109/TIM.2009.2016801 10.1016/j.gaitpost.2008.09.003 10.1016/j.gaitpost.2017.06.019 10.3390/s22207992 10.1145/3533384 10.3390/s140203362 10.1109/IOTM.002.2200022 10.1109/CVPRW53098.2021.00382 10.1016/j.imavis.2021.104282 10.3390/s22052011 10.1109/ICMEW.2018.8551559 10.1007/s10462-016-9514-6 10.1007/978-3-319-46478-7_44 10.23919/MIPRO55190.2022.9803531 10.1109/ACCESS.2020.3030086 10.1016/j.vrih.2020.04.005 10.1016/j.jbiomech.2014.11.048 10.1155/2022/7020804 10.7243/2055-2386-4-6 10.3390/s23146489 10.1016/j.jbiomech.2021.110665 10.1016/j.gaitpost.2013.01.018 10.3390/fi14120380 10.1016/j.cviu.2021.103225 10.1109/TNSRE.2021.3135879 10.1016/j.medengphy.2020.08.009 10.1101/782367 10.3390/sym12050744 10.1093/ptj/65.7.1027 10.3389/fphys.2021.784865 10.1016/j.gaitpost.2021.02.006 10.3390/app13042700 10.1007/s12652-022-03910-0 10.1371/journal.pcbi.1008935 10.3390/app11094183 10.1109/SCOReD57082.2022.9974096 10.1109/Humanoids53995.2022.10000133 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/bioengineering11020141 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Engineering Database ProQuest Central Student Technology Collection ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_6271be5fc87b45b9b9eb98f97bb7013a A784036211 10_3390_bioengineering11020141 38391625 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: Ministry of Science and ICT grantid: RS-2023-00222406 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ ABDBF ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E NPM OK1 PGMZT PIMPY PROAC PTHSS RPM AAYXX CITATION ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c434t-b2109d40c9b13b4b8cac4b783a14bde76a3c5c97a9b059f6e2ac486804ef69333 |
IEDL.DBID | DOA |
ISSN | 2306-5354 |
IngestDate | Tue Oct 22 15:14:37 EDT 2024 Fri Nov 08 20:45:41 EST 2024 Wed Jul 10 17:13:57 EDT 2024 Tue Nov 12 23:38:48 EST 2024 Thu Sep 26 18:04:06 EDT 2024 Sat Nov 02 12:00:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | kinematics human pose estimation markerless gait analysis lower extremity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-b2109d40c9b13b4b8cac4b783a14bde76a3c5c97a9b059f6e2ac486804ef69333 |
ORCID | 0000-0002-3188-000X 0000-0003-0666-2235 |
OpenAccessLink | https://doaj.org/article/6271be5fc87b45b9b9eb98f97bb7013a |
PMID | 38391625 |
PQID | 3048711794 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6271be5fc87b45b9b9eb98f97bb7013a proquest_journals_3048711794 gale_infotracmisc_A784036211 gale_infotracacademiconefile_A784036211 crossref_primary_10_3390_bioengineering11020141 pubmed_primary_38391625 |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_3) 2014; 14 Ziegler (ref_8) 2020; 84 McGinley (ref_39) 2009; 29 Akhloufi (ref_20) 2021; 114 Ota (ref_31) 2021; 85 Roberts (ref_2) 2017; 4 ref_14 ref_36 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 Topham (ref_21) 2023; 55 ref_19 Wang (ref_22) 2021; 210 ref_18 Ji (ref_23) 2020; 2 ref_17 ref_16 ref_38 ref_37 Garg (ref_13) 2022; 14 ref_25 Takeda (ref_30) 2021; 24 ref_42 ref_40 Yamamoto (ref_41) 2021; 29 ref_1 Krishnan (ref_9) 2015; 48 Caldas (ref_6) 2017; 57 Viswakumar (ref_28) 2021; 12 Khaleghi (ref_15) 2022; 5 ref_27 ref_26 Rohan (ref_29) 2020; 8 Krebs (ref_7) 1985; 65 Ugbolue (ref_24) 2013; 38 Prakash (ref_4) 2018; 49 Ferreira (ref_5) 2009; 58 |
References_xml | – ident: ref_1 doi: 10.1142/S0219519416300039 – volume: 24 start-page: 864 year: 2021 ident: ref_30 article-title: Artificial Intelligence-Assisted motion capture for medical applications: A comparative study between markerless and passive marker motion capture publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255842.2020.1856372 contributor: fullname: Takeda – volume: 58 start-page: 2979 year: 2009 ident: ref_5 article-title: Human gait acquisition and characterization publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2016801 contributor: fullname: Ferreira – volume: 29 start-page: 360 year: 2009 ident: ref_39 article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.09.003 contributor: fullname: McGinley – ident: ref_11 – volume: 57 start-page: 204 year: 2017 ident: ref_6 article-title: A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.06.019 contributor: fullname: Caldas – ident: ref_12 doi: 10.3390/s22207992 – volume: 55 start-page: 1 year: 2023 ident: ref_21 article-title: Human body pose estimation for gait identification: A comprehensive survey of datasets and models: A comprehensive survey of datasets and models publication-title: ACM Comput. Surv. doi: 10.1145/3533384 contributor: fullname: Topham – volume: 14 start-page: 3362 year: 2014 ident: ref_3 article-title: Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications publication-title: Sensors doi: 10.3390/s140203362 – volume: 5 start-page: 54 year: 2022 ident: ref_15 article-title: Touchless control of heavy equipment using low-cost hand gesture recognition publication-title: IEEE Internet Things Mag. doi: 10.1109/IOTM.002.2200022 contributor: fullname: Khaleghi – ident: ref_16 doi: 10.1109/CVPRW53098.2021.00382 – volume: 114 start-page: 104282 year: 2021 ident: ref_20 article-title: A review of deep learning techniques for 2D and 3D human pose estimation publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104282 contributor: fullname: Akhloufi – ident: ref_37 – ident: ref_42 doi: 10.3390/s22052011 – ident: ref_33 doi: 10.1109/ICMEW.2018.8551559 – volume: 49 start-page: 1 year: 2018 ident: ref_4 article-title: Recent developments in human gait research: Parameters, approaches, applications, machine learning techniques, datasets and challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9514-6 contributor: fullname: Prakash – ident: ref_10 doi: 10.1007/978-3-319-46478-7_44 – ident: ref_14 doi: 10.23919/MIPRO55190.2022.9803531 – volume: 8 start-page: 191542 year: 2020 ident: ref_29 article-title: Human pose estimation-based real-time gait analysis using convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030086 contributor: fullname: Rohan – volume: 2 start-page: 471 year: 2020 ident: ref_23 article-title: A survey on monocular 3D human pose estimation publication-title: Virtual Real. Intell. Hardw. doi: 10.1016/j.vrih.2020.04.005 contributor: fullname: Ji – volume: 48 start-page: 544 year: 2015 ident: ref_9 article-title: A low cost real-time motion tracking approach using webcam technology publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.11.048 contributor: fullname: Krishnan – ident: ref_25 doi: 10.1155/2022/7020804 – volume: 4 start-page: 6 year: 2017 ident: ref_2 article-title: Biomechanical parameters for gait analysis: A systematic review of healthy human gait publication-title: Phys. Ther. Rehabil. doi: 10.7243/2055-2386-4-6 contributor: fullname: Roberts – ident: ref_32 doi: 10.3390/s23146489 – ident: ref_40 doi: 10.1016/j.jbiomech.2021.110665 – volume: 38 start-page: 483 year: 2013 ident: ref_24 article-title: The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.01.018 contributor: fullname: Ugbolue – ident: ref_36 doi: 10.3390/fi14120380 – volume: 210 start-page: 103225 year: 2021 ident: ref_22 article-title: Deep 3D human pose estimation: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2021.103225 contributor: fullname: Wang – volume: 29 start-page: 2666 year: 2021 ident: ref_41 article-title: Accuracy of temporo-spatial and lower limb joint kinematics parameters using OpenPose for various gait patterns with orthosis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3135879 contributor: fullname: Yamamoto – volume: 84 start-page: 193 year: 2020 ident: ref_8 article-title: Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.08.009 contributor: fullname: Ziegler – ident: ref_26 doi: 10.1101/782367 – ident: ref_18 doi: 10.3390/sym12050744 – volume: 65 start-page: 1027 year: 1985 ident: ref_7 article-title: Reliability of observational kinematic gait analysis publication-title: Phys. Ther. doi: 10.1093/ptj/65.7.1027 contributor: fullname: Krebs – volume: 12 start-page: 784865 year: 2021 ident: ref_28 article-title: Development of a robust, simple, and affordable human gait analysis system using bottom-up pose estimation with a smartphone camera publication-title: Front. Physiol. doi: 10.3389/fphys.2021.784865 contributor: fullname: Viswakumar – volume: 85 start-page: 290 year: 2021 ident: ref_31 article-title: Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.02.006 contributor: fullname: Ota – ident: ref_34 doi: 10.3390/app13042700 – ident: ref_38 – volume: 14 start-page: 16551 year: 2022 ident: ref_13 article-title: Yoga pose classification: A CNN and MediaPipe inspired deep learning approach for real-world application publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-022-03910-0 contributor: fullname: Garg – ident: ref_27 doi: 10.1371/journal.pcbi.1008935 – ident: ref_19 doi: 10.3390/app11094183 – ident: ref_35 doi: 10.1109/SCOReD57082.2022.9974096 – ident: ref_17 doi: 10.1109/Humanoids53995.2022.10000133 |
SSID | ssj0001325264 |
Score | 2.2916079 |
Snippet | Marker-based 3D motion capture systems, widely used for gait analysis, are accurate but have disadvantages such as cost and accessibility. Whereas markerless... |
SourceID | doaj proquest gale crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 141 |
SubjectTerms | Accuracy Analysis Ankle Cameras Cost analysis Data collection Data entry Datasets Deep learning Efficiency Fitness equipment Gait gait analysis human pose estimation Investigations Kinematics lower extremity markerless Medical research Medicine, Experimental Motion capture Neural networks Placement Pose estimation Running Smart phones Smartphones Three dimensional motion |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6uNAD4s1CQT5U4hTt-pE4PqEWdVshQJVopd6sjDNBPdCUTfj_zMTJLktRb1HsyM6Mx_PwzGchjrBBr_LGZ95AkVnd1BmU1mSoElwWouIC56_fivMr-_k6vx4Dbt2YVjnticNGXbeRY-RzcrvJtufl8_HuV8a3RvHp6niFxq7YV9o5dr7K5dkmxmJ0Tgo_FQYb8u7ncNPiBuePVJ_mRMctnTRA99_foP8xOwf1s3wiHo92ozxOjH4qdvD2mTj4C03wuQjrAIE8q256OeGNyMsJp7WTHHaVXJ-DfMjeyYu2Q3lKYp4qGOUJKbVa0sP3n7SmOG8d5Zc2hfVeiKvl6eWn82y8PyGL1tg-A3LnfG0X0YMyYKGMVbTgSlMpCzW6ojIxj95VHsjIagrU1F4W5cJiU3hjzEuxd0vjvBZS67JxiJacx8o2mINd1BhrVcfCoHHVTMwnCoa7BJMRyL1gmof_03wmTpjQ694Mcz28aFc_wig1odBOAXKamQObgweP4MvGOwBH3KVhPzCbAgtjv6ro_1JNAU2aYa3CsSP_lVS0ouEOt3qSEMXt5onRYRTiLmyW3Ey8SsxfT5ccezKsdf7m4Q_fikearKAUszkUe_3qN74jK6aH98NS_QNZSvMU priority: 102 providerName: ProQuest |
Title | Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38391625 https://www.proquest.com/docview/3048711794 https://doaj.org/article/6271be5fc87b45b9b9eb98f97bb7013a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoEDKi2P5bHyoRKnaDe2E8fHTbsLqlqEKEjcrIwzkTjAIjb8f8bx7na3VOLSU6LYku2Z2PPNZOYLwFdqyKZZYxOrME-0bOoEC60SSiNdFlEaCpx_XeYXt_rHXXa38quvkBMW6YGj4Aa5NClSyDQyqDO0aAlt0ViDaBi-RGg0tCvOVBddUTJjUx9LghX79QO8n9Ifhj82ejKkOK5Zo460_-3R_Bfg7AzP5BPszBGjGMWZ7sIHevwM2ys8gl_ALUMD4ry6b8WCaUTcLBhaZyIEXEWozKHweX0mrqYzEmPe4LF2UZRszmrBN78fWCghY53Ez2kM6O3B7WR88-0imf85IfFa6TbBIJJaD73FVKHGwldeoylUlWqsyeSV8pm3prLI8KrJSXJ7kRdDTU1ulVL7sPnI4xyCkLJoDJFmt7HSDWWohzX5Oq19rkiZqgeDhQTdUyTIcOxYBJm7f8u8B2UQ9LJ3ILjuHrDa3Vzt7j219-AsqMmFbdg-V7y-WE3Akw6EVm5k2HNl45zycCdrPXn7-PXmhaLdfPvOnOJzzXTkeT04iMpfTpddeobUMjv6H8s4hi3JKCnGdE5gs31-oVNGOS32YaOYnPfh46j8Xk74Wo4vr6773Wv-CgUJACo |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgewAeEN8UBvgBiaeoje3E8RNaUUeBrpqgk_Zm5ZzLtAeW0YT_n7s6aSkg3qLYkZ07n-_Ddz8L8RZrdGlWu8RpyBOj6iqBwugE0wiXhZhygfPpMp-fm88X2UUfcGv7tMphT9xs1FUTOEY-JrebbHtePu9vfiR8axSfrvZXaNwWhwxVRc7X4XS2PPu6i7JolZHKj6XBmvz7MVw1uEP6I-WnONVxTyttwPv_3qL_MDw3CujkgbjfW47yOLL6obiF14_Evd_wBB8Lvw0RyI_lVScHxBG5GpBaW8mBV8kVOsjH7K08a1qUMxL0WMMop6TWKkkP377TquLMdZSLJgb2nojzk9nqwzzpb1BIgtGmS4AcOleZSXCQajBQhDIYsIUuUwMV2rzUIQvOlg7IzKpzVNRe5MXEYJ07rfVTcXBN4zwXUqmitoiG3MfS1JiBmVQYqrQKuUZty5EYDxT0NxEow5ODwTT3_6b5SEyZ0NveDHS9edGsL30vNz5XNgXkRDMLJgMHDsEVtbMAlrhLw75jNnkWx25d0v_FqgKaNANb-WNLHiwp6ZSGO9rrSWIU9psHRvtejFu_W3Qj8Swyfztdcu3JtFbZi_9_-Ebcma9OF37xafnlpbiryCaKEZwjcdCtf-Irsmk6eN0v3F8A2_dl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxA8ID5HYYAfkHiK2tiOHT-hFVoGjKqCTdqblXPOaA8sown_P-c6aSkg3qLYkR3fne_Ddz8z9goD2rwINrMSdKZEqDMolcwwT3BZiHkscP681Cfn6uNFcdHnP7V9WuWwJ2426rrxMUY-IbebbPvIPpPQp0Ws3i3eXP_I4g1S8aS1v07jJjswSsvpiB3M5svVl13ERYqC1H8qE5bk60_gssEd6h8pQhHTHvc01AbI_-_t-g8jdKOMFvfY3d6K5MeJ7PfZDbx6wO78hi34kLltuIC_ry47PqCP8LMBtbXlMQjLY7UOxiP3lq-aFvmchD7VM_IZqbia08PX78RhMYsd-WmTgnyP2Plifvb2JOtvU8i8kqrLgJw7W6upt5BLUFD6yiswpaxyBTUaXUlfeGsqC2RyBY2C2ktdThUGbaWUj9noisZ5wrgQZTCIilzJSgUsQE1r9HVeey1RmmrMJsMKuusEmuHI2Yhr7v695mM2iwu97R1BrzcvmvU318uQ08LkgDHpzIAqwIJFsGWwBsAQdWnY15FMLopmt67o_1KFAU06gly5Y0PeLCnsnIY72utJIuX3mwdCu16kW7djwDE7TMTfTpfcfDKzRfH0_x--ZLeIZ93ph-WnZ-y2IPMoBXOO2Khb_8TnZN508KLn219kVvuT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Gait+Analysis+Techniques+with+Markerless+Pose+Estimation+Based+on+Smartphone+Location&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Yang%2C+Junhyuk&rft.au=Park%2C+Kiwon&rft.date=2024-01-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=2&rft.spage=141&rft_id=info:doi/10.3390%2Fbioengineering11020141&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11020141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |