An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables

The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-...

Full description

Saved in:
Bibliographic Details
Published inOperations research Vol. 52; no. 1; pp. 116 - 127
Main Authors Bierlaire, M, Crittin, F
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.01.2004
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0030-364X
1526-5463
DOI10.1287/opre.1030.0071

Cover

Abstract The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem.
AbstractList The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem. [PUBLICATION ABSTRACT]
The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem.
The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem.
Audience Trade
Author Bierlaire, M
Crittin, F
Author_xml – sequence: 1
  fullname: Bierlaire, M
– sequence: 2
  fullname: Crittin, F
BookMark eNqFkc9rHCEUx6Wk0E3aa28F6aG32fqc0RmPS7L9AYGEdAu9ievorsuMbtUQ8t_XyYS0h5TgQXx8vu_5fd9TdOKDNwi9B7IE2rWfwzGaJZCaLAlp4RVaAKO8Yg2vT9CClHpV8-bXG3Sa0oEQIhhnC_Rj5fHaWqed8Rmvhl2ILu9HbEPEN0YN1caNBq9TdqPKLnisfI-vo-mdfngGiy_uvRqdxlcXeKO2g0lv0WurhmTePd5n6OeX9eb8W3V59fX7-eqy0k3d5GpLgVBtjbAcGLMtNBo6xjWpa6UFE2AFtZa3TGjBCWFgCeW9BYCu51sF9Rn6OPc9xvD71qQsD-E2-jJSUhAgKG-bAlUztFODkc7bkKPSO-NNVENZoHWlvAJoaMe7jhd--QxfTm-KyWcFzSzQMaQUjZXa5YddFaEbJBA5xSOneOQUj5zi-TvnSXaMZcfx_v-CD7PgkHKIT3RdkuWM_2N0-nMc08v9Ps383u32dy7OZifhBCbJqAQJwOs_sCm34Q
CODEN OPREAI
CitedBy_id crossref_primary_10_1016_j_sbspro_2012_09_786
crossref_primary_10_1016_j_trb_2023_102804
crossref_primary_10_4018_ijoris_2014040103
crossref_primary_10_1016_j_trpro_2019_05_025
crossref_primary_10_1080_21680566_2025_2459928
crossref_primary_10_1016_j_trc_2015_08_009
crossref_primary_10_1016_j_trb_2012_08_007
crossref_primary_10_1049_smc2_12071
crossref_primary_10_3141_1882_05
crossref_primary_10_1111_mice_12278
crossref_primary_10_3390_su16062555
crossref_primary_10_1080_03081060_2015_1059124
crossref_primary_10_1007_s12544_013_0115_z
crossref_primary_10_1109_TMC_2024_3435436
crossref_primary_10_1016_j_trc_2018_09_002
crossref_primary_10_3141_2263_20
crossref_primary_10_1016_j_trc_2023_104184
crossref_primary_10_1061__ASCE_0733_947X_2005_131_7_506
crossref_primary_10_3141_2567_06
crossref_primary_10_1109_ACCESS_2017_2774449
crossref_primary_10_1287_trsc_1050_0119
crossref_primary_10_1155_2014_430497
crossref_primary_10_3141_2466_14
crossref_primary_10_1155_2019_1568941
crossref_primary_10_1007_s11067_020_09496_4
crossref_primary_10_1093_tse_tdad026
crossref_primary_10_1111_mice_12526
crossref_primary_10_3390_app14010100
crossref_primary_10_1016_j_trc_2009_06_005
crossref_primary_10_1016_S1570_6672_13_60117_8
crossref_primary_10_1080_21680566_2022_2080128
crossref_primary_10_1016_j_trc_2010_05_013
crossref_primary_10_1016_j_trc_2016_10_012
crossref_primary_10_3389_ffutr_2021_640570
crossref_primary_10_1109_TITS_2019_2924971
crossref_primary_10_1016_j_trc_2020_102747
crossref_primary_10_1080_03081060_2011_565169
crossref_primary_10_1016_j_trc_2013_12_009
crossref_primary_10_1109_TITS_2007_908569
crossref_primary_10_1016_j_trb_2019_05_010
crossref_primary_10_3141_2283_09
crossref_primary_10_1002_jtr_70011
crossref_primary_10_3390_s21154971
crossref_primary_10_1080_0740817X_2015_1078523
crossref_primary_10_1016_j_trd_2021_102788
crossref_primary_10_1080_21680566_2022_2060370
crossref_primary_10_2139_ssrn_4120737
crossref_primary_10_3390_s21217080
crossref_primary_10_1016_j_trc_2008_09_001
crossref_primary_10_1016_j_trc_2013_05_006
crossref_primary_10_3141_2263_05
crossref_primary_10_3182_20090902_3_US_2007_0056
crossref_primary_10_1007_s12469_020_00255_9
crossref_primary_10_1007_s40864_018_0090_8
crossref_primary_10_1007_s11042_020_10492_6
crossref_primary_10_1016_j_ijtst_2022_03_002
crossref_primary_10_1016_j_trb_2019_01_005
crossref_primary_10_1016_j_trc_2018_09_023
crossref_primary_10_3141_2528_12
crossref_primary_10_1287_trsc_2016_0723
crossref_primary_10_1007_s00521_022_07866_2
crossref_primary_10_1016_j_tra_2024_104246
crossref_primary_10_1016_j_trc_2021_103195
crossref_primary_10_3141_2085_04
crossref_primary_10_3141_2467_04
crossref_primary_10_1080_03081060500053368
crossref_primary_10_1007_s11116_023_10412_1
crossref_primary_10_3141_2085_07
crossref_primary_10_1109_MITS_2021_3082397
crossref_primary_10_1016_j_trc_2021_103545
crossref_primary_10_1155_2014_439031
crossref_primary_10_3141_2259_08
crossref_primary_10_3141_2498_04
crossref_primary_10_1016_j_trb_2013_06_007
crossref_primary_10_3141_2105_16
crossref_primary_10_1109_TKDE_2022_3179781
crossref_primary_10_1016_j_trd_2016_08_013
crossref_primary_10_1080_15472450_2012_671706
crossref_primary_10_1061__ASCE_0733_947X_2008_134_8_327
crossref_primary_10_1049_ip_its_20055008
crossref_primary_10_1016_j_tre_2024_103679
crossref_primary_10_3141_2344_04
crossref_primary_10_1016_j_ejor_2006_09_080
crossref_primary_10_3390_su15021707
crossref_primary_10_1109_TITS_2018_2865610
crossref_primary_10_1016_j_trc_2025_105046
crossref_primary_10_1080_15472450_2013_773249
crossref_primary_10_1016_j_trc_2017_05_013
Cites_doi 10.1287/trsc.27.4.363
10.1016/0191-2615(80)90008-9
10.1016/0191-2615(94)90022-1
10.1016/0191-2615(94)00025-U
10.1016/S1474-6670(17)43892-4
10.1016/0191-2615(84)90002-X
10.1016/0024-3795(91)90009-L
10.1287/trsc.34.1.21.12282
10.1023/A:1012883811652
10.1145/355984.355989
10.1007/978-3-662-02666-3
ContentType Journal Article
Copyright Copyright 2004 INFORMS
COPYRIGHT 2004 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2004
Copyright_xml – notice: Copyright 2004 INFORMS
– notice: COPYRIGHT 2004 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2004
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88F
8AL
8AO
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
M0C
M0N
M0S
M1P
M1Q
M2O
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1287/opre.1030.0071
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Military Database (ProQuest)
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
EISSN 1526-5463
EndPage 127
ExternalDocumentID 583357661
A114286886
10_1287_opre_1030_0071
30036564
opre.1030.0071
opres_52_1_116
Genre Research Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 02
08R
123
1AW
1OL
29N
2AX
3V.
4.4
7WY
7X7
85S
88E
8AL
8AO
8FE
8FG
8FI
8FJ
8FL
8G5
8V8
92
AABCJ
ABBHK
ABDEX
ABEFU
ABJCF
ABPPZ
ABSIS
ABUWG
ABWPA
ACDCL
ACHQT
ACIWK
ACNCT
ACUWV
ACVYA
ADBBV
ADGDI
ADNFJ
AENEX
AEUPB
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
ARAPS
AZQEC
B-7
BBAFP
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DWQXO
DZ
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMI
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
HVGLF
H~9
IAO
ICJ
IEA
IGG
IOF
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
LI
M0C
M0N
M1P
M1Q
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRG
PROAC
PSQYO
PTHSS
QVA
RNS
RPU
SA0
TAE
TH9
TN5
U5U
VQA
WH7
X
XFK
XHC
XI7
XJT
XXP
YHZ
YNT
YZZ
ZCG
ZY4
AETEA
HGD
Y99
-DZ
-~X
18M
AAAZS
AAWTO
AAXLS
AAYOK
ABAWQ
ABDPE
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACSVP
ACXJH
ADEPB
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
CCPQU
HF~
HMCUK
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
UKHRP
XOL
XSW
~02
~92
AAYXX
ADMHC
CITATION
YYP
PMFND
7XB
8FK
JQ2
K9.
L.-
PJZUB
PKEHL
PPXIY
PQGLB
PRINS
Q9U
ID FETCH-LOGICAL-c434t-b2102cfe9f6155f714c1856c033ac9591f92ff6759c960051f026df1118d6ba13
IEDL.DBID 8FG
ISSN 0030-364X
IngestDate Fri Jul 25 10:39:09 EDT 2025
Fri Jun 13 00:46:49 EDT 2025
Tue Jun 10 21:23:58 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Tue Jul 01 04:26:23 EDT 2025
Thu Jun 19 15:55:59 EDT 2025
Tue Jan 05 23:29:21 EST 2021
Fri Jan 15 03:35:16 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-b2102cfe9f6155f714c1856c033ac9591f92ff6759c960051f026df1118d6ba13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219192674
PQPubID 37962
PageCount 12
ParticipantIDs gale_infotracgeneralonefile_A114286886
crossref_citationtrail_10_1287_opre_1030_0071
crossref_primary_10_1287_opre_1030_0071
informs_primary_10_1287_opre_1030_0071
highwire_informs_opres_52_1_116
jstor_primary_30036564
gale_infotracacademiconefile_A114286886
proquest_journals_219192674
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-01-01
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – month: 01
  year: 2004
  text: 2004-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Operations research
PublicationYear 2004
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Van der Zijpp N. (B26) 1994; 1443
Bertsekas D. P. (B8) 1995
Barceló J. (B5) 1999
Ashok K. (B3) 1993
Okutani I. (B20) 1987
Wilson A. G. (B29) 1970
Casey H. J. (B14) 1955; 9
Smith B. L. (B23) 2001
Ben-Akiva M. (B6) 2003
Kalman R. E. (B19) 1960; 82
Florian M. (B17) 1993
Bottom J. (B12) 1999
Golub G. H. (B18) 1996
References_xml – ident: B12
– ident: B9
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B15
– ident: B19
– ident: B13
  doi: 10.1287/trsc.27.4.363
– ident: B27
  doi: 10.1016/0191-2615(80)90008-9
– volume-title: IFORS Conf.
  year: 1993
  ident: B17
– volume: 9
  start-page: 23
  issue: 1
  year: 1955
  ident: B14
  publication-title: Traffic Quart.
– ident: B15
  doi: 10.1016/0191-2615(94)90022-1
– ident: B9
  doi: 10.1016/0191-2615(94)00025-U
– start-page: 577
  volume-title: Transportation and Traffic Theory, Proc. 14th ISTTT.
  year: 1999
  ident: B12
– volume-title: Transportation and Traffic Theory, Proc. 12th ISTTT.
  year: 1993
  ident: B3
– ident: B1
  doi: 10.1016/S1474-6670(17)43892-4
– ident: B21
  doi: 10.1016/0191-2615(84)90002-X
– ident: B11
  doi: 10.1016/0024-3795(91)90009-L
– volume: 82
  start-page: 33
  issue: 1
  year: 1960
  ident: B19
  publication-title: J. Basic Engrg., Trans. ASME, Series D
– volume-title: Entropy in Urban and Regional Modelling
  year: 1970
  ident: B29
– volume-title: Transportation and Network Analysis: Current Trends. Miscellenea in Honor of Michael Florian
  year: 2003
  ident: B6
– ident: B4
  doi: 10.1287/trsc.34.1.21.12282
– volume-title: Nonlinear Programming
  year: 1995
  ident: B8
– ident: B7
  doi: 10.1023/A:1012883811652
– volume-title: Matrix Computations
  year: 1996
  ident: B18
– start-page: 419
  volume-title: Transportation and Traffic Theory, Proc. 14th ISTTT.
  year: 1999
  ident: B5
– ident: B22
  doi: 10.1145/355984.355989
– start-page: 397
  volume-title: Transportation and Traffic Theory
  year: 1987
  ident: B20
– ident: B16
  doi: 10.1007/978-3-662-02666-3
– volume-title: Proc. 11th Annual Meeting ITS America
  year: 2001
  ident: B23
– volume: 1443
  start-page: 54
  year: 1994
  ident: B26
  publication-title: Transportation Res. Record
SSID ssj0009565
Score 2.1321754
Snippet The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent...
SourceID proquest
gale
crossref
jstor
informs
highwire
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116
SubjectTerms Algorithms
Analysis
Covariance matrices
Estimating techniques
Interval estimators
Kalman filters
Matrices
Musical intervals
Nonlinear programming
Real time
Sensors
Studies
Traffic
Traffic estimation
Transportation
Transportation: models. Programming: nonlinear algorithms
Title An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables
URI http://or.journal.informs.org/cgi/content/abstract/52/1/116
https://www.jstor.org/stable/30036564
https://www.proquest.com/docview/219192674
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED4NkCb2AKNQrTCKH6YNHqzW-eEkT1OBFjRpXcVA6puVOHF5gBRI-f-5S-wKtAGPbU6pmzt_dxfffQfwLSUCkTzTPDB5hAlKUfA4MX0ufJHK0EvRrqlR-PdYnl8Fv6bh1NbmVLas0mFiDdT5XNM78h7uLAxGZBT8vLvnNDSKDlftBI0VWBPoaMjM49HZM85d2Qww8BFqZDC1nI2YI_Rowgj1m1NdVyRe-CSHzI4uuG5zogCyciWL_8B27YtGn2HDBpFs0Gh9Cz4UZQs-uhr2Fmy6WQ3Mbt0WfHpGPNiCLft9xQ4t7_TRNvwdlGxYM0qgI2KDmxn-_8X1LcNVsQuMJzm1i7AhYkLT7sjSMmeTBzrpqT_ODTtt5tuzP6fsknqyqh24Gg0vT865nbnAdeAHC55RCqhNkRg6sDSRCDR6dKn7vp_qJEyESTxjMMtINOY-uKMNJnG5QcSMc5mlwm_Dajkviy_ATOrlGH5Guckwx8v6ceJpkRmRIEwUUdHvAHdPXWlLSE5zMW4UJSaoJUVaUqQlRVrqwI-l_F1DxfG6JClRkd7wjjq1rQa4LmK7UgNqII5lHMsOfH8hOWue-f8ED5xBKGsO9Y9WKvSUwDyKbuUuvLe6dm1GSzGfSIFCGXRgz9mVskhSqaXd7755dQ_Wm5oiejn0FVYXD4_FPoZLi6wLK9E06tZbowtrx8Px5OIJn-QRzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIPVxoCUtakope-iLg0Vsr9f2oUJpExQKpIgGKbfteu0FJHAoToX4Uf2PnbF3I1BfJ46xR5vVzuw8vPt9A_BaEYFInmmPmzzGAqUovCQ1Xc8PfSWiQKFdE1B4fySGR_zzJJoswE-HhaFrlc4n1o46n2r6Rr6JOwuTERHzrYvvHjWNosNV10GjsYrd4voKK7bqw04f1fsmCLYH409DzzYV8DQP-czLqMbRpkgNnciZ2OcaQ5bQ3TBUOo1S36SBMZhGpxqTezRZg1VKbtAlJLnIlB_iuPdgkROgtQWLHwejg8MbLL-iaZkQonMTfGJZIrEq2aSeJoRwp5tksX8rCrpY4AiKa2AVpayVuyT5W6Coo9_2E1iyaSvrNXa2DAtF2Yb77tZ8Gx677hDMOos2PLpBddiGZfu8Yu8t0_XGU_jaK9mg5rDA0Md6Z8e44rOTc4azYoeYwXoEUGED9EINwJKpMmcHl3S2VP-cGta_LtX5qWZf-mxMKLDqGRzdiUJWoFVOy-I5MKOCHBPeODcZVpVZN0kD7WfGT9ExFXHR7YDnVl1qS4FOnTjOJJVCqCVJWpKkJUla6sC7ufxFQ_7xd0lSoiS94YhaWXADzov4tWSPIMuJSBLRgbe3JI-bNf-T4LozCGnNof7TSkaB9LFyo6Hci__NbqU2o7lYSDREkeAdWHV2Ja3vquR8p73459t1eDAc7-_JvZ3R7io8bG400aepl9CaXf4o1jBZm2Wv7BZh8O2ud-UvTRBL4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwABqoCAXqA8-DlXgf9u4BoYgkaimUClopN-P1rgtSuyndINSfxr9jZteOWvE69ZjdkWN53uuZbwCeGAIQKQvLE1cqTFCqime5G3IRCyPTyKBcU6Pw-z25fZi8naWzFfgZemGorDLYxNZQl3NL38gHqFkYjEiVDJyvitgfT1-ffuM0QIouWsM0jU5CdqvzH5i9Na92xsjqp1E0nRy82eZ-wAC3SZwseEH5jnVV7uh2zimRWHRf0g7j2Ng8zYXLI-cwpM4tBvoovg4zltKhechKWRgR47rX4LqKMahCVVIzdQHvV3bDE2I0czKZebxIzE8GNN2Eet2ppkyJS_4weIUAVdy2WFHw2oRyyd9cRusHp3fglg9g2aiTuHVYqeoerIX6-R7cDnMimDcbPbh5AfSwB-v-ecNeeMzrl3fh06hmkxbNAp0gGx0f4Xkvvpww3BX7iLEsp1YVNkF71LVaMlOXbP-Mbpnan3PHxue1Oflq2YcxO6B-sOYeHF4JOzZgtZ7X1X1gzkQlhr6qdAXml8UwyyMrCidyNFGVqoZ94OHUtfVg6DST41hTUoRc0sQlTVzSxKU-PF_Sn3YwIH-nJCZq4huuaI1vc8B9EdKWHlHzciazTPbh2SXKo-7M_0S4FQRCe3Fo_7TRaaQF5nC0VHjxv91ttGK0JIsJkCiVSR82g1xpb8UavdS5B_98uwVrqIv63c7e7ibc6Eqb6BvVQ1hdnH2vHmHUtiget_rB4PNVK-QvN2ROpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Algorithm+for+Real-Time+Estimation+and+Prediction+of+Dynamic+OD+Tables&rft.jtitle=Operations+research&rft.au=Bierlaire%2C+M&rft.au=Crittin%2C+F&rft.date=2004-01-01&rft.eissn=1526-5463&rft.volume=52&rft.issue=1&rft.spage=116&rft_id=info:doi/10.1287%2Fopre.1030.0071&rft.externalDBID=n%2Fa&rft.externalDocID=opres_52_1_116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon