An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables
The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-...
Saved in:
Published in | Operations research Vol. 52; no. 1; pp. 116 - 127 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.01.2004
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0030-364X 1526-5463 |
DOI | 10.1287/opre.1030.0071 |
Cover
Abstract | The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate.
We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications.
We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem. |
---|---|
AbstractList | The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem. [PUBLICATION ABSTRACT] The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem. The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature of the problem and the real-time requirements make it even more intricate. We consider here a least-square modeling approach for solving the OD estimation and prediction problem, which seems to offer convenient and flexible algorithms. The dynamic nature of the problem is represented by an autoregressive process, capturing the serial correlations of the state variables. Our formulation is inspired from Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter algorithm to LSQR, an iterative algorithm proposed by Paige and Saunders (1982) for the solution of large-scale least-squares problems. LSQR explicitly exploits matrix sparsity, allowing to consider larger problems likely to occur in real applications. We show that the LSQR algorithm significantly decreases the computation effort needed by the Kalman filter approach for large-scale problems. We also provide a theoretical number of flops for both algorithms to predict which algorithm will perform better on a specific instance of the problem. |
Audience | Trade |
Author | Bierlaire, M Crittin, F |
Author_xml | – sequence: 1 fullname: Bierlaire, M – sequence: 2 fullname: Crittin, F |
BookMark | eNqFkc9rHCEUx6Wk0E3aa28F6aG32fqc0RmPS7L9AYGEdAu9ievorsuMbtUQ8t_XyYS0h5TgQXx8vu_5fd9TdOKDNwi9B7IE2rWfwzGaJZCaLAlp4RVaAKO8Yg2vT9CClHpV8-bXG3Sa0oEQIhhnC_Rj5fHaWqed8Rmvhl2ILu9HbEPEN0YN1caNBq9TdqPKLnisfI-vo-mdfngGiy_uvRqdxlcXeKO2g0lv0WurhmTePd5n6OeX9eb8W3V59fX7-eqy0k3d5GpLgVBtjbAcGLMtNBo6xjWpa6UFE2AFtZa3TGjBCWFgCeW9BYCu51sF9Rn6OPc9xvD71qQsD-E2-jJSUhAgKG-bAlUztFODkc7bkKPSO-NNVENZoHWlvAJoaMe7jhd--QxfTm-KyWcFzSzQMaQUjZXa5YddFaEbJBA5xSOneOQUj5zi-TvnSXaMZcfx_v-CD7PgkHKIT3RdkuWM_2N0-nMc08v9Ps383u32dy7OZifhBCbJqAQJwOs_sCm34Q |
CODEN | OPREAI |
CitedBy_id | crossref_primary_10_1016_j_sbspro_2012_09_786 crossref_primary_10_1016_j_trb_2023_102804 crossref_primary_10_4018_ijoris_2014040103 crossref_primary_10_1016_j_trpro_2019_05_025 crossref_primary_10_1080_21680566_2025_2459928 crossref_primary_10_1016_j_trc_2015_08_009 crossref_primary_10_1016_j_trb_2012_08_007 crossref_primary_10_1049_smc2_12071 crossref_primary_10_3141_1882_05 crossref_primary_10_1111_mice_12278 crossref_primary_10_3390_su16062555 crossref_primary_10_1080_03081060_2015_1059124 crossref_primary_10_1007_s12544_013_0115_z crossref_primary_10_1109_TMC_2024_3435436 crossref_primary_10_1016_j_trc_2018_09_002 crossref_primary_10_3141_2263_20 crossref_primary_10_1016_j_trc_2023_104184 crossref_primary_10_1061__ASCE_0733_947X_2005_131_7_506 crossref_primary_10_3141_2567_06 crossref_primary_10_1109_ACCESS_2017_2774449 crossref_primary_10_1287_trsc_1050_0119 crossref_primary_10_1155_2014_430497 crossref_primary_10_3141_2466_14 crossref_primary_10_1155_2019_1568941 crossref_primary_10_1007_s11067_020_09496_4 crossref_primary_10_1093_tse_tdad026 crossref_primary_10_1111_mice_12526 crossref_primary_10_3390_app14010100 crossref_primary_10_1016_j_trc_2009_06_005 crossref_primary_10_1016_S1570_6672_13_60117_8 crossref_primary_10_1080_21680566_2022_2080128 crossref_primary_10_1016_j_trc_2010_05_013 crossref_primary_10_1016_j_trc_2016_10_012 crossref_primary_10_3389_ffutr_2021_640570 crossref_primary_10_1109_TITS_2019_2924971 crossref_primary_10_1016_j_trc_2020_102747 crossref_primary_10_1080_03081060_2011_565169 crossref_primary_10_1016_j_trc_2013_12_009 crossref_primary_10_1109_TITS_2007_908569 crossref_primary_10_1016_j_trb_2019_05_010 crossref_primary_10_3141_2283_09 crossref_primary_10_1002_jtr_70011 crossref_primary_10_3390_s21154971 crossref_primary_10_1080_0740817X_2015_1078523 crossref_primary_10_1016_j_trd_2021_102788 crossref_primary_10_1080_21680566_2022_2060370 crossref_primary_10_2139_ssrn_4120737 crossref_primary_10_3390_s21217080 crossref_primary_10_1016_j_trc_2008_09_001 crossref_primary_10_1016_j_trc_2013_05_006 crossref_primary_10_3141_2263_05 crossref_primary_10_3182_20090902_3_US_2007_0056 crossref_primary_10_1007_s12469_020_00255_9 crossref_primary_10_1007_s40864_018_0090_8 crossref_primary_10_1007_s11042_020_10492_6 crossref_primary_10_1016_j_ijtst_2022_03_002 crossref_primary_10_1016_j_trb_2019_01_005 crossref_primary_10_1016_j_trc_2018_09_023 crossref_primary_10_3141_2528_12 crossref_primary_10_1287_trsc_2016_0723 crossref_primary_10_1007_s00521_022_07866_2 crossref_primary_10_1016_j_tra_2024_104246 crossref_primary_10_1016_j_trc_2021_103195 crossref_primary_10_3141_2085_04 crossref_primary_10_3141_2467_04 crossref_primary_10_1080_03081060500053368 crossref_primary_10_1007_s11116_023_10412_1 crossref_primary_10_3141_2085_07 crossref_primary_10_1109_MITS_2021_3082397 crossref_primary_10_1016_j_trc_2021_103545 crossref_primary_10_1155_2014_439031 crossref_primary_10_3141_2259_08 crossref_primary_10_3141_2498_04 crossref_primary_10_1016_j_trb_2013_06_007 crossref_primary_10_3141_2105_16 crossref_primary_10_1109_TKDE_2022_3179781 crossref_primary_10_1016_j_trd_2016_08_013 crossref_primary_10_1080_15472450_2012_671706 crossref_primary_10_1061__ASCE_0733_947X_2008_134_8_327 crossref_primary_10_1049_ip_its_20055008 crossref_primary_10_1016_j_tre_2024_103679 crossref_primary_10_3141_2344_04 crossref_primary_10_1016_j_ejor_2006_09_080 crossref_primary_10_3390_su15021707 crossref_primary_10_1109_TITS_2018_2865610 crossref_primary_10_1016_j_trc_2025_105046 crossref_primary_10_1080_15472450_2013_773249 crossref_primary_10_1016_j_trc_2017_05_013 |
Cites_doi | 10.1287/trsc.27.4.363 10.1016/0191-2615(80)90008-9 10.1016/0191-2615(94)90022-1 10.1016/0191-2615(94)00025-U 10.1016/S1474-6670(17)43892-4 10.1016/0191-2615(84)90002-X 10.1016/0024-3795(91)90009-L 10.1287/trsc.34.1.21.12282 10.1023/A:1012883811652 10.1145/355984.355989 10.1007/978-3-662-02666-3 |
ContentType | Journal Article |
Copyright | Copyright 2004 INFORMS COPYRIGHT 2004 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2004 |
Copyright_xml | – notice: Copyright 2004 INFORMS – notice: COPYRIGHT 2004 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2004 |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88F 8AL 8AO 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V M0C M0N M0S M1P M1Q M2O M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1287/opre.1030.0071 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Military Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Health & Medical Collection (Alumni) Medical Database Military Database (ProQuest) Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Computer Science Business |
EISSN | 1526-5463 |
EndPage | 127 |
ExternalDocumentID | 583357661 A114286886 10_1287_opre_1030_0071 30036564 opre.1030.0071 opres_52_1_116 |
Genre | Research Article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 02 08R 123 1AW 1OL 29N 2AX 3V. 4.4 7WY 7X7 85S 88E 8AL 8AO 8FE 8FG 8FI 8FJ 8FL 8G5 8V8 92 AABCJ ABBHK ABDEX ABEFU ABJCF ABPPZ ABSIS ABUWG ABWPA ACDCL ACHQT ACIWK ACNCT ACUWV ACVYA ADBBV ADGDI ADNFJ AENEX AEUPB AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT ARAPS AZQEC B-7 BBAFP BENPR BEZIV BGLVJ BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DWQXO DZ EBA EBE EBO EBR EBS EBU ECR EHE EJD EMI EMK EPL F20 F5P FH7 FRNLG FYUFA G8K GENNL GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ HVGLF H~9 IAO ICJ IEA IGG IOF ITC JAV JBC JPL JSODD JST K6 K60 K6V K7- L6V LI M0C M0N M1P M1Q M2O M7S MBDVC MV1 N95 NIEAY P2P P62 PQEST PQQKQ PQUKI PRG PROAC PSQYO PTHSS QVA RNS RPU SA0 TAE TH9 TN5 U5U VQA WH7 X XFK XHC XI7 XJT XXP YHZ YNT YZZ ZCG ZY4 AETEA HGD Y99 -DZ -~X 18M AAAZS AAWTO AAXLS AAYOK ABAWQ ABDPE ABKVW ABLWH ABXSQ ABYYQ ACGFO ACHJO ACSVP ACXJH ADEPB ADMHG ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR ALIPV APTMU ASMEE BAAKF CCPQU HF~ HMCUK IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA UKHRP XOL XSW ~02 ~92 AAYXX ADMHC CITATION YYP PMFND 7XB 8FK JQ2 K9. L.- PJZUB PKEHL PPXIY PQGLB PRINS Q9U |
ID | FETCH-LOGICAL-c434t-b2102cfe9f6155f714c1856c033ac9591f92ff6759c960051f026df1118d6ba13 |
IEDL.DBID | 8FG |
ISSN | 0030-364X |
IngestDate | Fri Jul 25 10:39:09 EDT 2025 Fri Jun 13 00:46:49 EDT 2025 Tue Jun 10 21:23:58 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 Tue Jul 01 04:26:23 EDT 2025 Thu Jun 19 15:55:59 EDT 2025 Tue Jan 05 23:29:21 EST 2021 Fri Jan 15 03:35:16 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-b2102cfe9f6155f714c1856c033ac9591f92ff6759c960051f026df1118d6ba13 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 219192674 |
PQPubID | 37962 |
PageCount | 12 |
ParticipantIDs | gale_infotracgeneralonefile_A114286886 crossref_citationtrail_10_1287_opre_1030_0071 crossref_primary_10_1287_opre_1030_0071 informs_primary_10_1287_opre_1030_0071 highwire_informs_opres_52_1_116 jstor_primary_30036564 gale_infotracacademiconefile_A114286886 proquest_journals_219192674 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-01-01 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – month: 01 year: 2004 text: 2004-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Operations research |
PublicationYear | 2004 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Van der Zijpp N. (B26) 1994; 1443 Bertsekas D. P. (B8) 1995 Barceló J. (B5) 1999 Ashok K. (B3) 1993 Okutani I. (B20) 1987 Wilson A. G. (B29) 1970 Casey H. J. (B14) 1955; 9 Smith B. L. (B23) 2001 Ben-Akiva M. (B6) 2003 Kalman R. E. (B19) 1960; 82 Florian M. (B17) 1993 Bottom J. (B12) 1999 Golub G. H. (B18) 1996 |
References_xml | – ident: B12 – ident: B9 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B8 – ident: B11 – ident: B13 – ident: B2 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B15 – ident: B19 – ident: B13 doi: 10.1287/trsc.27.4.363 – ident: B27 doi: 10.1016/0191-2615(80)90008-9 – volume-title: IFORS Conf. year: 1993 ident: B17 – volume: 9 start-page: 23 issue: 1 year: 1955 ident: B14 publication-title: Traffic Quart. – ident: B15 doi: 10.1016/0191-2615(94)90022-1 – ident: B9 doi: 10.1016/0191-2615(94)00025-U – start-page: 577 volume-title: Transportation and Traffic Theory, Proc. 14th ISTTT. year: 1999 ident: B12 – volume-title: Transportation and Traffic Theory, Proc. 12th ISTTT. year: 1993 ident: B3 – ident: B1 doi: 10.1016/S1474-6670(17)43892-4 – ident: B21 doi: 10.1016/0191-2615(84)90002-X – ident: B11 doi: 10.1016/0024-3795(91)90009-L – volume: 82 start-page: 33 issue: 1 year: 1960 ident: B19 publication-title: J. Basic Engrg., Trans. ASME, Series D – volume-title: Entropy in Urban and Regional Modelling year: 1970 ident: B29 – volume-title: Transportation and Network Analysis: Current Trends. Miscellenea in Honor of Michael Florian year: 2003 ident: B6 – ident: B4 doi: 10.1287/trsc.34.1.21.12282 – volume-title: Nonlinear Programming year: 1995 ident: B8 – ident: B7 doi: 10.1023/A:1012883811652 – volume-title: Matrix Computations year: 1996 ident: B18 – start-page: 419 volume-title: Transportation and Traffic Theory, Proc. 14th ISTTT. year: 1999 ident: B5 – ident: B22 doi: 10.1145/355984.355989 – start-page: 397 volume-title: Transportation and Traffic Theory year: 1987 ident: B20 – ident: B16 doi: 10.1007/978-3-662-02666-3 – volume-title: Proc. 11th Annual Meeting ITS America year: 2001 ident: B23 – volume: 1443 start-page: 54 year: 1994 ident: B26 publication-title: Transportation Res. Record |
SSID | ssj0009565 |
Score | 2.1321754 |
Snippet | The problem of estimating and predicting Origin-Destination (OD) tables is known to be important and difficult. In the specific context of Intelligent... |
SourceID | proquest gale crossref jstor informs highwire |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116 |
SubjectTerms | Algorithms Analysis Covariance matrices Estimating techniques Interval estimators Kalman filters Matrices Musical intervals Nonlinear programming Real time Sensors Studies Traffic Traffic estimation Transportation Transportation: models. Programming: nonlinear algorithms |
Title | An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables |
URI | http://or.journal.informs.org/cgi/content/abstract/52/1/116 https://www.jstor.org/stable/30036564 https://www.proquest.com/docview/219192674 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED4NkCb2AKNQrTCKH6YNHqzW-eEkT1OBFjRpXcVA6puVOHF5gBRI-f-5S-wKtAGPbU6pmzt_dxfffQfwLSUCkTzTPDB5hAlKUfA4MX0ufJHK0EvRrqlR-PdYnl8Fv6bh1NbmVLas0mFiDdT5XNM78h7uLAxGZBT8vLvnNDSKDlftBI0VWBPoaMjM49HZM85d2Qww8BFqZDC1nI2YI_Rowgj1m1NdVyRe-CSHzI4uuG5zogCyciWL_8B27YtGn2HDBpFs0Gh9Cz4UZQs-uhr2Fmy6WQ3Mbt0WfHpGPNiCLft9xQ4t7_TRNvwdlGxYM0qgI2KDmxn-_8X1LcNVsQuMJzm1i7AhYkLT7sjSMmeTBzrpqT_ODTtt5tuzP6fsknqyqh24Gg0vT865nbnAdeAHC55RCqhNkRg6sDSRCDR6dKn7vp_qJEyESTxjMMtINOY-uKMNJnG5QcSMc5mlwm_Dajkviy_ATOrlGH5Guckwx8v6ceJpkRmRIEwUUdHvAHdPXWlLSE5zMW4UJSaoJUVaUqQlRVrqwI-l_F1DxfG6JClRkd7wjjq1rQa4LmK7UgNqII5lHMsOfH8hOWue-f8ED5xBKGsO9Y9WKvSUwDyKbuUuvLe6dm1GSzGfSIFCGXRgz9mVskhSqaXd7755dQ_Wm5oiejn0FVYXD4_FPoZLi6wLK9E06tZbowtrx8Px5OIJn-QRzA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIPVxoCUtakope-iLg0Vsr9f2oUJpExQKpIgGKbfteu0FJHAoToX4Uf2PnbF3I1BfJ46xR5vVzuw8vPt9A_BaEYFInmmPmzzGAqUovCQ1Xc8PfSWiQKFdE1B4fySGR_zzJJoswE-HhaFrlc4n1o46n2r6Rr6JOwuTERHzrYvvHjWNosNV10GjsYrd4voKK7bqw04f1fsmCLYH409DzzYV8DQP-czLqMbRpkgNnciZ2OcaQ5bQ3TBUOo1S36SBMZhGpxqTezRZg1VKbtAlJLnIlB_iuPdgkROgtQWLHwejg8MbLL-iaZkQonMTfGJZIrEq2aSeJoRwp5tksX8rCrpY4AiKa2AVpayVuyT5W6Coo9_2E1iyaSvrNXa2DAtF2Yb77tZ8Gx677hDMOos2PLpBddiGZfu8Yu8t0_XGU_jaK9mg5rDA0Md6Z8e44rOTc4azYoeYwXoEUGED9EINwJKpMmcHl3S2VP-cGta_LtX5qWZf-mxMKLDqGRzdiUJWoFVOy-I5MKOCHBPeODcZVpVZN0kD7WfGT9ExFXHR7YDnVl1qS4FOnTjOJJVCqCVJWpKkJUla6sC7ufxFQ_7xd0lSoiS94YhaWXADzov4tWSPIMuJSBLRgbe3JI-bNf-T4LozCGnNof7TSkaB9LFyo6Hci__NbqU2o7lYSDREkeAdWHV2Ja3vquR8p73459t1eDAc7-_JvZ3R7io8bG400aepl9CaXf4o1jBZm2Wv7BZh8O2ud-UvTRBL4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwABqoCAXqA8-DlXgf9u4BoYgkaimUClopN-P1rgtSuyndINSfxr9jZteOWvE69ZjdkWN53uuZbwCeGAIQKQvLE1cqTFCqime5G3IRCyPTyKBcU6Pw-z25fZi8naWzFfgZemGorDLYxNZQl3NL38gHqFkYjEiVDJyvitgfT1-ffuM0QIouWsM0jU5CdqvzH5i9Na92xsjqp1E0nRy82eZ-wAC3SZwseEH5jnVV7uh2zimRWHRf0g7j2Ng8zYXLI-cwpM4tBvoovg4zltKhechKWRgR47rX4LqKMahCVVIzdQHvV3bDE2I0czKZebxIzE8GNN2Eet2ppkyJS_4weIUAVdy2WFHw2oRyyd9cRusHp3fglg9g2aiTuHVYqeoerIX6-R7cDnMimDcbPbh5AfSwB-v-ecNeeMzrl3fh06hmkxbNAp0gGx0f4Xkvvpww3BX7iLEsp1YVNkF71LVaMlOXbP-Mbpnan3PHxue1Oflq2YcxO6B-sOYeHF4JOzZgtZ7X1X1gzkQlhr6qdAXml8UwyyMrCidyNFGVqoZ94OHUtfVg6DST41hTUoRc0sQlTVzSxKU-PF_Sn3YwIH-nJCZq4huuaI1vc8B9EdKWHlHzciazTPbh2SXKo-7M_0S4FQRCe3Fo_7TRaaQF5nC0VHjxv91ttGK0JIsJkCiVSR82g1xpb8UavdS5B_98uwVrqIv63c7e7ibc6Eqb6BvVQ1hdnH2vHmHUtiget_rB4PNVK-QvN2ROpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Algorithm+for+Real-Time+Estimation+and+Prediction+of+Dynamic+OD+Tables&rft.jtitle=Operations+research&rft.au=Bierlaire%2C+M&rft.au=Crittin%2C+F&rft.date=2004-01-01&rft.eissn=1526-5463&rft.volume=52&rft.issue=1&rft.spage=116&rft_id=info:doi/10.1287%2Fopre.1030.0071&rft.externalDBID=n%2Fa&rft.externalDocID=opres_52_1_116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon |