Gut reactions: How the blood–brain barrier connects the microbiome and the brain

A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is kn...

Full description

Saved in:
Bibliographic Details
Published inExperimental biology and medicine (Maywood, N.J.) Vol. 243; no. 2; pp. 159 - 165
Main Authors Logsdon, Aric F, Erickson, Michelle A, Rhea, Elizabeth M, Salameh, Therese S, Banks, William A
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood–brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.
AbstractList A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood–brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.
A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.
A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis.
A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.
Author Salameh, Therese S
Erickson, Michelle A
Rhea, Elizabeth M
Banks, William A
Logsdon, Aric F
Author_xml – sequence: 1
  givenname: Aric F
  surname: Logsdon
  fullname: Logsdon, Aric F
  organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
– sequence: 2
  givenname: Michelle A
  surname: Erickson
  fullname: Erickson, Michelle A
  organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
– sequence: 3
  givenname: Elizabeth M
  surname: Rhea
  fullname: Rhea, Elizabeth M
  organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
– sequence: 4
  givenname: Therese S
  surname: Salameh
  fullname: Salameh, Therese S
  organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
– sequence: 5
  givenname: William A
  surname: Banks
  fullname: Banks, William A
  email: wabanks1@uw.edu
  organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29169241$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHjEUhUNR6ke7dyWz7GY0mXzNuCgU8QsEobTrkGRuNDKTaDLT4s7_4D_0l5jX11dUaFe55D7nHDh3C62FGAChHYL3CJFyn3DKqcRNmRmVQnxCm4uvmoquW1vNZb-BtnK-xphw2YjPaKPpiOgaRjbRz5N5qhJoO_kY8kF1Gv9W0xVUZoixf7x_MEn7UBmdkodU2RgC2Ck_I6O3KRofR6h06JeqBf0FrTs9ZPj68m6j38dHvw5P6_OLk7PDH-e1ZZRNtSHOYkExp8y0ruWcuc5x7ShALx2hVlrctNxY6gxurCOddJQI0YHtiegF3Ubfl743sxmhtxCmpAd1k_yo052K2qv3m-Cv1GX8o7hsW8J4Mfj2YpDi7Qx5UqPPFoZBB4hzVqQTLWOcYVbQ3bdZryGrIgsglkDpJOcETlk_6UWpJdoPimC1uJj6eLEixB-EK-__SOqlJOtLUNdxTqH0_G_-Ccktpag
CitedBy_id crossref_primary_10_2174_1871527321666220417005115
crossref_primary_10_1021_acs_chemrev_1c00480
crossref_primary_10_1016_j_gendis_2025_101592
crossref_primary_10_1002_admi_202201618
crossref_primary_10_1016_S0985_0562_24_00007_4
crossref_primary_10_1177_1745691618809379
crossref_primary_10_3389_fncel_2023_895017
crossref_primary_10_3390_microorganisms8040527
crossref_primary_10_3390_md23030091
crossref_primary_10_3389_fcimb_2020_00022
crossref_primary_10_3390_cells13131144
crossref_primary_10_1016_j_apsb_2023_08_009
crossref_primary_10_1021_acsabm_4c00395
crossref_primary_10_3390_ijms25168722
crossref_primary_10_1161_STROKEAHA_121_036948
crossref_primary_10_3389_fbioe_2019_00435
crossref_primary_10_3389_fneur_2019_00995
crossref_primary_10_1021_acs_molpharmaceut_1c00856
crossref_primary_10_1007_s12035_024_04205_5
crossref_primary_10_1080_17425247_2025_2480654
crossref_primary_10_1177_1073858420918826
crossref_primary_10_1042_CS20200482
crossref_primary_10_3389_fnut_2022_1008514
crossref_primary_10_1177_15353702231157917
crossref_primary_10_3390_microorganisms10081486
crossref_primary_10_1016_j_jff_2025_106661
crossref_primary_10_1016_j_biopha_2023_115100
crossref_primary_10_1016_j_psychres_2021_113923
crossref_primary_10_3389_fmicb_2018_02966
crossref_primary_10_3390_children10030513
crossref_primary_10_12677_acm_2025_151229
crossref_primary_10_1007_s11011_020_00573_8
crossref_primary_10_1111_jcmm_16611
crossref_primary_10_3390_neurosci2020008
crossref_primary_10_1002_adhm_202402722
crossref_primary_10_3390_microorganisms10040705
crossref_primary_10_3389_fmicb_2025_1452423
crossref_primary_10_1007_s11428_021_00716_0
crossref_primary_10_1093_infdis_jiae265
crossref_primary_10_1016_j_ijbiomac_2020_07_180
crossref_primary_10_1016_j_bbi_2018_08_016
crossref_primary_10_3390_ijms23105354
crossref_primary_10_3389_fnagi_2020_544235
crossref_primary_10_3389_fncel_2023_1268126
crossref_primary_10_3390_ijms24076147
crossref_primary_10_3233_JAD_191150
crossref_primary_10_1167_iovs_62_7_21
crossref_primary_10_1177_11795735221098125
crossref_primary_10_1080_1028415X_2022_2128007
crossref_primary_10_1152_ajprenal_00100_2019
crossref_primary_10_3389_fimmu_2022_972160
crossref_primary_10_1186_s12974_019_1494_4
crossref_primary_10_1016_j_lfs_2024_122748
crossref_primary_10_1111_1751_7915_14303
crossref_primary_10_1002_btm2_10296
crossref_primary_10_3390_jcm12165231
crossref_primary_10_3389_fimmu_2023_1288256
crossref_primary_10_1186_s12967_021_02995_z
crossref_primary_10_1038_s41574_019_0213_7
crossref_primary_10_3389_fpsyt_2024_1463929
crossref_primary_10_1111_ane_13045
crossref_primary_10_3389_fnmol_2024_1454780
crossref_primary_10_1038_s41573_022_00477_5
crossref_primary_10_1016_j_aquatox_2023_106508
crossref_primary_10_1016_j_etap_2023_104066
crossref_primary_10_1007_s40495_023_00325_z
crossref_primary_10_1155_2020_2058272
crossref_primary_10_3390_ijerph182111157
crossref_primary_10_1016_j_bbih_2021_100269
crossref_primary_10_1161_CIRCRESAHA_122_319983
crossref_primary_10_1016_j_coph_2019_11_006
crossref_primary_10_3390_biomedicines10081803
crossref_primary_10_2147_OTT_S293685
crossref_primary_10_1002_imt2_144
crossref_primary_10_3389_fnins_2022_860368
crossref_primary_10_3390_jcm10010027
crossref_primary_10_1038_s41514_023_00104_6
crossref_primary_10_1016_j_arr_2024_102544
crossref_primary_10_3389_fendo_2023_1130689
crossref_primary_10_3390_cells11213468
crossref_primary_10_3389_fcell_2021_683457
crossref_primary_10_1177_1535759719844750
crossref_primary_10_47924_neurotarget20215
crossref_primary_10_1038_s41467_021_26066_5
crossref_primary_10_1016_j_physbeh_2023_114145
crossref_primary_10_3390_microorganisms11092268
crossref_primary_10_1016_j_jhazmat_2021_126676
crossref_primary_10_1186_s13099_021_00448_y
crossref_primary_10_3389_fphys_2021_715443
crossref_primary_10_1016_j_scitotenv_2024_175681
crossref_primary_10_1097_PSY_0000000000001133
crossref_primary_10_1038_s41398_022_01844_x
crossref_primary_10_1016_j_amolm_2024_100047
crossref_primary_10_1097_WNR_0000000000002076
crossref_primary_10_1007_s00281_022_00955_3
crossref_primary_10_1063_5_0144862
crossref_primary_10_1007_s12031_021_01829_3
crossref_primary_10_4103_1673_5374_380869
crossref_primary_10_1016_j_psyneuen_2018_11_009
crossref_primary_10_3390_antiox10111695
crossref_primary_10_3389_fimmu_2021_742449
crossref_primary_10_3389_fcimb_2023_1282431
crossref_primary_10_3390_biom11020284
crossref_primary_10_1152_ajpregu_00106_2021
crossref_primary_10_3390_biomedicines10071582
crossref_primary_10_1016_j_neubiorev_2021_04_026
crossref_primary_10_3389_fpsyt_2022_1054726
crossref_primary_10_3390_gidisord6030039
crossref_primary_10_1111_cpr_13092
crossref_primary_10_3390_metabo14080399
crossref_primary_10_1016_j_jff_2021_104726
crossref_primary_10_20517_mrr_2023_24
crossref_primary_10_3389_fimmu_2025_1519925
crossref_primary_10_1007_s12035_023_03473_x
crossref_primary_10_1016_j_biopha_2020_110150
crossref_primary_10_3390_biomedicines10030596
crossref_primary_10_1016_j_jep_2024_118808
crossref_primary_10_3390_ijms26062440
crossref_primary_10_1007_s12031_022_02053_3
crossref_primary_10_1080_14737175_2019_1638763
crossref_primary_10_3390_microorganisms9122537
crossref_primary_10_1007_s11427_021_2103_5
crossref_primary_10_1016_j_bbi_2023_03_003
crossref_primary_10_1099_jmm_0_001469
crossref_primary_10_3892_or_2023_8690
crossref_primary_10_1128_mSystems_00465_20
crossref_primary_10_1080_14728222_2024_2330435
crossref_primary_10_1016_j_wneu_2018_01_008
crossref_primary_10_1136_gutjnl_2020_320789
crossref_primary_10_1515_revneuro_2020_0122
crossref_primary_10_18632_aging_102930
crossref_primary_10_3390_jcm12247610
crossref_primary_10_1007_s12038_019_9940_0
crossref_primary_10_3389_fnmol_2022_994270
crossref_primary_10_1002_cti2_1394
crossref_primary_10_1111_jgh_15855
crossref_primary_10_3390_nu13124497
crossref_primary_10_1002_fft2_199
crossref_primary_10_3390_cells7040024
crossref_primary_10_3390_molecules25214891
crossref_primary_10_1007_s40262_021_01032_y
crossref_primary_10_1039_D2LC00305H
crossref_primary_10_1177_1059712318763806
crossref_primary_10_1021_acschemneuro_3c00418
crossref_primary_10_1007_s00248_021_01884_8
crossref_primary_10_1016_j_jtauto_2020_100039
crossref_primary_10_3389_fpsyg_2020_591071
crossref_primary_10_2217_fmb_2022_0258
crossref_primary_10_1007_s12035_023_03512_7
crossref_primary_10_3390_ijms20071632
crossref_primary_10_5851_kosfa_2022_e45
crossref_primary_10_1016_j_phymed_2024_155387
crossref_primary_10_3389_fnins_2023_934341
crossref_primary_10_1016_j_biopha_2022_112866
crossref_primary_10_1093_nutrit_nuab022
crossref_primary_10_3390_nu15030496
crossref_primary_10_1111_jnc_15242
crossref_primary_10_1016_j_nbd_2023_106295
crossref_primary_10_1186_s12974_023_02825_7
crossref_primary_10_18499_1990_472X_2023_24_3_107_121
crossref_primary_10_1016_S1474_4422_23_00377_0
crossref_primary_10_1016_j_neuropharm_2022_109140
crossref_primary_10_1177_1099800420941923
crossref_primary_10_2174_1381612826666200316130128
crossref_primary_10_1016_j_scitotenv_2020_137626
Cites_doi 10.1126/science.1223490
10.1016/j.bbi.2009.01.017
10.1038/nm.4106
10.1038/nri1057
10.1016/S0006-8993(99)02189-7
10.1038/nrgastro.2009.35
10.1016/j.it.2017.03.008
10.1152/ajpendo.1996.271.4.E636
10.1016/j.clinthera.2015.04.002
10.3389/fimmu.2017.00417
10.1016/0002-9610(81)90026-X
10.1038/nrn3346
10.1016/j.jneuroim.2017.01.024
10.1016/j.bbadis.2010.06.017
10.4161/gmic.19625
10.1038/ncomms15062
10.1097/QAD.0000000000001289
10.1152/jn.00510.2016
10.1016/j.it.2005.07.004
10.1038/s41467-017-00040-6
10.1186/1742-2094-9-231
10.1039/C6FO01532H
10.1038/nrn3071
10.1016/j.neuroscience.2011.05.044
10.1038/nature18626
10.1186/1742-2094-8-139
10.1016/j.jss.2007.07.021
10.1152/physrev.2001.81.3.1031
10.1038/nrn1824
10.1016/j.neuint.2010.07.002
10.1016/j.nbd.2009.07.030
10.1038/nrmicro.2016.178
10.1038/ncomms1474
10.4049/jimmunol.158.7.3499
10.1111/j.1365-2249.2008.03713.x
10.1186/s12974-015-0434-1
10.1038/nn.2946
10.1136/gutjnl-2013-304909
10.1128/IAI.01513-13
10.1038/nature10554
10.1016/j.expneurol.2007.12.028
10.1016/j.neuroscience.2005.10.011
10.1126/scitranslmed.3009759
10.1016/j.physbeh.2006.07.004
10.1038/celldisc.2017.20
10.1126/scitranslmed.3008599
10.1177/0271678X16679420
10.1146/annurev-genet-120213-092421
10.1038/nrn.2017.48
10.1038/nrdp.2016.20
10.1038/mi.2010.66
10.1007/s11481-008-9138-y
10.1016/j.bbi.2015.07.023
10.1016/j.tins.2013.01.005
10.1016/j.copbio.2014.10.007
10.1038/nn.4476
10.1038/nature08478
10.1016/j.cell.2009.09.033
10.1038/nm1511
10.1093/ijnp/pyw020
10.1016/j.celrep.2017.04.006
10.1016/S0301-0082(97)00051-8
10.1038/nn.4030
10.1016/j.ijpara.2006.01.013
10.1136/gutjnl-2014-308514
10.1016/j.celrep.2016.04.074
10.1523/JNEUROSCI.0076-14.2014
10.1073/pnas.1002601107
10.1016/j.immuni.2015.08.007
10.1016/j.pathophys.2009.04.002
10.1124/jpet.116.237057
10.1016/j.bbi.2005.10.005
10.1146/annurev.ph.41.030179.000331
10.1073/pnas.1000082107
10.1038/nature11337
10.1073/pnas.75.10.5235
10.1038/s41598-017-07278-6
10.1038/nrn.2017.39
10.1038/nature14432
10.1073/pnas.79.19.6102
ContentType Journal Article
Copyright 2017 by the Society for Experimental Biology and Medicine
2017 by the Society for Experimental Biology and Medicine 2017 The Society for Experimental Biology and Medicine
Copyright_xml – notice: 2017 by the Society for Experimental Biology and Medicine
– notice: 2017 by the Society for Experimental Biology and Medicine 2017 The Society for Experimental Biology and Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/1535370217743766
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1535-3699
EndPage 165
ExternalDocumentID PMC5788145
29169241
10_1177_1535370217743766
10.1177_1535370217743766
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01AG046619
  funderid: https://doi.org/10.13039/100000002
– fundername: NIDDK NIH HHS
  grantid: P30 DK017047
– fundername: NIA NIH HHS
  grantid: R01 AG046619
– fundername: NINDS NIH HHS
  grantid: R21 NS093368
– fundername: NIA NIH HHS
  grantid: T32 AG052354
GroupedDBID ---
-~X
.55
.GJ
2WC
35A
3O-
4.4
53G
5GY
5I-
5I.
9T4
AACMV
AAFWJ
ABWRX
ACARO
ACFIC
ACGFS
ACNCT
ADBBV
ADEBD
ADWAY
AEMJX
AENEX
AEWDL
AEWLI
AFIEG
AFKRG
AFNTS
AFOSN
AGCDD
AGPXR
AHOKE
AI.
AIIQI
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
AYAKG
C1A
C45
CS3
DC.
DU5
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~9
J8X
L7B
MV1
MVM
O9-
OK1
OVD
P.B
P.C
RPM
RSE
SAUOL
SCNPE
SFC
TEORI
TRM
UPT
VH1
W8F
WOQ
X7M
XOL
YKV
ZCA
ZGI
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c434t-b1fc0630534b8f8554f9f5af3eed7f13c7c0285bc3fb02cf197f31669ecd16d63
ISSN 1535-3702
1535-3699
IngestDate Thu Aug 21 18:34:47 EDT 2025
Thu Jul 10 18:33:18 EDT 2025
Mon Jul 21 06:06:11 EDT 2025
Sun Jul 06 05:07:20 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jun 17 22:50:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords immune system
blood–brain barrier
T-cell
multiple sclerosis
Microbiome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-b1fc0630534b8f8554f9f5af3eed7f13c7c0285bc3fb02cf197f31669ecd16d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5788145
PMID 29169241
PQID 1968445404
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788145
proquest_miscellaneous_1968445404
pubmed_primary_29169241
crossref_citationtrail_10_1177_1535370217743766
crossref_primary_10_1177_1535370217743766
sage_journals_10_1177_1535370217743766
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: Sage UK: London, England
PublicationTitle Experimental biology and medicine (Maywood, N.J.)
PublicationTitleAlternate Exp Biol Med (Maywood)
PublicationYear 2018
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Winkler, Bell, Zlokovic 2011; 14
Cani, Osto, Geurts, Everard 2012; 3
Verma, Nakaoke, Dohgu, Banks 2006; 20
Lee, Menezes, Umesaki, Mazmanian 2011; 108
Pearse 1977; 55
Filiano, Gadani, Kipnis 2017; 18
Hofer, Bopp, Hoerner, Plaschke, Faden, Martin, Bardenheuer, Weigand 2008; 146
Luczynski, McVey Neufeld, Oriach, Clarke, Dinan, Cryan 2016; 19
Smith, Smythies, Shen, Greenwell-Wild, Gliozzi, Wahl 2011; 4
Vachharajani, Vital, Russell 2010; 17
Hooper, Littman, Macpherson 2012; 336
Bartholomaus, Kawakami, Odoardi, Schlager, Miljkovic, Ellwart, Klinkert, Flügel-Koch, Issekutz, Wekerle, Flügel 2009; 462
Dominguez-Bello, Costello, Contreras, Magris, Hidalgo, Fierer, Knight 2010; 107
Vighi, Marcucci, Sensi, Di Cara, Frati 2008; 153
Nagyoszi, Wilhelm, Farkas, Fazakas, Dung, Hasko, Krizbai 2010; 57
Filiano, Xu, Tustison, Marsh, Baker, Smirnov, Overall, Gadani, Turner, Weng, Peerzade, Chen, Lee, Scott, Beenhakker, Litvak, Kipnis 2016; 535
Berer, Mues, Koutrolos, Rasbi, Boziki, Johner, Wekerle, Krishnamoorthy 2011; 479
Persidsky, Stins, Way, Witte, Weinand, Kim, Bock, Gendelman, Fiala 1997; 158
Smits, Lyras, Lacy, Wilcox, Kuijper 2016; 2
Banks, Niehoff, Ponzio, Erickson, Zalcman 2012; 9
Mowat 2003; 3
Reyes, Fabry, Coe 1999; 851
Krueger, Pappenheimer, Karnovsky 1978; 75
Nishioku, Furusho, Tomita, Ohishi, Dohgu, Shuto, Yamauchi, Kataoka 2011; 189
Cao, Wang, Huang, Tong, Ye, He, Liu, Tang, Cheng, Wen, Li, Chau, Wen, Zhong, Meng, Liu, Wu, Zhao, Flavell, Zhou, Xu, Yang, Yin 2017; 3
Foster, McVey Neufeld 2013; 36
Möhle, Mattei, Heimesaat Markus, Bereswill, Fischer, Alutis, French, Hambardzumyan, Matzinger, Dunay, Wolf 2016; 15
Wekerle 2017; 38
Banks, Gray, Erickson, Salameh, Damodarasamy, Shebani, Meabon, Wing, Morofuji, Cook, Reed 2015; 12
Bice, Stephens, Georges, Venancio, Bermant, Warncke, Affolter, Hidalgo, Angus-Hill 2017; 19
Wang, Li, Fu, Zhang, Bai, Guo 2016; 116
Chen, Kim, Kaur, Lamothe, Shaikh, Keshavarzian, Hamaker 2017; 8
Rothhammer, Mascanfroni, Bunse, Takenaka, Kenison, Mayo, Chao, Patel, Yan, Blain, Alvarez, Kébir, Anandasabapathy, Izquierdo, Jung, Obholzer, Pochet, Clish, Prinz, Prat, Antel, Quintana 2016; 22
Tetz, Ruggles, Zhou, Heguy, Tsirigos, Tetz 2017; 7
Wu, Cao, Chang, Juang 2017; 8
Kim 2006; 36
Sengillo, Winkler, Walker, Sullivan, Johnson, Zlokovic 2013; 23
Petra, Panagiotidou, Hatziagelaki, Stewart, Conti, Theoharides 2015; 37
Krueger, Pappenheimer, Karnovsky 1982; 79
Grossman 1979; 41
Maes, Kubera, Leunis 2008; 29
Kisler, Nelson, Montagne, Zlokovic 2017; 18
Engelhardt, Ransohoff 2005; 26
Cryan, Dinan 2012; 13
Eun, Mishima, Wohlgemuth, Liu, Bower, Carroll, Sartor 2014; 82
Jaeger, Dohgu, Lynch, Fleegal-DeMotta, Banks 2009; 23
Odoardi, Sie, Streyl, Ulaganathan, Schläger, Lodygin, Heckelsmiller, Nietfeld, Ellwart, Klinkert, Lottaz, Nosov, Brinkmann, Spang, Lehrach, Vingron, Wekerle, Flügel-Koch, Flügel 2012; 488
Topping, Clifton 2001; 81
Salameh, Shah, Price, Hayden, Banks 2016; 359
Luo, Leach, Barres, Hesson, Grimm, Simar 2017; 8
Bloom 1980; 14
Abbott, Ronnback, Hansson 2006; 7
Ivanov, Atarashi, Manel, Brodie, Shima, Karaoz, Wei, Goldfarb, Santee, Lynch, Tanoue, Imaoka, Itoh, Takeda, Umesaki, Honda, Littman 2009; 139
Opp, George, Ringgold, Hansen, Bullock, Banks 2015; 50
Dohgu, Banks 2008; 210
Dillon, Frank, Wilson 2016; 30
Louveau, Smirnov, Keyes, Eccles, Rouhani, Peske, Derecki, Castle, Mandell, Lee, Harris, Kipnis 2015; 523
Mayer 2011; 12
Chassaing, Koren, Carvalho, Ley, Gewirtz 2014; 63
Masuda, Mori, Uchida, Uzawa, Ohtani, Kuwabara 2017; 305
Furness, Kunze, Bertrand, Clerc, Bornstein 1998; 54
Leclercq, Mian, Stanisz, Bindels, Cambier, Ben-Amram, Koren, Forsythe, Bienenstock 2017; 8
Erny, Hrabe de Angelis, Jaitin, Wieghofer, Staszewski, David, Keren-Shaul, Mahlakoiv, Jakobshagen, Buch, Schwierzeck, Utermöhlen, Chun, Garrett, McCoy, Diefenbach, Staeheli, Stecher, Amit, Prinz 2015; 18
Banks 2006; 89
Brenchley, Price, Schacker, Asher, Silvestri, Rao, Kazzaz, Bornstein, Lambotte, Altmann, Blazar, Rodriguez, Teixeira-Johnson, Landay, Martin, Hecht, Picker, Lederman, Deeks, Douek 2006; 12
Fung, Olson, Hsiao 2017; 20
Rhee, Pothoulakis, Mayer 2009; 6
Yurist-Doutsch, Arrieta, Vogt, Finlay 2014; 48
Raposo, Graubardt, Cohen, Eitan, London, Berkutzki, Schwartz 2014; 34
Salkeni, Lynch, Price, Banks 2009; 4
Alvarez, Cayrol, Prat 2011; 1812
Luna, Foster 2015; 32
Braniste, Al-Asmakh, Kowal, Anuar, Abbaspour, Tóth, Korecka, Bakocevic, Ng, Kundu, Gulyás, Halldin, Hultenby, Nilsson, Hebert, Volpe, Diamond, Pettersson 2014; 6
Banerjee, Kim, Carmona, Cutting, Gurney, Carlos, Feuer, Prasadarao, Doran 2011; 2
Abbott, Patabendige, Dolman, Yusof, Begley 2010; 37
Kovac, Erickson, Banks 2011; 8
Aagaard, Ma, Antony, Ganu, Petrosino, Versalovic 2014; 6
Coureuil, Lecuyer, Bourdoulous, Nassif 2017; 15
Boveri, Kinsner, Berezowski, Lenfant, Draing, Cecchelli, Dehouck, Hartung, Prieto, Bal-Price 2006; 137
Bunker, Flynn, Koval, Shaw, Meisel, McDonald, Ishizuka, Dent, Wilson, Jabri, Antonopoulos, Bendelac 2015; 43
McLean, Dieguez, Miller, Young 2015; 64
Jeppsson, Freund, Gimmon, James, von Meyenfeldt, Fischer 1981; 141
Erdo, Denes, de Lange 2017; 37
Pan, Banks, Kennedy, Gutierrez, Kastin 1996; 271
bibr73-1535370217743766
bibr30-1535370217743766
bibr48-1535370217743766
bibr81-1535370217743766
bibr56-1535370217743766
bibr57-1535370217743766
bibr13-1535370217743766
bibr82-1535370217743766
bibr31-1535370217743766
bibr39-1535370217743766
bibr65-1535370217743766
bibr22-1535370217743766
bibr47-1535370217743766
bibr12-1535370217743766
bibr55-1535370217743766
bibr72-1535370217743766
bibr38-1535370217743766
bibr64-1535370217743766
bibr21-1535370217743766
bibr54-1535370217743766
bibr67-1535370217743766
bibr46-1535370217743766
bibr7-1535370217743766
bibr41-1535370217743766
bibr8-1535370217743766
bibr70-1535370217743766
bibr2-1535370217743766
bibr20-1535370217743766
bibr28-1535370217743766
bibr23-1535370217743766
bibr10-1535370217743766
bibr80-1535370217743766
bibr15-1535370217743766
Bloom SR. (bibr4-1535370217743766) 1980; 14
bibr83-1535370217743766
bibr75-1535370217743766
bibr62-1535370217743766
bibr49-1535370217743766
bibr36-1535370217743766
bibr5-1535370217743766
bibr35-1535370217743766
bibr60-1535370217743766
bibr43-1535370217743766
bibr27-1535370217743766
bibr86-1535370217743766
bibr69-1535370217743766
bibr44-1535370217743766
bibr18-1535370217743766
bibr26-1535370217743766
bibr78-1535370217743766
bibr17-1535370217743766
Maes M (bibr14-1535370217743766) 2008; 29
bibr85-1535370217743766
bibr51-1535370217743766
Sengillo JD (bibr59-1535370217743766) 2013; 23
bibr25-1535370217743766
bibr68-1535370217743766
bibr77-1535370217743766
bibr34-1535370217743766
bibr16-1535370217743766
bibr11-1535370217743766
bibr84-1535370217743766
bibr29-1535370217743766
bibr71-1535370217743766
bibr76-1535370217743766
bibr24-1535370217743766
Persidsky Y (bibr52-1535370217743766) 1997; 158
bibr50-1535370217743766
bibr37-1535370217743766
bibr63-1535370217743766
bibr61-1535370217743766
bibr66-1535370217743766
bibr53-1535370217743766
bibr74-1535370217743766
bibr58-1535370217743766
bibr6-1535370217743766
bibr40-1535370217743766
Pearse AG. (bibr3-1535370217743766) 1977; 55
bibr9-1535370217743766
bibr32-1535370217743766
bibr45-1535370217743766
bibr19-1535370217743766
bibr1-1535370217743766
bibr79-1535370217743766
References_xml – volume: 8
  start-page: 15062
  year: 2017
  article-title: Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior
  publication-title: Nat Commun
– volume: 6
  start-page: 263ra158
  year: 2014
  article-title: The gut microbiota influences blood-brain barrier permeability in mice
  publication-title: Sci Transl Med
– volume: 15
  start-page: 1945
  year: 2016
  end-page: 56
  article-title: Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis
  publication-title: Cell Rep
– volume: 116
  start-page: 2173
  year: 2016
  end-page: 9
  article-title: Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice
  publication-title: J Neurophysiol
– volume: 14
  start-page: 1398
  year: 2011
  end-page: 405
  article-title: Central nervous system pericytes in health and disease
  publication-title: Nat Neurosci
– volume: 55
  start-page: 115
  year: 1977
  end-page: 25
  article-title: The diffuse neuroendocrine system and the apud concept: related “endocrine” peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands
  publication-title: Med Biol
– volume: 6
  start-page: 237ra65
  year: 2014
  article-title: The placenta harbors a unique microbiome
  publication-title: Sci Transl Med
– volume: 9
  start-page: 231
  year: 2012
  article-title: Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lippolysaccaride-treated mice
  publication-title: J Neuroinflammation
– volume: 488
  start-page: 675
  year: 2012
  end-page: 9
  article-title: T cells become licensed in the lung to enter the central nervous system
  publication-title: Nature
– volume: 108
  start-page: 4615
  year: 2011
  end-page: 22
  article-title: Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
  publication-title: Proc Natl Acad Sci U S A
– volume: 146
  start-page: 276
  year: 2008
  end-page: 81
  article-title: Injury of the blood brain barrier and up-regulation of ICAM-1 in polymicrobial sepsis
  publication-title: J Surg Res
– volume: 23
  start-page: 303
  year: 2013
  end-page: 10
  article-title: Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease.
  publication-title: Pathol
– volume: 8
  start-page: 417
  year: 2017
  article-title: The microbiota and epigenetic regulation of T helper 17/regulatory T cells: in search of a balanced immune system
  publication-title: Front Immunol
– volume: 17
  start-page: 9
  year: 2010
  end-page: 18
  article-title: Modulation of circulating cell-endothelial cell interaction by erythropoietin in lean and obese mice with cecal ligation and puncture
  publication-title: Pathophysiology
– volume: 523
  start-page: 337
  year: 2015
  end-page: 41
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
– volume: 13
  start-page: 701
  year: 2012
  end-page: 12
  article-title: Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour
  publication-title: Nat Rev Neurosci
– volume: 57
  start-page: 556
  year: 2010
  end-page: 64
  article-title: Expression and regulation of toll-like receptors in cerebral endothelial cells
  publication-title: Neurochem Int
– volume: 43
  start-page: 541
  year: 2015
  end-page: 53
  article-title: Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A
  publication-title: Immunity
– volume: 153
  start-page: 3
  year: 2008
  end-page: 6
  article-title: Allergy and the gastrointestinal system
  publication-title: Clin Exp Immunol
– volume: 36
  start-page: 305
  year: 2013
  end-page: 12
  article-title: Gut-brain axis: how the microbiome influences anxiety and depression
  publication-title: Trends Neurosci
– volume: 37
  start-page: 4
  year: 2017
  end-page: 24
  article-title: Age-associated physiological and pathological changes at the blood-brain barrier: a review
  publication-title: J Cereb Blood Flow Metab
– volume: 158
  start-page: 3499
  year: 1997
  end-page: 510
  article-title: A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis
  publication-title: J Immunol
– volume: 141
  start-page: 136
  year: 1981
  end-page: 42
  article-title: Blood-brain barrier derangement in sepsis: cause of septic encephalopathy?
  publication-title: Am J Surg
– volume: 12
  start-page: 1365
  year: 2006
  end-page: 71
  article-title: Microbial translocation is a cause of systemic immune activation in chronic HIV infection
  publication-title: Nat Med
– volume: 336
  start-page: 1268
  year: 2012
  end-page: 73
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science
– volume: 18
  start-page: 375
  year: 2017
  end-page: 84
  article-title: How and why do T cells and their derived cytokines affect the injured and healthy brain?
  publication-title: Nat Rev Neurosci
– volume: 23
  start-page: 507
  year: 2009
  end-page: 17
  article-title: Effects of lipopolysaccharide on the blood-brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer's disease
  publication-title: Brain Behav Immun
– volume: 305
  start-page: 102
  year: 2017
  end-page: 7
  article-title: Soluble CD40 ligand contributes to blood–brain barrier breakdown and central nervous system inflammation in multiple sclerosis and neuromyelitis optica spectrum disorder
  publication-title: J Neuroimmunol
– volume: 2
  start-page: 462
  year: 2011
  article-title: Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration
  publication-title: Nat Commun
– volume: 7
  start-page: 41
  year: 2006
  end-page: 53
  article-title: Astrocyte-endothelial interactions at the blood-brain barrier
  publication-title: Nat Rev Neurosci
– volume: 82
  start-page: 2239
  year: 2014
  end-page: 46
  article-title: Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10(−/−) mice
  publication-title: Infect Immun
– volume: 15
  start-page: 149
  year: 2017
  end-page: 59
  article-title: A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers
  publication-title: Nat Rev Microbiol
– volume: 37
  start-page: 13
  year: 2010
  end-page: 25
  article-title: Structure and function of the blood-brain barrier
  publication-title: Neurobiol Dis
– volume: 8
  start-page: 24
  year: 2017
  article-title: Intestinal microbial dysbiosis aggravates the progression of Alzheimer's disease in Drosophila
  publication-title: Nat Commun
– volume: 4
  start-page: 276
  year: 2009
  end-page: 82
  article-title: Lipopolysaccharide impairs blood-brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways and nitric oxide-independent pathways
  publication-title: J Neuroimmune Pharmacol
– volume: 75
  start-page: 5235
  year: 1978
  end-page: 8.
  article-title: Sleep-promoting factor S: purification and properties
  publication-title: Proc Natl Acad Sci U S A
– volume: 20
  start-page: 449
  year: 2006
  end-page: 55
  article-title: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide
  publication-title: Brain Behav Immun
– volume: 41
  start-page: 27
  year: 1979
  end-page: 33
  article-title: Neural and hormonal regulation of gastrointestinal function: an overview
  publication-title: Annu Rev Physiol
– volume: 1812
  start-page: 252
  year: 2011
  end-page: 64
  article-title: Disruption of central nervous system barriers in multiple sclerosis
  publication-title: Biochim Biophys Acta
– volume: 64
  start-page: 332
  year: 2015
  end-page: 41
  article-title: Does the microbiota play a role in the pathogenesis of autoimmune diseases?
  publication-title: Gut
– volume: 38
  start-page: 483
  year: 2017
  end-page: 97
  article-title: Brain autoimmunity and intestinal microbiota: 100 trillion game changers
  publication-title: Trends Immunol
– volume: 18
  start-page: 965
  year: 2015
  end-page: 77
  article-title: Host microbiota constantly control maturation and function of microglia in the CNS
  publication-title: Nat Neurosci
– volume: 8
  start-page: 139
  year: 2011
  article-title: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide
  publication-title: J Neuroinflammation
– volume: 63
  start-page: 1069
  year: 2014
  end-page: 80
  article-title: AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition
  publication-title: Gut
– volume: 7
  start-page: 7043
  year: 2017
  article-title: Bacteriophages as potential new mammalian pathogens
  publication-title: Sci Rep
– volume: 32
  start-page: 35
  year: 2015
  end-page: 41
  article-title: Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression
  publication-title: Curr Opin Biotechnol
– volume: 4
  start-page: 31
  year: 2011
  end-page: 42
  article-title: Intestinal macrophages and response to microbial encroachment
  publication-title: Mucosal Immunol
– volume: 107
  start-page: 11971
  year: 2010
  end-page: 5
  article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
  publication-title: Proc Natl Acad Sci U S A
– volume: 210
  start-page: 740
  year: 2008
  end-page: 9
  article-title: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway
  publication-title: Exp Neurol
– volume: 271
  start-page: E636
  year: 1996
  end-page: 42
  article-title: Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha
  publication-title: Am J Physiol
– volume: 14
  start-page: 51
  year: 1980
  end-page: 7
  article-title: Gut and brain–endocrine connections. The Goulstonian Lecture 1979
  publication-title: J R Coll Physicians Lond
– volume: 20
  start-page: 145
  year: 2017
  end-page: 55
  article-title: Interactions between the microbiota, immune and nervous systems in health and disease
  publication-title: Nat Neurosci
– volume: 3
  start-page: 331
  year: 2003
  end-page: 41.
  article-title: Anatomical basis of tolerance and immunity to intestinal antigens
  publication-title: Nat Rev Immunol
– volume: 50
  start-page: 259
  year: 2015
  end-page: 65
  article-title: Sleep fragmentation and sepsis differentially impact blood-brain barrier integrity and transport of tumor necrosis factor-alpha in aging
  publication-title: Brain Behav Immun
– volume: 48
  start-page: 361
  year: 2014
  end-page: 82
  article-title: Gastrointestinal microbiota–mediated control of enteric pathogens
  publication-title: Annu Rev Genet
– volume: 18
  start-page: 419
  year: 2017
  end-page: 34
  article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease
  publication-title: Nat Rev Neurosci
– volume: 79
  start-page: 6102
  year: 1982
  end-page: 6
  article-title: Sleep-promoting effects of muramyl peptides
  publication-title: Proc Natl Acad Sci U S A
– volume: 479
  start-page: 538
  year: 2011
  end-page: 41
  article-title: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination
  publication-title: Nature
– volume: 3
  start-page: 17020
  year: 2017
  article-title: Long-term consumption of caffeine-free high sucrose cola beverages aggravates the pathogenesis of EAE in mice
  publication-title: Cell Discov
– volume: 30
  start-page: 2737
  year: 2016
  end-page: 51
  article-title: The gut microbiome and HIV-1 pathogenesis: a two-way street
  publication-title: AIDS
– volume: 19
  start-page: 760
  year: 2017
  end-page: 73
  article-title: Environmental enrichment induces pericyte and IgA-dependent wound repair and lifespan extension in a colon tumor model
  publication-title: Cell Rep
– volume: 3
  start-page: 279
  year: 2012
  end-page: 88
  article-title: Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity
  publication-title: Gut Microbes
– volume: 535
  start-page: 425
  year: 2016
  end-page: 9
  article-title: Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour
  publication-title: Nature
– volume: 54
  start-page: 1
  year: 1998
  end-page: 18
  article-title: Intrinsic primary afferent neurons of the intestine
  publication-title: Prog Neurobiol
– volume: 89
  start-page: 472
  year: 2006
  end-page: 6
  article-title: The blood-brain barrier as a regulatory interface in the gut-brain axes
  publication-title: Physiol Behav
– volume: 359
  start-page: 452
  year: 2016
  end-page: 9
  article-title: Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate
  publication-title: J Pharmacol Exp Ther
– volume: 137
  start-page: 1193
  year: 2006
  end-page: 209
  article-title: Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide
  publication-title: Neuroscience
– volume: 139
  start-page: 485
  year: 2009
  end-page: 98
  article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria
  publication-title: Cell
– volume: 26
  start-page: 485
  year: 2005
  end-page: 95
  article-title: The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms
  publication-title: Trends Immunol
– volume: 29
  start-page: 117
  year: 2008
  end-page: 24
  article-title: The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression
  publication-title: Neuro Endocrinol Lett
– volume: 37
  start-page: 984
  year: 2015
  end-page: 95
  article-title: Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation
  publication-title: Clin Ther
– volume: 12
  start-page: 453
  year: 2011
  end-page: 66
  article-title: Gut feelings: the emerging biology of gut-brain communication
  publication-title: Nat Rev Neurosci
– volume: 2
  start-page: 16020
  year: 2016
  article-title: infection
  publication-title: Nat Rev Dis Primers
– volume: 12
  start-page: 223
  year: 2015
  article-title: Lipopolysaccaride-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit
  publication-title: J Neuroinflammation
– volume: 36
  start-page: 607
  year: 2006
  end-page: 14
  article-title: Microbial translocation of the blood-brain barrier
  publication-title: Int J Parasitol
– volume: 8
  start-page: 1166
  year: 2017
  end-page: 73
  article-title: Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model
  publication-title: Food Funct
– volume: 462
  start-page: 94
  year: 2009
  end-page: 8
  article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions
  publication-title: Nature
– volume: 189
  start-page: 286
  year: 2011
  end-page: 92
  article-title: Potential role for S100A4 in the disruption of the blood–brain barrier in collagen-induced arthritic mice, an animal model of rheumatoid arthritis
  publication-title: Neuroscience
– volume: 6
  start-page: 306
  year: 2009
  end-page: 14
  article-title: Principles and clinical implications of the brain-gut-enteric microbiota axis
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 81
  start-page: 1031
  year: 2001
  end-page: 64
  article-title: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides
  publication-title: Physiol Rev
– volume: 22
  start-page: 586
  year: 2016
  end-page: 97
  article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
  publication-title: Nat Med
– volume: 851
  start-page: 215
  year: 1999
  end-page: 20
  article-title: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli
  publication-title: Brain Res
– volume: 34
  start-page: 10141
  year: 2014
  end-page: 55
  article-title: CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles
  publication-title: J Neurosci
– volume: 19
  start-page: pyw020
  issue: pii
  year: 2016
  article-title: Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior
  publication-title: Int J Neuropsychopharmacol
– volume: 14
  start-page: 51
  year: 1980
  ident: bibr4-1535370217743766
  publication-title: J R Coll Physicians Lond
– ident: bibr26-1535370217743766
  doi: 10.1126/science.1223490
– ident: bibr47-1535370217743766
  doi: 10.1016/j.bbi.2009.01.017
– ident: bibr64-1535370217743766
  doi: 10.1038/nm.4106
– ident: bibr27-1535370217743766
  doi: 10.1038/nri1057
– ident: bibr51-1535370217743766
  doi: 10.1016/S0006-8993(99)02189-7
– ident: bibr6-1535370217743766
  doi: 10.1038/nrgastro.2009.35
– ident: bibr7-1535370217743766
  doi: 10.1016/j.it.2017.03.008
– ident: bibr76-1535370217743766
  doi: 10.1152/ajpendo.1996.271.4.E636
– ident: bibr20-1535370217743766
  doi: 10.1016/j.clinthera.2015.04.002
– ident: bibr30-1535370217743766
  doi: 10.3389/fimmu.2017.00417
– ident: bibr38-1535370217743766
  doi: 10.1016/0002-9610(81)90026-X
– ident: bibr8-1535370217743766
  doi: 10.1038/nrn3346
– ident: bibr73-1535370217743766
  doi: 10.1016/j.jneuroim.2017.01.024
– ident: bibr71-1535370217743766
  doi: 10.1016/j.bbadis.2010.06.017
– ident: bibr86-1535370217743766
  doi: 10.4161/gmic.19625
– ident: bibr54-1535370217743766
  doi: 10.1038/ncomms15062
– ident: bibr34-1535370217743766
  doi: 10.1097/QAD.0000000000001289
– ident: bibr83-1535370217743766
  doi: 10.1152/jn.00510.2016
– ident: bibr66-1535370217743766
  doi: 10.1016/j.it.2005.07.004
– ident: bibr12-1535370217743766
  doi: 10.1038/s41467-017-00040-6
– ident: bibr50-1535370217743766
  doi: 10.1186/1742-2094-9-231
– ident: bibr56-1535370217743766
  doi: 10.1039/C6FO01532H
– ident: bibr10-1535370217743766
  doi: 10.1038/nrn3071
– ident: bibr84-1535370217743766
  doi: 10.1016/j.neuroscience.2011.05.044
– ident: bibr69-1535370217743766
  doi: 10.1038/nature18626
– ident: bibr62-1535370217743766
  doi: 10.1186/1742-2094-8-139
– ident: bibr36-1535370217743766
  doi: 10.1016/j.jss.2007.07.021
– ident: bibr55-1535370217743766
  doi: 10.1152/physrev.2001.81.3.1031
– ident: bibr63-1535370217743766
  doi: 10.1038/nrn1824
– ident: bibr43-1535370217743766
  doi: 10.1016/j.neuint.2010.07.002
– ident: bibr57-1535370217743766
  doi: 10.1016/j.nbd.2009.07.030
– ident: bibr40-1535370217743766
  doi: 10.1038/nrmicro.2016.178
– ident: bibr41-1535370217743766
  doi: 10.1038/ncomms1474
– volume: 158
  start-page: 3499
  year: 1997
  ident: bibr52-1535370217743766
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.7.3499
– ident: bibr25-1535370217743766
  doi: 10.1111/j.1365-2249.2008.03713.x
– ident: bibr45-1535370217743766
  doi: 10.1186/s12974-015-0434-1
– ident: bibr58-1535370217743766
  doi: 10.1038/nn.2946
– volume: 29
  start-page: 117
  year: 2008
  ident: bibr14-1535370217743766
  publication-title: Neuro Endocrinol Lett
– ident: bibr78-1535370217743766
  doi: 10.1136/gutjnl-2013-304909
– ident: bibr80-1535370217743766
  doi: 10.1128/IAI.01513-13
– ident: bibr75-1535370217743766
  doi: 10.1038/nature10554
– ident: bibr46-1535370217743766
  doi: 10.1016/j.expneurol.2007.12.028
– ident: bibr44-1535370217743766
  doi: 10.1016/j.neuroscience.2005.10.011
– ident: bibr53-1535370217743766
  doi: 10.1126/scitranslmed.3009759
– ident: bibr1-1535370217743766
  doi: 10.1016/j.physbeh.2006.07.004
– ident: bibr77-1535370217743766
  doi: 10.1038/celldisc.2017.20
– volume: 55
  start-page: 115
  year: 1977
  ident: bibr3-1535370217743766
  publication-title: Med Biol
– ident: bibr24-1535370217743766
  doi: 10.1126/scitranslmed.3008599
– ident: bibr72-1535370217743766
  doi: 10.1177/0271678X16679420
– ident: bibr79-1535370217743766
  doi: 10.1146/annurev-genet-120213-092421
– ident: bibr85-1535370217743766
  doi: 10.1038/nrn.2017.48
– ident: bibr32-1535370217743766
  doi: 10.1038/nrdp.2016.20
– ident: bibr28-1535370217743766
  doi: 10.1038/mi.2010.66
– ident: bibr48-1535370217743766
  doi: 10.1007/s11481-008-9138-y
– ident: bibr39-1535370217743766
  doi: 10.1016/j.bbi.2015.07.023
– ident: bibr19-1535370217743766
  doi: 10.1016/j.tins.2013.01.005
– ident: bibr21-1535370217743766
  doi: 10.1016/j.copbio.2014.10.007
– ident: bibr9-1535370217743766
  doi: 10.1038/nn.4476
– ident: bibr70-1535370217743766
  doi: 10.1038/nature08478
– ident: bibr29-1535370217743766
  doi: 10.1016/j.cell.2009.09.033
– ident: bibr35-1535370217743766
  doi: 10.1038/nm1511
– ident: bibr22-1535370217743766
  doi: 10.1093/ijnp/pyw020
– ident: bibr61-1535370217743766
  doi: 10.1016/j.celrep.2017.04.006
– ident: bibr5-1535370217743766
  doi: 10.1016/S0301-0082(97)00051-8
– ident: bibr16-1535370217743766
  doi: 10.1038/nn.4030
– ident: bibr15-1535370217743766
  doi: 10.1016/j.ijpara.2006.01.013
– ident: bibr82-1535370217743766
  doi: 10.1136/gutjnl-2014-308514
– ident: bibr31-1535370217743766
  doi: 10.1016/j.celrep.2016.04.074
– ident: bibr68-1535370217743766
  doi: 10.1523/JNEUROSCI.0076-14.2014
– ident: bibr23-1535370217743766
  doi: 10.1073/pnas.1002601107
– ident: bibr81-1535370217743766
  doi: 10.1016/j.immuni.2015.08.007
– ident: bibr37-1535370217743766
  doi: 10.1016/j.pathophys.2009.04.002
– ident: bibr60-1535370217743766
  doi: 10.1124/jpet.116.237057
– ident: bibr49-1535370217743766
  doi: 10.1016/j.bbi.2005.10.005
– ident: bibr2-1535370217743766
  doi: 10.1146/annurev.ph.41.030179.000331
– ident: bibr11-1535370217743766
  doi: 10.1073/pnas.1000082107
– ident: bibr74-1535370217743766
  doi: 10.1038/nature11337
– ident: bibr17-1535370217743766
  doi: 10.1073/pnas.75.10.5235
– ident: bibr13-1535370217743766
  doi: 10.1038/s41598-017-07278-6
– ident: bibr67-1535370217743766
  doi: 10.1038/nrn.2017.39
– volume: 23
  start-page: 303
  year: 2013
  ident: bibr59-1535370217743766
  publication-title: Pathol
– ident: bibr65-1535370217743766
  doi: 10.1038/nature14432
– ident: bibr18-1535370217743766
  doi: 10.1073/pnas.79.19.6102
SSID ssj0015726
Score 2.5890167
SecondaryResourceType review_article
Snippet A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms Animals
Bacteria - metabolism
Bacterial Translocation
Biological Products - metabolism
Blood-Brain Barrier
Central Nervous System - drug effects
Central Nervous System - pathology
Central Nervous System - physiology
Gastrointestinal Microbiome
Gastrointestinal Tract - microbiology
Humans
Immunology/Microbiology/Virology
Title Gut reactions: How the blood–brain barrier connects the microbiome and the brain
URI https://journals.sagepub.com/doi/full/10.1177/1535370217743766
https://www.ncbi.nlm.nih.gov/pubmed/29169241
https://www.proquest.com/docview/1968445404
https://pubmed.ncbi.nlm.nih.gov/PMC5788145
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCEYgLgpZHeMlIqBKqNo3X3he3gICqIj1UrdTbyvbapBLZoGZzKCf-A3-HX8MvYfzabJKCCpfV7mbWecyX8cz48wxCr4SsBMQ3WaS4yCOmMhJxyUEhNBNDIlhRUbPBeXyUHpyyw7PkrNf72WEtLRoxkN-u3FfyP1qFe6BXs0v2HzTbDgo34Bz0C0fQMByvpeOPi2YPnD67NcFS22yDuImnowceAxWmDcSe4Be2O5001BZD4TCC03NXiGmqWiqllV5J2HebAHSLNoV1eeOljvllYO8cDQ4HnQTDp9nnue8YMjK0_ZZKbExw2N8fGKnL1OoxzBIrvLNO52MOMFYTx29SZv-UT-D67AXJ17IXbtnsygQlmOIEzN_Q2WrVuZe6lkrBfseuzpMHatyxxsQXG3cTO3FNKTbnDLtqbYY27wZXDIzuWnluHy9Z4XJd9Aa6GUOQEodckV_DSjLb7K_9HstF8v31EVadoo1IZ5Ow22EdWkfo5B666yMYPHJwvI96qt5GO6OaN7PpJd7FllNsQbKNbr0NZ7fHHiw76Bhgi1vYvsEAWgzAwxa0v77_sADEHq44wNWKLOGKAYDuKSP9AJ1-eH_y7iDyrT0iyShrIkG0NNXeEspErg1VUhc64ZqCy5ZpQmUmwfFNhKRaDGOpSZFpStK0ULIiaZXSh2irntXqMcJwPcwrcJsp14zGOtdxJknCiaaVEpr30X74bUvp696b9itfSuJL3a9ro49et098dTVf_iL7MqirBMNsVtt4rWaLeQlTW85MfUvWR4-c-trRYgjKCvCd-yhbUWwrYIq-r75Sn09s8ffE9H9gSR_tGgiU3hrN__gBn1xX8Cm6s_yDPkNbzcVCPQeHuxEvLK5_A9HAzII
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+reactions%3A+How+the+blood%E2%80%93brain+barrier+connects+the+microbiome+and+the+brain&rft.jtitle=Experimental+biology+and+medicine+%28Maywood%2C+N.J.%29&rft.au=Logsdon%2C+Aric+F&rft.au=Erickson%2C+Michelle+A&rft.au=Rhea%2C+Elizabeth+M&rft.au=Salameh%2C+Therese+S&rft.date=2018-01-01&rft.pub=SAGE+Publications&rft.issn=1535-3702&rft.eissn=1535-3699&rft.volume=243&rft.issue=2&rft.spage=159&rft.epage=165&rft_id=info:doi/10.1177%2F1535370217743766&rft.externalDocID=10.1177_1535370217743766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3702&client=summon