Gut reactions: How the blood–brain barrier connects the microbiome and the brain
A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is kn...
Saved in:
Published in | Experimental biology and medicine (Maywood, N.J.) Vol. 243; no. 2; pp. 159 - 165 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis.
Impact statement
The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood–brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models. |
---|---|
AbstractList | A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis.
Impact statement
The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood–brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models. A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models. A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood-brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome-BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood-brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models. |
Author | Salameh, Therese S Erickson, Michelle A Rhea, Elizabeth M Banks, William A Logsdon, Aric F |
Author_xml | – sequence: 1 givenname: Aric F surname: Logsdon fullname: Logsdon, Aric F organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA – sequence: 2 givenname: Michelle A surname: Erickson fullname: Erickson, Michelle A organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA – sequence: 3 givenname: Elizabeth M surname: Rhea fullname: Rhea, Elizabeth M organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA – sequence: 4 givenname: Therese S surname: Salameh fullname: Salameh, Therese S organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA – sequence: 5 givenname: William A surname: Banks fullname: Banks, William A email: wabanks1@uw.edu organization: Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29169241$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LHjEUhUNR6ke7dyWz7GY0mXzNuCgU8QsEobTrkGRuNDKTaDLT4s7_4D_0l5jX11dUaFe55D7nHDh3C62FGAChHYL3CJFyn3DKqcRNmRmVQnxCm4uvmoquW1vNZb-BtnK-xphw2YjPaKPpiOgaRjbRz5N5qhJoO_kY8kF1Gv9W0xVUZoixf7x_MEn7UBmdkodU2RgC2Ck_I6O3KRofR6h06JeqBf0FrTs9ZPj68m6j38dHvw5P6_OLk7PDH-e1ZZRNtSHOYkExp8y0ruWcuc5x7ShALx2hVlrctNxY6gxurCOddJQI0YHtiegF3Ubfl743sxmhtxCmpAd1k_yo052K2qv3m-Cv1GX8o7hsW8J4Mfj2YpDi7Qx5UqPPFoZBB4hzVqQTLWOcYVbQ3bdZryGrIgsglkDpJOcETlk_6UWpJdoPimC1uJj6eLEixB-EK-__SOqlJOtLUNdxTqH0_G_-Ccktpag |
CitedBy_id | crossref_primary_10_2174_1871527321666220417005115 crossref_primary_10_1021_acs_chemrev_1c00480 crossref_primary_10_1016_j_gendis_2025_101592 crossref_primary_10_1002_admi_202201618 crossref_primary_10_1016_S0985_0562_24_00007_4 crossref_primary_10_1177_1745691618809379 crossref_primary_10_3389_fncel_2023_895017 crossref_primary_10_3390_microorganisms8040527 crossref_primary_10_3390_md23030091 crossref_primary_10_3389_fcimb_2020_00022 crossref_primary_10_3390_cells13131144 crossref_primary_10_1016_j_apsb_2023_08_009 crossref_primary_10_1021_acsabm_4c00395 crossref_primary_10_3390_ijms25168722 crossref_primary_10_1161_STROKEAHA_121_036948 crossref_primary_10_3389_fbioe_2019_00435 crossref_primary_10_3389_fneur_2019_00995 crossref_primary_10_1021_acs_molpharmaceut_1c00856 crossref_primary_10_1007_s12035_024_04205_5 crossref_primary_10_1080_17425247_2025_2480654 crossref_primary_10_1177_1073858420918826 crossref_primary_10_1042_CS20200482 crossref_primary_10_3389_fnut_2022_1008514 crossref_primary_10_1177_15353702231157917 crossref_primary_10_3390_microorganisms10081486 crossref_primary_10_1016_j_jff_2025_106661 crossref_primary_10_1016_j_biopha_2023_115100 crossref_primary_10_1016_j_psychres_2021_113923 crossref_primary_10_3389_fmicb_2018_02966 crossref_primary_10_3390_children10030513 crossref_primary_10_12677_acm_2025_151229 crossref_primary_10_1007_s11011_020_00573_8 crossref_primary_10_1111_jcmm_16611 crossref_primary_10_3390_neurosci2020008 crossref_primary_10_1002_adhm_202402722 crossref_primary_10_3390_microorganisms10040705 crossref_primary_10_3389_fmicb_2025_1452423 crossref_primary_10_1007_s11428_021_00716_0 crossref_primary_10_1093_infdis_jiae265 crossref_primary_10_1016_j_ijbiomac_2020_07_180 crossref_primary_10_1016_j_bbi_2018_08_016 crossref_primary_10_3390_ijms23105354 crossref_primary_10_3389_fnagi_2020_544235 crossref_primary_10_3389_fncel_2023_1268126 crossref_primary_10_3390_ijms24076147 crossref_primary_10_3233_JAD_191150 crossref_primary_10_1167_iovs_62_7_21 crossref_primary_10_1177_11795735221098125 crossref_primary_10_1080_1028415X_2022_2128007 crossref_primary_10_1152_ajprenal_00100_2019 crossref_primary_10_3389_fimmu_2022_972160 crossref_primary_10_1186_s12974_019_1494_4 crossref_primary_10_1016_j_lfs_2024_122748 crossref_primary_10_1111_1751_7915_14303 crossref_primary_10_1002_btm2_10296 crossref_primary_10_3390_jcm12165231 crossref_primary_10_3389_fimmu_2023_1288256 crossref_primary_10_1186_s12967_021_02995_z crossref_primary_10_1038_s41574_019_0213_7 crossref_primary_10_3389_fpsyt_2024_1463929 crossref_primary_10_1111_ane_13045 crossref_primary_10_3389_fnmol_2024_1454780 crossref_primary_10_1038_s41573_022_00477_5 crossref_primary_10_1016_j_aquatox_2023_106508 crossref_primary_10_1016_j_etap_2023_104066 crossref_primary_10_1007_s40495_023_00325_z crossref_primary_10_1155_2020_2058272 crossref_primary_10_3390_ijerph182111157 crossref_primary_10_1016_j_bbih_2021_100269 crossref_primary_10_1161_CIRCRESAHA_122_319983 crossref_primary_10_1016_j_coph_2019_11_006 crossref_primary_10_3390_biomedicines10081803 crossref_primary_10_2147_OTT_S293685 crossref_primary_10_1002_imt2_144 crossref_primary_10_3389_fnins_2022_860368 crossref_primary_10_3390_jcm10010027 crossref_primary_10_1038_s41514_023_00104_6 crossref_primary_10_1016_j_arr_2024_102544 crossref_primary_10_3389_fendo_2023_1130689 crossref_primary_10_3390_cells11213468 crossref_primary_10_3389_fcell_2021_683457 crossref_primary_10_1177_1535759719844750 crossref_primary_10_47924_neurotarget20215 crossref_primary_10_1038_s41467_021_26066_5 crossref_primary_10_1016_j_physbeh_2023_114145 crossref_primary_10_3390_microorganisms11092268 crossref_primary_10_1016_j_jhazmat_2021_126676 crossref_primary_10_1186_s13099_021_00448_y crossref_primary_10_3389_fphys_2021_715443 crossref_primary_10_1016_j_scitotenv_2024_175681 crossref_primary_10_1097_PSY_0000000000001133 crossref_primary_10_1038_s41398_022_01844_x crossref_primary_10_1016_j_amolm_2024_100047 crossref_primary_10_1097_WNR_0000000000002076 crossref_primary_10_1007_s00281_022_00955_3 crossref_primary_10_1063_5_0144862 crossref_primary_10_1007_s12031_021_01829_3 crossref_primary_10_4103_1673_5374_380869 crossref_primary_10_1016_j_psyneuen_2018_11_009 crossref_primary_10_3390_antiox10111695 crossref_primary_10_3389_fimmu_2021_742449 crossref_primary_10_3389_fcimb_2023_1282431 crossref_primary_10_3390_biom11020284 crossref_primary_10_1152_ajpregu_00106_2021 crossref_primary_10_3390_biomedicines10071582 crossref_primary_10_1016_j_neubiorev_2021_04_026 crossref_primary_10_3389_fpsyt_2022_1054726 crossref_primary_10_3390_gidisord6030039 crossref_primary_10_1111_cpr_13092 crossref_primary_10_3390_metabo14080399 crossref_primary_10_1016_j_jff_2021_104726 crossref_primary_10_20517_mrr_2023_24 crossref_primary_10_3389_fimmu_2025_1519925 crossref_primary_10_1007_s12035_023_03473_x crossref_primary_10_1016_j_biopha_2020_110150 crossref_primary_10_3390_biomedicines10030596 crossref_primary_10_1016_j_jep_2024_118808 crossref_primary_10_3390_ijms26062440 crossref_primary_10_1007_s12031_022_02053_3 crossref_primary_10_1080_14737175_2019_1638763 crossref_primary_10_3390_microorganisms9122537 crossref_primary_10_1007_s11427_021_2103_5 crossref_primary_10_1016_j_bbi_2023_03_003 crossref_primary_10_1099_jmm_0_001469 crossref_primary_10_3892_or_2023_8690 crossref_primary_10_1128_mSystems_00465_20 crossref_primary_10_1080_14728222_2024_2330435 crossref_primary_10_1016_j_wneu_2018_01_008 crossref_primary_10_1136_gutjnl_2020_320789 crossref_primary_10_1515_revneuro_2020_0122 crossref_primary_10_18632_aging_102930 crossref_primary_10_3390_jcm12247610 crossref_primary_10_1007_s12038_019_9940_0 crossref_primary_10_3389_fnmol_2022_994270 crossref_primary_10_1002_cti2_1394 crossref_primary_10_1111_jgh_15855 crossref_primary_10_3390_nu13124497 crossref_primary_10_1002_fft2_199 crossref_primary_10_3390_cells7040024 crossref_primary_10_3390_molecules25214891 crossref_primary_10_1007_s40262_021_01032_y crossref_primary_10_1039_D2LC00305H crossref_primary_10_1177_1059712318763806 crossref_primary_10_1021_acschemneuro_3c00418 crossref_primary_10_1007_s00248_021_01884_8 crossref_primary_10_1016_j_jtauto_2020_100039 crossref_primary_10_3389_fpsyg_2020_591071 crossref_primary_10_2217_fmb_2022_0258 crossref_primary_10_1007_s12035_023_03512_7 crossref_primary_10_3390_ijms20071632 crossref_primary_10_5851_kosfa_2022_e45 crossref_primary_10_1016_j_phymed_2024_155387 crossref_primary_10_3389_fnins_2023_934341 crossref_primary_10_1016_j_biopha_2022_112866 crossref_primary_10_1093_nutrit_nuab022 crossref_primary_10_3390_nu15030496 crossref_primary_10_1111_jnc_15242 crossref_primary_10_1016_j_nbd_2023_106295 crossref_primary_10_1186_s12974_023_02825_7 crossref_primary_10_18499_1990_472X_2023_24_3_107_121 crossref_primary_10_1016_S1474_4422_23_00377_0 crossref_primary_10_1016_j_neuropharm_2022_109140 crossref_primary_10_1177_1099800420941923 crossref_primary_10_2174_1381612826666200316130128 crossref_primary_10_1016_j_scitotenv_2020_137626 |
Cites_doi | 10.1126/science.1223490 10.1016/j.bbi.2009.01.017 10.1038/nm.4106 10.1038/nri1057 10.1016/S0006-8993(99)02189-7 10.1038/nrgastro.2009.35 10.1016/j.it.2017.03.008 10.1152/ajpendo.1996.271.4.E636 10.1016/j.clinthera.2015.04.002 10.3389/fimmu.2017.00417 10.1016/0002-9610(81)90026-X 10.1038/nrn3346 10.1016/j.jneuroim.2017.01.024 10.1016/j.bbadis.2010.06.017 10.4161/gmic.19625 10.1038/ncomms15062 10.1097/QAD.0000000000001289 10.1152/jn.00510.2016 10.1016/j.it.2005.07.004 10.1038/s41467-017-00040-6 10.1186/1742-2094-9-231 10.1039/C6FO01532H 10.1038/nrn3071 10.1016/j.neuroscience.2011.05.044 10.1038/nature18626 10.1186/1742-2094-8-139 10.1016/j.jss.2007.07.021 10.1152/physrev.2001.81.3.1031 10.1038/nrn1824 10.1016/j.neuint.2010.07.002 10.1016/j.nbd.2009.07.030 10.1038/nrmicro.2016.178 10.1038/ncomms1474 10.4049/jimmunol.158.7.3499 10.1111/j.1365-2249.2008.03713.x 10.1186/s12974-015-0434-1 10.1038/nn.2946 10.1136/gutjnl-2013-304909 10.1128/IAI.01513-13 10.1038/nature10554 10.1016/j.expneurol.2007.12.028 10.1016/j.neuroscience.2005.10.011 10.1126/scitranslmed.3009759 10.1016/j.physbeh.2006.07.004 10.1038/celldisc.2017.20 10.1126/scitranslmed.3008599 10.1177/0271678X16679420 10.1146/annurev-genet-120213-092421 10.1038/nrn.2017.48 10.1038/nrdp.2016.20 10.1038/mi.2010.66 10.1007/s11481-008-9138-y 10.1016/j.bbi.2015.07.023 10.1016/j.tins.2013.01.005 10.1016/j.copbio.2014.10.007 10.1038/nn.4476 10.1038/nature08478 10.1016/j.cell.2009.09.033 10.1038/nm1511 10.1093/ijnp/pyw020 10.1016/j.celrep.2017.04.006 10.1016/S0301-0082(97)00051-8 10.1038/nn.4030 10.1016/j.ijpara.2006.01.013 10.1136/gutjnl-2014-308514 10.1016/j.celrep.2016.04.074 10.1523/JNEUROSCI.0076-14.2014 10.1073/pnas.1002601107 10.1016/j.immuni.2015.08.007 10.1016/j.pathophys.2009.04.002 10.1124/jpet.116.237057 10.1016/j.bbi.2005.10.005 10.1146/annurev.ph.41.030179.000331 10.1073/pnas.1000082107 10.1038/nature11337 10.1073/pnas.75.10.5235 10.1038/s41598-017-07278-6 10.1038/nrn.2017.39 10.1038/nature14432 10.1073/pnas.79.19.6102 |
ContentType | Journal Article |
Copyright | 2017 by the Society for Experimental Biology and Medicine 2017 by the Society for Experimental Biology and Medicine 2017 The Society for Experimental Biology and Medicine |
Copyright_xml | – notice: 2017 by the Society for Experimental Biology and Medicine – notice: 2017 by the Society for Experimental Biology and Medicine 2017 The Society for Experimental Biology and Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1177/1535370217743766 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Biology |
EISSN | 1535-3699 |
EndPage | 165 |
ExternalDocumentID | PMC5788145 29169241 10_1177_1535370217743766 10.1177_1535370217743766 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01AG046619 funderid: https://doi.org/10.13039/100000002 – fundername: NIDDK NIH HHS grantid: P30 DK017047 – fundername: NIA NIH HHS grantid: R01 AG046619 – fundername: NINDS NIH HHS grantid: R21 NS093368 – fundername: NIA NIH HHS grantid: T32 AG052354 |
GroupedDBID | --- -~X .55 .GJ 2WC 35A 3O- 4.4 53G 5GY 5I- 5I. 9T4 AACMV AAFWJ ABWRX ACARO ACFIC ACGFS ACNCT ADBBV ADEBD ADWAY AEMJX AENEX AEWDL AEWLI AFIEG AFKRG AFNTS AFOSN AGCDD AGPXR AHOKE AI. AIIQI AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV AYAKG C1A C45 CS3 DC. DU5 EBS EJD EMOBN F5P GROUPED_DOAJ H13 HYE HZ~ H~9 J8X L7B MV1 MVM O9- OK1 OVD P.B P.C RPM RSE SAUOL SCNPE SFC TEORI TRM UPT VH1 W8F WOQ X7M XOL YKV ZCA ZGI ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c434t-b1fc0630534b8f8554f9f5af3eed7f13c7c0285bc3fb02cf197f31669ecd16d63 |
ISSN | 1535-3702 1535-3699 |
IngestDate | Thu Aug 21 18:34:47 EDT 2025 Thu Jul 10 18:33:18 EDT 2025 Mon Jul 21 06:06:11 EDT 2025 Sun Jul 06 05:07:20 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jun 17 22:50:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | immune system blood–brain barrier T-cell multiple sclerosis Microbiome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-b1fc0630534b8f8554f9f5af3eed7f13c7c0285bc3fb02cf197f31669ecd16d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5788145 |
PMID | 29169241 |
PQID | 1968445404 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788145 proquest_miscellaneous_1968445404 pubmed_primary_29169241 crossref_citationtrail_10_1177_1535370217743766 crossref_primary_10_1177_1535370217743766 sage_journals_10_1177_1535370217743766 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: England – name: Sage UK: London, England |
PublicationTitle | Experimental biology and medicine (Maywood, N.J.) |
PublicationTitleAlternate | Exp Biol Med (Maywood) |
PublicationYear | 2018 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Winkler, Bell, Zlokovic 2011; 14 Cani, Osto, Geurts, Everard 2012; 3 Verma, Nakaoke, Dohgu, Banks 2006; 20 Lee, Menezes, Umesaki, Mazmanian 2011; 108 Pearse 1977; 55 Filiano, Gadani, Kipnis 2017; 18 Hofer, Bopp, Hoerner, Plaschke, Faden, Martin, Bardenheuer, Weigand 2008; 146 Luczynski, McVey Neufeld, Oriach, Clarke, Dinan, Cryan 2016; 19 Smith, Smythies, Shen, Greenwell-Wild, Gliozzi, Wahl 2011; 4 Vachharajani, Vital, Russell 2010; 17 Hooper, Littman, Macpherson 2012; 336 Bartholomaus, Kawakami, Odoardi, Schlager, Miljkovic, Ellwart, Klinkert, Flügel-Koch, Issekutz, Wekerle, Flügel 2009; 462 Dominguez-Bello, Costello, Contreras, Magris, Hidalgo, Fierer, Knight 2010; 107 Vighi, Marcucci, Sensi, Di Cara, Frati 2008; 153 Nagyoszi, Wilhelm, Farkas, Fazakas, Dung, Hasko, Krizbai 2010; 57 Filiano, Xu, Tustison, Marsh, Baker, Smirnov, Overall, Gadani, Turner, Weng, Peerzade, Chen, Lee, Scott, Beenhakker, Litvak, Kipnis 2016; 535 Berer, Mues, Koutrolos, Rasbi, Boziki, Johner, Wekerle, Krishnamoorthy 2011; 479 Persidsky, Stins, Way, Witte, Weinand, Kim, Bock, Gendelman, Fiala 1997; 158 Smits, Lyras, Lacy, Wilcox, Kuijper 2016; 2 Banks, Niehoff, Ponzio, Erickson, Zalcman 2012; 9 Mowat 2003; 3 Reyes, Fabry, Coe 1999; 851 Krueger, Pappenheimer, Karnovsky 1978; 75 Nishioku, Furusho, Tomita, Ohishi, Dohgu, Shuto, Yamauchi, Kataoka 2011; 189 Cao, Wang, Huang, Tong, Ye, He, Liu, Tang, Cheng, Wen, Li, Chau, Wen, Zhong, Meng, Liu, Wu, Zhao, Flavell, Zhou, Xu, Yang, Yin 2017; 3 Foster, McVey Neufeld 2013; 36 Möhle, Mattei, Heimesaat Markus, Bereswill, Fischer, Alutis, French, Hambardzumyan, Matzinger, Dunay, Wolf 2016; 15 Wekerle 2017; 38 Banks, Gray, Erickson, Salameh, Damodarasamy, Shebani, Meabon, Wing, Morofuji, Cook, Reed 2015; 12 Bice, Stephens, Georges, Venancio, Bermant, Warncke, Affolter, Hidalgo, Angus-Hill 2017; 19 Wang, Li, Fu, Zhang, Bai, Guo 2016; 116 Chen, Kim, Kaur, Lamothe, Shaikh, Keshavarzian, Hamaker 2017; 8 Rothhammer, Mascanfroni, Bunse, Takenaka, Kenison, Mayo, Chao, Patel, Yan, Blain, Alvarez, Kébir, Anandasabapathy, Izquierdo, Jung, Obholzer, Pochet, Clish, Prinz, Prat, Antel, Quintana 2016; 22 Tetz, Ruggles, Zhou, Heguy, Tsirigos, Tetz 2017; 7 Wu, Cao, Chang, Juang 2017; 8 Kim 2006; 36 Sengillo, Winkler, Walker, Sullivan, Johnson, Zlokovic 2013; 23 Petra, Panagiotidou, Hatziagelaki, Stewart, Conti, Theoharides 2015; 37 Krueger, Pappenheimer, Karnovsky 1982; 79 Grossman 1979; 41 Maes, Kubera, Leunis 2008; 29 Kisler, Nelson, Montagne, Zlokovic 2017; 18 Engelhardt, Ransohoff 2005; 26 Cryan, Dinan 2012; 13 Eun, Mishima, Wohlgemuth, Liu, Bower, Carroll, Sartor 2014; 82 Jaeger, Dohgu, Lynch, Fleegal-DeMotta, Banks 2009; 23 Odoardi, Sie, Streyl, Ulaganathan, Schläger, Lodygin, Heckelsmiller, Nietfeld, Ellwart, Klinkert, Lottaz, Nosov, Brinkmann, Spang, Lehrach, Vingron, Wekerle, Flügel-Koch, Flügel 2012; 488 Topping, Clifton 2001; 81 Salameh, Shah, Price, Hayden, Banks 2016; 359 Luo, Leach, Barres, Hesson, Grimm, Simar 2017; 8 Bloom 1980; 14 Abbott, Ronnback, Hansson 2006; 7 Ivanov, Atarashi, Manel, Brodie, Shima, Karaoz, Wei, Goldfarb, Santee, Lynch, Tanoue, Imaoka, Itoh, Takeda, Umesaki, Honda, Littman 2009; 139 Opp, George, Ringgold, Hansen, Bullock, Banks 2015; 50 Dohgu, Banks 2008; 210 Dillon, Frank, Wilson 2016; 30 Louveau, Smirnov, Keyes, Eccles, Rouhani, Peske, Derecki, Castle, Mandell, Lee, Harris, Kipnis 2015; 523 Mayer 2011; 12 Chassaing, Koren, Carvalho, Ley, Gewirtz 2014; 63 Masuda, Mori, Uchida, Uzawa, Ohtani, Kuwabara 2017; 305 Furness, Kunze, Bertrand, Clerc, Bornstein 1998; 54 Leclercq, Mian, Stanisz, Bindels, Cambier, Ben-Amram, Koren, Forsythe, Bienenstock 2017; 8 Erny, Hrabe de Angelis, Jaitin, Wieghofer, Staszewski, David, Keren-Shaul, Mahlakoiv, Jakobshagen, Buch, Schwierzeck, Utermöhlen, Chun, Garrett, McCoy, Diefenbach, Staeheli, Stecher, Amit, Prinz 2015; 18 Banks 2006; 89 Brenchley, Price, Schacker, Asher, Silvestri, Rao, Kazzaz, Bornstein, Lambotte, Altmann, Blazar, Rodriguez, Teixeira-Johnson, Landay, Martin, Hecht, Picker, Lederman, Deeks, Douek 2006; 12 Fung, Olson, Hsiao 2017; 20 Rhee, Pothoulakis, Mayer 2009; 6 Yurist-Doutsch, Arrieta, Vogt, Finlay 2014; 48 Raposo, Graubardt, Cohen, Eitan, London, Berkutzki, Schwartz 2014; 34 Salkeni, Lynch, Price, Banks 2009; 4 Alvarez, Cayrol, Prat 2011; 1812 Luna, Foster 2015; 32 Braniste, Al-Asmakh, Kowal, Anuar, Abbaspour, Tóth, Korecka, Bakocevic, Ng, Kundu, Gulyás, Halldin, Hultenby, Nilsson, Hebert, Volpe, Diamond, Pettersson 2014; 6 Banerjee, Kim, Carmona, Cutting, Gurney, Carlos, Feuer, Prasadarao, Doran 2011; 2 Abbott, Patabendige, Dolman, Yusof, Begley 2010; 37 Kovac, Erickson, Banks 2011; 8 Aagaard, Ma, Antony, Ganu, Petrosino, Versalovic 2014; 6 Coureuil, Lecuyer, Bourdoulous, Nassif 2017; 15 Boveri, Kinsner, Berezowski, Lenfant, Draing, Cecchelli, Dehouck, Hartung, Prieto, Bal-Price 2006; 137 Bunker, Flynn, Koval, Shaw, Meisel, McDonald, Ishizuka, Dent, Wilson, Jabri, Antonopoulos, Bendelac 2015; 43 McLean, Dieguez, Miller, Young 2015; 64 Jeppsson, Freund, Gimmon, James, von Meyenfeldt, Fischer 1981; 141 Erdo, Denes, de Lange 2017; 37 Pan, Banks, Kennedy, Gutierrez, Kastin 1996; 271 bibr73-1535370217743766 bibr30-1535370217743766 bibr48-1535370217743766 bibr81-1535370217743766 bibr56-1535370217743766 bibr57-1535370217743766 bibr13-1535370217743766 bibr82-1535370217743766 bibr31-1535370217743766 bibr39-1535370217743766 bibr65-1535370217743766 bibr22-1535370217743766 bibr47-1535370217743766 bibr12-1535370217743766 bibr55-1535370217743766 bibr72-1535370217743766 bibr38-1535370217743766 bibr64-1535370217743766 bibr21-1535370217743766 bibr54-1535370217743766 bibr67-1535370217743766 bibr46-1535370217743766 bibr7-1535370217743766 bibr41-1535370217743766 bibr8-1535370217743766 bibr70-1535370217743766 bibr2-1535370217743766 bibr20-1535370217743766 bibr28-1535370217743766 bibr23-1535370217743766 bibr10-1535370217743766 bibr80-1535370217743766 bibr15-1535370217743766 Bloom SR. (bibr4-1535370217743766) 1980; 14 bibr83-1535370217743766 bibr75-1535370217743766 bibr62-1535370217743766 bibr49-1535370217743766 bibr36-1535370217743766 bibr5-1535370217743766 bibr35-1535370217743766 bibr60-1535370217743766 bibr43-1535370217743766 bibr27-1535370217743766 bibr86-1535370217743766 bibr69-1535370217743766 bibr44-1535370217743766 bibr18-1535370217743766 bibr26-1535370217743766 bibr78-1535370217743766 bibr17-1535370217743766 Maes M (bibr14-1535370217743766) 2008; 29 bibr85-1535370217743766 bibr51-1535370217743766 Sengillo JD (bibr59-1535370217743766) 2013; 23 bibr25-1535370217743766 bibr68-1535370217743766 bibr77-1535370217743766 bibr34-1535370217743766 bibr16-1535370217743766 bibr11-1535370217743766 bibr84-1535370217743766 bibr29-1535370217743766 bibr71-1535370217743766 bibr76-1535370217743766 bibr24-1535370217743766 Persidsky Y (bibr52-1535370217743766) 1997; 158 bibr50-1535370217743766 bibr37-1535370217743766 bibr63-1535370217743766 bibr61-1535370217743766 bibr66-1535370217743766 bibr53-1535370217743766 bibr74-1535370217743766 bibr58-1535370217743766 bibr6-1535370217743766 bibr40-1535370217743766 Pearse AG. (bibr3-1535370217743766) 1977; 55 bibr9-1535370217743766 bibr32-1535370217743766 bibr45-1535370217743766 bibr19-1535370217743766 bibr1-1535370217743766 bibr79-1535370217743766 |
References_xml | – volume: 8 start-page: 15062 year: 2017 article-title: Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior publication-title: Nat Commun – volume: 6 start-page: 263ra158 year: 2014 article-title: The gut microbiota influences blood-brain barrier permeability in mice publication-title: Sci Transl Med – volume: 15 start-page: 1945 year: 2016 end-page: 56 article-title: Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis publication-title: Cell Rep – volume: 116 start-page: 2173 year: 2016 end-page: 9 article-title: Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice publication-title: J Neurophysiol – volume: 14 start-page: 1398 year: 2011 end-page: 405 article-title: Central nervous system pericytes in health and disease publication-title: Nat Neurosci – volume: 55 start-page: 115 year: 1977 end-page: 25 article-title: The diffuse neuroendocrine system and the apud concept: related “endocrine” peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands publication-title: Med Biol – volume: 6 start-page: 237ra65 year: 2014 article-title: The placenta harbors a unique microbiome publication-title: Sci Transl Med – volume: 9 start-page: 231 year: 2012 article-title: Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lippolysaccaride-treated mice publication-title: J Neuroinflammation – volume: 488 start-page: 675 year: 2012 end-page: 9 article-title: T cells become licensed in the lung to enter the central nervous system publication-title: Nature – volume: 108 start-page: 4615 year: 2011 end-page: 22 article-title: Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis publication-title: Proc Natl Acad Sci U S A – volume: 146 start-page: 276 year: 2008 end-page: 81 article-title: Injury of the blood brain barrier and up-regulation of ICAM-1 in polymicrobial sepsis publication-title: J Surg Res – volume: 23 start-page: 303 year: 2013 end-page: 10 article-title: Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease. publication-title: Pathol – volume: 8 start-page: 417 year: 2017 article-title: The microbiota and epigenetic regulation of T helper 17/regulatory T cells: in search of a balanced immune system publication-title: Front Immunol – volume: 17 start-page: 9 year: 2010 end-page: 18 article-title: Modulation of circulating cell-endothelial cell interaction by erythropoietin in lean and obese mice with cecal ligation and puncture publication-title: Pathophysiology – volume: 523 start-page: 337 year: 2015 end-page: 41 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature – volume: 13 start-page: 701 year: 2012 end-page: 12 article-title: Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour publication-title: Nat Rev Neurosci – volume: 57 start-page: 556 year: 2010 end-page: 64 article-title: Expression and regulation of toll-like receptors in cerebral endothelial cells publication-title: Neurochem Int – volume: 43 start-page: 541 year: 2015 end-page: 53 article-title: Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A publication-title: Immunity – volume: 153 start-page: 3 year: 2008 end-page: 6 article-title: Allergy and the gastrointestinal system publication-title: Clin Exp Immunol – volume: 36 start-page: 305 year: 2013 end-page: 12 article-title: Gut-brain axis: how the microbiome influences anxiety and depression publication-title: Trends Neurosci – volume: 37 start-page: 4 year: 2017 end-page: 24 article-title: Age-associated physiological and pathological changes at the blood-brain barrier: a review publication-title: J Cereb Blood Flow Metab – volume: 158 start-page: 3499 year: 1997 end-page: 510 article-title: A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis publication-title: J Immunol – volume: 141 start-page: 136 year: 1981 end-page: 42 article-title: Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? publication-title: Am J Surg – volume: 12 start-page: 1365 year: 2006 end-page: 71 article-title: Microbial translocation is a cause of systemic immune activation in chronic HIV infection publication-title: Nat Med – volume: 336 start-page: 1268 year: 2012 end-page: 73 article-title: Interactions between the microbiota and the immune system publication-title: Science – volume: 18 start-page: 375 year: 2017 end-page: 84 article-title: How and why do T cells and their derived cytokines affect the injured and healthy brain? publication-title: Nat Rev Neurosci – volume: 23 start-page: 507 year: 2009 end-page: 17 article-title: Effects of lipopolysaccharide on the blood-brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer's disease publication-title: Brain Behav Immun – volume: 305 start-page: 102 year: 2017 end-page: 7 article-title: Soluble CD40 ligand contributes to blood–brain barrier breakdown and central nervous system inflammation in multiple sclerosis and neuromyelitis optica spectrum disorder publication-title: J Neuroimmunol – volume: 2 start-page: 462 year: 2011 article-title: Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration publication-title: Nat Commun – volume: 7 start-page: 41 year: 2006 end-page: 53 article-title: Astrocyte-endothelial interactions at the blood-brain barrier publication-title: Nat Rev Neurosci – volume: 82 start-page: 2239 year: 2014 end-page: 46 article-title: Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10(−/−) mice publication-title: Infect Immun – volume: 15 start-page: 149 year: 2017 end-page: 59 article-title: A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers publication-title: Nat Rev Microbiol – volume: 37 start-page: 13 year: 2010 end-page: 25 article-title: Structure and function of the blood-brain barrier publication-title: Neurobiol Dis – volume: 8 start-page: 24 year: 2017 article-title: Intestinal microbial dysbiosis aggravates the progression of Alzheimer's disease in Drosophila publication-title: Nat Commun – volume: 4 start-page: 276 year: 2009 end-page: 82 article-title: Lipopolysaccharide impairs blood-brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways and nitric oxide-independent pathways publication-title: J Neuroimmune Pharmacol – volume: 75 start-page: 5235 year: 1978 end-page: 8. article-title: Sleep-promoting factor S: purification and properties publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 449 year: 2006 end-page: 55 article-title: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide publication-title: Brain Behav Immun – volume: 41 start-page: 27 year: 1979 end-page: 33 article-title: Neural and hormonal regulation of gastrointestinal function: an overview publication-title: Annu Rev Physiol – volume: 1812 start-page: 252 year: 2011 end-page: 64 article-title: Disruption of central nervous system barriers in multiple sclerosis publication-title: Biochim Biophys Acta – volume: 64 start-page: 332 year: 2015 end-page: 41 article-title: Does the microbiota play a role in the pathogenesis of autoimmune diseases? publication-title: Gut – volume: 38 start-page: 483 year: 2017 end-page: 97 article-title: Brain autoimmunity and intestinal microbiota: 100 trillion game changers publication-title: Trends Immunol – volume: 18 start-page: 965 year: 2015 end-page: 77 article-title: Host microbiota constantly control maturation and function of microglia in the CNS publication-title: Nat Neurosci – volume: 8 start-page: 139 year: 2011 article-title: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide publication-title: J Neuroinflammation – volume: 63 start-page: 1069 year: 2014 end-page: 80 article-title: AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition publication-title: Gut – volume: 7 start-page: 7043 year: 2017 article-title: Bacteriophages as potential new mammalian pathogens publication-title: Sci Rep – volume: 32 start-page: 35 year: 2015 end-page: 41 article-title: Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression publication-title: Curr Opin Biotechnol – volume: 4 start-page: 31 year: 2011 end-page: 42 article-title: Intestinal macrophages and response to microbial encroachment publication-title: Mucosal Immunol – volume: 107 start-page: 11971 year: 2010 end-page: 5 article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns publication-title: Proc Natl Acad Sci U S A – volume: 210 start-page: 740 year: 2008 end-page: 9 article-title: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway publication-title: Exp Neurol – volume: 271 start-page: E636 year: 1996 end-page: 42 article-title: Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha publication-title: Am J Physiol – volume: 14 start-page: 51 year: 1980 end-page: 7 article-title: Gut and brain–endocrine connections. The Goulstonian Lecture 1979 publication-title: J R Coll Physicians Lond – volume: 20 start-page: 145 year: 2017 end-page: 55 article-title: Interactions between the microbiota, immune and nervous systems in health and disease publication-title: Nat Neurosci – volume: 3 start-page: 331 year: 2003 end-page: 41. article-title: Anatomical basis of tolerance and immunity to intestinal antigens publication-title: Nat Rev Immunol – volume: 50 start-page: 259 year: 2015 end-page: 65 article-title: Sleep fragmentation and sepsis differentially impact blood-brain barrier integrity and transport of tumor necrosis factor-alpha in aging publication-title: Brain Behav Immun – volume: 48 start-page: 361 year: 2014 end-page: 82 article-title: Gastrointestinal microbiota–mediated control of enteric pathogens publication-title: Annu Rev Genet – volume: 18 start-page: 419 year: 2017 end-page: 34 article-title: Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease publication-title: Nat Rev Neurosci – volume: 79 start-page: 6102 year: 1982 end-page: 6 article-title: Sleep-promoting effects of muramyl peptides publication-title: Proc Natl Acad Sci U S A – volume: 479 start-page: 538 year: 2011 end-page: 41 article-title: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination publication-title: Nature – volume: 3 start-page: 17020 year: 2017 article-title: Long-term consumption of caffeine-free high sucrose cola beverages aggravates the pathogenesis of EAE in mice publication-title: Cell Discov – volume: 30 start-page: 2737 year: 2016 end-page: 51 article-title: The gut microbiome and HIV-1 pathogenesis: a two-way street publication-title: AIDS – volume: 19 start-page: 760 year: 2017 end-page: 73 article-title: Environmental enrichment induces pericyte and IgA-dependent wound repair and lifespan extension in a colon tumor model publication-title: Cell Rep – volume: 3 start-page: 279 year: 2012 end-page: 88 article-title: Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity publication-title: Gut Microbes – volume: 535 start-page: 425 year: 2016 end-page: 9 article-title: Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour publication-title: Nature – volume: 54 start-page: 1 year: 1998 end-page: 18 article-title: Intrinsic primary afferent neurons of the intestine publication-title: Prog Neurobiol – volume: 89 start-page: 472 year: 2006 end-page: 6 article-title: The blood-brain barrier as a regulatory interface in the gut-brain axes publication-title: Physiol Behav – volume: 359 start-page: 452 year: 2016 end-page: 9 article-title: Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate publication-title: J Pharmacol Exp Ther – volume: 137 start-page: 1193 year: 2006 end-page: 209 article-title: Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide publication-title: Neuroscience – volume: 139 start-page: 485 year: 2009 end-page: 98 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell – volume: 26 start-page: 485 year: 2005 end-page: 95 article-title: The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms publication-title: Trends Immunol – volume: 29 start-page: 117 year: 2008 end-page: 24 article-title: The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression publication-title: Neuro Endocrinol Lett – volume: 37 start-page: 984 year: 2015 end-page: 95 article-title: Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation publication-title: Clin Ther – volume: 12 start-page: 453 year: 2011 end-page: 66 article-title: Gut feelings: the emerging biology of gut-brain communication publication-title: Nat Rev Neurosci – volume: 2 start-page: 16020 year: 2016 article-title: infection publication-title: Nat Rev Dis Primers – volume: 12 start-page: 223 year: 2015 article-title: Lipopolysaccaride-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit publication-title: J Neuroinflammation – volume: 36 start-page: 607 year: 2006 end-page: 14 article-title: Microbial translocation of the blood-brain barrier publication-title: Int J Parasitol – volume: 8 start-page: 1166 year: 2017 end-page: 73 article-title: Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model publication-title: Food Funct – volume: 462 start-page: 94 year: 2009 end-page: 8 article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions publication-title: Nature – volume: 189 start-page: 286 year: 2011 end-page: 92 article-title: Potential role for S100A4 in the disruption of the blood–brain barrier in collagen-induced arthritic mice, an animal model of rheumatoid arthritis publication-title: Neuroscience – volume: 6 start-page: 306 year: 2009 end-page: 14 article-title: Principles and clinical implications of the brain-gut-enteric microbiota axis publication-title: Nat Rev Gastroenterol Hepatol – volume: 81 start-page: 1031 year: 2001 end-page: 64 article-title: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides publication-title: Physiol Rev – volume: 22 start-page: 586 year: 2016 end-page: 97 article-title: Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor publication-title: Nat Med – volume: 851 start-page: 215 year: 1999 end-page: 20 article-title: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli publication-title: Brain Res – volume: 34 start-page: 10141 year: 2014 end-page: 55 article-title: CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles publication-title: J Neurosci – volume: 19 start-page: pyw020 issue: pii year: 2016 article-title: Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior publication-title: Int J Neuropsychopharmacol – volume: 14 start-page: 51 year: 1980 ident: bibr4-1535370217743766 publication-title: J R Coll Physicians Lond – ident: bibr26-1535370217743766 doi: 10.1126/science.1223490 – ident: bibr47-1535370217743766 doi: 10.1016/j.bbi.2009.01.017 – ident: bibr64-1535370217743766 doi: 10.1038/nm.4106 – ident: bibr27-1535370217743766 doi: 10.1038/nri1057 – ident: bibr51-1535370217743766 doi: 10.1016/S0006-8993(99)02189-7 – ident: bibr6-1535370217743766 doi: 10.1038/nrgastro.2009.35 – ident: bibr7-1535370217743766 doi: 10.1016/j.it.2017.03.008 – ident: bibr76-1535370217743766 doi: 10.1152/ajpendo.1996.271.4.E636 – ident: bibr20-1535370217743766 doi: 10.1016/j.clinthera.2015.04.002 – ident: bibr30-1535370217743766 doi: 10.3389/fimmu.2017.00417 – ident: bibr38-1535370217743766 doi: 10.1016/0002-9610(81)90026-X – ident: bibr8-1535370217743766 doi: 10.1038/nrn3346 – ident: bibr73-1535370217743766 doi: 10.1016/j.jneuroim.2017.01.024 – ident: bibr71-1535370217743766 doi: 10.1016/j.bbadis.2010.06.017 – ident: bibr86-1535370217743766 doi: 10.4161/gmic.19625 – ident: bibr54-1535370217743766 doi: 10.1038/ncomms15062 – ident: bibr34-1535370217743766 doi: 10.1097/QAD.0000000000001289 – ident: bibr83-1535370217743766 doi: 10.1152/jn.00510.2016 – ident: bibr66-1535370217743766 doi: 10.1016/j.it.2005.07.004 – ident: bibr12-1535370217743766 doi: 10.1038/s41467-017-00040-6 – ident: bibr50-1535370217743766 doi: 10.1186/1742-2094-9-231 – ident: bibr56-1535370217743766 doi: 10.1039/C6FO01532H – ident: bibr10-1535370217743766 doi: 10.1038/nrn3071 – ident: bibr84-1535370217743766 doi: 10.1016/j.neuroscience.2011.05.044 – ident: bibr69-1535370217743766 doi: 10.1038/nature18626 – ident: bibr62-1535370217743766 doi: 10.1186/1742-2094-8-139 – ident: bibr36-1535370217743766 doi: 10.1016/j.jss.2007.07.021 – ident: bibr55-1535370217743766 doi: 10.1152/physrev.2001.81.3.1031 – ident: bibr63-1535370217743766 doi: 10.1038/nrn1824 – ident: bibr43-1535370217743766 doi: 10.1016/j.neuint.2010.07.002 – ident: bibr57-1535370217743766 doi: 10.1016/j.nbd.2009.07.030 – ident: bibr40-1535370217743766 doi: 10.1038/nrmicro.2016.178 – ident: bibr41-1535370217743766 doi: 10.1038/ncomms1474 – volume: 158 start-page: 3499 year: 1997 ident: bibr52-1535370217743766 publication-title: J Immunol doi: 10.4049/jimmunol.158.7.3499 – ident: bibr25-1535370217743766 doi: 10.1111/j.1365-2249.2008.03713.x – ident: bibr45-1535370217743766 doi: 10.1186/s12974-015-0434-1 – ident: bibr58-1535370217743766 doi: 10.1038/nn.2946 – volume: 29 start-page: 117 year: 2008 ident: bibr14-1535370217743766 publication-title: Neuro Endocrinol Lett – ident: bibr78-1535370217743766 doi: 10.1136/gutjnl-2013-304909 – ident: bibr80-1535370217743766 doi: 10.1128/IAI.01513-13 – ident: bibr75-1535370217743766 doi: 10.1038/nature10554 – ident: bibr46-1535370217743766 doi: 10.1016/j.expneurol.2007.12.028 – ident: bibr44-1535370217743766 doi: 10.1016/j.neuroscience.2005.10.011 – ident: bibr53-1535370217743766 doi: 10.1126/scitranslmed.3009759 – ident: bibr1-1535370217743766 doi: 10.1016/j.physbeh.2006.07.004 – ident: bibr77-1535370217743766 doi: 10.1038/celldisc.2017.20 – volume: 55 start-page: 115 year: 1977 ident: bibr3-1535370217743766 publication-title: Med Biol – ident: bibr24-1535370217743766 doi: 10.1126/scitranslmed.3008599 – ident: bibr72-1535370217743766 doi: 10.1177/0271678X16679420 – ident: bibr79-1535370217743766 doi: 10.1146/annurev-genet-120213-092421 – ident: bibr85-1535370217743766 doi: 10.1038/nrn.2017.48 – ident: bibr32-1535370217743766 doi: 10.1038/nrdp.2016.20 – ident: bibr28-1535370217743766 doi: 10.1038/mi.2010.66 – ident: bibr48-1535370217743766 doi: 10.1007/s11481-008-9138-y – ident: bibr39-1535370217743766 doi: 10.1016/j.bbi.2015.07.023 – ident: bibr19-1535370217743766 doi: 10.1016/j.tins.2013.01.005 – ident: bibr21-1535370217743766 doi: 10.1016/j.copbio.2014.10.007 – ident: bibr9-1535370217743766 doi: 10.1038/nn.4476 – ident: bibr70-1535370217743766 doi: 10.1038/nature08478 – ident: bibr29-1535370217743766 doi: 10.1016/j.cell.2009.09.033 – ident: bibr35-1535370217743766 doi: 10.1038/nm1511 – ident: bibr22-1535370217743766 doi: 10.1093/ijnp/pyw020 – ident: bibr61-1535370217743766 doi: 10.1016/j.celrep.2017.04.006 – ident: bibr5-1535370217743766 doi: 10.1016/S0301-0082(97)00051-8 – ident: bibr16-1535370217743766 doi: 10.1038/nn.4030 – ident: bibr15-1535370217743766 doi: 10.1016/j.ijpara.2006.01.013 – ident: bibr82-1535370217743766 doi: 10.1136/gutjnl-2014-308514 – ident: bibr31-1535370217743766 doi: 10.1016/j.celrep.2016.04.074 – ident: bibr68-1535370217743766 doi: 10.1523/JNEUROSCI.0076-14.2014 – ident: bibr23-1535370217743766 doi: 10.1073/pnas.1002601107 – ident: bibr81-1535370217743766 doi: 10.1016/j.immuni.2015.08.007 – ident: bibr37-1535370217743766 doi: 10.1016/j.pathophys.2009.04.002 – ident: bibr60-1535370217743766 doi: 10.1124/jpet.116.237057 – ident: bibr49-1535370217743766 doi: 10.1016/j.bbi.2005.10.005 – ident: bibr2-1535370217743766 doi: 10.1146/annurev.ph.41.030179.000331 – ident: bibr11-1535370217743766 doi: 10.1073/pnas.1000082107 – ident: bibr74-1535370217743766 doi: 10.1038/nature11337 – ident: bibr17-1535370217743766 doi: 10.1073/pnas.75.10.5235 – ident: bibr13-1535370217743766 doi: 10.1038/s41598-017-07278-6 – ident: bibr67-1535370217743766 doi: 10.1038/nrn.2017.39 – volume: 23 start-page: 303 year: 2013 ident: bibr59-1535370217743766 publication-title: Pathol – ident: bibr65-1535370217743766 doi: 10.1038/nature14432 – ident: bibr18-1535370217743766 doi: 10.1073/pnas.79.19.6102 |
SSID | ssj0015726 |
Score | 2.5890167 |
SecondaryResourceType | review_article |
Snippet | A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Animals Bacteria - metabolism Bacterial Translocation Biological Products - metabolism Blood-Brain Barrier Central Nervous System - drug effects Central Nervous System - pathology Central Nervous System - physiology Gastrointestinal Microbiome Gastrointestinal Tract - microbiology Humans Immunology/Microbiology/Virology |
Title | Gut reactions: How the blood–brain barrier connects the microbiome and the brain |
URI | https://journals.sagepub.com/doi/full/10.1177/1535370217743766 https://www.ncbi.nlm.nih.gov/pubmed/29169241 https://www.proquest.com/docview/1968445404 https://pubmed.ncbi.nlm.nih.gov/PMC5788145 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCEYgLgpZHeMlIqBKqNo3X3he3gICqIj1UrdTbyvbapBLZoGZzKCf-A3-HX8MvYfzabJKCCpfV7mbWecyX8cz48wxCr4SsBMQ3WaS4yCOmMhJxyUEhNBNDIlhRUbPBeXyUHpyyw7PkrNf72WEtLRoxkN-u3FfyP1qFe6BXs0v2HzTbDgo34Bz0C0fQMByvpeOPi2YPnD67NcFS22yDuImnowceAxWmDcSe4Be2O5001BZD4TCC03NXiGmqWiqllV5J2HebAHSLNoV1eeOljvllYO8cDQ4HnQTDp9nnue8YMjK0_ZZKbExw2N8fGKnL1OoxzBIrvLNO52MOMFYTx29SZv-UT-D67AXJ17IXbtnsygQlmOIEzN_Q2WrVuZe6lkrBfseuzpMHatyxxsQXG3cTO3FNKTbnDLtqbYY27wZXDIzuWnluHy9Z4XJd9Aa6GUOQEodckV_DSjLb7K_9HstF8v31EVadoo1IZ5Ow22EdWkfo5B666yMYPHJwvI96qt5GO6OaN7PpJd7FllNsQbKNbr0NZ7fHHiw76Bhgi1vYvsEAWgzAwxa0v77_sADEHq44wNWKLOGKAYDuKSP9AJ1-eH_y7iDyrT0iyShrIkG0NNXeEspErg1VUhc64ZqCy5ZpQmUmwfFNhKRaDGOpSZFpStK0ULIiaZXSh2irntXqMcJwPcwrcJsp14zGOtdxJknCiaaVEpr30X74bUvp696b9itfSuJL3a9ro49et098dTVf_iL7MqirBMNsVtt4rWaLeQlTW85MfUvWR4-c-trRYgjKCvCd-yhbUWwrYIq-r75Sn09s8ffE9H9gSR_tGgiU3hrN__gBn1xX8Cm6s_yDPkNbzcVCPQeHuxEvLK5_A9HAzII |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+reactions%3A+How+the+blood%E2%80%93brain+barrier+connects+the+microbiome+and+the+brain&rft.jtitle=Experimental+biology+and+medicine+%28Maywood%2C+N.J.%29&rft.au=Logsdon%2C+Aric+F&rft.au=Erickson%2C+Michelle+A&rft.au=Rhea%2C+Elizabeth+M&rft.au=Salameh%2C+Therese+S&rft.date=2018-01-01&rft.pub=SAGE+Publications&rft.issn=1535-3702&rft.eissn=1535-3699&rft.volume=243&rft.issue=2&rft.spage=159&rft.epage=165&rft_id=info:doi/10.1177%2F1535370217743766&rft.externalDocID=10.1177_1535370217743766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3702&client=summon |