Defect detection of solar cells in electroluminescence images using Fourier image reconstruction
Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystal...
Saved in:
Published in | Solar energy materials and solar cells Vol. 99; pp. 250 - 262 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult.
A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29s to inspect a whole solar cell image with a size of 550×550pixels.
[Display omitted]
►The method can detect micro-cracks, breaks, and finger interruptions in solar cells. ► The defects are sensed and highlighted in Electroluminescence (EL) images. ► The algorithm is based on image reconstruction with Fourier transforms. |
---|---|
AbstractList | Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult.
A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29s to inspect a whole solar cell image with a size of 550×550pixels.
[Display omitted]
►The method can detect micro-cracks, breaks, and finger interruptions in solar cells. ► The defects are sensed and highlighted in Electroluminescence (EL) images. ► The algorithm is based on image reconstruction with Fourier transforms. Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult. A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29 s to inspect a whole solar cell image with a size of 550550 pixels. |
Author | Tsai, Du-Ming Wu, Shih-Chieh Li, Wei-Chen |
Author_xml | – sequence: 1 givenname: Du-Ming surname: Tsai fullname: Tsai, Du-Ming email: iedmtsai@saturn.yzu.edu.tw – sequence: 2 givenname: Shih-Chieh surname: Wu fullname: Wu, Shih-Chieh – sequence: 3 givenname: Wei-Chen surname: Li fullname: Li, Wei-Chen |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25901561$$DView record in Pascal Francis |
BookMark | eNqFkM1u1TAQhS1UJG4Lb8DCG8Qqqf-unbBAQoUWpErdwNq4zrjyVa5dPA4Sb1-naTcsYDWa8TlnPN8pOUk5ASFvOes54_r80GOej672gnHec9EzZl6QHR_M2Ek5Didkx0ZhOibU8IqcIh4YY0JLtSM_P0MAX-kEtZWYE82BtjRXqId5RhoThbk9lTwvx5gAPSQPNB7dHSBdMKY7epmXEqFsQ1rA54S1LI95r8nL4GaEN0_1jPy4_PL94mt3fXP17eLTdeeVVLVzkx6l1waMEkaKiRmvQZrAnBm44tPA9sN-ZNqI6TZouXZu5EaHwPWtACnPyPst977kXwtgtceI6wkuQV7QjkLyUe21asp3T0qH3s2huOQj2vvSvl_-WNHW8L3mTfdh0_mSEQsE62N16021uDhbzuxK3x7sRt-u9C0XttFvZvWX-Tn_P7aPmw0aqt-NqUUfV-BTbFirnXL8d8AD7oajnA |
CitedBy_id | crossref_primary_10_1109_TPDS_2020_3046018 crossref_primary_10_1109_ACCESS_2024_3349975 crossref_primary_10_3390_en10040529 crossref_primary_10_1016_j_solmat_2015_01_016 crossref_primary_10_1007_s10845_018_1458_z crossref_primary_10_1007_s00170_015_7498_z crossref_primary_10_1016_j_infrared_2020_103334 crossref_primary_10_1109_ACCESS_2020_3039182 crossref_primary_10_2139_ssrn_3980357 crossref_primary_10_1109_JPHOTOV_2020_2996750 crossref_primary_10_1109_TIM_2019_2900961 crossref_primary_10_1109_TII_2020_3008021 crossref_primary_10_3390_rs9060631 crossref_primary_10_1016_j_solener_2024_112541 crossref_primary_10_1080_15567036_2023_2230935 crossref_primary_10_1109_JPHOTOV_2021_3131059 crossref_primary_10_1088_1361_6501_ad7d28 crossref_primary_10_3390_s24134120 crossref_primary_10_1109_TIM_2023_3309374 crossref_primary_10_7717_peerj_cs_1264 crossref_primary_10_1007_s43069_024_00337_5 crossref_primary_10_1007_s11554_019_00927_1 crossref_primary_10_1016_j_jmsy_2021_05_008 crossref_primary_10_1007_s13319_018_0186_7 crossref_primary_10_1109_JPHOTOV_2013_2285622 crossref_primary_10_3390_en16104012 crossref_primary_10_1016_j_measurement_2019_107170 crossref_primary_10_1109_JPHOTOV_2019_2915586 crossref_primary_10_1007_s11554_025_01639_5 crossref_primary_10_1108_AA_04_2018_060 crossref_primary_10_1007_s12596_023_01162_5 crossref_primary_10_1016_j_cie_2016_05_009 crossref_primary_10_1007_s42452_023_05431_7 crossref_primary_10_1049_iet_rpg_2014_0366 crossref_primary_10_1007_s00138_021_01191_9 crossref_primary_10_1007_s40544_023_0789_8 crossref_primary_10_3390_app14125298 crossref_primary_10_1115_1_4029933 crossref_primary_10_1007_s13748_024_00353_w crossref_primary_10_1080_0305215X_2016_1206536 crossref_primary_10_3390_app11167657 crossref_primary_10_1016_j_energy_2021_120606 crossref_primary_10_1109_TIM_2024_3462989 crossref_primary_10_1109_ACCESS_2020_3021577 crossref_primary_10_1016_j_heliyon_2024_e23983 crossref_primary_10_1109_TIE_2021_3104584 crossref_primary_10_1007_s11771_016_0362_y crossref_primary_10_1002_ese3_781 crossref_primary_10_1109_ACCESS_2021_3074219 crossref_primary_10_1016_j_solener_2021_11_016 crossref_primary_10_1080_10589759_2024_2319263 crossref_primary_10_1155_2023_2663150 crossref_primary_10_1109_JPHOTOV_2018_2846665 crossref_primary_10_1016_j_apenergy_2022_119203 crossref_primary_10_1186_1687_5281_2014_15 crossref_primary_10_1002_solr_202100483 crossref_primary_10_1007_s00138_021_01183_9 crossref_primary_10_1016_j_cirp_2022_05_004 crossref_primary_10_1016_j_rser_2017_05_017 crossref_primary_10_3390_s16081178 crossref_primary_10_1016_j_seta_2022_102110 crossref_primary_10_1155_je_8397362 crossref_primary_10_3390_electronics13183728 crossref_primary_10_1016_j_eswa_2022_117087 crossref_primary_10_1016_j_energy_2019_116319 crossref_primary_10_3390_en16237726 crossref_primary_10_1016_j_solener_2023_112245 crossref_primary_10_1016_j_eswa_2023_121529 crossref_primary_10_1108_SR_05_2019_0124 crossref_primary_10_1364_AO_55_002331 crossref_primary_10_1007_s12204_023_2670_3 crossref_primary_10_1016_j_ndteint_2015_11_002 crossref_primary_10_1155_2015_879675 crossref_primary_10_3390_su17031141 crossref_primary_10_1016_j_solener_2022_10_055 crossref_primary_10_1109_ACCESS_2022_3145980 crossref_primary_10_3390_s21134361 crossref_primary_10_1007_s10845_020_01642_6 crossref_primary_10_3390_mi13020332 crossref_primary_10_18178_joig_6_1_54_58 crossref_primary_10_1016_j_solener_2019_02_067 crossref_primary_10_1049_iet_rpg_2019_1342 crossref_primary_10_1109_TII_2022_3211088 crossref_primary_10_1364_OE_20_012640 crossref_primary_10_1109_TIM_2021_3096602 crossref_primary_10_1016_j_jreng_2022_05_003 crossref_primary_10_1109_JPHOTOV_2019_2895808 crossref_primary_10_1016_j_sasc_2023_200048 crossref_primary_10_3390_technologies12100175 crossref_primary_10_1007_s40436_014_0095_9 crossref_primary_10_1007_s00170_012_4338_2 crossref_primary_10_1109_ACCESS_2022_3195901 crossref_primary_10_1016_j_apenergy_2022_118822 crossref_primary_10_3390_app12041789 crossref_primary_10_2139_ssrn_4509042 crossref_primary_10_1016_j_solener_2023_112186 crossref_primary_10_1088_1361_6501_ab8088 crossref_primary_10_1109_ACCESS_2020_2976843 crossref_primary_10_4028_www_scientific_net_KEM_523_524_826 crossref_primary_10_1007_s12209_013_1937_4 crossref_primary_10_1016_j_jfoodeng_2013_08_006 crossref_primary_10_1051_epjpv_2022025 crossref_primary_10_1063_5_0072760 crossref_primary_10_1109_ACCESS_2019_2942218 crossref_primary_10_1016_j_optlaseng_2019_01_016 crossref_primary_10_1080_21681015_2013_869512 crossref_primary_10_1109_JPHOTOV_2020_3041240 |
Cites_doi | 10.1109/TSMC.1973.4309314 10.1109/83.242353 10.1117/12.380078 10.1007/s001380050130 10.1063/1.1978979 10.1117/12.459624 10.1109/TIE.1930.896476 10.1016/S0031-3203(02)00017-1 10.1016/j.imavis.2009.08.001 10.1016/0031-3203(96)00008-8 10.1016/0734-189X(90)90162-O 10.1016/S0927-0248(01)00187-8 10.1109/34.192463 10.1016/j.solmat.2010.06.003 10.1109/TII.2010.2092783 10.1109/ICICISYS.2009.5357635 10.1007/BF01211662 10.1049/ip-vis:20045131 10.1142/S0218001400000507 10.1016/S0262-8856(99)00009-8 10.1109/28.871274 10.1109/IEMT.1991.279775 10.1016/j.patrec.2005.01.017 10.5565/rev/elcvia.268 10.1016/S0167-8655(00)00043-X 10.1016/S0262-8856(03)00007-6 10.1109/28.993164 10.1108/02602281111110013 10.1016/j.solmat.2011.03.025 10.1080/00405000903430255 10.1007/s00138-002-0086-x 10.1007/s00339-008-4986-0 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. |
DOI | 10.1016/j.solmat.2011.12.007 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3398 |
EndPage | 262 |
ExternalDocumentID | 25901561 10_1016_j_solmat_2011_12_007 S092702481100688X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TG KL. |
ID | FETCH-LOGICAL-c434t-ad693c67e742732d07c6e37f0a78141d8058590672dbf630585a9176ff16b2e33 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Fri Jul 11 11:43:45 EDT 2025 Mon Jul 21 09:15:40 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 05:16:49 EDT 2025 Fri Feb 23 02:33:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar cell Fourier transform Surface inspection Defect detection CCD imaging Fourier transformation Electroluminescence Experimental study Implementation Image reconstruction Grain boundary Crystalline material Luminous intensity Computation time Solar power plant Automatic measurement Imaging Solar energy Silicon Crack |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-ad693c67e742732d07c6e37f0a78141d8058590672dbf630585a9176ff16b2e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 923194564 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_923194564 pascalfrancis_primary_25901561 crossref_citationtrail_10_1016_j_solmat_2011_12_007 crossref_primary_10_1016_j_solmat_2011_12_007 elsevier_sciencedirect_doi_10_1016_j_solmat_2011_12_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chen, Kuo (bib18) 1993; 2 Tsai, Hsieh (bib34) 1999; 18 Kumar, Pang (bib15) 2002; 38 Haunschild, Glatthaar, Demant, Nievendick (bib26) 2010; 94 M.A. Ordaz, G.B. Lush, Machine vision for solar cell characterization, in: Proc. of SPIE, San Jose, CA, USA, 2000, pp. 238–248. Pan, Gao, Jiu, Wang (bib7) 2011; 102 Fuyuki, Kondo, Yamazaki, Takahashi, Uraoka (bib1) 2005; 86 Guan, Xie, Li (bib33) 2003; 13 Wiltschi, Pinz, Lindeberg (bib14) 2000; 12 Bodnarova, Bennamoun, Latham (bib16) 2002; 35 Khalaj, Aghajan, Kailath (bib32) 1994; 7 Tsai, Luo (bib29) 2011; 7 Xie (bib3) 2008; 7 Chiou, Liu (bib30) 2011; 31 Mallat (bib17) 1989; 11 Maruo, Shibata, Yamaguchi, Ichikawa, Ohmi (bib19) 1999 T. Ohshige, H. Tanaka, Y. Miyazaki, T. Kanda, H. Ichimura, N. Kosaka, T. Tomoda, Defect inspection system for patterned wafers based on the spatial-frequency filtering, in: IEEE/CHMT Int. Electronic Manuf. Technol. Symp., San Francisco, CA , USA, 1991, pp. 192–196. Z. Fu, Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, J. Lee, Solar cell crack inspection by image processing, in: International Conference on the Business of Electronic Product Reliability and Liability, Shanghai, China, 2004, pp. 77–80. M. Pilla, F. Galmiche, X. Maldague, Thermographic inspection of cracked solar cells, in: Proc. of SPIE, Seattle, WA, USA, 2002, pp. 699–703. Iivarinen, Keikkinen, Rauhamaa, Vuorimaa, Visa (bib6) 2000; 14 M. Demant, M. Glatthaar, J. Haunschild, S. Rein, Analysis of luminescence images applying pattern recognition techniques, in: Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1078–1082, 2010. Tsai, Chang, Chao (bib28) 2010; 28 Scharcanski (bib20) 2005; 26 Warta (bib27) 2002; 72 Tsai, Huang (bib35) 2003; 21 Haralick, Shanmugam, Dinstein (bib4) 1973 Ramana, Ramamoorthy (bib5) 1996; 29 Yang, Pang, Yung (bib21) 2005; 152 J. Li, Y. Lu, B. Pu, Y. Xie, J. Qin, W.-M. Pang, P.-A. Heng, An automated cotton contamination detection system based on co-occurrence matrix contrast information, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, pp. 517–521. Chan, Pang (bib10) 2000; 36 Fuyuki, Kitiyanan (bib2) 2009; 96 Paschos (bib13) 2000; 21 Li, Tsai (bib31) 2011; 95 Liu, Jernigan (bib9) 1990; 49 Kumar (bib11) 2008; 55 Paschos (10.1016/j.solmat.2011.12.007_bib13) 2000; 21 10.1016/j.solmat.2011.12.007_bib8 Fuyuki (10.1016/j.solmat.2011.12.007_bib1) 2005; 86 Chan (10.1016/j.solmat.2011.12.007_bib10) 2000; 36 Fuyuki (10.1016/j.solmat.2011.12.007_bib2) 2009; 96 Haralick (10.1016/j.solmat.2011.12.007_bib4) 1973 Xie (10.1016/j.solmat.2011.12.007_bib3) 2008; 7 Chiou (10.1016/j.solmat.2011.12.007_bib30) 2011; 31 Tsai (10.1016/j.solmat.2011.12.007_bib28) 2010; 28 Tsai (10.1016/j.solmat.2011.12.007_bib35) 2003; 21 Wiltschi (10.1016/j.solmat.2011.12.007_bib14) 2000; 12 Mallat (10.1016/j.solmat.2011.12.007_bib17) 1989; 11 Maruo (10.1016/j.solmat.2011.12.007_bib19) 1999 10.1016/j.solmat.2011.12.007_bib24 10.1016/j.solmat.2011.12.007_bib25 10.1016/j.solmat.2011.12.007_bib22 Warta (10.1016/j.solmat.2011.12.007_bib27) 2002; 72 Pan (10.1016/j.solmat.2011.12.007_bib7) 2011; 102 10.1016/j.solmat.2011.12.007_bib23 Iivarinen (10.1016/j.solmat.2011.12.007_bib6) 2000; 14 Kumar (10.1016/j.solmat.2011.12.007_bib11) 2008; 55 Tsai (10.1016/j.solmat.2011.12.007_bib34) 1999; 18 Chen (10.1016/j.solmat.2011.12.007_bib18) 1993; 2 Kumar (10.1016/j.solmat.2011.12.007_bib15) 2002; 38 Ramana (10.1016/j.solmat.2011.12.007_bib5) 1996; 29 Yang (10.1016/j.solmat.2011.12.007_bib21) 2005; 152 Li (10.1016/j.solmat.2011.12.007_bib31) 2011; 95 Khalaj (10.1016/j.solmat.2011.12.007_bib32) 1994; 7 Liu (10.1016/j.solmat.2011.12.007_bib9) 1990; 49 Haunschild (10.1016/j.solmat.2011.12.007_bib26) 2010; 94 Tsai (10.1016/j.solmat.2011.12.007_bib29) 2011; 7 Bodnarova (10.1016/j.solmat.2011.12.007_bib16) 2002; 35 Guan (10.1016/j.solmat.2011.12.007_bib33) 2003; 13 Scharcanski (10.1016/j.solmat.2011.12.007_bib20) 2005; 26 10.1016/j.solmat.2011.12.007_bib12 |
References_xml | – volume: 28 start-page: 491 year: 2010 end-page: 501 ident: bib28 article-title: Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion publication-title: Image and Vision Computing – volume: 96 start-page: 189 year: 2009 end-page: 196 ident: bib2 article-title: Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence publication-title: Applied Physics A – volume: 86 start-page: 262108 year: 2005 ident: bib1 article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence publication-title: Applied Physics Letters – volume: 21 start-page: 837 year: 2000 end-page: 841 ident: bib13 article-title: Fast color texture recognition using chromaticity moments publication-title: Pattern Recognition Letters – reference: M. Demant, M. Glatthaar, J. Haunschild, S. Rein, Analysis of luminescence images applying pattern recognition techniques, in: Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1078–1082, 2010. – volume: 152 start-page: 715 year: 2005 end-page: 723 ident: bib21 article-title: Robust fabric defect detection and classification using multiple adaptive wavelets publication-title: IEE Proceedings Vision, Image Processing – reference: J. Li, Y. Lu, B. Pu, Y. Xie, J. Qin, W.-M. Pang, P.-A. Heng, An automated cotton contamination detection system based on co-occurrence matrix contrast information, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, pp. 517–521. – volume: 35 start-page: 2973 year: 2002 end-page: 2991 ident: bib16 article-title: Optimal gabor filters for textile flaw detection publication-title: Pattern Recognition – volume: 7 start-page: 178 year: 1994 end-page: 185 ident: bib32 article-title: Patterned wafer inspection by high resolution spectral estimation techniques publication-title: Machine Vision and Applications – volume: 29 start-page: 1447 year: 1996 end-page: 1459 ident: bib5 article-title: Statistical methods to compare the texture features of machined surfaces publication-title: Pattern Recognition – volume: 13 start-page: 314 year: 2003 end-page: 321 ident: bib33 article-title: A golden-block-based self-refining scheme for repetitive patterned wafer inspections publication-title: Machine Vision and Applications – reference: Z. Fu, Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, J. Lee, Solar cell crack inspection by image processing, in: International Conference on the Business of Electronic Product Reliability and Liability, Shanghai, China, 2004, pp. 77–80. – volume: 31 start-page: 154 year: 2011 end-page: 165 ident: bib30 article-title: Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques publication-title: Sensor Review – reference: T. Ohshige, H. Tanaka, Y. Miyazaki, T. Kanda, H. Ichimura, N. Kosaka, T. Tomoda, Defect inspection system for patterned wafers based on the spatial-frequency filtering, in: IEEE/CHMT Int. Electronic Manuf. Technol. Symp., San Francisco, CA , USA, 1991, pp. 192–196. – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bib17 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 102 start-page: 19 year: 2011 end-page: 30 ident: bib7 article-title: Automatic recognition of woven fabric pattern based on image processing and BP neural network publication-title: Journal of Textile Institute – volume: 49 start-page: 52 year: 1990 end-page: 67 ident: bib9 article-title: Texture analysis and discrimination in additive noise publication-title: Computer Vision, Graphics Image Process – volume: 95 start-page: 2206 year: 2011 end-page: 2220 ident: bib31 article-title: Automatic saw-mark detection in multicrystalline solar wafer images publication-title: Solar Energy Materials and Solar Cells – volume: 21 start-page: 307 year: 2003 end-page: 323 ident: bib35 article-title: Automated surface inspection for statistical textures publication-title: Image and Vision Computing – start-page: 610 year: 1973 end-page: 621 ident: bib4 article-title: Texture features for image classification publication-title: IEEE Transactions on Systems Man, and Cybernetics SMC-3 – reference: M. Pilla, F. Galmiche, X. Maldague, Thermographic inspection of cracked solar cells, in: Proc. of SPIE, Seattle, WA, USA, 2002, pp. 699–703. – volume: 72 start-page: 389 year: 2002 end-page: 401 ident: bib27 article-title: Defect and impurity diagnostics and process monitoring publication-title: Solar Energy Materials and Solar Cells – volume: 18 start-page: 49 year: 1999 end-page: 62 ident: bib34 article-title: Automated surface inspection for directional textures publication-title: Image and Vision Computing – volume: 94 start-page: 2007 year: 2010 end-page: 2012 ident: bib26 article-title: Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production publication-title: Solar Energy Materials and Solar Cells – volume: 26 start-page: 1701 year: 2005 end-page: 1709 ident: bib20 article-title: Stochastic texture analysis for monitoring stochastic processes in industry publication-title: Pattern Recognition Letters – volume: 2 start-page: 429 year: 1993 end-page: 441 ident: bib18 article-title: Texture analysis and classification with tree-structured wavelet transform publication-title: IEEE Transactions on Image Processing – start-page: 1003 year: 1999 end-page: 1012 ident: bib19 article-title: Automatic defect pattern detection on LSI wafers using image processing techniques publication-title: IEICE Transactions on Electronics E82-C – volume: 12 start-page: 113 year: 2000 end-page: 128 ident: bib14 article-title: Automatic assessment scheme for steel quality inspection publication-title: Machine Vision and Applications – volume: 14 start-page: 735 year: 2000 end-page: 755 ident: bib6 article-title: A defect detection scheme for web surface inspection publication-title: International Journal of Pattern Recognition and Artificial Intelligence – volume: 36 start-page: 1267 year: 2000 end-page: 1276 ident: bib10 article-title: Fabric defect detection by Fourier analysis publication-title: IEEE Transactions on Industry Applications – reference: M.A. Ordaz, G.B. Lush, Machine vision for solar cell characterization, in: Proc. of SPIE, San Jose, CA, USA, 2000, pp. 238–248. – volume: 38 start-page: 425 year: 2002 end-page: 440 ident: bib15 article-title: Defect detection in textured materials using Gabor filters publication-title: IEEE Transactions on Industrial Applications – volume: 7 start-page: 125 year: 2011 end-page: 135 ident: bib29 article-title: Mean shift-based defect detection in multicrystalline solar wafer surfaces publication-title: IEEE Transactions on Industrial Informatics – volume: 7 start-page: 1 year: 2008 end-page: 22 ident: bib3 article-title: A review of recent advances in surface defect detection using texture analysis techniques publication-title: Electron Letters Computer Vision and Image Analysis – volume: 55 start-page: 348 year: 2008 end-page: 363 ident: bib11 article-title: Computer-vision-based fabric defect detection: a survey publication-title: IEEE Transactions on Industrial Electronics – start-page: 1003 year: 1999 ident: 10.1016/j.solmat.2011.12.007_bib19 article-title: Automatic defect pattern detection on LSI wafers using image processing techniques publication-title: IEICE Transactions on Electronics E82-C – start-page: 610 year: 1973 ident: 10.1016/j.solmat.2011.12.007_bib4 article-title: Texture features for image classification publication-title: IEEE Transactions on Systems Man, and Cybernetics SMC-3 doi: 10.1109/TSMC.1973.4309314 – volume: 2 start-page: 429 year: 1993 ident: 10.1016/j.solmat.2011.12.007_bib18 article-title: Texture analysis and classification with tree-structured wavelet transform publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.242353 – ident: 10.1016/j.solmat.2011.12.007_bib23 doi: 10.1117/12.380078 – volume: 12 start-page: 113 year: 2000 ident: 10.1016/j.solmat.2011.12.007_bib14 article-title: Automatic assessment scheme for steel quality inspection publication-title: Machine Vision and Applications doi: 10.1007/s001380050130 – volume: 86 start-page: 262108 year: 2005 ident: 10.1016/j.solmat.2011.12.007_bib1 article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence publication-title: Applied Physics Letters doi: 10.1063/1.1978979 – ident: 10.1016/j.solmat.2011.12.007_bib24 doi: 10.1117/12.459624 – volume: 55 start-page: 348 year: 2008 ident: 10.1016/j.solmat.2011.12.007_bib11 article-title: Computer-vision-based fabric defect detection: a survey publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.1930.896476 – volume: 35 start-page: 2973 year: 2002 ident: 10.1016/j.solmat.2011.12.007_bib16 article-title: Optimal gabor filters for textile flaw detection publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00017-1 – volume: 28 start-page: 491 year: 2010 ident: 10.1016/j.solmat.2011.12.007_bib28 article-title: Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2009.08.001 – volume: 29 start-page: 1447 year: 1996 ident: 10.1016/j.solmat.2011.12.007_bib5 article-title: Statistical methods to compare the texture features of machined surfaces publication-title: Pattern Recognition doi: 10.1016/0031-3203(96)00008-8 – volume: 49 start-page: 52 year: 1990 ident: 10.1016/j.solmat.2011.12.007_bib9 article-title: Texture analysis and discrimination in additive noise publication-title: Computer Vision, Graphics Image Process doi: 10.1016/0734-189X(90)90162-O – volume: 72 start-page: 389 year: 2002 ident: 10.1016/j.solmat.2011.12.007_bib27 article-title: Defect and impurity diagnostics and process monitoring publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/S0927-0248(01)00187-8 – ident: 10.1016/j.solmat.2011.12.007_bib22 – volume: 11 start-page: 674 year: 1989 ident: 10.1016/j.solmat.2011.12.007_bib17 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.192463 – volume: 94 start-page: 2007 year: 2010 ident: 10.1016/j.solmat.2011.12.007_bib26 article-title: Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/j.solmat.2010.06.003 – volume: 7 start-page: 125 year: 2011 ident: 10.1016/j.solmat.2011.12.007_bib29 article-title: Mean shift-based defect detection in multicrystalline solar wafer surfaces publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2010.2092783 – ident: 10.1016/j.solmat.2011.12.007_bib8 doi: 10.1109/ICICISYS.2009.5357635 – volume: 7 start-page: 178 year: 1994 ident: 10.1016/j.solmat.2011.12.007_bib32 article-title: Patterned wafer inspection by high resolution spectral estimation techniques publication-title: Machine Vision and Applications doi: 10.1007/BF01211662 – volume: 152 start-page: 715 year: 2005 ident: 10.1016/j.solmat.2011.12.007_bib21 article-title: Robust fabric defect detection and classification using multiple adaptive wavelets publication-title: IEE Proceedings Vision, Image Processing doi: 10.1049/ip-vis:20045131 – volume: 14 start-page: 735 year: 2000 ident: 10.1016/j.solmat.2011.12.007_bib6 article-title: A defect detection scheme for web surface inspection publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001400000507 – volume: 18 start-page: 49 year: 1999 ident: 10.1016/j.solmat.2011.12.007_bib34 article-title: Automated surface inspection for directional textures publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(99)00009-8 – volume: 36 start-page: 1267 year: 2000 ident: 10.1016/j.solmat.2011.12.007_bib10 article-title: Fabric defect detection by Fourier analysis publication-title: IEEE Transactions on Industry Applications doi: 10.1109/28.871274 – ident: 10.1016/j.solmat.2011.12.007_bib12 doi: 10.1109/IEMT.1991.279775 – volume: 26 start-page: 1701 year: 2005 ident: 10.1016/j.solmat.2011.12.007_bib20 article-title: Stochastic texture analysis for monitoring stochastic processes in industry publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.01.017 – ident: 10.1016/j.solmat.2011.12.007_bib25 – volume: 7 start-page: 1 year: 2008 ident: 10.1016/j.solmat.2011.12.007_bib3 article-title: A review of recent advances in surface defect detection using texture analysis techniques publication-title: Electron Letters Computer Vision and Image Analysis doi: 10.5565/rev/elcvia.268 – volume: 21 start-page: 837 year: 2000 ident: 10.1016/j.solmat.2011.12.007_bib13 article-title: Fast color texture recognition using chromaticity moments publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(00)00043-X – volume: 21 start-page: 307 year: 2003 ident: 10.1016/j.solmat.2011.12.007_bib35 article-title: Automated surface inspection for statistical textures publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(03)00007-6 – volume: 38 start-page: 425 year: 2002 ident: 10.1016/j.solmat.2011.12.007_bib15 article-title: Defect detection in textured materials using Gabor filters publication-title: IEEE Transactions on Industrial Applications doi: 10.1109/28.993164 – volume: 31 start-page: 154 year: 2011 ident: 10.1016/j.solmat.2011.12.007_bib30 article-title: Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques publication-title: Sensor Review doi: 10.1108/02602281111110013 – volume: 95 start-page: 2206 year: 2011 ident: 10.1016/j.solmat.2011.12.007_bib31 article-title: Automatic saw-mark detection in multicrystalline solar wafer images publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/j.solmat.2011.03.025 – volume: 102 start-page: 19 year: 2011 ident: 10.1016/j.solmat.2011.12.007_bib7 article-title: Automatic recognition of woven fabric pattern based on image processing and BP neural network publication-title: Journal of Textile Institute doi: 10.1080/00405000903430255 – volume: 13 start-page: 314 year: 2003 ident: 10.1016/j.solmat.2011.12.007_bib33 article-title: A golden-block-based self-refining scheme for repetitive patterned wafer inspections publication-title: Machine Vision and Applications doi: 10.1007/s00138-002-0086-x – volume: 96 start-page: 189 year: 2009 ident: 10.1016/j.solmat.2011.12.007_bib2 article-title: Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence publication-title: Applied Physics A doi: 10.1007/s00339-008-4986-0 |
SSID | ssj0002634 |
Score | 2.4210103 |
Snippet | Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 250 |
SubjectTerms | Applied sciences Defect detection Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Energy Exact sciences and technology Fourier transform Natural energy Photoelectric conversion Photovoltaic conversion Solar cell Solar cells. Photoelectrochemical cells Solar energy Solar thermal conversion Solar thermal power plants Surface inspection Testing. Reliability. Quality control |
Title | Defect detection of solar cells in electroluminescence images using Fourier image reconstruction |
URI | https://dx.doi.org/10.1016/j.solmat.2011.12.007 https://www.proquest.com/docview/923194564 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvYCqquWhboGVD1zNem3HTo4IulqK4EKR9mYSP9BWJbtSliu_nZk42YKKhMQxli0nM854xv7mG0KOBc-9CJljhXGKKcEDKyGAYxAx8yrCEnIKk5OvrvX0Vv2aZbMNctbnwiCssrP9yaa31rprGXXSHC3n89ENLzCXSuVIeqbzfIYZ7MrgKj95-gfzELq9WcbODHv36XMtxgvUC35hIvLEQ0EsKvv29vR5WTYgtJiqXfxnuNvdaPKVfOncSHqa3vQb2Qj1Dtl-QS64S-7OA0I1qA-rFm5V00WkDUayFE_rGzqvaVcEBwwUot8dfj2dP4CJaSgC4u_pJJW0S420jZ7XjLN75Hby8_fZlHX1FJhTUq1Y6XUhnTYBwmEjhefG6SBN5CXyXo19ziF2KPBu1ldRS3wqIZrTMY51JYKU-2SzXtThO6GZkcqrjDsXuaq8qUoDrlkWywIcIOPVgMhejNZ1ZONY8-Kv7VFlf2wSvkXh27GwIPwBYetRy0S28U5_02vIvlo0FvaDd0YOXyl0PZ3AXFzwKQeE9hq28MOhXso6LB4bix5xgSQ8Pz48-wHZgieRAECHZBP0Fo7At1lVw3bxDsmn04vL6fUzgAT6Dw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgCEEE-xPIoPXN312o6dHFFhtUDbS1tpb27iR7UIsitlufLbmYmTpRVIlTjGseVkxh7PJN98A_BeijLIWHheWa-5liLyGgM4jhGzaBIuIa8pOfnk1Cwu9JdlsdyDozEXhmCVg-3PNr231kPLdJDmdLNaTc9ERblUuiTSM1OWyztwV-P2pTIGh7_-4Dyk6X8tU29O3cf8uR7khfpFxzAzedJXQaoq--_z6eGm7lBqKZe7-Mty98fR_DE8GvxI9iE_6hPYi-1TeHCNXfAZXH6MhNVgIW57vFXL1ol1FMoy-lzfsVXLhio4aKEI_u7p9dnqB9qYjhEi_orNc0273Mj68HlHOfscLuafzo8WfCiowL1WesvrYCrljY0YD1slg7DeRGWTqIn4ahZKgcFDRT9nQ5OMoqsawzmT0sw0Mir1AvbbdRtfAius0kEXwvskdBNsU1v0zYpUV-gB2aAnoEYxOj-wjVPRi-9uhJV9c1n4joTvZtKh8CfAd6M2mW3jlv521JC7sWocHgi3jDy4odDddJKScdGpnAAbNexwx5Fe6jauf3aOXOKKWHhe_ffs7-De4vzk2B1_Pv36Gu7jHZnRQG9gH3UY36Kjs20O-oX8Gy7o-50 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+detection+of+solar+cells+in+electroluminescence+images+using+Fourier+image+reconstruction&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Tsai%2C+Du-Ming&rft.au=Wu%2C+Shih-Chieh&rft.au=Li%2C+Wei-Chen&rft.date=2012-04-01&rft.issn=0927-0248&rft.volume=99&rft.spage=250&rft.epage=262&rft_id=info:doi/10.1016%2Fj.solmat.2011.12.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2011_12_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |