Defect detection of solar cells in electroluminescence images using Fourier image reconstruction

Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystal...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 99; pp. 250 - 262
Main Authors Tsai, Du-Ming, Wu, Shih-Chieh, Li, Wei-Chen
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult. A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29s to inspect a whole solar cell image with a size of 550×550pixels. [Display omitted] ►The method can detect micro-cracks, breaks, and finger interruptions in solar cells. ► The defects are sensed and highlighted in Electroluminescence (EL) images. ► The algorithm is based on image reconstruction with Fourier transforms.
AbstractList Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult. A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29s to inspect a whole solar cell image with a size of 550×550pixels. [Display omitted] ►The method can detect micro-cracks, breaks, and finger interruptions in solar cells. ► The defects are sensed and highlighted in Electroluminescence (EL) images. ► The algorithm is based on image reconstruction with Fourier transforms.
Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline silicon. Many defects cannot be visually observed with the conventional CCD imaging system. This paper presents defect inspection of multicrystalline solar cells in electroluminescence (EL) images. A solar cell charged with electrical current emits infrared light, whose intensity is lower at intrinsic crystal grain boundaries and extrinsic defects of small cracks, breaks, and finger interruptions. The EL image can distinctly highlight barely visible defects as dark objects, but it also shows random dark regions in the background, which makes automatic inspection in EL images very difficult. A self-reference scheme based on the Fourier image reconstruction technique is proposed for defect detection of solar cells with EL images. The target defects appear as line- or bar-shaped objects in the EL image. The Fourier image reconstruction process is applied to remove the possible defects by setting the frequency components associated with the line- and bar-shaped defects to zero and then back-transforming the spectral image into a spatial image. The defect region can then be easily identified by evaluating the gray-level differences between the original image and its reconstructed image. The reference image is generated from the inspection image itself and, thus, can accommodate random inhomogeneous backgrounds. Experimental results on a set of various solar cells have shown that the proposed method performs effectively for detecting small cracks, breaks, and finger interruptions. The computation time of the proposed method is also fast, making it suitable for practical implementation. It takes only 0.29 s to inspect a whole solar cell image with a size of 550550 pixels.
Author Tsai, Du-Ming
Wu, Shih-Chieh
Li, Wei-Chen
Author_xml – sequence: 1
  givenname: Du-Ming
  surname: Tsai
  fullname: Tsai, Du-Ming
  email: iedmtsai@saturn.yzu.edu.tw
– sequence: 2
  givenname: Shih-Chieh
  surname: Wu
  fullname: Wu, Shih-Chieh
– sequence: 3
  givenname: Wei-Chen
  surname: Li
  fullname: Li, Wei-Chen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25901561$$DView record in Pascal Francis
BookMark eNqFkM1u1TAQhS1UJG4Lb8DCG8Qqqf-unbBAQoUWpErdwNq4zrjyVa5dPA4Sb1-naTcsYDWa8TlnPN8pOUk5ASFvOes54_r80GOej672gnHec9EzZl6QHR_M2Ek5Didkx0ZhOibU8IqcIh4YY0JLtSM_P0MAX-kEtZWYE82BtjRXqId5RhoThbk9lTwvx5gAPSQPNB7dHSBdMKY7epmXEqFsQ1rA54S1LI95r8nL4GaEN0_1jPy4_PL94mt3fXP17eLTdeeVVLVzkx6l1waMEkaKiRmvQZrAnBm44tPA9sN-ZNqI6TZouXZu5EaHwPWtACnPyPst977kXwtgtceI6wkuQV7QjkLyUe21asp3T0qH3s2huOQj2vvSvl_-WNHW8L3mTfdh0_mSEQsE62N16021uDhbzuxK3x7sRt-u9C0XttFvZvWX-Tn_P7aPmw0aqt-NqUUfV-BTbFirnXL8d8AD7oajnA
CitedBy_id crossref_primary_10_1109_TPDS_2020_3046018
crossref_primary_10_1109_ACCESS_2024_3349975
crossref_primary_10_3390_en10040529
crossref_primary_10_1016_j_solmat_2015_01_016
crossref_primary_10_1007_s10845_018_1458_z
crossref_primary_10_1007_s00170_015_7498_z
crossref_primary_10_1016_j_infrared_2020_103334
crossref_primary_10_1109_ACCESS_2020_3039182
crossref_primary_10_2139_ssrn_3980357
crossref_primary_10_1109_JPHOTOV_2020_2996750
crossref_primary_10_1109_TIM_2019_2900961
crossref_primary_10_1109_TII_2020_3008021
crossref_primary_10_3390_rs9060631
crossref_primary_10_1016_j_solener_2024_112541
crossref_primary_10_1080_15567036_2023_2230935
crossref_primary_10_1109_JPHOTOV_2021_3131059
crossref_primary_10_1088_1361_6501_ad7d28
crossref_primary_10_3390_s24134120
crossref_primary_10_1109_TIM_2023_3309374
crossref_primary_10_7717_peerj_cs_1264
crossref_primary_10_1007_s43069_024_00337_5
crossref_primary_10_1007_s11554_019_00927_1
crossref_primary_10_1016_j_jmsy_2021_05_008
crossref_primary_10_1007_s13319_018_0186_7
crossref_primary_10_1109_JPHOTOV_2013_2285622
crossref_primary_10_3390_en16104012
crossref_primary_10_1016_j_measurement_2019_107170
crossref_primary_10_1109_JPHOTOV_2019_2915586
crossref_primary_10_1007_s11554_025_01639_5
crossref_primary_10_1108_AA_04_2018_060
crossref_primary_10_1007_s12596_023_01162_5
crossref_primary_10_1016_j_cie_2016_05_009
crossref_primary_10_1007_s42452_023_05431_7
crossref_primary_10_1049_iet_rpg_2014_0366
crossref_primary_10_1007_s00138_021_01191_9
crossref_primary_10_1007_s40544_023_0789_8
crossref_primary_10_3390_app14125298
crossref_primary_10_1115_1_4029933
crossref_primary_10_1007_s13748_024_00353_w
crossref_primary_10_1080_0305215X_2016_1206536
crossref_primary_10_3390_app11167657
crossref_primary_10_1016_j_energy_2021_120606
crossref_primary_10_1109_TIM_2024_3462989
crossref_primary_10_1109_ACCESS_2020_3021577
crossref_primary_10_1016_j_heliyon_2024_e23983
crossref_primary_10_1109_TIE_2021_3104584
crossref_primary_10_1007_s11771_016_0362_y
crossref_primary_10_1002_ese3_781
crossref_primary_10_1109_ACCESS_2021_3074219
crossref_primary_10_1016_j_solener_2021_11_016
crossref_primary_10_1080_10589759_2024_2319263
crossref_primary_10_1155_2023_2663150
crossref_primary_10_1109_JPHOTOV_2018_2846665
crossref_primary_10_1016_j_apenergy_2022_119203
crossref_primary_10_1186_1687_5281_2014_15
crossref_primary_10_1002_solr_202100483
crossref_primary_10_1007_s00138_021_01183_9
crossref_primary_10_1016_j_cirp_2022_05_004
crossref_primary_10_1016_j_rser_2017_05_017
crossref_primary_10_3390_s16081178
crossref_primary_10_1016_j_seta_2022_102110
crossref_primary_10_1155_je_8397362
crossref_primary_10_3390_electronics13183728
crossref_primary_10_1016_j_eswa_2022_117087
crossref_primary_10_1016_j_energy_2019_116319
crossref_primary_10_3390_en16237726
crossref_primary_10_1016_j_solener_2023_112245
crossref_primary_10_1016_j_eswa_2023_121529
crossref_primary_10_1108_SR_05_2019_0124
crossref_primary_10_1364_AO_55_002331
crossref_primary_10_1007_s12204_023_2670_3
crossref_primary_10_1016_j_ndteint_2015_11_002
crossref_primary_10_1155_2015_879675
crossref_primary_10_3390_su17031141
crossref_primary_10_1016_j_solener_2022_10_055
crossref_primary_10_1109_ACCESS_2022_3145980
crossref_primary_10_3390_s21134361
crossref_primary_10_1007_s10845_020_01642_6
crossref_primary_10_3390_mi13020332
crossref_primary_10_18178_joig_6_1_54_58
crossref_primary_10_1016_j_solener_2019_02_067
crossref_primary_10_1049_iet_rpg_2019_1342
crossref_primary_10_1109_TII_2022_3211088
crossref_primary_10_1364_OE_20_012640
crossref_primary_10_1109_TIM_2021_3096602
crossref_primary_10_1016_j_jreng_2022_05_003
crossref_primary_10_1109_JPHOTOV_2019_2895808
crossref_primary_10_1016_j_sasc_2023_200048
crossref_primary_10_3390_technologies12100175
crossref_primary_10_1007_s40436_014_0095_9
crossref_primary_10_1007_s00170_012_4338_2
crossref_primary_10_1109_ACCESS_2022_3195901
crossref_primary_10_1016_j_apenergy_2022_118822
crossref_primary_10_3390_app12041789
crossref_primary_10_2139_ssrn_4509042
crossref_primary_10_1016_j_solener_2023_112186
crossref_primary_10_1088_1361_6501_ab8088
crossref_primary_10_1109_ACCESS_2020_2976843
crossref_primary_10_4028_www_scientific_net_KEM_523_524_826
crossref_primary_10_1007_s12209_013_1937_4
crossref_primary_10_1016_j_jfoodeng_2013_08_006
crossref_primary_10_1051_epjpv_2022025
crossref_primary_10_1063_5_0072760
crossref_primary_10_1109_ACCESS_2019_2942218
crossref_primary_10_1016_j_optlaseng_2019_01_016
crossref_primary_10_1080_21681015_2013_869512
crossref_primary_10_1109_JPHOTOV_2020_3041240
Cites_doi 10.1109/TSMC.1973.4309314
10.1109/83.242353
10.1117/12.380078
10.1007/s001380050130
10.1063/1.1978979
10.1117/12.459624
10.1109/TIE.1930.896476
10.1016/S0031-3203(02)00017-1
10.1016/j.imavis.2009.08.001
10.1016/0031-3203(96)00008-8
10.1016/0734-189X(90)90162-O
10.1016/S0927-0248(01)00187-8
10.1109/34.192463
10.1016/j.solmat.2010.06.003
10.1109/TII.2010.2092783
10.1109/ICICISYS.2009.5357635
10.1007/BF01211662
10.1049/ip-vis:20045131
10.1142/S0218001400000507
10.1016/S0262-8856(99)00009-8
10.1109/28.871274
10.1109/IEMT.1991.279775
10.1016/j.patrec.2005.01.017
10.5565/rev/elcvia.268
10.1016/S0167-8655(00)00043-X
10.1016/S0262-8856(03)00007-6
10.1109/28.993164
10.1108/02602281111110013
10.1016/j.solmat.2011.03.025
10.1080/00405000903430255
10.1007/s00138-002-0086-x
10.1007/s00339-008-4986-0
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
DOI 10.1016/j.solmat.2011.12.007
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3398
EndPage 262
ExternalDocumentID 25901561
10_1016_j_solmat_2011_12_007
S092702481100688X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TG
KL.
ID FETCH-LOGICAL-c434t-ad693c67e742732d07c6e37f0a78141d8058590672dbf630585a9176ff16b2e33
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Fri Jul 11 11:43:45 EDT 2025
Mon Jul 21 09:15:40 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 05:16:49 EDT 2025
Fri Feb 23 02:33:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar cell
Fourier transform
Surface inspection
Defect detection
CCD imaging
Fourier transformation
Electroluminescence
Experimental study
Implementation
Image reconstruction
Grain boundary
Crystalline material
Luminous intensity
Computation time
Solar power plant
Automatic measurement
Imaging
Solar energy
Silicon
Crack
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-ad693c67e742732d07c6e37f0a78141d8058590672dbf630585a9176ff16b2e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 923194564
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_923194564
pascalfrancis_primary_25901561
crossref_citationtrail_10_1016_j_solmat_2011_12_007
crossref_primary_10_1016_j_solmat_2011_12_007
elsevier_sciencedirect_doi_10_1016_j_solmat_2011_12_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, Kuo (bib18) 1993; 2
Tsai, Hsieh (bib34) 1999; 18
Kumar, Pang (bib15) 2002; 38
Haunschild, Glatthaar, Demant, Nievendick (bib26) 2010; 94
M.A. Ordaz, G.B. Lush, Machine vision for solar cell characterization, in: Proc. of SPIE, San Jose, CA, USA, 2000, pp. 238–248.
Pan, Gao, Jiu, Wang (bib7) 2011; 102
Fuyuki, Kondo, Yamazaki, Takahashi, Uraoka (bib1) 2005; 86
Guan, Xie, Li (bib33) 2003; 13
Wiltschi, Pinz, Lindeberg (bib14) 2000; 12
Bodnarova, Bennamoun, Latham (bib16) 2002; 35
Khalaj, Aghajan, Kailath (bib32) 1994; 7
Tsai, Luo (bib29) 2011; 7
Xie (bib3) 2008; 7
Chiou, Liu (bib30) 2011; 31
Mallat (bib17) 1989; 11
Maruo, Shibata, Yamaguchi, Ichikawa, Ohmi (bib19) 1999
T. Ohshige, H. Tanaka, Y. Miyazaki, T. Kanda, H. Ichimura, N. Kosaka, T. Tomoda, Defect inspection system for patterned wafers based on the spatial-frequency filtering, in: IEEE/CHMT Int. Electronic Manuf. Technol. Symp., San Francisco, CA , USA, 1991, pp. 192–196.
Z. Fu, Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, J. Lee, Solar cell crack inspection by image processing, in: International Conference on the Business of Electronic Product Reliability and Liability, Shanghai, China, 2004, pp. 77–80.
M. Pilla, F. Galmiche, X. Maldague, Thermographic inspection of cracked solar cells, in: Proc. of SPIE, Seattle, WA, USA, 2002, pp. 699–703.
Iivarinen, Keikkinen, Rauhamaa, Vuorimaa, Visa (bib6) 2000; 14
M. Demant, M. Glatthaar, J. Haunschild, S. Rein, Analysis of luminescence images applying pattern recognition techniques, in: Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1078–1082, 2010.
Tsai, Chang, Chao (bib28) 2010; 28
Scharcanski (bib20) 2005; 26
Warta (bib27) 2002; 72
Tsai, Huang (bib35) 2003; 21
Haralick, Shanmugam, Dinstein (bib4) 1973
Ramana, Ramamoorthy (bib5) 1996; 29
Yang, Pang, Yung (bib21) 2005; 152
J. Li, Y. Lu, B. Pu, Y. Xie, J. Qin, W.-M. Pang, P.-A. Heng, An automated cotton contamination detection system based on co-occurrence matrix contrast information, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, pp. 517–521.
Chan, Pang (bib10) 2000; 36
Fuyuki, Kitiyanan (bib2) 2009; 96
Paschos (bib13) 2000; 21
Li, Tsai (bib31) 2011; 95
Liu, Jernigan (bib9) 1990; 49
Kumar (bib11) 2008; 55
Paschos (10.1016/j.solmat.2011.12.007_bib13) 2000; 21
10.1016/j.solmat.2011.12.007_bib8
Fuyuki (10.1016/j.solmat.2011.12.007_bib1) 2005; 86
Chan (10.1016/j.solmat.2011.12.007_bib10) 2000; 36
Fuyuki (10.1016/j.solmat.2011.12.007_bib2) 2009; 96
Haralick (10.1016/j.solmat.2011.12.007_bib4) 1973
Xie (10.1016/j.solmat.2011.12.007_bib3) 2008; 7
Chiou (10.1016/j.solmat.2011.12.007_bib30) 2011; 31
Tsai (10.1016/j.solmat.2011.12.007_bib28) 2010; 28
Tsai (10.1016/j.solmat.2011.12.007_bib35) 2003; 21
Wiltschi (10.1016/j.solmat.2011.12.007_bib14) 2000; 12
Mallat (10.1016/j.solmat.2011.12.007_bib17) 1989; 11
Maruo (10.1016/j.solmat.2011.12.007_bib19) 1999
10.1016/j.solmat.2011.12.007_bib24
10.1016/j.solmat.2011.12.007_bib25
10.1016/j.solmat.2011.12.007_bib22
Warta (10.1016/j.solmat.2011.12.007_bib27) 2002; 72
Pan (10.1016/j.solmat.2011.12.007_bib7) 2011; 102
10.1016/j.solmat.2011.12.007_bib23
Iivarinen (10.1016/j.solmat.2011.12.007_bib6) 2000; 14
Kumar (10.1016/j.solmat.2011.12.007_bib11) 2008; 55
Tsai (10.1016/j.solmat.2011.12.007_bib34) 1999; 18
Chen (10.1016/j.solmat.2011.12.007_bib18) 1993; 2
Kumar (10.1016/j.solmat.2011.12.007_bib15) 2002; 38
Ramana (10.1016/j.solmat.2011.12.007_bib5) 1996; 29
Yang (10.1016/j.solmat.2011.12.007_bib21) 2005; 152
Li (10.1016/j.solmat.2011.12.007_bib31) 2011; 95
Khalaj (10.1016/j.solmat.2011.12.007_bib32) 1994; 7
Liu (10.1016/j.solmat.2011.12.007_bib9) 1990; 49
Haunschild (10.1016/j.solmat.2011.12.007_bib26) 2010; 94
Tsai (10.1016/j.solmat.2011.12.007_bib29) 2011; 7
Bodnarova (10.1016/j.solmat.2011.12.007_bib16) 2002; 35
Guan (10.1016/j.solmat.2011.12.007_bib33) 2003; 13
Scharcanski (10.1016/j.solmat.2011.12.007_bib20) 2005; 26
10.1016/j.solmat.2011.12.007_bib12
References_xml – volume: 28
  start-page: 491
  year: 2010
  end-page: 501
  ident: bib28
  article-title: Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion
  publication-title: Image and Vision Computing
– volume: 96
  start-page: 189
  year: 2009
  end-page: 196
  ident: bib2
  article-title: Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence
  publication-title: Applied Physics A
– volume: 86
  start-page: 262108
  year: 2005
  ident: bib1
  article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence
  publication-title: Applied Physics Letters
– volume: 21
  start-page: 837
  year: 2000
  end-page: 841
  ident: bib13
  article-title: Fast color texture recognition using chromaticity moments
  publication-title: Pattern Recognition Letters
– reference: M. Demant, M. Glatthaar, J. Haunschild, S. Rein, Analysis of luminescence images applying pattern recognition techniques, in: Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp. 1078–1082, 2010.
– volume: 152
  start-page: 715
  year: 2005
  end-page: 723
  ident: bib21
  article-title: Robust fabric defect detection and classification using multiple adaptive wavelets
  publication-title: IEE Proceedings Vision, Image Processing
– reference: J. Li, Y. Lu, B. Pu, Y. Xie, J. Qin, W.-M. Pang, P.-A. Heng, An automated cotton contamination detection system based on co-occurrence matrix contrast information, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, pp. 517–521.
– volume: 35
  start-page: 2973
  year: 2002
  end-page: 2991
  ident: bib16
  article-title: Optimal gabor filters for textile flaw detection
  publication-title: Pattern Recognition
– volume: 7
  start-page: 178
  year: 1994
  end-page: 185
  ident: bib32
  article-title: Patterned wafer inspection by high resolution spectral estimation techniques
  publication-title: Machine Vision and Applications
– volume: 29
  start-page: 1447
  year: 1996
  end-page: 1459
  ident: bib5
  article-title: Statistical methods to compare the texture features of machined surfaces
  publication-title: Pattern Recognition
– volume: 13
  start-page: 314
  year: 2003
  end-page: 321
  ident: bib33
  article-title: A golden-block-based self-refining scheme for repetitive patterned wafer inspections
  publication-title: Machine Vision and Applications
– reference: Z. Fu, Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, J. Lee, Solar cell crack inspection by image processing, in: International Conference on the Business of Electronic Product Reliability and Liability, Shanghai, China, 2004, pp. 77–80.
– volume: 31
  start-page: 154
  year: 2011
  end-page: 165
  ident: bib30
  article-title: Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques
  publication-title: Sensor Review
– reference: T. Ohshige, H. Tanaka, Y. Miyazaki, T. Kanda, H. Ichimura, N. Kosaka, T. Tomoda, Defect inspection system for patterned wafers based on the spatial-frequency filtering, in: IEEE/CHMT Int. Electronic Manuf. Technol. Symp., San Francisco, CA , USA, 1991, pp. 192–196.
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib17
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 102
  start-page: 19
  year: 2011
  end-page: 30
  ident: bib7
  article-title: Automatic recognition of woven fabric pattern based on image processing and BP neural network
  publication-title: Journal of Textile Institute
– volume: 49
  start-page: 52
  year: 1990
  end-page: 67
  ident: bib9
  article-title: Texture analysis and discrimination in additive noise
  publication-title: Computer Vision, Graphics Image Process
– volume: 95
  start-page: 2206
  year: 2011
  end-page: 2220
  ident: bib31
  article-title: Automatic saw-mark detection in multicrystalline solar wafer images
  publication-title: Solar Energy Materials and Solar Cells
– volume: 21
  start-page: 307
  year: 2003
  end-page: 323
  ident: bib35
  article-title: Automated surface inspection for statistical textures
  publication-title: Image and Vision Computing
– start-page: 610
  year: 1973
  end-page: 621
  ident: bib4
  article-title: Texture features for image classification
  publication-title: IEEE Transactions on Systems Man, and Cybernetics SMC-3
– reference: M. Pilla, F. Galmiche, X. Maldague, Thermographic inspection of cracked solar cells, in: Proc. of SPIE, Seattle, WA, USA, 2002, pp. 699–703.
– volume: 72
  start-page: 389
  year: 2002
  end-page: 401
  ident: bib27
  article-title: Defect and impurity diagnostics and process monitoring
  publication-title: Solar Energy Materials and Solar Cells
– volume: 18
  start-page: 49
  year: 1999
  end-page: 62
  ident: bib34
  article-title: Automated surface inspection for directional textures
  publication-title: Image and Vision Computing
– volume: 94
  start-page: 2007
  year: 2010
  end-page: 2012
  ident: bib26
  article-title: Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production
  publication-title: Solar Energy Materials and Solar Cells
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1709
  ident: bib20
  article-title: Stochastic texture analysis for monitoring stochastic processes in industry
  publication-title: Pattern Recognition Letters
– volume: 2
  start-page: 429
  year: 1993
  end-page: 441
  ident: bib18
  article-title: Texture analysis and classification with tree-structured wavelet transform
  publication-title: IEEE Transactions on Image Processing
– start-page: 1003
  year: 1999
  end-page: 1012
  ident: bib19
  article-title: Automatic defect pattern detection on LSI wafers using image processing techniques
  publication-title: IEICE Transactions on Electronics E82-C
– volume: 12
  start-page: 113
  year: 2000
  end-page: 128
  ident: bib14
  article-title: Automatic assessment scheme for steel quality inspection
  publication-title: Machine Vision and Applications
– volume: 14
  start-page: 735
  year: 2000
  end-page: 755
  ident: bib6
  article-title: A defect detection scheme for web surface inspection
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: 36
  start-page: 1267
  year: 2000
  end-page: 1276
  ident: bib10
  article-title: Fabric defect detection by Fourier analysis
  publication-title: IEEE Transactions on Industry Applications
– reference: M.A. Ordaz, G.B. Lush, Machine vision for solar cell characterization, in: Proc. of SPIE, San Jose, CA, USA, 2000, pp. 238–248.
– volume: 38
  start-page: 425
  year: 2002
  end-page: 440
  ident: bib15
  article-title: Defect detection in textured materials using Gabor filters
  publication-title: IEEE Transactions on Industrial Applications
– volume: 7
  start-page: 125
  year: 2011
  end-page: 135
  ident: bib29
  article-title: Mean shift-based defect detection in multicrystalline solar wafer surfaces
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 7
  start-page: 1
  year: 2008
  end-page: 22
  ident: bib3
  article-title: A review of recent advances in surface defect detection using texture analysis techniques
  publication-title: Electron Letters Computer Vision and Image Analysis
– volume: 55
  start-page: 348
  year: 2008
  end-page: 363
  ident: bib11
  article-title: Computer-vision-based fabric defect detection: a survey
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1003
  year: 1999
  ident: 10.1016/j.solmat.2011.12.007_bib19
  article-title: Automatic defect pattern detection on LSI wafers using image processing techniques
  publication-title: IEICE Transactions on Electronics E82-C
– start-page: 610
  year: 1973
  ident: 10.1016/j.solmat.2011.12.007_bib4
  article-title: Texture features for image classification
  publication-title: IEEE Transactions on Systems Man, and Cybernetics SMC-3
  doi: 10.1109/TSMC.1973.4309314
– volume: 2
  start-page: 429
  year: 1993
  ident: 10.1016/j.solmat.2011.12.007_bib18
  article-title: Texture analysis and classification with tree-structured wavelet transform
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.242353
– ident: 10.1016/j.solmat.2011.12.007_bib23
  doi: 10.1117/12.380078
– volume: 12
  start-page: 113
  year: 2000
  ident: 10.1016/j.solmat.2011.12.007_bib14
  article-title: Automatic assessment scheme for steel quality inspection
  publication-title: Machine Vision and Applications
  doi: 10.1007/s001380050130
– volume: 86
  start-page: 262108
  year: 2005
  ident: 10.1016/j.solmat.2011.12.007_bib1
  article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1978979
– ident: 10.1016/j.solmat.2011.12.007_bib24
  doi: 10.1117/12.459624
– volume: 55
  start-page: 348
  year: 2008
  ident: 10.1016/j.solmat.2011.12.007_bib11
  article-title: Computer-vision-based fabric defect detection: a survey
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.1930.896476
– volume: 35
  start-page: 2973
  year: 2002
  ident: 10.1016/j.solmat.2011.12.007_bib16
  article-title: Optimal gabor filters for textile flaw detection
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00017-1
– volume: 28
  start-page: 491
  year: 2010
  ident: 10.1016/j.solmat.2011.12.007_bib28
  article-title: Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2009.08.001
– volume: 29
  start-page: 1447
  year: 1996
  ident: 10.1016/j.solmat.2011.12.007_bib5
  article-title: Statistical methods to compare the texture features of machined surfaces
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(96)00008-8
– volume: 49
  start-page: 52
  year: 1990
  ident: 10.1016/j.solmat.2011.12.007_bib9
  article-title: Texture analysis and discrimination in additive noise
  publication-title: Computer Vision, Graphics Image Process
  doi: 10.1016/0734-189X(90)90162-O
– volume: 72
  start-page: 389
  year: 2002
  ident: 10.1016/j.solmat.2011.12.007_bib27
  article-title: Defect and impurity diagnostics and process monitoring
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/S0927-0248(01)00187-8
– ident: 10.1016/j.solmat.2011.12.007_bib22
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.solmat.2011.12.007_bib17
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.192463
– volume: 94
  start-page: 2007
  year: 2010
  ident: 10.1016/j.solmat.2011.12.007_bib26
  article-title: Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2010.06.003
– volume: 7
  start-page: 125
  year: 2011
  ident: 10.1016/j.solmat.2011.12.007_bib29
  article-title: Mean shift-based defect detection in multicrystalline solar wafer surfaces
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2010.2092783
– ident: 10.1016/j.solmat.2011.12.007_bib8
  doi: 10.1109/ICICISYS.2009.5357635
– volume: 7
  start-page: 178
  year: 1994
  ident: 10.1016/j.solmat.2011.12.007_bib32
  article-title: Patterned wafer inspection by high resolution spectral estimation techniques
  publication-title: Machine Vision and Applications
  doi: 10.1007/BF01211662
– volume: 152
  start-page: 715
  year: 2005
  ident: 10.1016/j.solmat.2011.12.007_bib21
  article-title: Robust fabric defect detection and classification using multiple adaptive wavelets
  publication-title: IEE Proceedings Vision, Image Processing
  doi: 10.1049/ip-vis:20045131
– volume: 14
  start-page: 735
  year: 2000
  ident: 10.1016/j.solmat.2011.12.007_bib6
  article-title: A defect detection scheme for web surface inspection
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001400000507
– volume: 18
  start-page: 49
  year: 1999
  ident: 10.1016/j.solmat.2011.12.007_bib34
  article-title: Automated surface inspection for directional textures
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(99)00009-8
– volume: 36
  start-page: 1267
  year: 2000
  ident: 10.1016/j.solmat.2011.12.007_bib10
  article-title: Fabric defect detection by Fourier analysis
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/28.871274
– ident: 10.1016/j.solmat.2011.12.007_bib12
  doi: 10.1109/IEMT.1991.279775
– volume: 26
  start-page: 1701
  year: 2005
  ident: 10.1016/j.solmat.2011.12.007_bib20
  article-title: Stochastic texture analysis for monitoring stochastic processes in industry
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.01.017
– ident: 10.1016/j.solmat.2011.12.007_bib25
– volume: 7
  start-page: 1
  year: 2008
  ident: 10.1016/j.solmat.2011.12.007_bib3
  article-title: A review of recent advances in surface defect detection using texture analysis techniques
  publication-title: Electron Letters Computer Vision and Image Analysis
  doi: 10.5565/rev/elcvia.268
– volume: 21
  start-page: 837
  year: 2000
  ident: 10.1016/j.solmat.2011.12.007_bib13
  article-title: Fast color texture recognition using chromaticity moments
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(00)00043-X
– volume: 21
  start-page: 307
  year: 2003
  ident: 10.1016/j.solmat.2011.12.007_bib35
  article-title: Automated surface inspection for statistical textures
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(03)00007-6
– volume: 38
  start-page: 425
  year: 2002
  ident: 10.1016/j.solmat.2011.12.007_bib15
  article-title: Defect detection in textured materials using Gabor filters
  publication-title: IEEE Transactions on Industrial Applications
  doi: 10.1109/28.993164
– volume: 31
  start-page: 154
  year: 2011
  ident: 10.1016/j.solmat.2011.12.007_bib30
  article-title: Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques
  publication-title: Sensor Review
  doi: 10.1108/02602281111110013
– volume: 95
  start-page: 2206
  year: 2011
  ident: 10.1016/j.solmat.2011.12.007_bib31
  article-title: Automatic saw-mark detection in multicrystalline solar wafer images
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2011.03.025
– volume: 102
  start-page: 19
  year: 2011
  ident: 10.1016/j.solmat.2011.12.007_bib7
  article-title: Automatic recognition of woven fabric pattern based on image processing and BP neural network
  publication-title: Journal of Textile Institute
  doi: 10.1080/00405000903430255
– volume: 13
  start-page: 314
  year: 2003
  ident: 10.1016/j.solmat.2011.12.007_bib33
  article-title: A golden-block-based self-refining scheme for repetitive patterned wafer inspections
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-002-0086-x
– volume: 96
  start-page: 189
  year: 2009
  ident: 10.1016/j.solmat.2011.12.007_bib2
  article-title: Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence
  publication-title: Applied Physics A
  doi: 10.1007/s00339-008-4986-0
SSID ssj0002634
Score 2.4210103
Snippet Solar power is an attractive alternative source of electricity. Solar cells, which form the basis of a solar power system, are mainly based on crystalline...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 250
SubjectTerms Applied sciences
Defect detection
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Fourier transform
Natural energy
Photoelectric conversion
Photovoltaic conversion
Solar cell
Solar cells. Photoelectrochemical cells
Solar energy
Solar thermal conversion
Solar thermal power plants
Surface inspection
Testing. Reliability. Quality control
Title Defect detection of solar cells in electroluminescence images using Fourier image reconstruction
URI https://dx.doi.org/10.1016/j.solmat.2011.12.007
https://www.proquest.com/docview/923194564
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvYCqquWhboGVD1zNem3HTo4IulqK4EKR9mYSP9BWJbtSliu_nZk42YKKhMQxli0nM854xv7mG0KOBc-9CJljhXGKKcEDKyGAYxAx8yrCEnIKk5OvrvX0Vv2aZbMNctbnwiCssrP9yaa31rprGXXSHC3n89ENLzCXSuVIeqbzfIYZ7MrgKj95-gfzELq9WcbODHv36XMtxgvUC35hIvLEQ0EsKvv29vR5WTYgtJiqXfxnuNvdaPKVfOncSHqa3vQb2Qj1Dtl-QS64S-7OA0I1qA-rFm5V00WkDUayFE_rGzqvaVcEBwwUot8dfj2dP4CJaSgC4u_pJJW0S420jZ7XjLN75Hby8_fZlHX1FJhTUq1Y6XUhnTYBwmEjhefG6SBN5CXyXo19ziF2KPBu1ldRS3wqIZrTMY51JYKU-2SzXtThO6GZkcqrjDsXuaq8qUoDrlkWywIcIOPVgMhejNZ1ZONY8-Kv7VFlf2wSvkXh27GwIPwBYetRy0S28U5_02vIvlo0FvaDd0YOXyl0PZ3AXFzwKQeE9hq28MOhXso6LB4bix5xgSQ8Pz48-wHZgieRAECHZBP0Fo7At1lVw3bxDsmn04vL6fUzgAT6Dw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgCEEE-xPIoPXN312o6dHFFhtUDbS1tpb27iR7UIsitlufLbmYmTpRVIlTjGseVkxh7PJN98A_BeijLIWHheWa-5liLyGgM4jhGzaBIuIa8pOfnk1Cwu9JdlsdyDozEXhmCVg-3PNr231kPLdJDmdLNaTc9ERblUuiTSM1OWyztwV-P2pTIGh7_-4Dyk6X8tU29O3cf8uR7khfpFxzAzedJXQaoq--_z6eGm7lBqKZe7-Mty98fR_DE8GvxI9iE_6hPYi-1TeHCNXfAZXH6MhNVgIW57vFXL1ol1FMoy-lzfsVXLhio4aKEI_u7p9dnqB9qYjhEi_orNc0273Mj68HlHOfscLuafzo8WfCiowL1WesvrYCrljY0YD1slg7DeRGWTqIn4ahZKgcFDRT9nQ5OMoqsawzmT0sw0Mir1AvbbdRtfAius0kEXwvskdBNsU1v0zYpUV-gB2aAnoEYxOj-wjVPRi-9uhJV9c1n4joTvZtKh8CfAd6M2mW3jlv521JC7sWocHgi3jDy4odDddJKScdGpnAAbNexwx5Fe6jauf3aOXOKKWHhe_ffs7-De4vzk2B1_Pv36Gu7jHZnRQG9gH3UY36Kjs20O-oX8Gy7o-50
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+detection+of+solar+cells+in+electroluminescence+images+using+Fourier+image+reconstruction&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Tsai%2C+Du-Ming&rft.au=Wu%2C+Shih-Chieh&rft.au=Li%2C+Wei-Chen&rft.date=2012-04-01&rft.issn=0927-0248&rft.volume=99&rft.spage=250&rft.epage=262&rft_id=info:doi/10.1016%2Fj.solmat.2011.12.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2011_12_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon