ABCluster: the artificial bee colony algorithm for cluster global optimization
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspi...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 17; no. 37; pp. 24173 - 24181 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm,
i.e.
the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature,
i.e.
, the Coulomb-Born-Mayer, Lennard-Jones, Morse,
Z
and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. We apply a swarm-intelligence based heuristic algorithm,
i.e.
the artificial bee colony algorithm to solve this problem for various kinds of clusters. |
---|---|
AbstractList | Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e. , the Coulomb–Born–Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program “ABCluster” to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e. , the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. We apply a swarm-intelligence based heuristic algorithm, i.e. the artificial bee colony algorithm to solve this problem for various kinds of clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. |
Author | Dolg, Michael Zhang, Jun |
AuthorAffiliation | Theoretical Chemistry University of Cologne |
AuthorAffiliation_xml | – name: University of Cologne – name: Theoretical Chemistry |
Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 2 givenname: Michael surname: Dolg fullname: Dolg, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26327507$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctLxDAQxoMovi_elXoTYXXSJO3G21qfIOpBzyWvaiRtapI96F9vdXUFEfE0A_P7ZobvW0OLne8MQlsYDjAQfqiY6oFCAXoBrWJakBGHMV2c92WxgtZifAIAzDBZRit5QfKSQbmKrifHlZvGZMJRlh5NJkKyjVVWuEwakynvfPeSCffgg02Pbdb4kKmZIHtwXg6c75Nt7atI1ncbaKkRLprNz7qO7s9O76qL0dXN-WU1uRopSmgaCU0pE5wM_xWEScW4zJmUJZXjgmhRcsYwB821KiXNFZNM55hjynTDJQhJ1tHebG8f_PPUxFS3NirjnOiMn8Yal4zQcQkw_geKCafDORjQnU90Kluj6z7YVoSX-suuAdifASr4GINp5giG-j2LumLV7UcWJwMMP2Bl04dLKQjrfpdszyQhqvnq73iH-e5f87rXDXkDu9CfPQ |
CitedBy_id | crossref_primary_10_1063_1_4966584 crossref_primary_10_1016_j_cplett_2023_140742 crossref_primary_10_1002_qua_27315 crossref_primary_10_1002_qua_26222 crossref_primary_10_1021_acs_jpcc_4c01686 crossref_primary_10_1039_D1NJ00231G crossref_primary_10_1016_j_chemosphere_2018_03_154 crossref_primary_10_1016_j_jaerosci_2020_105621 crossref_primary_10_1016_j_comptc_2023_114263 crossref_primary_10_1016_j_molstruc_2020_128038 crossref_primary_10_1080_00268976_2022_2092040 crossref_primary_10_1038_s41598_022_14430_4 crossref_primary_10_1021_acs_jpca_2c05135 crossref_primary_10_1016_j_jmgm_2021_107912 crossref_primary_10_1002_qua_26234 crossref_primary_10_1021_acscatal_1c05922 crossref_primary_10_1039_D4CP04052J crossref_primary_10_1002_qua_27442 crossref_primary_10_1016_j_jmgm_2023_108692 crossref_primary_10_1002_qua_26350 crossref_primary_10_1039_D0RA09323H crossref_primary_10_1039_D4TA03793F crossref_primary_10_1016_j_saa_2024_125196 crossref_primary_10_1007_s10876_021_01985_x crossref_primary_10_1002_advs_202303421 crossref_primary_10_1007_s00894_024_06252_0 crossref_primary_10_1016_j_jmgm_2021_107907 crossref_primary_10_1016_j_susc_2024_122507 crossref_primary_10_1016_j_jmgm_2022_108287 crossref_primary_10_1016_j_chemphys_2024_112404 crossref_primary_10_1002_adfm_202308420 crossref_primary_10_1002_qua_26491 crossref_primary_10_1038_s43588_023_00435_0 crossref_primary_10_1021_acs_jcim_4c01769 crossref_primary_10_1016_j_poly_2022_116032 crossref_primary_10_1007_s00214_016_1964_z crossref_primary_10_1016_j_molliq_2021_116199 crossref_primary_10_1021_acs_jpca_3c03643 crossref_primary_10_1016_j_cplett_2023_140856 crossref_primary_10_1002_cctc_201901830 crossref_primary_10_1039_C9RA08760E crossref_primary_10_1021_acsomega_3c03521 crossref_primary_10_1021_acs_jpca_4c00907 crossref_primary_10_1039_C9RA07398A crossref_primary_10_1002_jcc_27471 crossref_primary_10_5194_ar_2_123_2024 crossref_primary_10_1016_j_ctta_2024_100149 crossref_primary_10_1021_acsomega_3c00251 crossref_primary_10_1039_D2CP00308B crossref_primary_10_6023_A21050207 crossref_primary_10_1016_j_comptc_2023_114133 crossref_primary_10_1016_j_chemosphere_2022_136109 crossref_primary_10_1021_acs_estlett_3c00902 crossref_primary_10_1063_1674_0068_cjcp2304042 crossref_primary_10_1016_j_mtcomm_2024_110279 crossref_primary_10_1021_acs_jpcb_2c01723 crossref_primary_10_1021_acsearthspacechem_0c00333 crossref_primary_10_1021_acsomega_4c09963 crossref_primary_10_3390_catal12050454 crossref_primary_10_1016_j_comptc_2022_113923 crossref_primary_10_1016_j_chemphys_2023_112064 crossref_primary_10_1007_s10876_023_02449_0 crossref_primary_10_1016_j_fuel_2022_126451 crossref_primary_10_1021_acs_jpca_4c05409 crossref_primary_10_1016_j_comptc_2024_114587 crossref_primary_10_7498_aps_73_20240962 crossref_primary_10_1007_s10876_020_01803_w crossref_primary_10_1063_5_0152517 crossref_primary_10_1039_C8SC01424H crossref_primary_10_1126_science_abe0298 crossref_primary_10_1016_j_saa_2023_122424 crossref_primary_10_1021_acs_jpca_4c02024 crossref_primary_10_1039_D3CP00049D crossref_primary_10_1103_PhysRevB_111_075430 crossref_primary_10_1021_acs_inorgchem_4c02337 crossref_primary_10_1080_00268976_2024_2317447 crossref_primary_10_1016_j_eswa_2021_114648 crossref_primary_10_1039_D2CP01637K crossref_primary_10_1002_qua_27002 crossref_primary_10_1039_D2CP04663F crossref_primary_10_1080_23746149_2018_1516514 crossref_primary_10_5194_acp_24_4029_2024 crossref_primary_10_1007_s00214_019_2476_4 crossref_primary_10_1039_D1CP03767F crossref_primary_10_1039_D1CP03613K crossref_primary_10_1039_D2CP00315E crossref_primary_10_1002_smll_202405615 crossref_primary_10_1016_j_chemphys_2024_112321 crossref_primary_10_1039_D4RA03021D crossref_primary_10_1002_jcc_26071 crossref_primary_10_1002_anie_202318741 crossref_primary_10_1021_acs_jpca_9b01030 crossref_primary_10_1007_s00894_020_04637_5 crossref_primary_10_1039_D0NJ03389H crossref_primary_10_1007_s11432_018_9618_2 crossref_primary_10_1080_08927022_2022_2163674 crossref_primary_10_1039_D4RA00950A crossref_primary_10_1039_C9NJ02130B crossref_primary_10_1016_j_jaerosci_2020_105733 crossref_primary_10_1039_C7CP02861J crossref_primary_10_5194_acp_22_6103_2022 crossref_primary_10_1016_j_comptc_2023_114057 crossref_primary_10_1016_j_physleta_2024_129671 crossref_primary_10_1007_s11224_021_01827_6 crossref_primary_10_1016_j_molliq_2020_112985 crossref_primary_10_1039_D3CP05290G crossref_primary_10_1016_j_atmosenv_2020_117378 crossref_primary_10_1039_D1CP01544C crossref_primary_10_1016_j_jcat_2024_115926 crossref_primary_10_1039_D4CP02973A crossref_primary_10_1016_j_molliq_2022_118522 crossref_primary_10_1039_C9CP04300D crossref_primary_10_1021_acs_iecr_8b04929 crossref_primary_10_1039_D0CP01393E crossref_primary_10_1016_j_comptc_2022_113849 crossref_primary_10_1021_acs_jpca_1c08969 crossref_primary_10_3390_chemistry4040113 crossref_primary_10_1039_D3CP00791J crossref_primary_10_1016_j_jmgm_2023_108621 crossref_primary_10_1063_1674_0068_cjcp2110210 crossref_primary_10_1021_jacsau_1c00355 crossref_primary_10_1007_s00894_017_3566_7 crossref_primary_10_1016_j_cej_2022_135905 crossref_primary_10_1021_acs_jpca_2c08927 crossref_primary_10_1007_s00894_025_06324_9 crossref_primary_10_1016_j_molliq_2023_123108 crossref_primary_10_1002_qua_26878 crossref_primary_10_1016_j_molliq_2021_116032 crossref_primary_10_1016_j_mcat_2025_115015 crossref_primary_10_1039_C9NR10258B crossref_primary_10_1039_D2CP00302C crossref_primary_10_1073_pnas_2108384118 crossref_primary_10_1007_s00214_016_2017_3 crossref_primary_10_1002_anie_202317312 crossref_primary_10_1007_s00894_020_04352_1 crossref_primary_10_1016_j_comptc_2020_113042 crossref_primary_10_1016_j_molliq_2021_117475 crossref_primary_10_1021_acs_jpca_3c00066 crossref_primary_10_1021_acs_jpca_3c00068 crossref_primary_10_1021_acs_jpca_3c01399 crossref_primary_10_1021_acs_inorgchem_2c02065 crossref_primary_10_5194_amt_13_3581_2020 crossref_primary_10_1016_j_molstruc_2022_133447 crossref_primary_10_5194_ar_3_125_2025 crossref_primary_10_1021_acs_jcim_0c01128 crossref_primary_10_1140_epjb_s10051_025_00881_x crossref_primary_10_1021_acs_jpca_4c04416 crossref_primary_10_1016_j_comptc_2017_03_039 crossref_primary_10_1149_1945_7111_ace083 crossref_primary_10_1016_j_ijhydene_2023_11_202 crossref_primary_10_1002_jcc_27525 crossref_primary_10_1016_j_mseb_2025_118095 crossref_primary_10_1016_j_dib_2020_106354 crossref_primary_10_1016_j_dib_2021_107766 crossref_primary_10_1016_j_gca_2024_10_022 crossref_primary_10_1039_D1CP03318B crossref_primary_10_1002_jccs_202200148 crossref_primary_10_1021_acs_jpca_2c04468 crossref_primary_10_1002_qua_26776 crossref_primary_10_1021_acs_jpca_0c08961 crossref_primary_10_1021_acs_inorgchem_4c01068 crossref_primary_10_1016_j_comptc_2019_03_008 crossref_primary_10_1016_j_molliq_2023_123001 crossref_primary_10_1007_s10450_020_00252_1 crossref_primary_10_1016_j_mtcomm_2021_103018 crossref_primary_10_1016_j_jksus_2022_102350 crossref_primary_10_1021_acsaem_3c01925 crossref_primary_10_1016_j_ijhydene_2017_08_086 crossref_primary_10_1016_j_mtcomm_2025_111829 crossref_primary_10_1016_j_scitotenv_2023_163477 crossref_primary_10_1016_j_heliyon_2024_e30592 crossref_primary_10_1016_j_dib_2022_107818 crossref_primary_10_1016_j_molliq_2021_118301 crossref_primary_10_1021_acs_jcim_4c01473 crossref_primary_10_1080_00268976_2017_1416196 crossref_primary_10_1002_cphc_202400591 crossref_primary_10_1021_acsomega_3c10246 crossref_primary_10_1002_qua_26664 crossref_primary_10_1007_s11426_024_2168_4 crossref_primary_10_1016_j_jmgm_2023_108661 crossref_primary_10_1021_acsomega_2c03983 crossref_primary_10_1039_D1CP04437K crossref_primary_10_1039_D4TB00370E crossref_primary_10_1021_jacs_4c10661 crossref_primary_10_1016_j_cej_2023_143672 crossref_primary_10_1016_j_saa_2023_123231 crossref_primary_10_1021_acs_jpca_4c00008 crossref_primary_10_5194_ar_2_303_2024 crossref_primary_10_1016_j_saa_2023_123593 crossref_primary_10_1039_D2CP05724G crossref_primary_10_1039_D3CP04803A crossref_primary_10_1021_acsomega_3c01643 crossref_primary_10_1002_qua_26553 crossref_primary_10_1021_acs_chemmater_3c02383 crossref_primary_10_1021_acs_jpca_9b08536 crossref_primary_10_1016_j_inoche_2023_111313 crossref_primary_10_1016_j_inoche_2023_111433 crossref_primary_10_1039_D3EA00095H crossref_primary_10_1021_acs_jpclett_9b00453 crossref_primary_10_1016_j_atmosenv_2021_118826 crossref_primary_10_1016_j_atmosenv_2020_117876 crossref_primary_10_1016_j_comptc_2020_113007 crossref_primary_10_1021_acs_jpca_4c00371 crossref_primary_10_1016_j_saa_2022_122051 crossref_primary_10_1016_j_mssp_2024_108973 crossref_primary_10_1021_acs_jpca_9b00909 crossref_primary_10_1039_D4CP03590A crossref_primary_10_1016_j_jmgm_2022_108363 crossref_primary_10_1021_acs_jpca_1c02006 crossref_primary_10_1021_acs_jpca_9b06331 crossref_primary_10_1016_j_talanta_2022_123339 crossref_primary_10_1002_jcc_27327 crossref_primary_10_1039_C8CP02719F crossref_primary_10_1063_5_0175581 crossref_primary_10_1021_acsami_2c15673 crossref_primary_10_1039_D3ME00033H crossref_primary_10_1016_j_vibspec_2025_103767 crossref_primary_10_1016_j_apsusc_2023_156587 crossref_primary_10_1039_D1CP03664E crossref_primary_10_1002_qua_26457 crossref_primary_10_1016_j_jmgm_2022_108375 crossref_primary_10_1016_j_atmosenv_2023_120001 crossref_primary_10_1016_j_mtcomm_2024_109778 crossref_primary_10_1038_s41467_023_43722_0 crossref_primary_10_1016_j_scitotenv_2022_159832 crossref_primary_10_1016_j_comptc_2022_113740 crossref_primary_10_1002_jcc_27317 crossref_primary_10_1039_C9NR02031D crossref_primary_10_1007_s10876_018_1336_z crossref_primary_10_1016_j_molliq_2023_122546 crossref_primary_10_1016_j_matchemphys_2023_128364 crossref_primary_10_1021_acs_jctc_2c01146 crossref_primary_10_1080_00268976_2020_1864042 crossref_primary_10_1016_j_nanoso_2023_101036 crossref_primary_10_3390_molecules28135071 crossref_primary_10_1016_j_engappai_2022_105311 crossref_primary_10_5194_acp_21_11637_2021 crossref_primary_10_1021_acsomega_3c07674 crossref_primary_10_1016_j_jmgm_2021_108102 crossref_primary_10_1039_C6RA11038J crossref_primary_10_1063_10_0035403 crossref_primary_10_1021_acsomega_1c00501 crossref_primary_10_1016_j_atmosenv_2023_119727 crossref_primary_10_1002_wcms_1662 crossref_primary_10_3390_molecules28041917 crossref_primary_10_1039_D2RA02500K crossref_primary_10_1039_D3CP05499C crossref_primary_10_1007_s00894_017_3271_6 crossref_primary_10_1016_j_comptc_2024_115063 crossref_primary_10_3390_atmos15040467 crossref_primary_10_1016_j_nxnano_2024_100094 crossref_primary_10_1016_j_eswa_2024_125908 crossref_primary_10_1080_00268976_2018_1465605 crossref_primary_10_1016_j_jms_2024_111938 crossref_primary_10_1039_C6CP08834A crossref_primary_10_1039_D3RA03165A crossref_primary_10_1080_00268976_2022_2118188 crossref_primary_10_1016_j_comptc_2021_113189 crossref_primary_10_1039_D4CP04699D crossref_primary_10_1021_acs_chemrev_1c00107 crossref_primary_10_1007_s00214_017_2126_7 crossref_primary_10_1021_acsomega_4c01545 crossref_primary_10_1038_s41467_024_48778_0 crossref_primary_10_1002_qua_26802 crossref_primary_10_1021_acs_jpcc_0c11345 crossref_primary_10_1021_jacs_8b03300 crossref_primary_10_1016_j_physe_2021_114634 crossref_primary_10_3389_fchem_2020_00660 crossref_primary_10_1016_j_molliq_2023_122562 crossref_primary_10_1007_s10876_023_02466_z crossref_primary_10_1016_j_ensm_2023_03_020 crossref_primary_10_1039_D3CP06017A crossref_primary_10_1002_wcms_1446 crossref_primary_10_1016_j_chemosphere_2018_08_074 crossref_primary_10_1016_j_jes_2022_01_015 crossref_primary_10_1002_jcc_26838 crossref_primary_10_1021_acsomega_4c04947 crossref_primary_10_1016_j_comptc_2020_112940 crossref_primary_10_1021_acs_jpca_1c08795 crossref_primary_10_1039_D4RA00708E crossref_primary_10_1021_acs_jcim_3c01431 crossref_primary_10_1016_j_jaerosci_2025_106524 crossref_primary_10_1080_00268976_2025_2451049 crossref_primary_10_1016_j_chemphys_2023_111819 crossref_primary_10_1039_D4CP02262A crossref_primary_10_1016_j_cej_2022_140562 crossref_primary_10_1016_j_chemosphere_2021_130063 crossref_primary_10_1039_C6CP03240K crossref_primary_10_1002_qua_25978 crossref_primary_10_5194_acp_24_5823_2024 crossref_primary_10_1039_D2CP03532D crossref_primary_10_1002_ange_202318741 crossref_primary_10_1021_acs_joc_4c02102 crossref_primary_10_5194_acp_24_3593_2024 crossref_primary_10_1016_j_atmosenv_2022_119245 crossref_primary_10_1021_acsomega_4c09196 crossref_primary_10_1016_j_dib_2021_107144 crossref_primary_10_1039_D4EM00330F crossref_primary_10_1021_acs_jpca_0c05960 crossref_primary_10_1007_s10876_025_02779_1 crossref_primary_10_1021_acs_jpca_3c04472 crossref_primary_10_3390_molecules30061377 crossref_primary_10_1021_acs_est_4c10047 crossref_primary_10_1016_j_atmosenv_2019_117161 crossref_primary_10_1016_j_matchemphys_2022_127189 crossref_primary_10_1021_acsomega_4c01235 crossref_primary_10_1016_j_chemosphere_2024_141630 crossref_primary_10_3390_molecules28041715 crossref_primary_10_1021_acs_chemmater_4c02175 crossref_primary_10_1016_j_chemphys_2022_111782 crossref_primary_10_1002_slct_202304403 crossref_primary_10_1021_acs_jpclett_0c01671 crossref_primary_10_1002_ente_202200380 crossref_primary_10_1016_j_jechem_2022_04_051 crossref_primary_10_1039_D0NJ02992K crossref_primary_10_5194_acp_22_11155_2022 crossref_primary_10_1039_D2RA00226D crossref_primary_10_3389_fchem_2019_00644 crossref_primary_10_18038_estubtda_1550772 crossref_primary_10_1021_acs_inorgchem_1c02247 crossref_primary_10_1039_D1CP01704G crossref_primary_10_1021_acsearthspacechem_2c00290 crossref_primary_10_1021_acs_inorgchem_3c04537 crossref_primary_10_1021_acscatal_9b00726 crossref_primary_10_1016_j_ijhydene_2021_08_228 crossref_primary_10_1002_qua_26840 crossref_primary_10_1002_adfm_202408821 crossref_primary_10_1002_ange_202317312 crossref_primary_10_1021_acs_jpcc_6b04555 crossref_primary_10_1007_s00894_023_05810_2 crossref_primary_10_1103_PhysRevE_109_L062103 crossref_primary_10_1007_s11224_022_02085_w crossref_primary_10_1016_j_chemosphere_2018_08_152 crossref_primary_10_1016_j_comptc_2024_114800 crossref_primary_10_1016_j_rinp_2023_106852 crossref_primary_10_1021_acs_jpca_2c05913 crossref_primary_10_1080_02786826_2020_1839013 crossref_primary_10_1021_acs_jpca_4c08263 crossref_primary_10_3390_atmos11010035 crossref_primary_10_1016_j_jhazmat_2020_124567 crossref_primary_10_1021_acs_jpca_2c01672 crossref_primary_10_1021_acs_jpca_2c00585 crossref_primary_10_5194_ar_3_101_2025 crossref_primary_10_1021_acsomega_2c01396 crossref_primary_10_1039_D1CP02915K crossref_primary_10_3390_ijms20122933 crossref_primary_10_2139_ssrn_3982283 crossref_primary_10_1007_s10876_017_1225_x crossref_primary_10_6023_A24080234 crossref_primary_10_1016_j_diamond_2022_109602 crossref_primary_10_1007_s10876_022_02295_6 crossref_primary_10_1039_D1CP01609A crossref_primary_10_1039_D3CP00758H crossref_primary_10_1021_acs_jpclett_2c02875 crossref_primary_10_1002_cphc_202200935 crossref_primary_10_1021_acsomega_3c01177 crossref_primary_10_1007_s12039_022_02121_6 crossref_primary_10_1039_C7TA10549E crossref_primary_10_1021_acs_inorgchem_2c03612 crossref_primary_10_1016_j_molliq_2024_126343 crossref_primary_10_1002_poc_4655 crossref_primary_10_1039_D0CP06472F crossref_primary_10_1039_D2CP01494G crossref_primary_10_1039_D2CP04925B crossref_primary_10_1007_s00214_020_2556_5 crossref_primary_10_1007_s00214_022_02877_7 crossref_primary_10_1021_acs_jpca_0c03984 crossref_primary_10_1039_C5CP06313B crossref_primary_10_1039_C9CP00444K crossref_primary_10_1016_j_fuel_2025_134553 crossref_primary_10_3390_sym15010213 crossref_primary_10_1016_j_micromeso_2024_113289 crossref_primary_10_1080_00268976_2021_1919773 crossref_primary_10_1016_j_atmosenv_2017_07_039 crossref_primary_10_1021_acs_inorgchem_3c03836 crossref_primary_10_1134_S1990793121090153 crossref_primary_10_1039_D3CP01198D crossref_primary_10_1002_jcc_27174 crossref_primary_10_1016_j_physleta_2024_129736 crossref_primary_10_1016_j_physleta_2024_129979 crossref_primary_10_1038_s42004_021_00468_4 crossref_primary_10_1039_D4RA07985J crossref_primary_10_1021_acs_jctc_9b01107 crossref_primary_10_1016_j_comptc_2019_112635 crossref_primary_10_1016_j_jcat_2020_03_030 crossref_primary_10_1016_j_molliq_2023_123932 crossref_primary_10_1021_acs_jpclett_3c00246 crossref_primary_10_1016_j_jenvman_2023_119079 crossref_primary_10_1021_jacs_6b07246 crossref_primary_10_1021_acscatal_4c00314 crossref_primary_10_1002_prep_202000228 crossref_primary_10_1039_D2RA04037A crossref_primary_10_1039_D4CP03118K crossref_primary_10_1039_D1CP03241K crossref_primary_10_1002_qua_26087 crossref_primary_10_1039_D0CP00028K crossref_primary_10_1039_C8NR05517C crossref_primary_10_1016_j_poly_2020_114856 crossref_primary_10_1039_D0CC05668E crossref_primary_10_1039_D3RA01717F crossref_primary_10_1016_j_comptc_2024_114847 crossref_primary_10_1021_acs_accounts_1c00774 crossref_primary_10_1039_D4RA02396J crossref_primary_10_1021_acsomega_3c07600 crossref_primary_10_1016_j_jmgm_2021_107979 crossref_primary_10_1016_j_jes_2020_07_022 crossref_primary_10_1002_adom_202300715 crossref_primary_10_1016_j_molstruc_2024_138828 crossref_primary_10_1002_chem_202402008 crossref_primary_10_1016_j_atmosenv_2018_07_003 crossref_primary_10_1016_j_jhazmat_2024_134957 crossref_primary_10_1002_cphc_202300101 crossref_primary_10_1016_j_chemosphere_2020_126743 crossref_primary_10_1016_j_ijhydene_2019_10_001 crossref_primary_10_1073_pnas_1915459116 crossref_primary_10_3390_hydrogen5040035 crossref_primary_10_1080_00268976_2022_2131644 crossref_primary_10_1021_acs_jpcc_2c06910 crossref_primary_10_1021_acsomega_2c04278 crossref_primary_10_1007_s00706_022_02909_9 crossref_primary_10_1016_j_seppur_2025_131883 crossref_primary_10_1016_j_surfin_2024_103965 crossref_primary_10_1016_j_cplett_2022_140264 crossref_primary_10_1021_acs_chemmater_1c03836 crossref_primary_10_1039_C9NJ01659G crossref_primary_10_1016_j_chemphys_2021_111097 crossref_primary_10_1021_acs_jpcc_9b05574 crossref_primary_10_1021_acs_jpca_3c05289 crossref_primary_10_1039_C8RA09492F crossref_primary_10_1039_D4CP02205J crossref_primary_10_1021_acs_inorgchem_8b02159 crossref_primary_10_1021_acs_jctc_4c01528 crossref_primary_10_1016_j_comptc_2020_112701 crossref_primary_10_5194_acp_25_2829_2025 crossref_primary_10_1007_s11663_024_03021_5 crossref_primary_10_1039_D0CP03507F crossref_primary_10_1039_D2CP03583A crossref_primary_10_1021_acs_inorgchem_3c02306 crossref_primary_10_1021_acs_jpca_4c05386 crossref_primary_10_1021_acs_jpca_6b09185 crossref_primary_10_1039_D3TA01699D crossref_primary_10_3390_inorganics12020056 crossref_primary_10_1039_C8CP05823G crossref_primary_10_1016_j_gca_2025_01_015 crossref_primary_10_1016_j_molliq_2020_114300 crossref_primary_10_1021_acs_jpca_0c08373 crossref_primary_10_1021_acs_langmuir_4c04572 crossref_primary_10_1016_j_cplett_2024_141814 crossref_primary_10_1039_D4CP04329D crossref_primary_10_1016_j_saa_2024_124277 crossref_primary_10_1021_acsomega_3c07412 crossref_primary_10_1016_j_cplett_2024_141813 crossref_primary_10_1016_j_surfin_2024_103989 crossref_primary_10_1016_j_dib_2022_108024 crossref_primary_10_1039_D4CP01259C crossref_primary_10_1021_acs_jpca_2c02809 crossref_primary_10_1021_acs_jpcc_5c00105 crossref_primary_10_1039_D5SC00812C crossref_primary_10_1021_acs_jpca_9b03853 crossref_primary_10_1007_s00894_024_05906_3 crossref_primary_10_1002_chem_202400395 crossref_primary_10_1039_D1CP01418H crossref_primary_10_1103_PhysRevResearch_4_L042045 crossref_primary_10_1088_1361_648X_aae3d1 crossref_primary_10_3390_molecules29112670 crossref_primary_10_1039_C9BM00516A crossref_primary_10_1007_s10876_019_01609_5 crossref_primary_10_1021_acsomega_3c06794 crossref_primary_10_3390_molecules29143397 crossref_primary_10_1021_acsomega_1c07303 crossref_primary_10_1007_s10876_019_01541_8 crossref_primary_10_1007_s12039_023_02169_y crossref_primary_10_1016_j_comptc_2024_114879 |
Cites_doi | 10.1063/1.1534831 10.1039/a706221d 10.1016/j.commatsci.2004.07.009 10.1007/BF01340511 10.1103/PhysRevB.48.22 10.1103/PhysRevLett.75.288 10.1103/PhysRevE.60.3701 10.1103/PhysRevB.68.195418 10.1007/978-3-662-05094-1 10.1016/0166-1280(88)80133-7 10.1021/ic500991x 10.1016/j.ipl.2011.06.002 10.1038/nchem.1352 10.1098/rspa.1924.0082 10.1002/anie.201310637 10.1109/TEVC.2010.2059031 10.1039/b305686d 10.1063/1.472697 10.1007/s10462-012-9328-0 10.1103/PhysRevLett.113.156102 10.1016/j.cpc.2014.03.006 10.1016/S0010-4655(99)00259-3 10.1103/PhysRev.34.57 10.1021/ct400284d 10.1093/oso/9780195131581.001.0001 10.1021/jp970984n 10.1016/0009-2614(87)87091-4 10.1103/PhysRevLett.80.1357 10.1073/pnas.89.1.20 10.1063/1.480217 10.1021/cr00031a010 10.1063/1.4843956 10.1002/anie.200802743 10.1023/A:1024653025686 10.1103/PhysRevB.23.6265 10.1103/PhysRevB.59.2292 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B 10.1103/PhysRevB.7.4707 10.1063/1.473751 10.1021/jp037780t 10.1063/1.4766821 10.1021/jp047807o 10.1103/PhysRevA.46.R2984 10.1016/j.engappai.2013.06.010 10.1021/jp0674165 10.1016/j.cplett.2013.07.066 10.14419/ijet.v2i3.1030 10.1007/BF01589116 10.1126/science.285.5432.1368 10.1103/PhysRevB.82.094116 10.1088/1367-2630/5/1/126 10.1088/0953-4075/29/21/002 10.1039/b106507f 10.1002/qua.24462 10.1051/jcp/1968650044 10.1016/j.amc.2009.03.090 10.1039/C5CP01198A 10.1016/0022-3093(93)90156-R 10.1103/PhysRevLett.74.1482 10.1039/c3cp44332a 10.1002/jcc.23235 10.1021/ct1007108 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1039/c5cp04060d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 24181 |
ExternalDocumentID | 26327507 10_1039_C5CP04060D c5cp04060d |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG CGR CUY CVF ECM EIF NPM 7X8 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c434t-ad445a93463635bc59b25bb74b863da7955190d9dc7b42c5b5d219145df9b0ab3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 03:14:21 EDT 2025 Fri Jul 11 09:26:58 EDT 2025 Thu Apr 03 07:06:06 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Tue Jul 01 02:46:04 EDT 2025 Thu May 19 04:17:59 EDT 2016 Wed Jun 05 04:43:29 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-ad445a93463635bc59b25bb74b863da7955190d9dc7b42c5b5d219145df9b0ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26327507 |
PQID | 1713941900 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_C5CP04060D crossref_citationtrail_10_1039_C5CP04060D pubmed_primary_26327507 rsc_primary_c5cp04060d proquest_miscellaneous_1753487008 proquest_miscellaneous_1713941900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2015 |
References | Das (C5CP04060D-(cit62)/*[position()=1]) 2011; 15 Wales (C5CP04060D-(cit1)/*[position()=1]) 1999; 285 Elrod (C5CP04060D-(cit38)/*[position()=1]) 1994; 94 Wales (C5CP04060D-(cit17)/*[position()=1]) 1997; 101 Schebarchov (C5CP04060D-(cit31)/*[position()=1]) 2014; 113 Chen (C5CP04060D-(cit61)/*[position()=1]) 2013; 34 Deaven (C5CP04060D-(cit24)/*[position()=1]) 1995; 75 Li (C5CP04060D-(cit66)/*[position()=1]) 2014; 27 Pahl (C5CP04060D-(cit5)/*[position()=1]) 2008; 47 Lennard-Jones (C5CP04060D-(cit42)/*[position()=1]) 1924; 106 Cleri (C5CP04060D-(cit72)/*[position()=1]) 1993; 48 Heiles (C5CP04060D-(cit26)/*[position()=1]) 2013; 113 Watari (C5CP04060D-(cit8)/*[position()=1]) 1997; 106 Fan (C5CP04060D-(cit60)/*[position()=1]) 2003; 27 Roberts (C5CP04060D-(cit73)/*[position()=1]) 2001; 3 Roduner (C5CP04060D-(cit4)/*[position()=1]) 2014; 53 Barker (C5CP04060D-(cit40)/*[position()=1]) 1973; 7 Häkkinen (C5CP04060D-(cit3)/*[position()=1]) 2012; 4 Levinthal (C5CP04060D-(cit12)/*[position()=1]) 1968; 65 C5CP04060D-(cit33)/*[position()=1] Doye (C5CP04060D-(cit51)/*[position()=1]) 1996; 105 C5CP04060D-(cit69)/*[position()=1] Dzugutov (C5CP04060D-(cit45)/*[position()=1]) 1992; 46 Doye (C5CP04060D-(cit48)/*[position()=1]) 1996; 29 Doye (C5CP04060D-(cit54)/*[position()=1]) 1998; 80 Schebarchov (C5CP04060D-(cit32)/*[position()=1]) 2015 Xiang (C5CP04060D-(cit15)/*[position()=1]) 2004; 108 Born (C5CP04060D-(cit41)/*[position()=1]) 1932; 75 Johnston (C5CP04060D-(cit25)/*[position()=1]) 2003 Liu (C5CP04060D-(cit59)/*[position()=1]) 1989; 45 (C5CP04060D-(cit2)/*[position()=1]) 2002 C5CP04060D-(cit36)/*[position()=1] Schiffmann (C5CP04060D-(cit65)/*[position()=1]) 2011; 7 Doye (C5CP04060D-(cit76)/*[position()=1]) 2006; 35 Doye (C5CP04060D-(cit74)/*[position()=1]) 1997; 93 Erber (C5CP04060D-(cit10)/*[position()=1]) 1995; 74 Romero (C5CP04060D-(cit14)/*[position()=1]) 1999; 123 Lewis (C5CP04060D-(cit70)/*[position()=1]) 1985; 18 Doye (C5CP04060D-(cit53)/*[position()=1]) 2003; 68 Karaboga (C5CP04060D-(cit56)/*[position()=1]) 2009; 214 C5CP04060D-(cit35)/*[position()=1] Gupta (C5CP04060D-(cit47)/*[position()=1]) 1981; 23 Miller (C5CP04060D-(cit52)/*[position()=1]) 1999; 60 von Rudorff (C5CP04060D-(cit68)/*[position()=1]) 2014; 185 Doye (C5CP04060D-(cit50)/*[position()=1]) 1999; 111 Paz-Borbón (C5CP04060D-(cit71)/*[position()=1]) 2007; 111 Dzugutov (C5CP04060D-(cit46)/*[position()=1]) 1993; 156–158 Wehmeyer (C5CP04060D-(cit67)/*[position()=1]) 2012; 137 Karaboga (C5CP04060D-(cit37)/*[position()=1]) 2005 Bonabeau (C5CP04060D-(cit64)/*[position()=1]) 1999 Morris (C5CP04060D-(cit55)/*[position()=1]) 1998; 19 Oakley (C5CP04060D-(cit18)/*[position()=1]) 2013; 15 Mullin (C5CP04060D-(cit6)/*[position()=1]) 2001 Morse (C5CP04060D-(cit43)/*[position()=1]) 1929; 34 Doye (C5CP04060D-(cit44)/*[position()=1]) 2003; 118 Gao (C5CP04060D-(cit63)/*[position()=1]) 2011; 111 Doye (C5CP04060D-(cit49)/*[position()=1]) 1999; 59 Wang (C5CP04060D-(cit29)/*[position()=1]) 2010; 82 Xiang (C5CP04060D-(cit16)/*[position()=1]) 2004; 108 Storn (C5CP04060D-(cit23)/*[position()=1]) 1995 Zwanzig (C5CP04060D-(cit11)/*[position()=1]) 1992; 89 Levinthal (C5CP04060D-(cit13)/*[position()=1]) 1969 Wales (C5CP04060D-(cit75)/*[position()=1]) 2013; 584 Holland (C5CP04060D-(cit22)/*[position()=1]) 1975 Schebarchov (C5CP04060D-(cit30)/*[position()=1]) 2013; 139 Eiben (C5CP04060D-(cit21)/*[position()=1]) 2003 Li (C5CP04060D-(cit19)/*[position()=1]) 1988; 179 Eberhart (C5CP04060D-(cit27)/*[position()=1]) 2001 Zhang (C5CP04060D-(cit39)/*[position()=1]) 2013; 9 Kennedy (C5CP04060D-(cit28)/*[position()=1]) 1995; 4 Zhang (C5CP04060D-(cit9)/*[position()=1]) 2014; 53 Terrones (C5CP04060D-(cit7)/*[position()=1]) 2003; 5 C5CP04060D-(cit34)/*[position()=1] Wille (C5CP04060D-(cit20)/*[position()=1]) 1987; 133 Verma (C5CP04060D-(cit57)/*[position()=1]) 2013; 2 Karaboga (C5CP04060D-(cit58)/*[position()=1]) 2014; 42 |
References_xml | – issn: 2005 publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06 doi: Karaboga – issn: 2001 publication-title: Swarm Intelligence doi: Eberhart Shi Kennedy – issn: 2001 end-page: p 216-288 publication-title: Crystallization doi: Mullin – issn: 2003 publication-title: Introduction to Evolutionary Computing doi: Eiben Smith – issn: 1969 end-page: p 22-24 publication-title: Mössbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois doi: Levinthal – issn: 1975 publication-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence doi: Holland – issn: 1999 publication-title: Swarm Intelligence: From Natural to Artificial Systems doi: Bonabeau Dorigo Theraulaz – issn: 1995 publication-title: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical report doi: Storn Price – issn: 2002 end-page: p 1-11 publication-title: Atomic and Molecular Clusters – volume: 118 start-page: 2792 year: 2003 ident: C5CP04060D-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1534831 – volume: 93 start-page: 4233 year: 1997 ident: C5CP04060D-(cit74)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/a706221d – volume: 35 start-page: 227 year: 2006 ident: C5CP04060D-(cit76)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2004.07.009 – volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06 year: 2005 ident: C5CP04060D-(cit37)/*[position()=1] – volume: 75 start-page: 1 year: 1932 ident: C5CP04060D-(cit41)/*[position()=1] publication-title: Z. Physik doi: 10.1007/BF01340511 – volume: 48 start-page: 22 year: 1993 ident: C5CP04060D-(cit72)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.22 – volume: 75 start-page: 288 year: 1995 ident: C5CP04060D-(cit24)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.288 – volume: 60 start-page: 3701 year: 1999 ident: C5CP04060D-(cit52)/*[position()=1] publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. doi: 10.1103/PhysRevE.60.3701 – volume: 68 start-page: 195418 year: 2003 ident: C5CP04060D-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.195418 – volume-title: Introduction to Evolutionary Computing year: 2003 ident: C5CP04060D-(cit21)/*[position()=1] doi: 10.1007/978-3-662-05094-1 – volume: 179 start-page: 333 year: 1988 ident: C5CP04060D-(cit19)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/0166-1280(88)80133-7 – volume: 53 start-page: 7700 year: 2014 ident: C5CP04060D-(cit9)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500991x – volume: 111 start-page: 871 year: 2011 ident: C5CP04060D-(cit63)/*[position()=1] publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2011.06.002 – volume: 4 start-page: 443 year: 2012 ident: C5CP04060D-(cit3)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 106 start-page: 463 year: 1924 ident: C5CP04060D-(cit42)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1924.0082 – volume: 53 start-page: 4318 year: 2014 ident: C5CP04060D-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310637 – volume: 15 start-page: 4 year: 2011 ident: C5CP04060D-(cit62)/*[position()=1] publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume-title: Atomic and Molecular Clusters year: 2002 ident: C5CP04060D-(cit2)/*[position()=1] – start-page: 4193 year: 2003 ident: C5CP04060D-(cit25)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b305686d – volume: 105 start-page: 8428 year: 1996 ident: C5CP04060D-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.472697 – volume: 42 start-page: 21 year: 2014 ident: C5CP04060D-(cit58)/*[position()=1] publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 113 start-page: 156102 year: 2014 ident: C5CP04060D-(cit31)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156102 – volume-title: Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical report year: 1995 ident: C5CP04060D-(cit23)/*[position()=1] – ident: C5CP04060D-(cit34)/*[position()=1] – volume: 185 start-page: 1639 year: 2014 ident: C5CP04060D-(cit68)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.03.006 – volume: 123 start-page: 87 year: 1999 ident: C5CP04060D-(cit14)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(99)00259-3 – volume: 34 start-page: 57 year: 1929 ident: C5CP04060D-(cit43)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.34.57 – volume: 4 start-page: 1942 year: 1995 ident: C5CP04060D-(cit28)/*[position()=1] publication-title: Proc. IEEE Int. Conf. – volume-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence year: 1975 ident: C5CP04060D-(cit22)/*[position()=1] – volume: 9 start-page: 2992 year: 2013 ident: C5CP04060D-(cit39)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400284d – volume-title: Swarm Intelligence: From Natural to Artificial Systems year: 1999 ident: C5CP04060D-(cit64)/*[position()=1] doi: 10.1093/oso/9780195131581.001.0001 – volume: 18 start-page: 1149 year: 1985 ident: C5CP04060D-(cit70)/*[position()=1] publication-title: J. Phys. Chem. C – volume: 101 start-page: 5111 year: 1997 ident: C5CP04060D-(cit17)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp970984n – ident: C5CP04060D-(cit69)/*[position()=1] – volume: 133 start-page: 405 year: 1987 ident: C5CP04060D-(cit20)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)87091-4 – volume: 80 start-page: 1357 year: 1998 ident: C5CP04060D-(cit54)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1357 – volume: 89 start-page: 20 year: 1992 ident: C5CP04060D-(cit11)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.1.20 – ident: C5CP04060D-(cit33)/*[position()=1] – volume: 111 start-page: 8417 year: 1999 ident: C5CP04060D-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.480217 – volume: 94 start-page: 1975 year: 1994 ident: C5CP04060D-(cit38)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00031a010 – volume: 139 start-page: 221101 year: 2013 ident: C5CP04060D-(cit30)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4843956 – volume: 47 start-page: 8207 year: 2008 ident: C5CP04060D-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802743 – volume: 27 start-page: 105 year: 2003 ident: C5CP04060D-(cit60)/*[position()=1] publication-title: J. Global Optim. doi: 10.1023/A:1024653025686 – volume: 23 start-page: 6265 year: 1981 ident: C5CP04060D-(cit47)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.23.6265 – volume: 59 start-page: 2292 year: 1999 ident: C5CP04060D-(cit49)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.2292 – volume: 19 start-page: 1639 year: 1998 ident: C5CP04060D-(cit55)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B – volume: 7 start-page: 4707 year: 1973 ident: C5CP04060D-(cit40)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.7.4707 – volume: 106 start-page: 7531 year: 1997 ident: C5CP04060D-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.473751 – volume: 108 start-page: 3586 year: 2004 ident: C5CP04060D-(cit15)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp037780t – volume: 137 start-page: 194110 year: 2012 ident: C5CP04060D-(cit67)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4766821 – volume: 108 start-page: 9516 year: 2004 ident: C5CP04060D-(cit16)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp047807o – volume: 46 start-page: R2984 year: 1992 ident: C5CP04060D-(cit45)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.46.R2984 – volume: 27 start-page: 70 year: 2014 ident: C5CP04060D-(cit66)/*[position()=1] publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.06.010 – volume: 111 start-page: 2936 year: 2007 ident: C5CP04060D-(cit71)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp0674165 – volume: 584 start-page: 1 year: 2013 ident: C5CP04060D-(cit75)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.07.066 – volume-title: Swarm Intelligence year: 2001 ident: C5CP04060D-(cit27)/*[position()=1] – volume: 2 start-page: 175 year: 2013 ident: C5CP04060D-(cit57)/*[position()=1] publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v2i3.1030 – volume: 45 start-page: 503 year: 1989 ident: C5CP04060D-(cit59)/*[position()=1] publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 285 start-page: 1368 year: 1999 ident: C5CP04060D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.285.5432.1368 – volume: 82 start-page: 094116 year: 2010 ident: C5CP04060D-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.094116 – ident: C5CP04060D-(cit36)/*[position()=1] – volume: 5 start-page: 126 year: 2003 ident: C5CP04060D-(cit7)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/5/1/126 – volume: 29 start-page: 4859 year: 1996 ident: C5CP04060D-(cit48)/*[position()=1] publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/29/21/002 – volume: 3 start-page: 5024 year: 2001 ident: C5CP04060D-(cit73)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b106507f – volume: 113 start-page: 2091 year: 2013 ident: C5CP04060D-(cit26)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24462 – volume: 65 start-page: 44 year: 1968 ident: C5CP04060D-(cit12)/*[position()=1] publication-title: J. Chim. Phys. Phys. – Chim. Biol. doi: 10.1051/jcp/1968650044 – volume: 214 start-page: 108 year: 2009 ident: C5CP04060D-(cit56)/*[position()=1] publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – year: 2015 ident: C5CP04060D-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01198A – volume: 156–158 start-page: 173 year: 1993 ident: C5CP04060D-(cit46)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(93)90156-R – volume: 74 start-page: 1482 year: 1995 ident: C5CP04060D-(cit10)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.1482 – volume-title: Mössbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois year: 1969 ident: C5CP04060D-(cit13)/*[position()=1] – volume: 15 start-page: 3965 year: 2013 ident: C5CP04060D-(cit18)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44332a – volume-title: Crystallization year: 2001 ident: C5CP04060D-(cit6)/*[position()=1] – ident: C5CP04060D-(cit35)/*[position()=1] – volume: 34 start-page: 1046 year: 2013 ident: C5CP04060D-(cit61)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.23235 – volume: 7 start-page: 1307 year: 2011 ident: C5CP04060D-(cit65)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1007108 |
SSID | ssj0001513 |
Score | 2.6234832 |
Snippet | Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24173 |
SubjectTerms | Algorithms Animals Bees - physiology Biomimetics Chemists Clusters Forages Functions (mathematics) Mathematical analysis Optimization Swarm intelligence |
Title | ABCluster: the artificial bee colony algorithm for cluster global optimization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26327507 https://www.proquest.com/docview/1713941900 https://www.proquest.com/docview/1753487008 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Nb9MwFMAt2A5wQXyNZXzICC4IBZLaTmpuJes0plJ6SKXeothOBlLWVF164a_nOXacwCo0uFip6yaRf-7ze7bfewi9DeRYyDCQfsT1NqMuxqKM_DgI86JkYUmV3tH9Oo_Ol_RixVZ9mrvWu6QRH-TPvX4l_0MV6oCr9pL9B7LuplAB18AXSiAM5a0YTz4n1a5NrWFPZ-g2NiSEKPQ59AqM-_d5dVlvfzTfr9ozhdL8pAsFUoPMuLLOmENNddEBlF1KOHOlq8xyyHW7nLBIEuci5lafL3ZuzJ3W1eWf5_PtKkPIBqsMRjDSiPhgSNuw1cM6k-LNSdN4MGpMPJdONtLQZC2xEy18NtlabkjxgOggqJLJDYiYKFD9XNXtz8-_ZWfL2SxLp6v0LjocgY0AQu5wMk2_zNxEDMoMMc5l5tW76LSEf-zv_bs-csPIAJVj26WCaVWO9CF6YG0FPDHgH6E7xfoxupd0PJ6guRsAnzDgxz1-DPixwY8dfgz4scWPDX48xP8ULc-maXLu2wQZvqSENn6uKGU5JzroG2FCMi5GTIiYinFEVB5zUId5oLiSsaAjyQRTIx3Pj6mSiyAX5AgdrOt1cYywBNO2FDloezk0zQsuSxpHAVUxlyouCw-967opkzZ6vE5iUmXtKQbCs4Qli7ZLTz30xrXdmJgpe1u97no7g27T-1T5uqh311kYg1lC4c2Dv7VhBGxt0GA99Mygcs_SKQhAEY49dATsXHXP3EMn-7_INqo8ucUzn6P7_Z_kBTpotrviJSinjXhlB-EvDYaPcg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCluster%3A+the+artificial+bee+colony+algorithm+for+cluster+global+optimization&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhang%2C+Jun&rft.au=Dolg%2C+Michael&rft.date=2015-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=17&rft.issue=37&rft.spage=24173&rft.epage=24181&rft_id=info:doi/10.1039%2Fc5cp04060d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |