ABCluster: the artificial bee colony algorithm for cluster global optimization

Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspi...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 17; no. 37; pp. 24173 - 24181
Main Authors Zhang, Jun, Dolg, Michael
Format Journal Article
LanguageEnglish
Published England 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e. , the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. We apply a swarm-intelligence based heuristic algorithm, i.e. the artificial bee colony algorithm to solve this problem for various kinds of clusters.
AbstractList Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e. , the Coulomb–Born–Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program “ABCluster” to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e. , the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. We apply a swarm-intelligence based heuristic algorithm, i.e. the artificial bee colony algorithm to solve this problem for various kinds of clusters.
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Author Dolg, Michael
Zhang, Jun
AuthorAffiliation Theoretical Chemistry
University of Cologne
AuthorAffiliation_xml – name: University of Cologne
– name: Theoretical Chemistry
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 2
  givenname: Michael
  surname: Dolg
  fullname: Dolg, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26327507$$D View this record in MEDLINE/PubMed
BookMark eNqNkctLxDAQxoMovi_elXoTYXXSJO3G21qfIOpBzyWvaiRtapI96F9vdXUFEfE0A_P7ZobvW0OLne8MQlsYDjAQfqiY6oFCAXoBrWJakBGHMV2c92WxgtZifAIAzDBZRit5QfKSQbmKrifHlZvGZMJRlh5NJkKyjVVWuEwakynvfPeSCffgg02Pbdb4kKmZIHtwXg6c75Nt7atI1ncbaKkRLprNz7qO7s9O76qL0dXN-WU1uRopSmgaCU0pE5wM_xWEScW4zJmUJZXjgmhRcsYwB821KiXNFZNM55hjynTDJQhJ1tHebG8f_PPUxFS3NirjnOiMn8Yal4zQcQkw_geKCafDORjQnU90Kluj6z7YVoSX-suuAdifASr4GINp5giG-j2LumLV7UcWJwMMP2Bl04dLKQjrfpdszyQhqvnq73iH-e5f87rXDXkDu9CfPQ
CitedBy_id crossref_primary_10_1063_1_4966584
crossref_primary_10_1016_j_cplett_2023_140742
crossref_primary_10_1002_qua_27315
crossref_primary_10_1002_qua_26222
crossref_primary_10_1021_acs_jpcc_4c01686
crossref_primary_10_1039_D1NJ00231G
crossref_primary_10_1016_j_chemosphere_2018_03_154
crossref_primary_10_1016_j_jaerosci_2020_105621
crossref_primary_10_1016_j_comptc_2023_114263
crossref_primary_10_1016_j_molstruc_2020_128038
crossref_primary_10_1080_00268976_2022_2092040
crossref_primary_10_1038_s41598_022_14430_4
crossref_primary_10_1021_acs_jpca_2c05135
crossref_primary_10_1016_j_jmgm_2021_107912
crossref_primary_10_1002_qua_26234
crossref_primary_10_1021_acscatal_1c05922
crossref_primary_10_1039_D4CP04052J
crossref_primary_10_1002_qua_27442
crossref_primary_10_1016_j_jmgm_2023_108692
crossref_primary_10_1002_qua_26350
crossref_primary_10_1039_D0RA09323H
crossref_primary_10_1039_D4TA03793F
crossref_primary_10_1016_j_saa_2024_125196
crossref_primary_10_1007_s10876_021_01985_x
crossref_primary_10_1002_advs_202303421
crossref_primary_10_1007_s00894_024_06252_0
crossref_primary_10_1016_j_jmgm_2021_107907
crossref_primary_10_1016_j_susc_2024_122507
crossref_primary_10_1016_j_jmgm_2022_108287
crossref_primary_10_1016_j_chemphys_2024_112404
crossref_primary_10_1002_adfm_202308420
crossref_primary_10_1002_qua_26491
crossref_primary_10_1038_s43588_023_00435_0
crossref_primary_10_1021_acs_jcim_4c01769
crossref_primary_10_1016_j_poly_2022_116032
crossref_primary_10_1007_s00214_016_1964_z
crossref_primary_10_1016_j_molliq_2021_116199
crossref_primary_10_1021_acs_jpca_3c03643
crossref_primary_10_1016_j_cplett_2023_140856
crossref_primary_10_1002_cctc_201901830
crossref_primary_10_1039_C9RA08760E
crossref_primary_10_1021_acsomega_3c03521
crossref_primary_10_1021_acs_jpca_4c00907
crossref_primary_10_1039_C9RA07398A
crossref_primary_10_1002_jcc_27471
crossref_primary_10_5194_ar_2_123_2024
crossref_primary_10_1016_j_ctta_2024_100149
crossref_primary_10_1021_acsomega_3c00251
crossref_primary_10_1039_D2CP00308B
crossref_primary_10_6023_A21050207
crossref_primary_10_1016_j_comptc_2023_114133
crossref_primary_10_1016_j_chemosphere_2022_136109
crossref_primary_10_1021_acs_estlett_3c00902
crossref_primary_10_1063_1674_0068_cjcp2304042
crossref_primary_10_1016_j_mtcomm_2024_110279
crossref_primary_10_1021_acs_jpcb_2c01723
crossref_primary_10_1021_acsearthspacechem_0c00333
crossref_primary_10_1021_acsomega_4c09963
crossref_primary_10_3390_catal12050454
crossref_primary_10_1016_j_comptc_2022_113923
crossref_primary_10_1016_j_chemphys_2023_112064
crossref_primary_10_1007_s10876_023_02449_0
crossref_primary_10_1016_j_fuel_2022_126451
crossref_primary_10_1021_acs_jpca_4c05409
crossref_primary_10_1016_j_comptc_2024_114587
crossref_primary_10_7498_aps_73_20240962
crossref_primary_10_1007_s10876_020_01803_w
crossref_primary_10_1063_5_0152517
crossref_primary_10_1039_C8SC01424H
crossref_primary_10_1126_science_abe0298
crossref_primary_10_1016_j_saa_2023_122424
crossref_primary_10_1021_acs_jpca_4c02024
crossref_primary_10_1039_D3CP00049D
crossref_primary_10_1103_PhysRevB_111_075430
crossref_primary_10_1021_acs_inorgchem_4c02337
crossref_primary_10_1080_00268976_2024_2317447
crossref_primary_10_1016_j_eswa_2021_114648
crossref_primary_10_1039_D2CP01637K
crossref_primary_10_1002_qua_27002
crossref_primary_10_1039_D2CP04663F
crossref_primary_10_1080_23746149_2018_1516514
crossref_primary_10_5194_acp_24_4029_2024
crossref_primary_10_1007_s00214_019_2476_4
crossref_primary_10_1039_D1CP03767F
crossref_primary_10_1039_D1CP03613K
crossref_primary_10_1039_D2CP00315E
crossref_primary_10_1002_smll_202405615
crossref_primary_10_1016_j_chemphys_2024_112321
crossref_primary_10_1039_D4RA03021D
crossref_primary_10_1002_jcc_26071
crossref_primary_10_1002_anie_202318741
crossref_primary_10_1021_acs_jpca_9b01030
crossref_primary_10_1007_s00894_020_04637_5
crossref_primary_10_1039_D0NJ03389H
crossref_primary_10_1007_s11432_018_9618_2
crossref_primary_10_1080_08927022_2022_2163674
crossref_primary_10_1039_D4RA00950A
crossref_primary_10_1039_C9NJ02130B
crossref_primary_10_1016_j_jaerosci_2020_105733
crossref_primary_10_1039_C7CP02861J
crossref_primary_10_5194_acp_22_6103_2022
crossref_primary_10_1016_j_comptc_2023_114057
crossref_primary_10_1016_j_physleta_2024_129671
crossref_primary_10_1007_s11224_021_01827_6
crossref_primary_10_1016_j_molliq_2020_112985
crossref_primary_10_1039_D3CP05290G
crossref_primary_10_1016_j_atmosenv_2020_117378
crossref_primary_10_1039_D1CP01544C
crossref_primary_10_1016_j_jcat_2024_115926
crossref_primary_10_1039_D4CP02973A
crossref_primary_10_1016_j_molliq_2022_118522
crossref_primary_10_1039_C9CP04300D
crossref_primary_10_1021_acs_iecr_8b04929
crossref_primary_10_1039_D0CP01393E
crossref_primary_10_1016_j_comptc_2022_113849
crossref_primary_10_1021_acs_jpca_1c08969
crossref_primary_10_3390_chemistry4040113
crossref_primary_10_1039_D3CP00791J
crossref_primary_10_1016_j_jmgm_2023_108621
crossref_primary_10_1063_1674_0068_cjcp2110210
crossref_primary_10_1021_jacsau_1c00355
crossref_primary_10_1007_s00894_017_3566_7
crossref_primary_10_1016_j_cej_2022_135905
crossref_primary_10_1021_acs_jpca_2c08927
crossref_primary_10_1007_s00894_025_06324_9
crossref_primary_10_1016_j_molliq_2023_123108
crossref_primary_10_1002_qua_26878
crossref_primary_10_1016_j_molliq_2021_116032
crossref_primary_10_1016_j_mcat_2025_115015
crossref_primary_10_1039_C9NR10258B
crossref_primary_10_1039_D2CP00302C
crossref_primary_10_1073_pnas_2108384118
crossref_primary_10_1007_s00214_016_2017_3
crossref_primary_10_1002_anie_202317312
crossref_primary_10_1007_s00894_020_04352_1
crossref_primary_10_1016_j_comptc_2020_113042
crossref_primary_10_1016_j_molliq_2021_117475
crossref_primary_10_1021_acs_jpca_3c00066
crossref_primary_10_1021_acs_jpca_3c00068
crossref_primary_10_1021_acs_jpca_3c01399
crossref_primary_10_1021_acs_inorgchem_2c02065
crossref_primary_10_5194_amt_13_3581_2020
crossref_primary_10_1016_j_molstruc_2022_133447
crossref_primary_10_5194_ar_3_125_2025
crossref_primary_10_1021_acs_jcim_0c01128
crossref_primary_10_1140_epjb_s10051_025_00881_x
crossref_primary_10_1021_acs_jpca_4c04416
crossref_primary_10_1016_j_comptc_2017_03_039
crossref_primary_10_1149_1945_7111_ace083
crossref_primary_10_1016_j_ijhydene_2023_11_202
crossref_primary_10_1002_jcc_27525
crossref_primary_10_1016_j_mseb_2025_118095
crossref_primary_10_1016_j_dib_2020_106354
crossref_primary_10_1016_j_dib_2021_107766
crossref_primary_10_1016_j_gca_2024_10_022
crossref_primary_10_1039_D1CP03318B
crossref_primary_10_1002_jccs_202200148
crossref_primary_10_1021_acs_jpca_2c04468
crossref_primary_10_1002_qua_26776
crossref_primary_10_1021_acs_jpca_0c08961
crossref_primary_10_1021_acs_inorgchem_4c01068
crossref_primary_10_1016_j_comptc_2019_03_008
crossref_primary_10_1016_j_molliq_2023_123001
crossref_primary_10_1007_s10450_020_00252_1
crossref_primary_10_1016_j_mtcomm_2021_103018
crossref_primary_10_1016_j_jksus_2022_102350
crossref_primary_10_1021_acsaem_3c01925
crossref_primary_10_1016_j_ijhydene_2017_08_086
crossref_primary_10_1016_j_mtcomm_2025_111829
crossref_primary_10_1016_j_scitotenv_2023_163477
crossref_primary_10_1016_j_heliyon_2024_e30592
crossref_primary_10_1016_j_dib_2022_107818
crossref_primary_10_1016_j_molliq_2021_118301
crossref_primary_10_1021_acs_jcim_4c01473
crossref_primary_10_1080_00268976_2017_1416196
crossref_primary_10_1002_cphc_202400591
crossref_primary_10_1021_acsomega_3c10246
crossref_primary_10_1002_qua_26664
crossref_primary_10_1007_s11426_024_2168_4
crossref_primary_10_1016_j_jmgm_2023_108661
crossref_primary_10_1021_acsomega_2c03983
crossref_primary_10_1039_D1CP04437K
crossref_primary_10_1039_D4TB00370E
crossref_primary_10_1021_jacs_4c10661
crossref_primary_10_1016_j_cej_2023_143672
crossref_primary_10_1016_j_saa_2023_123231
crossref_primary_10_1021_acs_jpca_4c00008
crossref_primary_10_5194_ar_2_303_2024
crossref_primary_10_1016_j_saa_2023_123593
crossref_primary_10_1039_D2CP05724G
crossref_primary_10_1039_D3CP04803A
crossref_primary_10_1021_acsomega_3c01643
crossref_primary_10_1002_qua_26553
crossref_primary_10_1021_acs_chemmater_3c02383
crossref_primary_10_1021_acs_jpca_9b08536
crossref_primary_10_1016_j_inoche_2023_111313
crossref_primary_10_1016_j_inoche_2023_111433
crossref_primary_10_1039_D3EA00095H
crossref_primary_10_1021_acs_jpclett_9b00453
crossref_primary_10_1016_j_atmosenv_2021_118826
crossref_primary_10_1016_j_atmosenv_2020_117876
crossref_primary_10_1016_j_comptc_2020_113007
crossref_primary_10_1021_acs_jpca_4c00371
crossref_primary_10_1016_j_saa_2022_122051
crossref_primary_10_1016_j_mssp_2024_108973
crossref_primary_10_1021_acs_jpca_9b00909
crossref_primary_10_1039_D4CP03590A
crossref_primary_10_1016_j_jmgm_2022_108363
crossref_primary_10_1021_acs_jpca_1c02006
crossref_primary_10_1021_acs_jpca_9b06331
crossref_primary_10_1016_j_talanta_2022_123339
crossref_primary_10_1002_jcc_27327
crossref_primary_10_1039_C8CP02719F
crossref_primary_10_1063_5_0175581
crossref_primary_10_1021_acsami_2c15673
crossref_primary_10_1039_D3ME00033H
crossref_primary_10_1016_j_vibspec_2025_103767
crossref_primary_10_1016_j_apsusc_2023_156587
crossref_primary_10_1039_D1CP03664E
crossref_primary_10_1002_qua_26457
crossref_primary_10_1016_j_jmgm_2022_108375
crossref_primary_10_1016_j_atmosenv_2023_120001
crossref_primary_10_1016_j_mtcomm_2024_109778
crossref_primary_10_1038_s41467_023_43722_0
crossref_primary_10_1016_j_scitotenv_2022_159832
crossref_primary_10_1016_j_comptc_2022_113740
crossref_primary_10_1002_jcc_27317
crossref_primary_10_1039_C9NR02031D
crossref_primary_10_1007_s10876_018_1336_z
crossref_primary_10_1016_j_molliq_2023_122546
crossref_primary_10_1016_j_matchemphys_2023_128364
crossref_primary_10_1021_acs_jctc_2c01146
crossref_primary_10_1080_00268976_2020_1864042
crossref_primary_10_1016_j_nanoso_2023_101036
crossref_primary_10_3390_molecules28135071
crossref_primary_10_1016_j_engappai_2022_105311
crossref_primary_10_5194_acp_21_11637_2021
crossref_primary_10_1021_acsomega_3c07674
crossref_primary_10_1016_j_jmgm_2021_108102
crossref_primary_10_1039_C6RA11038J
crossref_primary_10_1063_10_0035403
crossref_primary_10_1021_acsomega_1c00501
crossref_primary_10_1016_j_atmosenv_2023_119727
crossref_primary_10_1002_wcms_1662
crossref_primary_10_3390_molecules28041917
crossref_primary_10_1039_D2RA02500K
crossref_primary_10_1039_D3CP05499C
crossref_primary_10_1007_s00894_017_3271_6
crossref_primary_10_1016_j_comptc_2024_115063
crossref_primary_10_3390_atmos15040467
crossref_primary_10_1016_j_nxnano_2024_100094
crossref_primary_10_1016_j_eswa_2024_125908
crossref_primary_10_1080_00268976_2018_1465605
crossref_primary_10_1016_j_jms_2024_111938
crossref_primary_10_1039_C6CP08834A
crossref_primary_10_1039_D3RA03165A
crossref_primary_10_1080_00268976_2022_2118188
crossref_primary_10_1016_j_comptc_2021_113189
crossref_primary_10_1039_D4CP04699D
crossref_primary_10_1021_acs_chemrev_1c00107
crossref_primary_10_1007_s00214_017_2126_7
crossref_primary_10_1021_acsomega_4c01545
crossref_primary_10_1038_s41467_024_48778_0
crossref_primary_10_1002_qua_26802
crossref_primary_10_1021_acs_jpcc_0c11345
crossref_primary_10_1021_jacs_8b03300
crossref_primary_10_1016_j_physe_2021_114634
crossref_primary_10_3389_fchem_2020_00660
crossref_primary_10_1016_j_molliq_2023_122562
crossref_primary_10_1007_s10876_023_02466_z
crossref_primary_10_1016_j_ensm_2023_03_020
crossref_primary_10_1039_D3CP06017A
crossref_primary_10_1002_wcms_1446
crossref_primary_10_1016_j_chemosphere_2018_08_074
crossref_primary_10_1016_j_jes_2022_01_015
crossref_primary_10_1002_jcc_26838
crossref_primary_10_1021_acsomega_4c04947
crossref_primary_10_1016_j_comptc_2020_112940
crossref_primary_10_1021_acs_jpca_1c08795
crossref_primary_10_1039_D4RA00708E
crossref_primary_10_1021_acs_jcim_3c01431
crossref_primary_10_1016_j_jaerosci_2025_106524
crossref_primary_10_1080_00268976_2025_2451049
crossref_primary_10_1016_j_chemphys_2023_111819
crossref_primary_10_1039_D4CP02262A
crossref_primary_10_1016_j_cej_2022_140562
crossref_primary_10_1016_j_chemosphere_2021_130063
crossref_primary_10_1039_C6CP03240K
crossref_primary_10_1002_qua_25978
crossref_primary_10_5194_acp_24_5823_2024
crossref_primary_10_1039_D2CP03532D
crossref_primary_10_1002_ange_202318741
crossref_primary_10_1021_acs_joc_4c02102
crossref_primary_10_5194_acp_24_3593_2024
crossref_primary_10_1016_j_atmosenv_2022_119245
crossref_primary_10_1021_acsomega_4c09196
crossref_primary_10_1016_j_dib_2021_107144
crossref_primary_10_1039_D4EM00330F
crossref_primary_10_1021_acs_jpca_0c05960
crossref_primary_10_1007_s10876_025_02779_1
crossref_primary_10_1021_acs_jpca_3c04472
crossref_primary_10_3390_molecules30061377
crossref_primary_10_1021_acs_est_4c10047
crossref_primary_10_1016_j_atmosenv_2019_117161
crossref_primary_10_1016_j_matchemphys_2022_127189
crossref_primary_10_1021_acsomega_4c01235
crossref_primary_10_1016_j_chemosphere_2024_141630
crossref_primary_10_3390_molecules28041715
crossref_primary_10_1021_acs_chemmater_4c02175
crossref_primary_10_1016_j_chemphys_2022_111782
crossref_primary_10_1002_slct_202304403
crossref_primary_10_1021_acs_jpclett_0c01671
crossref_primary_10_1002_ente_202200380
crossref_primary_10_1016_j_jechem_2022_04_051
crossref_primary_10_1039_D0NJ02992K
crossref_primary_10_5194_acp_22_11155_2022
crossref_primary_10_1039_D2RA00226D
crossref_primary_10_3389_fchem_2019_00644
crossref_primary_10_18038_estubtda_1550772
crossref_primary_10_1021_acs_inorgchem_1c02247
crossref_primary_10_1039_D1CP01704G
crossref_primary_10_1021_acsearthspacechem_2c00290
crossref_primary_10_1021_acs_inorgchem_3c04537
crossref_primary_10_1021_acscatal_9b00726
crossref_primary_10_1016_j_ijhydene_2021_08_228
crossref_primary_10_1002_qua_26840
crossref_primary_10_1002_adfm_202408821
crossref_primary_10_1002_ange_202317312
crossref_primary_10_1021_acs_jpcc_6b04555
crossref_primary_10_1007_s00894_023_05810_2
crossref_primary_10_1103_PhysRevE_109_L062103
crossref_primary_10_1007_s11224_022_02085_w
crossref_primary_10_1016_j_chemosphere_2018_08_152
crossref_primary_10_1016_j_comptc_2024_114800
crossref_primary_10_1016_j_rinp_2023_106852
crossref_primary_10_1021_acs_jpca_2c05913
crossref_primary_10_1080_02786826_2020_1839013
crossref_primary_10_1021_acs_jpca_4c08263
crossref_primary_10_3390_atmos11010035
crossref_primary_10_1016_j_jhazmat_2020_124567
crossref_primary_10_1021_acs_jpca_2c01672
crossref_primary_10_1021_acs_jpca_2c00585
crossref_primary_10_5194_ar_3_101_2025
crossref_primary_10_1021_acsomega_2c01396
crossref_primary_10_1039_D1CP02915K
crossref_primary_10_3390_ijms20122933
crossref_primary_10_2139_ssrn_3982283
crossref_primary_10_1007_s10876_017_1225_x
crossref_primary_10_6023_A24080234
crossref_primary_10_1016_j_diamond_2022_109602
crossref_primary_10_1007_s10876_022_02295_6
crossref_primary_10_1039_D1CP01609A
crossref_primary_10_1039_D3CP00758H
crossref_primary_10_1021_acs_jpclett_2c02875
crossref_primary_10_1002_cphc_202200935
crossref_primary_10_1021_acsomega_3c01177
crossref_primary_10_1007_s12039_022_02121_6
crossref_primary_10_1039_C7TA10549E
crossref_primary_10_1021_acs_inorgchem_2c03612
crossref_primary_10_1016_j_molliq_2024_126343
crossref_primary_10_1002_poc_4655
crossref_primary_10_1039_D0CP06472F
crossref_primary_10_1039_D2CP01494G
crossref_primary_10_1039_D2CP04925B
crossref_primary_10_1007_s00214_020_2556_5
crossref_primary_10_1007_s00214_022_02877_7
crossref_primary_10_1021_acs_jpca_0c03984
crossref_primary_10_1039_C5CP06313B
crossref_primary_10_1039_C9CP00444K
crossref_primary_10_1016_j_fuel_2025_134553
crossref_primary_10_3390_sym15010213
crossref_primary_10_1016_j_micromeso_2024_113289
crossref_primary_10_1080_00268976_2021_1919773
crossref_primary_10_1016_j_atmosenv_2017_07_039
crossref_primary_10_1021_acs_inorgchem_3c03836
crossref_primary_10_1134_S1990793121090153
crossref_primary_10_1039_D3CP01198D
crossref_primary_10_1002_jcc_27174
crossref_primary_10_1016_j_physleta_2024_129736
crossref_primary_10_1016_j_physleta_2024_129979
crossref_primary_10_1038_s42004_021_00468_4
crossref_primary_10_1039_D4RA07985J
crossref_primary_10_1021_acs_jctc_9b01107
crossref_primary_10_1016_j_comptc_2019_112635
crossref_primary_10_1016_j_jcat_2020_03_030
crossref_primary_10_1016_j_molliq_2023_123932
crossref_primary_10_1021_acs_jpclett_3c00246
crossref_primary_10_1016_j_jenvman_2023_119079
crossref_primary_10_1021_jacs_6b07246
crossref_primary_10_1021_acscatal_4c00314
crossref_primary_10_1002_prep_202000228
crossref_primary_10_1039_D2RA04037A
crossref_primary_10_1039_D4CP03118K
crossref_primary_10_1039_D1CP03241K
crossref_primary_10_1002_qua_26087
crossref_primary_10_1039_D0CP00028K
crossref_primary_10_1039_C8NR05517C
crossref_primary_10_1016_j_poly_2020_114856
crossref_primary_10_1039_D0CC05668E
crossref_primary_10_1039_D3RA01717F
crossref_primary_10_1016_j_comptc_2024_114847
crossref_primary_10_1021_acs_accounts_1c00774
crossref_primary_10_1039_D4RA02396J
crossref_primary_10_1021_acsomega_3c07600
crossref_primary_10_1016_j_jmgm_2021_107979
crossref_primary_10_1016_j_jes_2020_07_022
crossref_primary_10_1002_adom_202300715
crossref_primary_10_1016_j_molstruc_2024_138828
crossref_primary_10_1002_chem_202402008
crossref_primary_10_1016_j_atmosenv_2018_07_003
crossref_primary_10_1016_j_jhazmat_2024_134957
crossref_primary_10_1002_cphc_202300101
crossref_primary_10_1016_j_chemosphere_2020_126743
crossref_primary_10_1016_j_ijhydene_2019_10_001
crossref_primary_10_1073_pnas_1915459116
crossref_primary_10_3390_hydrogen5040035
crossref_primary_10_1080_00268976_2022_2131644
crossref_primary_10_1021_acs_jpcc_2c06910
crossref_primary_10_1021_acsomega_2c04278
crossref_primary_10_1007_s00706_022_02909_9
crossref_primary_10_1016_j_seppur_2025_131883
crossref_primary_10_1016_j_surfin_2024_103965
crossref_primary_10_1016_j_cplett_2022_140264
crossref_primary_10_1021_acs_chemmater_1c03836
crossref_primary_10_1039_C9NJ01659G
crossref_primary_10_1016_j_chemphys_2021_111097
crossref_primary_10_1021_acs_jpcc_9b05574
crossref_primary_10_1021_acs_jpca_3c05289
crossref_primary_10_1039_C8RA09492F
crossref_primary_10_1039_D4CP02205J
crossref_primary_10_1021_acs_inorgchem_8b02159
crossref_primary_10_1021_acs_jctc_4c01528
crossref_primary_10_1016_j_comptc_2020_112701
crossref_primary_10_5194_acp_25_2829_2025
crossref_primary_10_1007_s11663_024_03021_5
crossref_primary_10_1039_D0CP03507F
crossref_primary_10_1039_D2CP03583A
crossref_primary_10_1021_acs_inorgchem_3c02306
crossref_primary_10_1021_acs_jpca_4c05386
crossref_primary_10_1021_acs_jpca_6b09185
crossref_primary_10_1039_D3TA01699D
crossref_primary_10_3390_inorganics12020056
crossref_primary_10_1039_C8CP05823G
crossref_primary_10_1016_j_gca_2025_01_015
crossref_primary_10_1016_j_molliq_2020_114300
crossref_primary_10_1021_acs_jpca_0c08373
crossref_primary_10_1021_acs_langmuir_4c04572
crossref_primary_10_1016_j_cplett_2024_141814
crossref_primary_10_1039_D4CP04329D
crossref_primary_10_1016_j_saa_2024_124277
crossref_primary_10_1021_acsomega_3c07412
crossref_primary_10_1016_j_cplett_2024_141813
crossref_primary_10_1016_j_surfin_2024_103989
crossref_primary_10_1016_j_dib_2022_108024
crossref_primary_10_1039_D4CP01259C
crossref_primary_10_1021_acs_jpca_2c02809
crossref_primary_10_1021_acs_jpcc_5c00105
crossref_primary_10_1039_D5SC00812C
crossref_primary_10_1021_acs_jpca_9b03853
crossref_primary_10_1007_s00894_024_05906_3
crossref_primary_10_1002_chem_202400395
crossref_primary_10_1039_D1CP01418H
crossref_primary_10_1103_PhysRevResearch_4_L042045
crossref_primary_10_1088_1361_648X_aae3d1
crossref_primary_10_3390_molecules29112670
crossref_primary_10_1039_C9BM00516A
crossref_primary_10_1007_s10876_019_01609_5
crossref_primary_10_1021_acsomega_3c06794
crossref_primary_10_3390_molecules29143397
crossref_primary_10_1021_acsomega_1c07303
crossref_primary_10_1007_s10876_019_01541_8
crossref_primary_10_1007_s12039_023_02169_y
crossref_primary_10_1016_j_comptc_2024_114879
Cites_doi 10.1063/1.1534831
10.1039/a706221d
10.1016/j.commatsci.2004.07.009
10.1007/BF01340511
10.1103/PhysRevB.48.22
10.1103/PhysRevLett.75.288
10.1103/PhysRevE.60.3701
10.1103/PhysRevB.68.195418
10.1007/978-3-662-05094-1
10.1016/0166-1280(88)80133-7
10.1021/ic500991x
10.1016/j.ipl.2011.06.002
10.1038/nchem.1352
10.1098/rspa.1924.0082
10.1002/anie.201310637
10.1109/TEVC.2010.2059031
10.1039/b305686d
10.1063/1.472697
10.1007/s10462-012-9328-0
10.1103/PhysRevLett.113.156102
10.1016/j.cpc.2014.03.006
10.1016/S0010-4655(99)00259-3
10.1103/PhysRev.34.57
10.1021/ct400284d
10.1093/oso/9780195131581.001.0001
10.1021/jp970984n
10.1016/0009-2614(87)87091-4
10.1103/PhysRevLett.80.1357
10.1073/pnas.89.1.20
10.1063/1.480217
10.1021/cr00031a010
10.1063/1.4843956
10.1002/anie.200802743
10.1023/A:1024653025686
10.1103/PhysRevB.23.6265
10.1103/PhysRevB.59.2292
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
10.1103/PhysRevB.7.4707
10.1063/1.473751
10.1021/jp037780t
10.1063/1.4766821
10.1021/jp047807o
10.1103/PhysRevA.46.R2984
10.1016/j.engappai.2013.06.010
10.1021/jp0674165
10.1016/j.cplett.2013.07.066
10.14419/ijet.v2i3.1030
10.1007/BF01589116
10.1126/science.285.5432.1368
10.1103/PhysRevB.82.094116
10.1088/1367-2630/5/1/126
10.1088/0953-4075/29/21/002
10.1039/b106507f
10.1002/qua.24462
10.1051/jcp/1968650044
10.1016/j.amc.2009.03.090
10.1039/C5CP01198A
10.1016/0022-3093(93)90156-R
10.1103/PhysRevLett.74.1482
10.1039/c3cp44332a
10.1002/jcc.23235
10.1021/ct1007108
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1039/c5cp04060d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 24181
ExternalDocumentID 26327507
10_1039_C5CP04060D
c5cp04060d
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c434t-ad445a93463635bc59b25bb74b863da7955190d9dc7b42c5b5d219145df9b0ab3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 03:14:21 EDT 2025
Fri Jul 11 09:26:58 EDT 2025
Thu Apr 03 07:06:06 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Tue Jul 01 02:46:04 EDT 2025
Thu May 19 04:17:59 EDT 2016
Wed Jun 05 04:43:29 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-ad445a93463635bc59b25bb74b863da7955190d9dc7b42c5b5d219145df9b0ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26327507
PQID 1713941900
PQPubID 23479
PageCount 9
ParticipantIDs crossref_primary_10_1039_C5CP04060D
crossref_citationtrail_10_1039_C5CP04060D
pubmed_primary_26327507
rsc_primary_c5cp04060d
proquest_miscellaneous_1753487008
proquest_miscellaneous_1713941900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2015
References Das (C5CP04060D-(cit62)/*[position()=1]) 2011; 15
Wales (C5CP04060D-(cit1)/*[position()=1]) 1999; 285
Elrod (C5CP04060D-(cit38)/*[position()=1]) 1994; 94
Wales (C5CP04060D-(cit17)/*[position()=1]) 1997; 101
Schebarchov (C5CP04060D-(cit31)/*[position()=1]) 2014; 113
Chen (C5CP04060D-(cit61)/*[position()=1]) 2013; 34
Deaven (C5CP04060D-(cit24)/*[position()=1]) 1995; 75
Li (C5CP04060D-(cit66)/*[position()=1]) 2014; 27
Pahl (C5CP04060D-(cit5)/*[position()=1]) 2008; 47
Lennard-Jones (C5CP04060D-(cit42)/*[position()=1]) 1924; 106
Cleri (C5CP04060D-(cit72)/*[position()=1]) 1993; 48
Heiles (C5CP04060D-(cit26)/*[position()=1]) 2013; 113
Watari (C5CP04060D-(cit8)/*[position()=1]) 1997; 106
Fan (C5CP04060D-(cit60)/*[position()=1]) 2003; 27
Roberts (C5CP04060D-(cit73)/*[position()=1]) 2001; 3
Roduner (C5CP04060D-(cit4)/*[position()=1]) 2014; 53
Barker (C5CP04060D-(cit40)/*[position()=1]) 1973; 7
Häkkinen (C5CP04060D-(cit3)/*[position()=1]) 2012; 4
Levinthal (C5CP04060D-(cit12)/*[position()=1]) 1968; 65
C5CP04060D-(cit33)/*[position()=1]
Doye (C5CP04060D-(cit51)/*[position()=1]) 1996; 105
C5CP04060D-(cit69)/*[position()=1]
Dzugutov (C5CP04060D-(cit45)/*[position()=1]) 1992; 46
Doye (C5CP04060D-(cit48)/*[position()=1]) 1996; 29
Doye (C5CP04060D-(cit54)/*[position()=1]) 1998; 80
Schebarchov (C5CP04060D-(cit32)/*[position()=1]) 2015
Xiang (C5CP04060D-(cit15)/*[position()=1]) 2004; 108
Born (C5CP04060D-(cit41)/*[position()=1]) 1932; 75
Johnston (C5CP04060D-(cit25)/*[position()=1]) 2003
Liu (C5CP04060D-(cit59)/*[position()=1]) 1989; 45
(C5CP04060D-(cit2)/*[position()=1]) 2002
C5CP04060D-(cit36)/*[position()=1]
Schiffmann (C5CP04060D-(cit65)/*[position()=1]) 2011; 7
Doye (C5CP04060D-(cit76)/*[position()=1]) 2006; 35
Doye (C5CP04060D-(cit74)/*[position()=1]) 1997; 93
Erber (C5CP04060D-(cit10)/*[position()=1]) 1995; 74
Romero (C5CP04060D-(cit14)/*[position()=1]) 1999; 123
Lewis (C5CP04060D-(cit70)/*[position()=1]) 1985; 18
Doye (C5CP04060D-(cit53)/*[position()=1]) 2003; 68
Karaboga (C5CP04060D-(cit56)/*[position()=1]) 2009; 214
C5CP04060D-(cit35)/*[position()=1]
Gupta (C5CP04060D-(cit47)/*[position()=1]) 1981; 23
Miller (C5CP04060D-(cit52)/*[position()=1]) 1999; 60
von Rudorff (C5CP04060D-(cit68)/*[position()=1]) 2014; 185
Doye (C5CP04060D-(cit50)/*[position()=1]) 1999; 111
Paz-Borbón (C5CP04060D-(cit71)/*[position()=1]) 2007; 111
Dzugutov (C5CP04060D-(cit46)/*[position()=1]) 1993; 156–158
Wehmeyer (C5CP04060D-(cit67)/*[position()=1]) 2012; 137
Karaboga (C5CP04060D-(cit37)/*[position()=1]) 2005
Bonabeau (C5CP04060D-(cit64)/*[position()=1]) 1999
Morris (C5CP04060D-(cit55)/*[position()=1]) 1998; 19
Oakley (C5CP04060D-(cit18)/*[position()=1]) 2013; 15
Mullin (C5CP04060D-(cit6)/*[position()=1]) 2001
Morse (C5CP04060D-(cit43)/*[position()=1]) 1929; 34
Doye (C5CP04060D-(cit44)/*[position()=1]) 2003; 118
Gao (C5CP04060D-(cit63)/*[position()=1]) 2011; 111
Doye (C5CP04060D-(cit49)/*[position()=1]) 1999; 59
Wang (C5CP04060D-(cit29)/*[position()=1]) 2010; 82
Xiang (C5CP04060D-(cit16)/*[position()=1]) 2004; 108
Storn (C5CP04060D-(cit23)/*[position()=1]) 1995
Zwanzig (C5CP04060D-(cit11)/*[position()=1]) 1992; 89
Levinthal (C5CP04060D-(cit13)/*[position()=1]) 1969
Wales (C5CP04060D-(cit75)/*[position()=1]) 2013; 584
Holland (C5CP04060D-(cit22)/*[position()=1]) 1975
Schebarchov (C5CP04060D-(cit30)/*[position()=1]) 2013; 139
Eiben (C5CP04060D-(cit21)/*[position()=1]) 2003
Li (C5CP04060D-(cit19)/*[position()=1]) 1988; 179
Eberhart (C5CP04060D-(cit27)/*[position()=1]) 2001
Zhang (C5CP04060D-(cit39)/*[position()=1]) 2013; 9
Kennedy (C5CP04060D-(cit28)/*[position()=1]) 1995; 4
Zhang (C5CP04060D-(cit9)/*[position()=1]) 2014; 53
Terrones (C5CP04060D-(cit7)/*[position()=1]) 2003; 5
C5CP04060D-(cit34)/*[position()=1]
Wille (C5CP04060D-(cit20)/*[position()=1]) 1987; 133
Verma (C5CP04060D-(cit57)/*[position()=1]) 2013; 2
Karaboga (C5CP04060D-(cit58)/*[position()=1]) 2014; 42
References_xml – issn: 2005
  publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06
  doi: Karaboga
– issn: 2001
  publication-title: Swarm Intelligence
  doi: Eberhart Shi Kennedy
– issn: 2001
  end-page: p 216-288
  publication-title: Crystallization
  doi: Mullin
– issn: 2003
  publication-title: Introduction to Evolutionary Computing
  doi: Eiben Smith
– issn: 1969
  end-page: p 22-24
  publication-title: Mössbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois
  doi: Levinthal
– issn: 1975
  publication-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  doi: Holland
– issn: 1999
  publication-title: Swarm Intelligence: From Natural to Artificial Systems
  doi: Bonabeau Dorigo Theraulaz
– issn: 1995
  publication-title: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical report
  doi: Storn Price
– issn: 2002
  end-page: p 1-11
  publication-title: Atomic and Molecular Clusters
– volume: 118
  start-page: 2792
  year: 2003
  ident: C5CP04060D-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1534831
– volume: 93
  start-page: 4233
  year: 1997
  ident: C5CP04060D-(cit74)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a706221d
– volume: 35
  start-page: 227
  year: 2006
  ident: C5CP04060D-(cit76)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2004.07.009
– volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06
  year: 2005
  ident: C5CP04060D-(cit37)/*[position()=1]
– volume: 75
  start-page: 1
  year: 1932
  ident: C5CP04060D-(cit41)/*[position()=1]
  publication-title: Z. Physik
  doi: 10.1007/BF01340511
– volume: 48
  start-page: 22
  year: 1993
  ident: C5CP04060D-(cit72)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.22
– volume: 75
  start-page: 288
  year: 1995
  ident: C5CP04060D-(cit24)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.288
– volume: 60
  start-page: 3701
  year: 1999
  ident: C5CP04060D-(cit52)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.60.3701
– volume: 68
  start-page: 195418
  year: 2003
  ident: C5CP04060D-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.195418
– volume-title: Introduction to Evolutionary Computing
  year: 2003
  ident: C5CP04060D-(cit21)/*[position()=1]
  doi: 10.1007/978-3-662-05094-1
– volume: 179
  start-page: 333
  year: 1988
  ident: C5CP04060D-(cit19)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/0166-1280(88)80133-7
– volume: 53
  start-page: 7700
  year: 2014
  ident: C5CP04060D-(cit9)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500991x
– volume: 111
  start-page: 871
  year: 2011
  ident: C5CP04060D-(cit63)/*[position()=1]
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2011.06.002
– volume: 4
  start-page: 443
  year: 2012
  ident: C5CP04060D-(cit3)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 106
  start-page: 463
  year: 1924
  ident: C5CP04060D-(cit42)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1924.0082
– volume: 53
  start-page: 4318
  year: 2014
  ident: C5CP04060D-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310637
– volume: 15
  start-page: 4
  year: 2011
  ident: C5CP04060D-(cit62)/*[position()=1]
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume-title: Atomic and Molecular Clusters
  year: 2002
  ident: C5CP04060D-(cit2)/*[position()=1]
– start-page: 4193
  year: 2003
  ident: C5CP04060D-(cit25)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/b305686d
– volume: 105
  start-page: 8428
  year: 1996
  ident: C5CP04060D-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472697
– volume: 42
  start-page: 21
  year: 2014
  ident: C5CP04060D-(cit58)/*[position()=1]
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 113
  start-page: 156102
  year: 2014
  ident: C5CP04060D-(cit31)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.156102
– volume-title: Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical report
  year: 1995
  ident: C5CP04060D-(cit23)/*[position()=1]
– ident: C5CP04060D-(cit34)/*[position()=1]
– volume: 185
  start-page: 1639
  year: 2014
  ident: C5CP04060D-(cit68)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.03.006
– volume: 123
  start-page: 87
  year: 1999
  ident: C5CP04060D-(cit14)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(99)00259-3
– volume: 34
  start-page: 57
  year: 1929
  ident: C5CP04060D-(cit43)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.34.57
– volume: 4
  start-page: 1942
  year: 1995
  ident: C5CP04060D-(cit28)/*[position()=1]
  publication-title: Proc. IEEE Int. Conf.
– volume-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  year: 1975
  ident: C5CP04060D-(cit22)/*[position()=1]
– volume: 9
  start-page: 2992
  year: 2013
  ident: C5CP04060D-(cit39)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400284d
– volume-title: Swarm Intelligence: From Natural to Artificial Systems
  year: 1999
  ident: C5CP04060D-(cit64)/*[position()=1]
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 18
  start-page: 1149
  year: 1985
  ident: C5CP04060D-(cit70)/*[position()=1]
  publication-title: J. Phys. Chem. C
– volume: 101
  start-page: 5111
  year: 1997
  ident: C5CP04060D-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970984n
– ident: C5CP04060D-(cit69)/*[position()=1]
– volume: 133
  start-page: 405
  year: 1987
  ident: C5CP04060D-(cit20)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)87091-4
– volume: 80
  start-page: 1357
  year: 1998
  ident: C5CP04060D-(cit54)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1357
– volume: 89
  start-page: 20
  year: 1992
  ident: C5CP04060D-(cit11)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.1.20
– ident: C5CP04060D-(cit33)/*[position()=1]
– volume: 111
  start-page: 8417
  year: 1999
  ident: C5CP04060D-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480217
– volume: 94
  start-page: 1975
  year: 1994
  ident: C5CP04060D-(cit38)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00031a010
– volume: 139
  start-page: 221101
  year: 2013
  ident: C5CP04060D-(cit30)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4843956
– volume: 47
  start-page: 8207
  year: 2008
  ident: C5CP04060D-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802743
– volume: 27
  start-page: 105
  year: 2003
  ident: C5CP04060D-(cit60)/*[position()=1]
  publication-title: J. Global Optim.
  doi: 10.1023/A:1024653025686
– volume: 23
  start-page: 6265
  year: 1981
  ident: C5CP04060D-(cit47)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.23.6265
– volume: 59
  start-page: 2292
  year: 1999
  ident: C5CP04060D-(cit49)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.2292
– volume: 19
  start-page: 1639
  year: 1998
  ident: C5CP04060D-(cit55)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
– volume: 7
  start-page: 4707
  year: 1973
  ident: C5CP04060D-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.7.4707
– volume: 106
  start-page: 7531
  year: 1997
  ident: C5CP04060D-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473751
– volume: 108
  start-page: 3586
  year: 2004
  ident: C5CP04060D-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp037780t
– volume: 137
  start-page: 194110
  year: 2012
  ident: C5CP04060D-(cit67)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4766821
– volume: 108
  start-page: 9516
  year: 2004
  ident: C5CP04060D-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp047807o
– volume: 46
  start-page: R2984
  year: 1992
  ident: C5CP04060D-(cit45)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.46.R2984
– volume: 27
  start-page: 70
  year: 2014
  ident: C5CP04060D-(cit66)/*[position()=1]
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.06.010
– volume: 111
  start-page: 2936
  year: 2007
  ident: C5CP04060D-(cit71)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0674165
– volume: 584
  start-page: 1
  year: 2013
  ident: C5CP04060D-(cit75)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.07.066
– volume-title: Swarm Intelligence
  year: 2001
  ident: C5CP04060D-(cit27)/*[position()=1]
– volume: 2
  start-page: 175
  year: 2013
  ident: C5CP04060D-(cit57)/*[position()=1]
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v2i3.1030
– volume: 45
  start-page: 503
  year: 1989
  ident: C5CP04060D-(cit59)/*[position()=1]
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 285
  start-page: 1368
  year: 1999
  ident: C5CP04060D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.285.5432.1368
– volume: 82
  start-page: 094116
  year: 2010
  ident: C5CP04060D-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.094116
– ident: C5CP04060D-(cit36)/*[position()=1]
– volume: 5
  start-page: 126
  year: 2003
  ident: C5CP04060D-(cit7)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/5/1/126
– volume: 29
  start-page: 4859
  year: 1996
  ident: C5CP04060D-(cit48)/*[position()=1]
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/29/21/002
– volume: 3
  start-page: 5024
  year: 2001
  ident: C5CP04060D-(cit73)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b106507f
– volume: 113
  start-page: 2091
  year: 2013
  ident: C5CP04060D-(cit26)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24462
– volume: 65
  start-page: 44
  year: 1968
  ident: C5CP04060D-(cit12)/*[position()=1]
  publication-title: J. Chim. Phys. Phys. – Chim. Biol.
  doi: 10.1051/jcp/1968650044
– volume: 214
  start-page: 108
  year: 2009
  ident: C5CP04060D-(cit56)/*[position()=1]
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– year: 2015
  ident: C5CP04060D-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01198A
– volume: 156–158
  start-page: 173
  year: 1993
  ident: C5CP04060D-(cit46)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(93)90156-R
– volume: 74
  start-page: 1482
  year: 1995
  ident: C5CP04060D-(cit10)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.1482
– volume-title: Mössbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois
  year: 1969
  ident: C5CP04060D-(cit13)/*[position()=1]
– volume: 15
  start-page: 3965
  year: 2013
  ident: C5CP04060D-(cit18)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44332a
– volume-title: Crystallization
  year: 2001
  ident: C5CP04060D-(cit6)/*[position()=1]
– ident: C5CP04060D-(cit35)/*[position()=1]
– volume: 34
  start-page: 1046
  year: 2013
  ident: C5CP04060D-(cit61)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23235
– volume: 7
  start-page: 1307
  year: 2011
  ident: C5CP04060D-(cit65)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1007108
SSID ssj0001513
Score 2.6234832
Snippet Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24173
SubjectTerms Algorithms
Animals
Bees - physiology
Biomimetics
Chemists
Clusters
Forages
Functions (mathematics)
Mathematical analysis
Optimization
Swarm intelligence
Title ABCluster: the artificial bee colony algorithm for cluster global optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/26327507
https://www.proquest.com/docview/1713941900
https://www.proquest.com/docview/1753487008
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Nb9MwFMAt2A5wQXyNZXzICC4IBZLaTmpuJes0plJ6SKXeothOBlLWVF164a_nOXacwCo0uFip6yaRf-7ze7bfewi9DeRYyDCQfsT1NqMuxqKM_DgI86JkYUmV3tH9Oo_Ol_RixVZ9mrvWu6QRH-TPvX4l_0MV6oCr9pL9B7LuplAB18AXSiAM5a0YTz4n1a5NrWFPZ-g2NiSEKPQ59AqM-_d5dVlvfzTfr9ozhdL8pAsFUoPMuLLOmENNddEBlF1KOHOlq8xyyHW7nLBIEuci5lafL3ZuzJ3W1eWf5_PtKkPIBqsMRjDSiPhgSNuw1cM6k-LNSdN4MGpMPJdONtLQZC2xEy18NtlabkjxgOggqJLJDYiYKFD9XNXtz8-_ZWfL2SxLp6v0LjocgY0AQu5wMk2_zNxEDMoMMc5l5tW76LSEf-zv_bs-csPIAJVj26WCaVWO9CF6YG0FPDHgH6E7xfoxupd0PJ6guRsAnzDgxz1-DPixwY8dfgz4scWPDX48xP8ULc-maXLu2wQZvqSENn6uKGU5JzroG2FCMi5GTIiYinFEVB5zUId5oLiSsaAjyQRTIx3Pj6mSiyAX5AgdrOt1cYywBNO2FDloezk0zQsuSxpHAVUxlyouCw-967opkzZ6vE5iUmXtKQbCs4Qli7ZLTz30xrXdmJgpe1u97no7g27T-1T5uqh311kYg1lC4c2Dv7VhBGxt0GA99Mygcs_SKQhAEY49dATsXHXP3EMn-7_INqo8ucUzn6P7_Z_kBTpotrviJSinjXhlB-EvDYaPcg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCluster%3A+the+artificial+bee+colony+algorithm+for+cluster+global+optimization&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhang%2C+Jun&rft.au=Dolg%2C+Michael&rft.date=2015-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=17&rft.issue=37&rft.spage=24173&rft.epage=24181&rft_id=info:doi/10.1039%2Fc5cp04060d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon