Mushy-layer growth and convection, with application to sea ice
Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the evolving material properties and fluid transport through the porous ice, with consequences for ice growth, brine drainage from the ice to provide bu...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 377; no. 2146; p. 20180165 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
03.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the evolving material properties and fluid transport through the porous ice, with consequences for ice growth, brine drainage from the ice to provide buoyancy fluxes for the polar oceans, and sea-ice biogeochemistry. We review work on the growth of mushy layers and convective flows driven by density gradients in the interstitial fluid. After introducing the fundamentals of mushy-layer theory, we discuss the effective thermal properties, including the impact of salt transport on mushy-layer growth. We present a simplified model for diffusively controlled growth of mushy layers with modest cooling versus the solutal freezing-point depression. For growth from a cold isothermal boundary, salt diffusion modifies mushy-layer growth by around 5-20% depending on the far-field temperature and salinity. We also review work on the onset, spatial localization and nonlinear development of convective flows in mushy layers, highlighting recent work on transient solidification and models of nonlinear convection with dissolved solid-free brine channels. Finally, future research opportunities are identified, motivated by geophysical observations of ice growth. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'. |
---|---|
AbstractList | Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the evolving material properties and fluid transport through the porous ice, with consequences for ice growth, brine drainage from the ice to provide buoyancy fluxes for the polar oceans, and sea-ice biogeochemistry. We review work on the growth of mushy layers and convective flows driven by density gradients in the interstitial fluid. After introducing the fundamentals of mushy-layer theory, we discuss the effective thermal properties, including the impact of salt transport on mushy-layer growth. We present a simplified model for diffusively controlled growth of mushy layers with modest cooling versus the solutal freezing-point depression. For growth from a cold isothermal boundary, salt diffusion modifies mushy-layer growth by around 5–20% depending on the far-field temperature and salinity. We also review work on the onset, spatial localization and nonlinear development of convective flows in mushy layers, highlighting recent work on transient solidification and models of nonlinear convection with dissolved solid-free brine channels. Finally, future research opportunities are identified, motivated by geophysical observations of ice growth.
This article is part of the theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’. Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the evolving material properties and fluid transport through the porous ice, with consequences for ice growth, brine drainage from the ice to provide buoyancy fluxes for the polar oceans, and sea-ice biogeochemistry. We review work on the growth of mushy layers and convective flows driven by density gradients in the interstitial fluid. After introducing the fundamentals of mushy-layer theory, we discuss the effective thermal properties, including the impact of salt transport on mushy-layer growth. We present a simplified model for diffusively controlled growth of mushy layers with modest cooling versus the solutal freezing-point depression. For growth from a cold isothermal boundary, salt diffusion modifies mushy-layer growth by around 5-20% depending on the far-field temperature and salinity. We also review work on the onset, spatial localization and nonlinear development of convective flows in mushy layers, highlighting recent work on transient solidification and models of nonlinear convection with dissolved solid-free brine channels. Finally, future research opportunities are identified, motivated by geophysical observations of ice growth. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'. |
Author | Parkinson, James R G Wells, Andrew J Hitchen, Joseph R |
AuthorAffiliation | Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK |
AuthorAffiliation_xml | – name: Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK |
Author_xml | – sequence: 1 givenname: Andrew J surname: Wells fullname: Wells, Andrew J organization: Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK – sequence: 2 givenname: Joseph R surname: Hitchen fullname: Hitchen, Joseph R organization: Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK – sequence: 3 givenname: James R G surname: Parkinson fullname: Parkinson, James R G organization: Department of Physics , University of Oxford , Clarendon Lab , Parks Road , Oxford OX1 3PU , UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30982459$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkMtLw0AQxhep2IdePUqOHkzcV7bdS0GKL6h4UfC2bDaTNpLuxt2kpf-9Ca2ipxlmvvm-4TdGA-ssIHRJcEKwnN360OiEYjJLMBHpCRoRPiUxlYIOup4JHqeYfQzROIRPjEmnoWdoyLpTylM5QvOXNqz3caX34KOVd7tmHWmbR8bZLZimdPYm2pX9sK6r0uh-EjUuCqCj0sA5Oi10FeDiWCfo_eH-bfEUL18fnxd3y9hwxptYZxku-JRTg_NMZsYIUtA0J4zPsJGYMRCpASk5LvRUFyYtDIDQGnhBqGGMTdD84Fu32QZyA7bxulK1Lzfa75XTpfq_seVardxWiRQTSURncH008O6rhdCoTRkMVJW24NqgKCW444NFn5UcpMa7EDwUvzEEqx666qGrHrrqoXcHV3-f-5X_UGbf_3yBfw |
CitedBy_id | crossref_primary_10_1016_j_aej_2023_03_009 crossref_primary_10_1029_2020JE006741 crossref_primary_10_1063_PT_3_4940 crossref_primary_10_1103_PhysRevFluids_7_043503 crossref_primary_10_1140_epje_s10189_023_00390_8 crossref_primary_10_15407_itm2021_03_119 crossref_primary_10_1088_2515_7620_ac49a8 crossref_primary_10_3847_PSJ_acea75 crossref_primary_10_1017_jfm_2021_449 crossref_primary_10_1029_2021GL097602 crossref_primary_10_1089_ast_2021_0044 crossref_primary_10_1017_jfm_2024_150 crossref_primary_10_1007_s00033_023_02019_4 crossref_primary_10_1007_s42985_024_00290_2 crossref_primary_10_3390_fluids7060186 crossref_primary_10_1017_jfm_2023_215 crossref_primary_10_1029_2022JE007389 crossref_primary_10_1029_2022JC018875 crossref_primary_10_1146_annurev_fluid_010719_060332 crossref_primary_10_1098_rsta_2019_0138 |
Cites_doi | 10.1017/S0022112001007558 10.1017/jfm.2012.462 10.1017/S0022112007009469 10.1029/2006GL026262 10.1098/rsta.2014.0166 10.1017/S0022112009992709 10.1126/science.1088692 10.3189/2012JoG10J218 10.1017/S0022112008002991 10.1029/92JB00016 10.1017/S0022112006009098 10.1017/S0022112097008264 10.1029/1999JC900269 10.1016/j.quascirev.2013.04.011 10.1146/annurev-fluid-122316-045042 10.1017/S0022112086002938 10.1016/j.ocemod.2013.10.004 10.1016/j.jcrysgro.2008.04.046 10.1017/S0022112097007878 10.1029/2012GL054301 10.1146/annurev.fluid.29.1.91 10.5194/tc-5-989-2011 10.1017/CBO9780511608803 10.1017/S0022112094000443 10.1016/j.jcp.2007.09.032 10.1017/S0022112011000103 10.1017/S0022112097006022 10.1017/jfm.2016.149 10.1017/S002211209900539X 10.1016/j.coldregions.2014.12.011 10.1017/S0022112005007998 10.1029/2010GL046288 10.1016/j.crme.2004.02.001 10.1063/1.4760256 10.1016/j.jcp.2008.06.039 10.5194/os-14-127-2018 10.1007/978-0-387-78335-2 10.1103/PhysRevLett.105.254502 10.1017/S0022143000013460 10.1017/S0022112008000219 10.1038/ngeo2749 10.1029/2008JC004885 10.1029/94JC01194 10.1017/jfm.2017.382 10.1017/jfm.2012.541 10.1017/jfm.2012.219 10.1017/jog.2015.1 10.1007/s11814-008-0036-z 10.1007/s11814-013-0013-z 10.1029/2012JC007962 10.1029/2006GL026290 10.1029/2007GL030447 10.1017/S0022112008003339 10.1017/S0022112005006221 10.1002/2013JC009296 10.1063/1.3541840 10.1017/S0022112005008451 10.1017/S0022112095003107 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) 2019 |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1098/rsta.2018.0165 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
DocumentTitleAlternate | Mushy layer growth and convection |
EISSN | 1471-2962 |
EndPage | 20180165 |
ExternalDocumentID | 10_1098_rsta_2018_0165 30982459 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: PCIG13-GA-2013-618610 – fundername: ; grantid: NE/L501530/1; NE/I528493/1; NE/L002612/1 – fundername: ; grantid: IE141071 |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACIWK ACMTB ACNCT ACQIA ACTMH ADACV ADBBV ADODI AEUPB AEXZC AFVYC ALMA_UNASSIGNED_HOLDINGS ALMYZ AQVQM BTFSW DCCCD DIK DOOOF DQDLB DSRWC EBS ECEWR EJD F5P H13 HH5 HQ6 HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST KQ8 MRS MV1 NPM NSAHA O9- OK1 OP1 P2P RHF RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c434t-abb0f4742c0db9bcc61f25d13480c9033e65ce9940fa7afc5fcee6aae4f12c333 |
ISSN | 1364-503X |
IngestDate | Tue Sep 17 21:22:52 EDT 2024 Fri Oct 25 07:53:36 EDT 2024 Thu Sep 26 19:33:15 EDT 2024 Sat Sep 28 08:32:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2146 |
Keywords | convection mushy-layer solidification sea ice |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-abb0f4742c0db9bcc61f25d13480c9033e65ce9940fa7afc5fcee6aae4f12c333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4416437. One contribution of 11 to a theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’. |
ORCID | 0000-0001-7929-6227 0000-0003-1788-3973 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0165 |
PMID | 30982459 |
PQID | 2210001063 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501916 proquest_miscellaneous_2210001063 crossref_primary_10_1098_rsta_2018_0165 pubmed_primary_30982459 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-03 |
PublicationDateYYYYMMDD | 2019-06-03 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2019 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 Neufeld JA (e_1_3_6_37_2) 2006; 549 Thomas DN (e_1_3_6_2_2) 2010 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_59_2 e_1_3_6_11_2 Worster MG (e_1_3_6_8_2) 2000 e_1_3_6_17_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_65_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_63_2 e_1_3_6_61_2 e_1_3_6_4_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 Neufeld JA (e_1_3_6_35_2) 2008; 612 e_1_3_6_23_2 e_1_3_6_44_2 Neufeld JA (e_1_3_6_34_2) 2008; 612 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 e_1_3_6_14_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_64_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_60_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_41_2 doi: 10.1017/S0022112001007558 – ident: e_1_3_6_54_2 doi: 10.1017/jfm.2012.462 – ident: e_1_3_6_33_2 doi: 10.1017/S0022112007009469 – ident: e_1_3_6_62_2 doi: 10.1029/2006GL026262 – ident: e_1_3_6_6_2 doi: 10.1098/rsta.2014.0166 – ident: e_1_3_6_39_2 doi: 10.1017/S0022112009992709 – ident: e_1_3_6_60_2 doi: 10.1126/science.1088692 – ident: e_1_3_6_32_2 doi: 10.3189/2012JoG10J218 – volume: 612 start-page: 339 year: 2008 ident: e_1_3_6_34_2 article-title: Shear-enhanced convection in a mushy layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112008002991 contributor: fullname: Neufeld JA – ident: e_1_3_6_31_2 doi: 10.1029/92JB00016 – ident: e_1_3_6_38_2 doi: 10.1017/S0022112006009098 – ident: e_1_3_6_17_2 – ident: e_1_3_6_25_2 doi: 10.1017/S0022112097008264 – ident: e_1_3_6_51_2 doi: 10.1029/1999JC900269 – ident: e_1_3_6_5_2 doi: 10.1016/j.quascirev.2013.04.011 – ident: e_1_3_6_43_2 doi: 10.1146/annurev-fluid-122316-045042 – ident: e_1_3_6_18_2 doi: 10.1017/S0022112086002938 – ident: e_1_3_6_65_2 doi: 10.1016/j.ocemod.2013.10.004 – ident: e_1_3_6_24_2 doi: 10.1016/j.jcrysgro.2008.04.046 – start-page: 393 volume-title: Perspectives in fluid dynamics: a collective introduction to current research year: 2000 ident: e_1_3_6_8_2 contributor: fullname: Worster MG – ident: e_1_3_6_40_2 doi: 10.1017/S0022112097007878 – ident: e_1_3_6_55_2 doi: 10.1029/2012GL054301 – ident: e_1_3_6_7_2 doi: 10.1146/annurev.fluid.29.1.91 – ident: e_1_3_6_4_2 doi: 10.5194/tc-5-989-2011 – volume: 549 start-page: 442 year: 2006 ident: e_1_3_6_37_2 article-title: Flow-induced morphological instability of a mushy layer—Corrigendum publication-title: J. Fluid Mech. contributor: fullname: Neufeld JA – ident: e_1_3_6_44_2 doi: 10.1017/CBO9780511608803 – ident: e_1_3_6_47_2 doi: 10.1017/S0022112094000443 – ident: e_1_3_6_58_2 doi: 10.1016/j.jcp.2007.09.032 – ident: e_1_3_6_12_2 – ident: e_1_3_6_19_2 doi: 10.1017/S0022112011000103 – ident: e_1_3_6_50_2 doi: 10.1017/S0022112097006022 – ident: e_1_3_6_46_2 doi: 10.1017/jfm.2016.149 – ident: e_1_3_6_36_2 doi: 10.1017/S002211209900539X – ident: e_1_3_6_29_2 doi: 10.1016/j.coldregions.2014.12.011 – ident: e_1_3_6_15_2 doi: 10.1017/S0022112005007998 – ident: e_1_3_6_53_2 doi: 10.1029/2010GL046288 – ident: e_1_3_6_56_2 doi: 10.1016/j.crme.2004.02.001 – ident: e_1_3_6_26_2 doi: 10.1063/1.4760256 – ident: e_1_3_6_57_2 doi: 10.1016/j.jcp.2008.06.039 – ident: e_1_3_6_64_2 doi: 10.5194/os-14-127-2018 – ident: e_1_3_6_59_2 doi: 10.1007/978-0-387-78335-2 – ident: e_1_3_6_42_2 doi: 10.1103/PhysRevLett.105.254502 – volume-title: Sea ice year: 2010 ident: e_1_3_6_2_2 contributor: fullname: Thomas DN – ident: e_1_3_6_28_2 doi: 10.1017/S0022143000013460 – ident: e_1_3_6_23_2 doi: 10.1017/S0022112008000219 – ident: e_1_3_6_61_2 doi: 10.1038/ngeo2749 – ident: e_1_3_6_11_2 doi: 10.1029/2008JC004885 – ident: e_1_3_6_21_2 – ident: e_1_3_6_20_2 doi: 10.1029/94JC01194 – ident: e_1_3_6_45_2 doi: 10.1017/jfm.2017.382 – ident: e_1_3_6_52_2 doi: 10.1017/jfm.2012.541 – ident: e_1_3_6_9_2 doi: 10.1017/jfm.2012.219 – ident: e_1_3_6_27_2 doi: 10.1017/jog.2015.1 – ident: e_1_3_6_48_2 doi: 10.1007/s11814-008-0036-z – ident: e_1_3_6_49_2 doi: 10.1007/s11814-013-0013-z – ident: e_1_3_6_63_2 doi: 10.1029/2012JC007962 – ident: e_1_3_6_3_2 doi: 10.1029/2006GL026290 – ident: e_1_3_6_14_2 doi: 10.1029/2007GL030447 – volume: 612 start-page: 363 year: 2008 ident: e_1_3_6_35_2 article-title: An experimental study of shear-enhanced convection in a mushy layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112008003339 contributor: fullname: Neufeld JA – ident: e_1_3_6_22_2 doi: 10.1017/S0022112005006221 – ident: e_1_3_6_13_2 doi: 10.1002/2013JC009296 – ident: e_1_3_6_16_2 doi: 10.1063/1.3541840 – ident: e_1_3_6_30_2 doi: 10.1017/S0022112005008451 – ident: e_1_3_6_10_2 doi: 10.1017/S0022112095003107 |
SSID | ssj0011652 |
Score | 2.452953 |
Snippet | Sea ice is a reactive porous medium of ice crystals and liquid brine, which is an example of a mushy layer. The phase behaviour of sea ice controls the... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 20180165 |
SubjectTerms | Review |
Title | Mushy-layer growth and convection, with application to sea ice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30982459 https://search.proquest.com/docview/2210001063 https://pubmed.ncbi.nlm.nih.gov/PMC6501916 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGg8IDYuKzcZCQlQl5I4Thq_ICEEqkBFgDaxt8hxHDapSyeSIsHf4Y9yju3EzQYS8BKlSepU_r6ec-xzI-SxKkErypIHUYRuRhXCXyoVOogkaIesAqWUYKLw4n06P-Rvj5Kj0ejnRtTSui2m6sdv80r-B1W4Brhiluw_INsPChfgHPCFIyAMx7_CeLFujr8HSwlm8-QLrKf7NLX6m4mwMhLFZq95PzVamyY_Ug2igD50PQ0Maq1vI950YQR2p6EL80TfgmkFMkV5A-vtidmqX_RlYE0nAbdzYs_xt2lf_3DitG9v1X_Wy2Xjoyy9x2p-gtyqvcfChzli1nafwGZCfiefXL8wt5eB6VNpEFr5pq38BV0ZMDEU0LFr9GKZyLo9SydxsQJZZPtNXFAHocAUB0wRwiC-bHr-QZiXs1NDjhgeZdwVJx8W4O5uXSKXGUgzjBt899G7qmBI1lcDzZ4PX7ZNrnZfHxo-F1Yz54NyN6ycgxvkulue0JeWaztkpOtdcm2jaCV88hA3u-SKCSHGsx2nJhr61NUyf3aTvNigKLUUpUAD6im6T5GgdIOgtF1RICgFgt4ih29eH7yaB65lR6B4zNtAFkVY8RlnKiwLUSiVRhVLyijmWahEGMc6TZQWgoeVnMlKJRUYaamUmlcRU3Ec3yZb9arWe4RWaaVKJQoeMsGTpBQyy6QOE8VZOdOMj8mTbj7zM1uZJbcRFVmOIOQIQo4gjMmjbrpzEJ7oEZO1Xq2bnDF0b0Vgpo_JHTv9_VgdbmMyGwDTP4CF2Yd36pNjU6AdVj0RLLvu_nHMe2Tb0_8-2Wq_rvUDMG7b4qEh1y9rmqdu |
link.rule.ids | 230,315,783,787,888,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mushy-layer+growth+and+convection%2C+with+application+to+sea+ice&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Wells%2C+Andrew+J&rft.au=Hitchen%2C+Joseph+R&rft.au=Parkinson%2C+James+R+G&rft.date=2019-06-03&rft.eissn=1471-2962&rft.volume=377&rft.issue=2146&rft.spage=20180165&rft_id=info:doi/10.1098%2Frsta.2018.0165&rft_id=info%3Apmid%2F30982459&rft.externalDocID=30982459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |