A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds

•Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is propose...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics sonochemistry Vol. 34; pp. 130 - 135
Main Authors Zhai, W., Liu, H.M., Hong, Z.Y., Xie, W.J., Wei, B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text
ISSN1350-4177
1873-2828
1873-2828
DOI10.1016/j.ultsonch.2016.05.025

Cover

Loading…
Abstract •Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is proposed to fabricate materials. When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.
AbstractList When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.
When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.
•Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is proposed to fabricate materials. When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.
Author Wei, B.
Xie, W.J.
Liu, H.M.
Zhai, W.
Hong, Z.Y.
Author_xml – sequence: 1
  givenname: W.
  surname: Zhai
  fullname: Zhai, W.
– sequence: 2
  givenname: H.M.
  surname: Liu
  fullname: Liu, H.M.
– sequence: 3
  givenname: Z.Y.
  surname: Hong
  fullname: Hong, Z.Y.
– sequence: 4
  givenname: W.J.
  surname: Xie
  fullname: Xie, W.J.
– sequence: 5
  givenname: B.
  surname: Wei
  fullname: Wei, B.
  email: bwei@nwpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27773228$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtu3SAURVGVqHn1FyKGndgFbAxIHTSK-pIiddKMEcbHvVxhSHi0yt-X5CYddJIRB2ntrXPWGToKMQBCl5T0lNDpw76vvuQY7K5n7d8T3hPG36BTKsXQMcnkUZsHTrqRCnGCznLeE0IGxchbdMKEEANj8hTpKxzqBslZ43F2W_WmuBhwXLGxsebiLF4d-AX_cWXnAvbuvrol41znPdiCS8RllwBwTGUXf8XQetpqyeRYw5Iv0PFqfIZ3z-85uv3y-ef1t-7mx9fv11c3nR2HsXRKjYLDqAyj1jKySpgmWCdLlaKSr5bMQtKZKkaVBGL5TM2i1mkGbglTMx_O0ftD712K9xVy0ZvLFrw3AdoZmsqBc8YHJhp6-YzWeYNF3yW3mfSgX6Q0YDoANsWcE6z_EEr0o3291y_29aN9Tbhu9lvw439B68qTz-bD-dfjnw5xaKJ-O0g6WwfBwuJSU62X6F6r-AugZ6bw
CitedBy_id crossref_primary_10_1016_j_actamat_2022_118382
crossref_primary_10_1111_1541_4337_12919
crossref_primary_10_1515_revce_2021_0086
crossref_primary_10_1016_j_cep_2023_109372
crossref_primary_10_1007_s11431_018_9490_y
crossref_primary_10_1016_j_lwt_2025_117429
crossref_primary_10_1063_5_0135344
crossref_primary_10_1088_1674_1056_abf4bb
crossref_primary_10_1111_jfpe_14676
crossref_primary_10_1016_j_matlet_2017_04_102
crossref_primary_10_1016_j_ultsonch_2022_106253
crossref_primary_10_1016_j_jfoodeng_2020_110112
crossref_primary_10_1007_s11431_018_9383_3
crossref_primary_10_1007_s41230_023_2146_y
crossref_primary_10_1016_j_jmatprotec_2018_06_025
crossref_primary_10_1088_0256_307X_36_9_094301
crossref_primary_10_1111_1541_4337_12328
crossref_primary_10_3390_foods11182874
crossref_primary_10_1039_C7RA00052A
crossref_primary_10_7498_aps_70_20211244
crossref_primary_10_1016_j_ultsonch_2017_12_053
crossref_primary_10_1063_1_5118319
crossref_primary_10_1016_j_cej_2023_143070
crossref_primary_10_1016_S1003_6326_24_66684_7
crossref_primary_10_1360_SST_2022_0018
crossref_primary_10_1038_srep36718
crossref_primary_10_1016_j_jmst_2019_10_035
crossref_primary_10_1016_j_ultsonch_2024_106798
crossref_primary_10_1016_j_jfoodeng_2025_112581
crossref_primary_10_1016_j_jmst_2017_07_018
crossref_primary_10_3390_foods12173259
crossref_primary_10_1016_j_seppur_2023_125773
crossref_primary_10_1016_j_msea_2022_144153
crossref_primary_10_1016_j_cej_2025_161696
crossref_primary_10_1016_j_ultsonch_2018_11_008
crossref_primary_10_1016_j_cep_2022_109186
crossref_primary_10_1016_j_ultsonch_2018_08_002
crossref_primary_10_1016_j_ultsonch_2017_12_024
crossref_primary_10_1007_s40962_024_01419_0
crossref_primary_10_1016_j_ultsonch_2018_07_015
crossref_primary_10_1016_j_ultsonch_2024_107197
crossref_primary_10_1016_j_colsurfa_2025_136375
crossref_primary_10_1016_j_fochx_2023_100704
crossref_primary_10_1016_j_ultsonch_2022_106185
crossref_primary_10_1016_j_ultsonch_2023_106484
crossref_primary_10_1088_1757_899X_254_16_162004
crossref_primary_10_1088_0256_307X_36_8_084302
crossref_primary_10_7498_aps_66_194303
crossref_primary_10_1016_j_conbuildmat_2024_137089
crossref_primary_10_1016_j_jmatprotec_2020_116846
crossref_primary_10_1016_j_ultsonch_2024_107070
Cites_doi 10.1016/S0009-2509(98)00340-6
10.1016/j.matdes.2015.02.017
10.1016/j.cej.2015.12.050
10.1016/j.ultsonch.2013.11.012
10.1016/j.matlet.2014.11.087
10.1007/s11661-010-0232-4
10.1039/B503848K
10.1016/j.ultsonch.2013.12.024
10.1038/352318a0
10.1016/j.ultsonch.2006.01.001
10.1016/S0041-624X(99)00204-8
10.1103/PhysRevE.92.023019
10.1016/S1350-4177(96)00021-1
10.1126/science.247.4949.1439
10.1016/j.ultsonch.2012.05.011
10.1016/j.ultsonch.2004.06.011
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ultsonch.2016.05.025
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
EndPage 135
ExternalDocumentID 27773228
10_1016_j_ultsonch_2016_05_025
S1350417716301675
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c434t-99475e49a21cc20f8e66ef6c199185fc0b781b192198e0c5b1ad9f6be5c029b53
IEDL.DBID .~1
ISSN 1350-4177
1873-2828
IngestDate Fri Sep 05 08:12:38 EDT 2025
Thu Apr 03 07:07:59 EDT 2025
Tue Jul 01 03:32:59 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Fri Feb 23 02:31:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Acoustic energy density
Cavitation
Power ultrasound
Sound pressure
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-99475e49a21cc20f8e66ef6c199185fc0b781b192198e0c5b1ad9f6be5c029b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27773228
PQID 1835525327
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1835525327
pubmed_primary_27773228
crossref_primary_10_1016_j_ultsonch_2016_05_025
crossref_citationtrail_10_1016_j_ultsonch_2016_05_025
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2016_05_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References W. Zhai, B.J. Wang, L. Hu. B. Wei (in preparation).
Suslick (b0005) 1990; 247
Huang, Shu, Fu, Wang, Sun (b0035) 2014; 21
Baber, Putterman (b0050) 1991; 352
Kanthale, Brotchie, Grieser, Ashokkumar (b0045) 2013; 20
Zhai, Liu, Wei (b0090) 2015; 141
Kwan, Graham, Myers, Carlisle, Stride, Coussios (b0040) 2015; 92
Cravotto, Cintas (b0010) 2006; 35
Tudela, Sáez, Esclapez, Díez-García, Bonete, González-García (b0075) 2014; 21
DäKhnke, Keil (b0055) 1999; 54
Kimura, Sakamoto, Leveque, Sohmiya, Fujita, Ikeda, Ando (b0070) 1996; 3
Sáez, Frías-Ferrer, Iniesta, González-García, Aldaz, Riera (b0060) 2005; 12
Klíma, Frias-Ferrer, González-García, Ludvík, Sáez, Iniest (b0080) 2007; 14
Atamanenko, Eskin, Zhang, Katgerman (b0015) 2010; 41
Liu, Han, Huang, Xing, Gao (b0025) 2016; 288
Moholkar, Rekveld, Warmoeskerken (b0030) 2000; 38
Zhai, Hong, Wen, Geng, Wei (b0020) 2015; 72
Yasui, Kozuka, Tuziuti, Towata, Iida, King, Macey (b0065) 2014; 21
Huang (10.1016/j.ultsonch.2016.05.025_b0035) 2014; 21
Yasui (10.1016/j.ultsonch.2016.05.025_b0065) 2014; 21
Atamanenko (10.1016/j.ultsonch.2016.05.025_b0015) 2010; 41
Liu (10.1016/j.ultsonch.2016.05.025_b0025) 2016; 288
DäKhnke (10.1016/j.ultsonch.2016.05.025_b0055) 1999; 54
Kanthale (10.1016/j.ultsonch.2016.05.025_b0045) 2013; 20
Baber (10.1016/j.ultsonch.2016.05.025_b0050) 1991; 352
Tudela (10.1016/j.ultsonch.2016.05.025_b0075) 2014; 21
Zhai (10.1016/j.ultsonch.2016.05.025_b0090) 2015; 141
Moholkar (10.1016/j.ultsonch.2016.05.025_b0030) 2000; 38
Cravotto (10.1016/j.ultsonch.2016.05.025_b0010) 2006; 35
Kwan (10.1016/j.ultsonch.2016.05.025_b0040) 2015; 92
Klíma (10.1016/j.ultsonch.2016.05.025_b0080) 2007; 14
Suslick (10.1016/j.ultsonch.2016.05.025_b0005) 1990; 247
10.1016/j.ultsonch.2016.05.025_b0085
Kimura (10.1016/j.ultsonch.2016.05.025_b0070) 1996; 3
Zhai (10.1016/j.ultsonch.2016.05.025_b0020) 2015; 72
Sáez (10.1016/j.ultsonch.2016.05.025_b0060) 2005; 12
References_xml – volume: 21
  start-page: 1275
  year: 2014
  end-page: 1278
  ident: b0065
  article-title: FEM calculation of an acoustic field in a sonochemcial reactor
  publication-title: Ultrason. Sonochem.
– volume: 3
  start-page: 157
  year: 1996
  end-page: 161
  ident: b0070
  article-title: Standardization of ultrasonic power for sonochemical reaction
  publication-title: Ultrason. Sonochem.
– volume: 21
  start-page: 1275
  year: 2014
  end-page: 1278
  ident: b0035
  article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt
  publication-title: Ultrason. Sonochem.
– volume: 352
  start-page: 318
  year: 1991
  end-page: 320
  ident: b0050
  article-title: Observation of synchronous picosecond sonoluminescence
  publication-title: Nature
– volume: 92
  start-page: 03019
  year: 2015
  ident: b0040
  article-title: Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles
  publication-title: Phys. Rev. E
– volume: 141
  start-page: 221
  year: 2015
  end-page: 224
  ident: b0090
  article-title: Liquid phase separation and monotectic structure evolution of ternary Al
  publication-title: Mater. Lett.
– volume: 247
  start-page: 1439
  year: 1990
  end-page: 1445
  ident: b0005
  article-title: Sonochemistry
  publication-title: Science
– volume: 288
  start-page: 532
  year: 2016
  end-page: 538
  ident: b0025
  article-title: Sonochemical combustion synthesis of purer Ti
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 47
  year: 2013
  end-page: 51
  ident: b0045
  article-title: Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid
  publication-title: Ultrason. Sonochem.
– volume: 35
  start-page: 180
  year: 2006
  end-page: 196
  ident: b0010
  article-title: Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 909
  year: 2014
  end-page: 919
  ident: b0075
  article-title: Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review
  publication-title: Ultrason. Sonochem.
– reference: W. Zhai, B.J. Wang, L. Hu. B. Wei (in preparation).
– volume: 41
  start-page: 2056
  year: 2010
  end-page: 2066
  ident: b0015
  article-title: Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti
  publication-title: Metall. Mater. Trans. A
– volume: 38
  start-page: 666
  year: 2000
  end-page: 670
  ident: b0030
  article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor
  publication-title: Ultrasonics
– volume: 54
  start-page: 2865
  year: 1999
  end-page: 2872
  ident: b0055
  article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 59
  year: 2005
  end-page: 65
  ident: b0060
  article-title: Characterization of a 20
  publication-title: Ultrason. Sonochem.
– volume: 14
  start-page: 19
  year: 2007
  end-page: 28
  ident: b0080
  article-title: Optimisation of 20
  publication-title: Ultrason. Sonochem.
– volume: 72
  start-page: 43
  year: 2015
  end-page: 50
  ident: b0020
  article-title: Microstructural characteristics and mechanical properties of peritectic Cu–Sn alloy solidified within ultrasonic field
  publication-title: Mater. Des.
– volume: 54
  start-page: 2865
  year: 1999
  ident: 10.1016/j.ultsonch.2016.05.025_b0055
  article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00340-6
– volume: 72
  start-page: 43
  year: 2015
  ident: 10.1016/j.ultsonch.2016.05.025_b0020
  article-title: Microstructural characteristics and mechanical properties of peritectic Cu–Sn alloy solidified within ultrasonic field
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.02.017
– volume: 288
  start-page: 532
  year: 2016
  ident: 10.1016/j.ultsonch.2016.05.025_b0025
  article-title: Sonochemical combustion synthesis of purer Ti2AlC from Ti–Al–C system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.050
– volume: 21
  start-page: 909
  year: 2014
  ident: 10.1016/j.ultsonch.2016.05.025_b0075
  article-title: Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.11.012
– volume: 141
  start-page: 221
  year: 2015
  ident: 10.1016/j.ultsonch.2016.05.025_b0090
  article-title: Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.11.087
– volume: 41
  start-page: 2056
  year: 2010
  ident: 10.1016/j.ultsonch.2016.05.025_b0015
  article-title: Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0232-4
– ident: 10.1016/j.ultsonch.2016.05.025_b0085
– volume: 35
  start-page: 180
  year: 2006
  ident: 10.1016/j.ultsonch.2016.05.025_b0010
  article-title: Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B503848K
– volume: 21
  start-page: 1275
  year: 2014
  ident: 10.1016/j.ultsonch.2016.05.025_b0035
  article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.12.024
– volume: 352
  start-page: 318
  year: 1991
  ident: 10.1016/j.ultsonch.2016.05.025_b0050
  article-title: Observation of synchronous picosecond sonoluminescence
  publication-title: Nature
  doi: 10.1038/352318a0
– volume: 14
  start-page: 19
  year: 2007
  ident: 10.1016/j.ultsonch.2016.05.025_b0080
  article-title: Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.01.001
– volume: 38
  start-page: 666
  year: 2000
  ident: 10.1016/j.ultsonch.2016.05.025_b0030
  article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(99)00204-8
– volume: 92
  start-page: 03019
  year: 2015
  ident: 10.1016/j.ultsonch.2016.05.025_b0040
  article-title: Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.023019
– volume: 3
  start-page: 157
  year: 1996
  ident: 10.1016/j.ultsonch.2016.05.025_b0070
  article-title: Standardization of ultrasonic power for sonochemical reaction
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(96)00021-1
– volume: 247
  start-page: 1439
  year: 1990
  ident: 10.1016/j.ultsonch.2016.05.025_b0005
  article-title: Sonochemistry
  publication-title: Science
  doi: 10.1126/science.247.4949.1439
– volume: 20
  start-page: 47
  year: 2013
  ident: 10.1016/j.ultsonch.2016.05.025_b0045
  article-title: Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.05.011
– volume: 12
  start-page: 59
  year: 2005
  ident: 10.1016/j.ultsonch.2016.05.025_b0060
  article-title: Characterization of a 20kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.06.011
– volume: 21
  start-page: 1275
  year: 2014
  ident: 10.1016/j.ultsonch.2016.05.025_b0065
  article-title: FEM calculation of an acoustic field in a sonochemcial reactor
  publication-title: Ultrason. Sonochem.
SSID ssj0003920
Score 2.407146
Snippet •Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal...
When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms Acoustic energy density
Cavitation
Power ultrasound
Sound pressure
Title A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds
URI https://dx.doi.org/10.1016/j.ultsonch.2016.05.025
https://www.ncbi.nlm.nih.gov/pubmed/27773228
https://www.proquest.com/docview/1835525327
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhIbSXkqSvbdKgQq_OynpY0nFZEjbNg9I2kJuwtePisPGmsX3tb69GtpMWWnLoyWA8WJ4RM581j4-Qj3EmevjVSBQAJEi8nVhYqkSJXNglL7SIrCUXl9niSn66VtcbZD72wmBZ5eD7e58evfVwZzpoc3pXVdOvqVBMpjoAfoG19NhoLqXG-flHPx_LPEL87zuFFUvw6d-6hG-OulUbUG1MSqRZnOCJlNl_D1D_AqAxEJ3skBcDgqSzfpG7ZAPqPfJsPhK37ZHtWNXpm5fEzWjd9SmZFW2q24Gqi65LGhxh5PGisYSN4nFsVdNV9aOrlg1tugLPZ2i7pm0wNlDM7qy_I2qn4Wvu8wbZmJpX5Ork-Nt8kQyMComXQraJtVIrkDbnqfeclQayDMrMY_2TUaVnhQ4wFkekWQPMqyLNl7bMClCecVso8Zps1usa3hKqwDDjjeQgQAoGRYmcTTis2WQi92ZC1KhG54dx48h6sXJjXdmNG9XvUP2OKRfUPyHTB7m7fuDGkxJ2tJL7Y-u4EBWelP0wmtUFK2GyJK8hGMAFV6cUV4LrCXnT2_thPVxrHRyhefcfb94nzzkihHiac0A22_sO3gd80xaHcQMfkq3Z_Mv5Z7yeni0ufwE8ofzn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoqIJLRelrSx-u1Gu6jp1J7ONqVbQU2EtB4mYl3kkVtM1Skvx_PE6yKlIrDlwjjeLMWJ-_eB4fY1_DTHT_qxEBIkYkvB0ZXEEEKldmJYtMBdWSi2W6uEp-XMP1DpuPvTBUVjlgf4_pAa2HJ9PBm9Pbqpr-jBWIJM484VdUSw_P2B5Np_KbfW92erZYbgHZU4C-WRhERAZ_NQrffOvWrSe2IS8Rp2GIJ6lm__uM-h8HDWfRySF7MZBIPuvX-ZLtYH3E9uejdtsRex4KO13zitkZr7s-K7PmTfV7UOvim5J7LAxSXjxUsXG6ka1qvq7-dNWq4U1X0BUNbze89fFGTgmezS8i7tx_zV3ekCBT85pdnXy_nC-iQVQhcolK2siYJANMTC5j56QoNaYplqmjEigNpRNF5pksTUkzGoWDIs5XpkwLBCekKUC9Ybv1psZ3jANqoZ1OJCpMlMCiJNkmmtesU5U7PWEwutG6YeI4CV-s7VhadmNH91tyvxVgvfsnbLq1u-1nbjxqYcYo2Qe7x_qD4VHbL2NYrY8S5UvyGn0ArEc7AAlKZhP2to_3dj0yyzKPhfr9E978me0vLi_O7fnp8uyYHUgiDOFy5wPbbe86_OjpTlt8GrbzPfDc_gM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+simulation+of+acoustic+field+within+liquids+subject+to+three+orthogonal+ultrasounds&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Zhai%2C+W&rft.au=Liu%2C+H+M&rft.au=Hong%2C+Z+Y&rft.au=Xie%2C+W+J&rft.date=2017-01-01&rft.eissn=1873-2828&rft.volume=34&rft.spage=130&rft_id=info:doi/10.1016%2Fj.ultsonch.2016.05.025&rft_id=info%3Apmid%2F27773228&rft.externalDocID=27773228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon