A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds
•Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is propose...
Saved in:
Published in | Ultrasonics sonochemistry Vol. 34; pp. 130 - 135 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4177 1873-2828 1873-2828 |
DOI | 10.1016/j.ultsonch.2016.05.025 |
Cover
Loading…
Abstract | •Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is proposed to fabricate materials.
When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials. |
---|---|
AbstractList | When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials. When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials. •Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal ultrasounds.•3D orthogonal ultrasounds effectively extends cavitation volume within liquids.•A three dimensional ultrasonic methodology is proposed to fabricate materials. When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials. |
Author | Wei, B. Xie, W.J. Liu, H.M. Zhai, W. Hong, Z.Y. |
Author_xml | – sequence: 1 givenname: W. surname: Zhai fullname: Zhai, W. – sequence: 2 givenname: H.M. surname: Liu fullname: Liu, H.M. – sequence: 3 givenname: Z.Y. surname: Hong fullname: Hong, Z.Y. – sequence: 4 givenname: W.J. surname: Xie fullname: Xie, W.J. – sequence: 5 givenname: B. surname: Wei fullname: Wei, B. email: bwei@nwpu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27773228$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtu3SAURVGVqHn1FyKGndgFbAxIHTSK-pIiddKMEcbHvVxhSHi0yt-X5CYddJIRB2ntrXPWGToKMQBCl5T0lNDpw76vvuQY7K5n7d8T3hPG36BTKsXQMcnkUZsHTrqRCnGCznLeE0IGxchbdMKEEANj8hTpKxzqBslZ43F2W_WmuBhwXLGxsebiLF4d-AX_cWXnAvbuvrol41znPdiCS8RllwBwTGUXf8XQetpqyeRYw5Iv0PFqfIZ3z-85uv3y-ef1t-7mx9fv11c3nR2HsXRKjYLDqAyj1jKySpgmWCdLlaKSr5bMQtKZKkaVBGL5TM2i1mkGbglTMx_O0ftD712K9xVy0ZvLFrw3AdoZmsqBc8YHJhp6-YzWeYNF3yW3mfSgX6Q0YDoANsWcE6z_EEr0o3291y_29aN9Tbhu9lvw439B68qTz-bD-dfjnw5xaKJ-O0g6WwfBwuJSU62X6F6r-AugZ6bw |
CitedBy_id | crossref_primary_10_1016_j_actamat_2022_118382 crossref_primary_10_1111_1541_4337_12919 crossref_primary_10_1515_revce_2021_0086 crossref_primary_10_1016_j_cep_2023_109372 crossref_primary_10_1007_s11431_018_9490_y crossref_primary_10_1016_j_lwt_2025_117429 crossref_primary_10_1063_5_0135344 crossref_primary_10_1088_1674_1056_abf4bb crossref_primary_10_1111_jfpe_14676 crossref_primary_10_1016_j_matlet_2017_04_102 crossref_primary_10_1016_j_ultsonch_2022_106253 crossref_primary_10_1016_j_jfoodeng_2020_110112 crossref_primary_10_1007_s11431_018_9383_3 crossref_primary_10_1007_s41230_023_2146_y crossref_primary_10_1016_j_jmatprotec_2018_06_025 crossref_primary_10_1088_0256_307X_36_9_094301 crossref_primary_10_1111_1541_4337_12328 crossref_primary_10_3390_foods11182874 crossref_primary_10_1039_C7RA00052A crossref_primary_10_7498_aps_70_20211244 crossref_primary_10_1016_j_ultsonch_2017_12_053 crossref_primary_10_1063_1_5118319 crossref_primary_10_1016_j_cej_2023_143070 crossref_primary_10_1016_S1003_6326_24_66684_7 crossref_primary_10_1360_SST_2022_0018 crossref_primary_10_1038_srep36718 crossref_primary_10_1016_j_jmst_2019_10_035 crossref_primary_10_1016_j_ultsonch_2024_106798 crossref_primary_10_1016_j_jfoodeng_2025_112581 crossref_primary_10_1016_j_jmst_2017_07_018 crossref_primary_10_3390_foods12173259 crossref_primary_10_1016_j_seppur_2023_125773 crossref_primary_10_1016_j_msea_2022_144153 crossref_primary_10_1016_j_cej_2025_161696 crossref_primary_10_1016_j_ultsonch_2018_11_008 crossref_primary_10_1016_j_cep_2022_109186 crossref_primary_10_1016_j_ultsonch_2018_08_002 crossref_primary_10_1016_j_ultsonch_2017_12_024 crossref_primary_10_1007_s40962_024_01419_0 crossref_primary_10_1016_j_ultsonch_2018_07_015 crossref_primary_10_1016_j_ultsonch_2024_107197 crossref_primary_10_1016_j_colsurfa_2025_136375 crossref_primary_10_1016_j_fochx_2023_100704 crossref_primary_10_1016_j_ultsonch_2022_106185 crossref_primary_10_1016_j_ultsonch_2023_106484 crossref_primary_10_1088_1757_899X_254_16_162004 crossref_primary_10_1088_0256_307X_36_8_084302 crossref_primary_10_7498_aps_66_194303 crossref_primary_10_1016_j_conbuildmat_2024_137089 crossref_primary_10_1016_j_jmatprotec_2020_116846 crossref_primary_10_1016_j_ultsonch_2024_107070 |
Cites_doi | 10.1016/S0009-2509(98)00340-6 10.1016/j.matdes.2015.02.017 10.1016/j.cej.2015.12.050 10.1016/j.ultsonch.2013.11.012 10.1016/j.matlet.2014.11.087 10.1007/s11661-010-0232-4 10.1039/B503848K 10.1016/j.ultsonch.2013.12.024 10.1038/352318a0 10.1016/j.ultsonch.2006.01.001 10.1016/S0041-624X(99)00204-8 10.1103/PhysRevE.92.023019 10.1016/S1350-4177(96)00021-1 10.1126/science.247.4949.1439 10.1016/j.ultsonch.2012.05.011 10.1016/j.ultsonch.2004.06.011 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ultsonch.2016.05.025 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-2828 |
EndPage | 135 |
ExternalDocumentID | 27773228 10_1016_j_ultsonch_2016_05_025 S1350417716301675 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c434t-99475e49a21cc20f8e66ef6c199185fc0b781b192198e0c5b1ad9f6be5c029b53 |
IEDL.DBID | .~1 |
ISSN | 1350-4177 1873-2828 |
IngestDate | Fri Sep 05 08:12:38 EDT 2025 Thu Apr 03 07:07:59 EDT 2025 Tue Jul 01 03:32:59 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Fri Feb 23 02:31:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acoustic energy density Cavitation Power ultrasound Sound pressure |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-99475e49a21cc20f8e66ef6c199185fc0b781b192198e0c5b1ad9f6be5c029b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27773228 |
PQID | 1835525327 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1835525327 pubmed_primary_27773228 crossref_primary_10_1016_j_ultsonch_2016_05_025 crossref_citationtrail_10_1016_j_ultsonch_2016_05_025 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2016_05_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ultrasonics sonochemistry |
PublicationTitleAlternate | Ultrason Sonochem |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | W. Zhai, B.J. Wang, L. Hu. B. Wei (in preparation). Suslick (b0005) 1990; 247 Huang, Shu, Fu, Wang, Sun (b0035) 2014; 21 Baber, Putterman (b0050) 1991; 352 Kanthale, Brotchie, Grieser, Ashokkumar (b0045) 2013; 20 Zhai, Liu, Wei (b0090) 2015; 141 Kwan, Graham, Myers, Carlisle, Stride, Coussios (b0040) 2015; 92 Cravotto, Cintas (b0010) 2006; 35 Tudela, Sáez, Esclapez, Díez-García, Bonete, González-García (b0075) 2014; 21 DäKhnke, Keil (b0055) 1999; 54 Kimura, Sakamoto, Leveque, Sohmiya, Fujita, Ikeda, Ando (b0070) 1996; 3 Sáez, Frías-Ferrer, Iniesta, González-García, Aldaz, Riera (b0060) 2005; 12 Klíma, Frias-Ferrer, González-García, Ludvík, Sáez, Iniest (b0080) 2007; 14 Atamanenko, Eskin, Zhang, Katgerman (b0015) 2010; 41 Liu, Han, Huang, Xing, Gao (b0025) 2016; 288 Moholkar, Rekveld, Warmoeskerken (b0030) 2000; 38 Zhai, Hong, Wen, Geng, Wei (b0020) 2015; 72 Yasui, Kozuka, Tuziuti, Towata, Iida, King, Macey (b0065) 2014; 21 Huang (10.1016/j.ultsonch.2016.05.025_b0035) 2014; 21 Yasui (10.1016/j.ultsonch.2016.05.025_b0065) 2014; 21 Atamanenko (10.1016/j.ultsonch.2016.05.025_b0015) 2010; 41 Liu (10.1016/j.ultsonch.2016.05.025_b0025) 2016; 288 DäKhnke (10.1016/j.ultsonch.2016.05.025_b0055) 1999; 54 Kanthale (10.1016/j.ultsonch.2016.05.025_b0045) 2013; 20 Baber (10.1016/j.ultsonch.2016.05.025_b0050) 1991; 352 Tudela (10.1016/j.ultsonch.2016.05.025_b0075) 2014; 21 Zhai (10.1016/j.ultsonch.2016.05.025_b0090) 2015; 141 Moholkar (10.1016/j.ultsonch.2016.05.025_b0030) 2000; 38 Cravotto (10.1016/j.ultsonch.2016.05.025_b0010) 2006; 35 Kwan (10.1016/j.ultsonch.2016.05.025_b0040) 2015; 92 Klíma (10.1016/j.ultsonch.2016.05.025_b0080) 2007; 14 Suslick (10.1016/j.ultsonch.2016.05.025_b0005) 1990; 247 10.1016/j.ultsonch.2016.05.025_b0085 Kimura (10.1016/j.ultsonch.2016.05.025_b0070) 1996; 3 Zhai (10.1016/j.ultsonch.2016.05.025_b0020) 2015; 72 Sáez (10.1016/j.ultsonch.2016.05.025_b0060) 2005; 12 |
References_xml | – volume: 21 start-page: 1275 year: 2014 end-page: 1278 ident: b0065 article-title: FEM calculation of an acoustic field in a sonochemcial reactor publication-title: Ultrason. Sonochem. – volume: 3 start-page: 157 year: 1996 end-page: 161 ident: b0070 article-title: Standardization of ultrasonic power for sonochemical reaction publication-title: Ultrason. Sonochem. – volume: 21 start-page: 1275 year: 2014 end-page: 1278 ident: b0035 article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt publication-title: Ultrason. Sonochem. – volume: 352 start-page: 318 year: 1991 end-page: 320 ident: b0050 article-title: Observation of synchronous picosecond sonoluminescence publication-title: Nature – volume: 92 start-page: 03019 year: 2015 ident: b0040 article-title: Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles publication-title: Phys. Rev. E – volume: 141 start-page: 221 year: 2015 end-page: 224 ident: b0090 article-title: Liquid phase separation and monotectic structure evolution of ternary Al publication-title: Mater. Lett. – volume: 247 start-page: 1439 year: 1990 end-page: 1445 ident: b0005 article-title: Sonochemistry publication-title: Science – volume: 288 start-page: 532 year: 2016 end-page: 538 ident: b0025 article-title: Sonochemical combustion synthesis of purer Ti publication-title: Chem. Eng. J. – volume: 20 start-page: 47 year: 2013 end-page: 51 ident: b0045 article-title: Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid publication-title: Ultrason. Sonochem. – volume: 35 start-page: 180 year: 2006 end-page: 196 ident: b0010 article-title: Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications publication-title: Chem. Soc. Rev. – volume: 21 start-page: 909 year: 2014 end-page: 919 ident: b0075 article-title: Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review publication-title: Ultrason. Sonochem. – reference: W. Zhai, B.J. Wang, L. Hu. B. Wei (in preparation). – volume: 41 start-page: 2056 year: 2010 end-page: 2066 ident: b0015 article-title: Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti publication-title: Metall. Mater. Trans. A – volume: 38 start-page: 666 year: 2000 end-page: 670 ident: b0030 article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor publication-title: Ultrasonics – volume: 54 start-page: 2865 year: 1999 end-page: 2872 ident: b0055 article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles publication-title: Chem. Eng. Sci. – volume: 12 start-page: 59 year: 2005 end-page: 65 ident: b0060 article-title: Characterization of a 20 publication-title: Ultrason. Sonochem. – volume: 14 start-page: 19 year: 2007 end-page: 28 ident: b0080 article-title: Optimisation of 20 publication-title: Ultrason. Sonochem. – volume: 72 start-page: 43 year: 2015 end-page: 50 ident: b0020 article-title: Microstructural characteristics and mechanical properties of peritectic Cu–Sn alloy solidified within ultrasonic field publication-title: Mater. Des. – volume: 54 start-page: 2865 year: 1999 ident: 10.1016/j.ultsonch.2016.05.025_b0055 article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00340-6 – volume: 72 start-page: 43 year: 2015 ident: 10.1016/j.ultsonch.2016.05.025_b0020 article-title: Microstructural characteristics and mechanical properties of peritectic Cu–Sn alloy solidified within ultrasonic field publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.02.017 – volume: 288 start-page: 532 year: 2016 ident: 10.1016/j.ultsonch.2016.05.025_b0025 article-title: Sonochemical combustion synthesis of purer Ti2AlC from Ti–Al–C system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.050 – volume: 21 start-page: 909 year: 2014 ident: 10.1016/j.ultsonch.2016.05.025_b0075 article-title: Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.11.012 – volume: 141 start-page: 221 year: 2015 ident: 10.1016/j.ultsonch.2016.05.025_b0090 article-title: Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.087 – volume: 41 start-page: 2056 year: 2010 ident: 10.1016/j.ultsonch.2016.05.025_b0015 article-title: Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-010-0232-4 – ident: 10.1016/j.ultsonch.2016.05.025_b0085 – volume: 35 start-page: 180 year: 2006 ident: 10.1016/j.ultsonch.2016.05.025_b0010 article-title: Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications publication-title: Chem. Soc. Rev. doi: 10.1039/B503848K – volume: 21 start-page: 1275 year: 2014 ident: 10.1016/j.ultsonch.2016.05.025_b0035 article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.12.024 – volume: 352 start-page: 318 year: 1991 ident: 10.1016/j.ultsonch.2016.05.025_b0050 article-title: Observation of synchronous picosecond sonoluminescence publication-title: Nature doi: 10.1038/352318a0 – volume: 14 start-page: 19 year: 2007 ident: 10.1016/j.ultsonch.2016.05.025_b0080 article-title: Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.01.001 – volume: 38 start-page: 666 year: 2000 ident: 10.1016/j.ultsonch.2016.05.025_b0030 article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor publication-title: Ultrasonics doi: 10.1016/S0041-624X(99)00204-8 – volume: 92 start-page: 03019 year: 2015 ident: 10.1016/j.ultsonch.2016.05.025_b0040 article-title: Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.023019 – volume: 3 start-page: 157 year: 1996 ident: 10.1016/j.ultsonch.2016.05.025_b0070 article-title: Standardization of ultrasonic power for sonochemical reaction publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(96)00021-1 – volume: 247 start-page: 1439 year: 1990 ident: 10.1016/j.ultsonch.2016.05.025_b0005 article-title: Sonochemistry publication-title: Science doi: 10.1126/science.247.4949.1439 – volume: 20 start-page: 47 year: 2013 ident: 10.1016/j.ultsonch.2016.05.025_b0045 article-title: Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.05.011 – volume: 12 start-page: 59 year: 2005 ident: 10.1016/j.ultsonch.2016.05.025_b0060 article-title: Characterization of a 20kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.06.011 – volume: 21 start-page: 1275 year: 2014 ident: 10.1016/j.ultsonch.2016.05.025_b0065 article-title: FEM calculation of an acoustic field in a sonochemcial reactor publication-title: Ultrason. Sonochem. |
SSID | ssj0003920 |
Score | 2.407146 |
Snippet | •Acoustic field distribution induced by 1D, 2D and 3D ultrasounds is calculated.•Sound pressure and acoustic energy density are enhanced by 3D orthogonal... When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | Acoustic energy density Cavitation Power ultrasound Sound pressure |
Title | A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds |
URI | https://dx.doi.org/10.1016/j.ultsonch.2016.05.025 https://www.ncbi.nlm.nih.gov/pubmed/27773228 https://www.proquest.com/docview/1835525327 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhIbSXkqSvbdKgQq_OynpY0nFZEjbNg9I2kJuwtePisPGmsX3tb69GtpMWWnLoyWA8WJ4RM581j4-Qj3EmevjVSBQAJEi8nVhYqkSJXNglL7SIrCUXl9niSn66VtcbZD72wmBZ5eD7e58evfVwZzpoc3pXVdOvqVBMpjoAfoG19NhoLqXG-flHPx_LPEL87zuFFUvw6d-6hG-OulUbUG1MSqRZnOCJlNl_D1D_AqAxEJ3skBcDgqSzfpG7ZAPqPfJsPhK37ZHtWNXpm5fEzWjd9SmZFW2q24Gqi65LGhxh5PGisYSN4nFsVdNV9aOrlg1tugLPZ2i7pm0wNlDM7qy_I2qn4Wvu8wbZmJpX5Ork-Nt8kQyMComXQraJtVIrkDbnqfeclQayDMrMY_2TUaVnhQ4wFkekWQPMqyLNl7bMClCecVso8Zps1usa3hKqwDDjjeQgQAoGRYmcTTis2WQi92ZC1KhG54dx48h6sXJjXdmNG9XvUP2OKRfUPyHTB7m7fuDGkxJ2tJL7Y-u4EBWelP0wmtUFK2GyJK8hGMAFV6cUV4LrCXnT2_thPVxrHRyhefcfb94nzzkihHiac0A22_sO3gd80xaHcQMfkq3Z_Mv5Z7yeni0ufwE8ofzn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoqIJLRelrSx-u1Gu6jp1J7ONqVbQU2EtB4mYl3kkVtM1Skvx_PE6yKlIrDlwjjeLMWJ-_eB4fY1_DTHT_qxEBIkYkvB0ZXEEEKldmJYtMBdWSi2W6uEp-XMP1DpuPvTBUVjlgf4_pAa2HJ9PBm9Pbqpr-jBWIJM484VdUSw_P2B5Np_KbfW92erZYbgHZU4C-WRhERAZ_NQrffOvWrSe2IS8Rp2GIJ6lm__uM-h8HDWfRySF7MZBIPuvX-ZLtYH3E9uejdtsRex4KO13zitkZr7s-K7PmTfV7UOvim5J7LAxSXjxUsXG6ka1qvq7-dNWq4U1X0BUNbze89fFGTgmezS8i7tx_zV3ekCBT85pdnXy_nC-iQVQhcolK2siYJANMTC5j56QoNaYplqmjEigNpRNF5pksTUkzGoWDIs5XpkwLBCekKUC9Ybv1psZ3jANqoZ1OJCpMlMCiJNkmmtesU5U7PWEwutG6YeI4CV-s7VhadmNH91tyvxVgvfsnbLq1u-1nbjxqYcYo2Qe7x_qD4VHbL2NYrY8S5UvyGn0ArEc7AAlKZhP2to_3dj0yyzKPhfr9E978me0vLi_O7fnp8uyYHUgiDOFy5wPbbe86_OjpTlt8GrbzPfDc_gM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+simulation+of+acoustic+field+within+liquids+subject+to+three+orthogonal+ultrasounds&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Zhai%2C+W&rft.au=Liu%2C+H+M&rft.au=Hong%2C+Z+Y&rft.au=Xie%2C+W+J&rft.date=2017-01-01&rft.eissn=1873-2828&rft.volume=34&rft.spage=130&rft_id=info:doi/10.1016%2Fj.ultsonch.2016.05.025&rft_id=info%3Apmid%2F27773228&rft.externalDocID=27773228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |