Enforcing boundary conditions on physical fields in Bayesian inversion
Inverse problems in computational mechanics consist of inferring physical fields that are latent in the model describing some observable fields. For instance, an inverse problem of interest is inferring the Reynolds stress field in the Navier–Stokes equations describing mean fluid velocity and press...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 367; p. 113097 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inverse problems in computational mechanics consist of inferring physical fields that are latent in the model describing some observable fields. For instance, an inverse problem of interest is inferring the Reynolds stress field in the Navier–Stokes equations describing mean fluid velocity and pressure. The physical nature of the latent fields means they have their own set of physical constraints, including boundary conditions. The inherent ill-posedness of inverse problems, however, means that there exist many possible latent fields that do not satisfy their physical constraints while still resulting in satisfactory agreement in the observation space. These physical constraints must therefore be enforced through the problem formulation. So far there has been no general approach to enforce boundary conditions on latent fields in inverse problems in computational mechanics, with these constraints often simply ignored. In this work we demonstrate how to enforce boundary conditions in Bayesian inversion problems by choice of the statistical model for the latent fields. Specifically, this is done by modifying the covariance kernel to guarantee that all realizations satisfy known values or derivatives at the boundary. As a test case the problem of inferring the eddy viscosity in the Reynolds-averaged Navier–Stokes equations is considered. The results show that enforcing these constraints results in similar improvements in the output fields but with latent fields that behave as expected at the boundaries.
•Boundary conditions are enforced on latent fields in Bayesian inversion problems.•Done by choice of statistical model representing the field.•Reduces the search space for optimization. |
---|---|
AbstractList | Inverse problems in computational mechanics consist of inferring physical fields that are latent in the model describing some observable fields. For instance, an inverse problem of interest is inferring the Reynolds stress field in the Navier–Stokes equations describing mean fluid velocity and pressure. The physical nature of the latent fields means they have their own set of physical constraints, including boundary conditions. The inherent ill-posedness of inverse problems, however, means that there exist many possible latent fields that do not satisfy their physical constraints while still resulting in satisfactory agreement in the observation space. These physical constraints must therefore be enforced through the problem formulation. So far there has been no general approach to enforce boundary conditions on latent fields in inverse problems in computational mechanics, with these constraints often simply ignored. In this work we demonstrate how to enforce boundary conditions in Bayesian inversion problems by choice of the statistical model for the latent fields. Specifically, this is done by modifying the covariance kernel to guarantee that all realizations satisfy known values or derivatives at the boundary. As a test case the problem of inferring the eddy viscosity in the Reynolds-averaged Navier–Stokes equations is considered. The results show that enforcing these constraints results in similar improvements in the output fields but with latent fields that behave as expected at the boundaries. Inverse problems in computational mechanics consist of inferring physical fields that are latent in the model describing some observable fields. For instance, an inverse problem of interest is inferring the Reynolds stress field in the Navier–Stokes equations describing mean fluid velocity and pressure. The physical nature of the latent fields means they have their own set of physical constraints, including boundary conditions. The inherent ill-posedness of inverse problems, however, means that there exist many possible latent fields that do not satisfy their physical constraints while still resulting in satisfactory agreement in the observation space. These physical constraints must therefore be enforced through the problem formulation. So far there has been no general approach to enforce boundary conditions on latent fields in inverse problems in computational mechanics, with these constraints often simply ignored. In this work we demonstrate how to enforce boundary conditions in Bayesian inversion problems by choice of the statistical model for the latent fields. Specifically, this is done by modifying the covariance kernel to guarantee that all realizations satisfy known values or derivatives at the boundary. As a test case the problem of inferring the eddy viscosity in the Reynolds-averaged Navier–Stokes equations is considered. The results show that enforcing these constraints results in similar improvements in the output fields but with latent fields that behave as expected at the boundaries. •Boundary conditions are enforced on latent fields in Bayesian inversion problems.•Done by choice of statistical model representing the field.•Reduces the search space for optimization. |
ArticleNumber | 113097 |
Author | Xiao, Heng Zhang, Xin-Lei Michelén Ströfer, Carlos A. Coutier-Delgosha, Olivier |
Author_xml | – sequence: 1 givenname: Carlos A. surname: Michelén Ströfer fullname: Michelén Ströfer, Carlos A. organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, USA – sequence: 2 givenname: Xin-Lei surname: Zhang fullname: Zhang, Xin-Lei organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, USA – sequence: 3 givenname: Heng surname: Xiao fullname: Xiao, Heng email: hengxiao@vt.edu organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, USA – sequence: 4 givenname: Olivier surname: Coutier-Delgosha fullname: Coutier-Delgosha, Olivier organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, USA |
BookMark | eNp9kEFPwyAYhomZiXP6A7w18dzJR-la4kmXTU2WeNEzofBVaTqY0C3Zv5elnjyMC3zkfSDvc00mzjsk5A7oHCgsHrq53qo5oyzNUFBRXZAp1JXIGRT1hEwp5WVe1ay8ItcxdjStGtiUrFeu9UFb95U1fu-MCsdMe2fsYL2LmXfZ7vsYrVZ91lrsTcysy57VEaNVLp0PGGJK3pDLVvURb__2Gflcrz6Wr_nm_eVt-bTJNS_4kAuGAiuqF42qWMuKhjKlinSl2KLkdWsaAIplkwZuytJwXdIKwIDQqYCgxYzcj-_ugv_ZYxxk5_fBpS8l45xSUYOAlKrGlA4-xoCt1HZQp0ZDULaXQOVJmuxkkiZP0uQoLZHwj9wFu01SzjKPI4Op-MFikFFbdBqNDagHabw9Q_8C-RuFfA |
CitedBy_id | crossref_primary_10_1007_s42241_020_0077_2 crossref_primary_10_1088_2632_2153_ad0286 crossref_primary_10_1016_j_cma_2022_114712 crossref_primary_10_1007_s42241_019_0089_y |
Cites_doi | 10.2514/1.J054758 10.1007/s11004-011-9376-z 10.1063/1.4947045 10.1016/j.paerosci.2018.10.001 10.1016/j.jcp.2016.07.038 10.1109/JPROC.2015.2494218 10.2514/1.J057204 10.1016/j.jcp.2017.01.060 10.1016/j.jcp.2017.07.050 10.2118/108438-PA 10.1016/j.cma.2014.08.023 10.1088/0266-5611/29/4/045001 10.1016/0017-9310(72)90076-2 10.1007/s10494-017-9870-6 10.1111/1467-9868.00294 10.1016/j.jcp.2014.06.052 10.1146/annurev-fluid-010518-040547 10.1016/j.cageo.2012.03.011 10.1016/j.jcp.2013.10.027 10.1016/j.jcp.2017.06.042 10.1115/1.4037557 10.1016/j.compfluid.2019.104292 10.1063/1.4930004 10.1080/14685248.2017.1334907 10.1609/aaai.v33i01.33011666 10.1007/s10494-018-9967-6 10.1016/j.ress.2010.09.013 10.1016/j.ijmultiphaseflow.2016.06.021 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Aug 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Aug 1, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2020.113097 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2020_113097 S0045782520302814 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c434t-92e9e70c6ba72f23b02aa39e7a26548fdb110e5b6544d55d4c50711d19c004903 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Mon Jul 14 10:43:11 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 04:06:10 EDT 2025 Fri Feb 23 02:46:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Field inversion Boundary conditions Inverse problems Bayesian inference Ensemble Kalman method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-92e9e70c6ba72f23b02aa39e7a26548fdb110e5b6544d55d4c50711d19c004903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.cma.2020.113097 |
PQID | 2440098191 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2440098191 crossref_citationtrail_10_1016_j_cma_2020_113097 crossref_primary_10_1016_j_cma_2020_113097 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Spalart, Allmaras (b38) 1992 J. Wu, J.-X. Wang, S.C. Shadden, Adding constraints to Bayesian inverse problems, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1666–1673. Ray, Lefantzi, Arunajatesan, Dechant (b12) 2016; 54 Gibbs (b21) 1998 Iglesias, Law, Stuart (b9) 2013; 29 Gu, Oliver (b42) 2007; 12 Edeling, Cinnella, Dwight, Bijl (b10) 2014; 258 Rasmussen (b22) 1999 Kennedy, O’Hagan (b1) 2001; 63 Ma, Lu, Tryggvason (b19) 2015; 27 Dondelinger, Husmeier, Rogers, Filippone (b31) 2013 Xiao, Wu, Wang, Sun, Roy (b5) 2016; 324 Cheung, Oliver, Prudencio, Prudhomme, Moser (b8) 2011; 96 Meldi, Poux (b15) 2017; 347 Särkkä (b27) 2011 Chen, Wu, Chen, O’Leary-Roseberry, Ghattas (b44) 2019 Edeling, Iaccarino, Cinnella (b17) 2018; 100 Meldi (b16) 2018; 101 Edeling, Cinnella, Dwight (b11) 2014; 275 Duraisamy, Iaccarino, Xiao (b3) 2019; 51 Dow, Wang (b6) 2011 Raissi, Perdikaris, Karniadakis (b29) 2017; 335 Xiao, Cinnella (b4) 2019; 108 Chen, Oliver (b43) 2012; 44 Oliver, Terejanu, Simmons, Moser (b2) 2015; 283 Ray, Lefantzi, Arunajatesan, Dechant (b14) 2018; 4 Zhang, Michelén Ströfer, Xiao (b35) 2019 Mellen, Fröhlich, Rodi (b37) 2000 Ray, Dechant, Lefantzi, Ling, Arunajatesan (b13) 2018; 56 Wilcox (b40) 2006 Hensman, Fusi, Lawrence (b24) 2013 Vollant, Balarac, Corre (b18) 2017; 18 Solak, Murray-smith, Leithead, Leith, Rasmussen (b25) 2003 . Singh, Duraisamy (b7) 2016; 28 Ma, Lu, Tryggvason (b20) 2016; 85 Rasmussen, Williams (b26) 2006 Emerick, Reynolds (b41) 2013; 55 Wu, Michelén Ströfer, Xiao (b32) 2019 C. Michelén Ströfer, Example of enforcing boundary conditions and internal observations on a Gaussian process Graepel (b28) 2003 Raissi, Perdikaris, Karniadakis (b30) 2017; 348 Jones, Launder (b39) 1972; 15 Shahriari, Swersky, Wang, Adams, De Freitas (b23) 2015; 104 Wu, Wang, Shadden (b34) 2019 Iglesias (10.1016/j.cma.2020.113097_b9) 2013; 29 Ray (10.1016/j.cma.2020.113097_b12) 2016; 54 Gu (10.1016/j.cma.2020.113097_b42) 2007; 12 Xiao (10.1016/j.cma.2020.113097_b5) 2016; 324 Rasmussen (10.1016/j.cma.2020.113097_b26) 2006 Ray (10.1016/j.cma.2020.113097_b13) 2018; 56 Chen (10.1016/j.cma.2020.113097_b43) 2012; 44 Wu (10.1016/j.cma.2020.113097_b32) 2019 Kennedy (10.1016/j.cma.2020.113097_b1) 2001; 63 Wu (10.1016/j.cma.2020.113097_b34) 2019 Emerick (10.1016/j.cma.2020.113097_b41) 2013; 55 Hensman (10.1016/j.cma.2020.113097_b24) 2013 Zhang (10.1016/j.cma.2020.113097_b35) 2019 Ma (10.1016/j.cma.2020.113097_b20) 2016; 85 Graepel (10.1016/j.cma.2020.113097_b28) 2003 Mellen (10.1016/j.cma.2020.113097_b37) 2000 Cheung (10.1016/j.cma.2020.113097_b8) 2011; 96 Spalart (10.1016/j.cma.2020.113097_b38) 1992 Duraisamy (10.1016/j.cma.2020.113097_b3) 2019; 51 Ray (10.1016/j.cma.2020.113097_b14) 2018; 4 Edeling (10.1016/j.cma.2020.113097_b11) 2014; 275 Dow (10.1016/j.cma.2020.113097_b6) 2011 Chen (10.1016/j.cma.2020.113097_b44) 2019 Raissi (10.1016/j.cma.2020.113097_b30) 2017; 348 Rasmussen (10.1016/j.cma.2020.113097_b22) 1999 Gibbs (10.1016/j.cma.2020.113097_b21) 1998 Edeling (10.1016/j.cma.2020.113097_b10) 2014; 258 Meldi (10.1016/j.cma.2020.113097_b16) 2018; 101 Vollant (10.1016/j.cma.2020.113097_b18) 2017; 18 10.1016/j.cma.2020.113097_b33 10.1016/j.cma.2020.113097_b36 Wilcox (10.1016/j.cma.2020.113097_b40) 2006 Shahriari (10.1016/j.cma.2020.113097_b23) 2015; 104 Xiao (10.1016/j.cma.2020.113097_b4) 2019; 108 Singh (10.1016/j.cma.2020.113097_b7) 2016; 28 Ma (10.1016/j.cma.2020.113097_b19) 2015; 27 Jones (10.1016/j.cma.2020.113097_b39) 1972; 15 Dondelinger (10.1016/j.cma.2020.113097_b31) 2013 Raissi (10.1016/j.cma.2020.113097_b29) 2017; 335 Särkkä (10.1016/j.cma.2020.113097_b27) 2011 Meldi (10.1016/j.cma.2020.113097_b15) 2017; 347 Oliver (10.1016/j.cma.2020.113097_b2) 2015; 283 Edeling (10.1016/j.cma.2020.113097_b17) 2018; 100 Solak (10.1016/j.cma.2020.113097_b25) 2003 |
References_xml | – year: 2019 ident: b34 article-title: Improving the convergence of the itterative ensemble kalman filter by resampling – volume: 348 start-page: 683 year: 2017 end-page: 693 ident: b30 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. – volume: 28 start-page: 045110 year: 2016 ident: b7 article-title: Using field inversion to quantify functional errors in turbulence closures publication-title: Phys. Fluids – volume: 63 start-page: 425 year: 2001 end-page: 464 ident: b1 article-title: Bayesian calibration of computer models publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 27 start-page: 092101 year: 2015 ident: b19 article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system publication-title: Phys. Fluids – volume: 96 start-page: 1137 year: 2011 end-page: 1149 ident: b8 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Saf. – start-page: 1057 year: 2003 end-page: 1064 ident: b25 article-title: Derivative observations in Gaussian process models of dynamic systems publication-title: Advances in Neural Information Processing Systems 15 – year: 1998 ident: b21 article-title: Bayesian Gaussian Processes for Regression and Classification – start-page: 21 year: 2000 end-page: 25 ident: b37 article-title: Large eddy simulation of the flow over periodic hills publication-title: 16th IMACS World Congress – year: 2006 ident: b40 article-title: Turbulence Modeling for CFD – volume: 283 start-page: 1310 year: 2015 end-page: 1335 ident: b2 article-title: Validating predictions of unobserved quantities publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 12 start-page: 438 year: 2007 end-page: 446 ident: b42 article-title: An iterative ensemble kalman filter for multiphase fluid flow data assimilation publication-title: Spe J. – volume: 324 start-page: 115 year: 2016 end-page: 136 ident: b5 article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach publication-title: J. Comput. Phys. – volume: 104 start-page: 148 year: 2015 end-page: 175 ident: b23 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE – volume: 85 start-page: 336 year: 2016 end-page: 347 ident: b20 article-title: Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels publication-title: Int. J. Multiph. Flow. – start-page: 15104 year: 2019 end-page: 15113 ident: b44 article-title: Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions publication-title: Advances in Neural Information Processing Systems – start-page: 1762 year: 2011 ident: b6 article-title: Quantification of structural uncertainties in the publication-title: 52nd AIAA/ASME/ASCE/-AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t – start-page: 104292 year: 2019 ident: b32 article-title: Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows publication-title: Comput. & Fluids – volume: 347 start-page: 207 year: 2017 end-page: 234 ident: b15 article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows publication-title: J. Comput. Phys. – volume: 18 start-page: 854 year: 2017 end-page: 878 ident: b18 article-title: Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures publication-title: J. Turbul. – volume: 100 start-page: 593 year: 2018 end-page: 616 ident: b17 article-title: Data-free and data-driven RANS predictions with quantified uncertainty publication-title: Flow Turbul. Combust. – reference: J. Wu, J.-X. Wang, S.C. Shadden, Adding constraints to Bayesian inverse problems, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1666–1673. – volume: 108 start-page: 1 year: 2019 end-page: 31 ident: b4 article-title: Quantification of model uncertainty in RANS simulations: A review publication-title: Prog. Aerosp. Sci. – year: 1999 ident: b22 article-title: Evaluation of Gaussian Processes and Other Methods for Non-linear Regression – year: 2019 ident: b35 article-title: Regularization of ensemble kalman methods for inverse problems – volume: 51 start-page: 357 year: 2019 end-page: 377 ident: b3 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – start-page: 439 year: 1992 ident: b38 article-title: A one-equation turbulence model for aerodynamic flows publication-title: 30th Aerospace Sciences Meeting and Exhibit – start-page: 234 year: 2003 end-page: 241 ident: b28 article-title: Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations publication-title: ICML – volume: 4 start-page: 011001 year: 2018 ident: b14 article-title: Learning an eddy viscosity model using shrinkage and Bayesian calibration: A jet-in-crossflow case study publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng. – year: 2013 ident: b24 article-title: Gaussian processes for big data – volume: 15 start-page: 301 year: 1972 end-page: 314 ident: b39 article-title: The prediction of laminarization with a two-equation model of turbulence publication-title: Int. J. Heat Mass Transfer – year: 2006 ident: b26 publication-title: Gaussian Processes for Machine Learning – start-page: 151 year: 2011 end-page: 158 ident: b27 article-title: Linear operators and stochastic partial differential equations in Gaussian process regression publication-title: International Conference on Artificial Neural Networks – reference: C. Michelén Ströfer, Example of enforcing boundary conditions and internal observations on a Gaussian process, – volume: 56 start-page: 4893 year: 2018 end-page: 4909 ident: b13 article-title: Robust Bayesian calibration of a publication-title: AIAA J. – reference: . – volume: 55 start-page: 3 year: 2013 end-page: 15 ident: b41 article-title: Ensemble smoother with multiple data assimilation publication-title: Comput. Geosci. – volume: 258 start-page: 73 year: 2014 end-page: 94 ident: b10 article-title: Bayesian estimates of parameter variability in the publication-title: J. Comput. Phys. – volume: 275 start-page: 65 year: 2014 end-page: 91 ident: b11 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. – start-page: 216 year: 2013 end-page: 228 ident: b31 article-title: ODE parameter inference using adaptive gradient matching with Gaussian processes publication-title: Artificial Intelligence and Statistics – volume: 29 start-page: 045001 year: 2013 ident: b9 article-title: Ensemble Kalman methods for inverse problems publication-title: Inverse Problems – volume: 54 start-page: 2432 year: 2016 end-page: 2448 ident: b12 article-title: Bayesian parameter estimation of a publication-title: AIAA J. – volume: 101 start-page: 389 year: 2018 end-page: 412 ident: b16 article-title: Augmented prediction of turbulent flows via sequential estimators publication-title: Flow Turbul. Combust. – volume: 44 start-page: 1 year: 2012 end-page: 26 ident: b43 article-title: Ensemble randomized maximum likelihood method as an iterative ensemble smoother publication-title: Math. Geosci. – volume: 335 start-page: 736 year: 2017 end-page: 746 ident: b29 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. – volume: 54 start-page: 2432 issue: 8 year: 2016 ident: 10.1016/j.cma.2020.113097_b12 article-title: Bayesian parameter estimation of a k–ε model for accurate jet-in-crossflow simulations publication-title: AIAA J. doi: 10.2514/1.J054758 – start-page: 234 year: 2003 ident: 10.1016/j.cma.2020.113097_b28 article-title: Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations – ident: 10.1016/j.cma.2020.113097_b36 – volume: 44 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.cma.2020.113097_b43 article-title: Ensemble randomized maximum likelihood method as an iterative ensemble smoother publication-title: Math. Geosci. doi: 10.1007/s11004-011-9376-z – volume: 28 start-page: 045110 issue: 4 year: 2016 ident: 10.1016/j.cma.2020.113097_b7 article-title: Using field inversion to quantify functional errors in turbulence closures publication-title: Phys. Fluids doi: 10.1063/1.4947045 – year: 1999 ident: 10.1016/j.cma.2020.113097_b22 – year: 2006 ident: 10.1016/j.cma.2020.113097_b40 – volume: 108 start-page: 1 year: 2019 ident: 10.1016/j.cma.2020.113097_b4 article-title: Quantification of model uncertainty in RANS simulations: A review publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.10.001 – volume: 324 start-page: 115 year: 2016 ident: 10.1016/j.cma.2020.113097_b5 article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.038 – start-page: 151 year: 2011 ident: 10.1016/j.cma.2020.113097_b27 article-title: Linear operators and stochastic partial differential equations in Gaussian process regression – volume: 104 start-page: 148 issue: 1 year: 2015 ident: 10.1016/j.cma.2020.113097_b23 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – year: 2013 ident: 10.1016/j.cma.2020.113097_b24 – volume: 56 start-page: 4893 issue: 12 year: 2018 ident: 10.1016/j.cma.2020.113097_b13 article-title: Robust Bayesian calibration of a k–ε model for compressible jet-in-crossflow simulations publication-title: AIAA J. doi: 10.2514/1.J057204 – volume: 335 start-page: 736 year: 2017 ident: 10.1016/j.cma.2020.113097_b29 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.060 – volume: 348 start-page: 683 year: 2017 ident: 10.1016/j.cma.2020.113097_b30 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.07.050 – volume: 12 start-page: 438 issue: 04 year: 2007 ident: 10.1016/j.cma.2020.113097_b42 article-title: An iterative ensemble kalman filter for multiphase fluid flow data assimilation publication-title: Spe J. doi: 10.2118/108438-PA – year: 2006 ident: 10.1016/j.cma.2020.113097_b26 – volume: 283 start-page: 1310 year: 2015 ident: 10.1016/j.cma.2020.113097_b2 article-title: Validating predictions of unobserved quantities publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.08.023 – volume: 29 start-page: 045001 issue: 4 year: 2013 ident: 10.1016/j.cma.2020.113097_b9 article-title: Ensemble Kalman methods for inverse problems publication-title: Inverse Problems doi: 10.1088/0266-5611/29/4/045001 – volume: 15 start-page: 301 issue: 2 year: 1972 ident: 10.1016/j.cma.2020.113097_b39 article-title: The prediction of laminarization with a two-equation model of turbulence publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(72)90076-2 – start-page: 216 year: 2013 ident: 10.1016/j.cma.2020.113097_b31 article-title: ODE parameter inference using adaptive gradient matching with Gaussian processes – volume: 100 start-page: 593 issue: 3 year: 2018 ident: 10.1016/j.cma.2020.113097_b17 article-title: Data-free and data-driven RANS predictions with quantified uncertainty publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-017-9870-6 – volume: 63 start-page: 425 issue: 3 year: 2001 ident: 10.1016/j.cma.2020.113097_b1 article-title: Bayesian calibration of computer models publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00294 – volume: 275 start-page: 65 year: 2014 ident: 10.1016/j.cma.2020.113097_b11 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.052 – year: 1998 ident: 10.1016/j.cma.2020.113097_b21 – volume: 51 start-page: 357 issue: 1 year: 2019 ident: 10.1016/j.cma.2020.113097_b3 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 – year: 2019 ident: 10.1016/j.cma.2020.113097_b35 – volume: 55 start-page: 3 year: 2013 ident: 10.1016/j.cma.2020.113097_b41 article-title: Ensemble smoother with multiple data assimilation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.011 – volume: 258 start-page: 73 year: 2014 ident: 10.1016/j.cma.2020.113097_b10 article-title: Bayesian estimates of parameter variability in the k–ε turbulence model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.027 – volume: 347 start-page: 207 year: 2017 ident: 10.1016/j.cma.2020.113097_b15 article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.06.042 – start-page: 1057 year: 2003 ident: 10.1016/j.cma.2020.113097_b25 article-title: Derivative observations in Gaussian process models of dynamic systems – year: 2019 ident: 10.1016/j.cma.2020.113097_b34 – volume: 4 start-page: 011001 issue: 1 year: 2018 ident: 10.1016/j.cma.2020.113097_b14 article-title: Learning an eddy viscosity model using shrinkage and Bayesian calibration: A jet-in-crossflow case study publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng. doi: 10.1115/1.4037557 – start-page: 104292 year: 2019 ident: 10.1016/j.cma.2020.113097_b32 article-title: Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2019.104292 – start-page: 1762 year: 2011 ident: 10.1016/j.cma.2020.113097_b6 article-title: Quantification of structural uncertainties in the k–ω turbulence model – volume: 27 start-page: 092101 issue: 9 year: 2015 ident: 10.1016/j.cma.2020.113097_b19 article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system publication-title: Phys. Fluids doi: 10.1063/1.4930004 – start-page: 15104 year: 2019 ident: 10.1016/j.cma.2020.113097_b44 article-title: Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions – volume: 18 start-page: 854 issue: 9 year: 2017 ident: 10.1016/j.cma.2020.113097_b18 article-title: Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures publication-title: J. Turbul. doi: 10.1080/14685248.2017.1334907 – ident: 10.1016/j.cma.2020.113097_b33 doi: 10.1609/aaai.v33i01.33011666 – volume: 101 start-page: 389 issue: 2 year: 2018 ident: 10.1016/j.cma.2020.113097_b16 article-title: Augmented prediction of turbulent flows via sequential estimators publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-018-9967-6 – start-page: 439 year: 1992 ident: 10.1016/j.cma.2020.113097_b38 article-title: A one-equation turbulence model for aerodynamic flows – volume: 96 start-page: 1137 issue: 9 year: 2011 ident: 10.1016/j.cma.2020.113097_b8 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2010.09.013 – start-page: 21 year: 2000 ident: 10.1016/j.cma.2020.113097_b37 article-title: Large eddy simulation of the flow over periodic hills – volume: 85 start-page: 336 year: 2016 ident: 10.1016/j.cma.2020.113097_b20 article-title: Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels publication-title: Int. J. Multiph. Flow. doi: 10.1016/j.ijmultiphaseflow.2016.06.021 |
SSID | ssj0000812 |
Score | 2.4130895 |
Snippet | Inverse problems in computational mechanics consist of inferring physical fields that are latent in the model describing some observable fields. For instance,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113097 |
SubjectTerms | Bayesian analysis Bayesian inference Boundary conditions Computational fluid dynamics Computational mechanics Covariance Eddy viscosity Ensemble Kalman method Field inversion Fluid flow Inverse problems Navier-Stokes equations Reynolds stress Statistical models Stress distribution Viscosity |
Title | Enforcing boundary conditions on physical fields in Bayesian inversion |
URI | https://dx.doi.org/10.1016/j.cma.2020.113097 https://www.proquest.com/docview/2440098191 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvTgAzWiSHrwZLKydGdZ9ogEgho5ScKtabvdBGMWAmjCxd_u9LG-Yjh4azftZjPTzky333xDyFVXggg7TAYGtRagvw3RDuYQZCJluQqznEmTjfw47owmcD-NpxXSL3NhDKzS235n06219k9aXpqtxWxmcnzBcLHHDNcp69pi1gCJWeU3718wD3R5jjEc4sCMLm82LcZLWeohZiubWN6nv33TLyttXc_wkOz7mJH23GcdkYouauTAx4_U785Vjex9Ixc8JsOByTRS2KbS1k5abigefjOH0aLzgi68jqiFsa3orKC3YqNNWiW239yftBMyGQ6e-qPAV00IFESwDlKmU52EqiNFwnIWyZAJEeEjwUyN-DyT6PF1LLEDWRxnoExI2M7aqbLXgNEpqRbzQp8RypiGNMPRYE4dCUN9JzqBtBtBnArVqZOwlBdXnlLcVLZ44SV27JmjiLkRMXcirpPrzykLx6exbTCUSuA_FgVHe79tWqNUGPc7csUxjDHcqXg8Pf_fWy_Iruk58F-DVNfLV32JAclaNu2Ka5Kd3t3DaPwBtXbccg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHtSDH6gRRe3Bk8lkdB1jRyUQVOAECbdm7boEYwYBNOHi3-57bedXDAdvW9cuy3vte6_r7_0eIdctyRO_yaSHqDUP_K0PdjDjXprELFN-mjGJ2ciDYbM35o-TcFIi7SIXBmGVzvZbm26stWupO2nW59Mp5vhy5GIPGcxT1sJi1lscli-WMbh9_8J5gM-zlOE89LB7cbRpQF7KcA8xU9rEED_97Zx-mWnje7oHZM8FjfTOftchKem8QvZdAEnd8lxWyO43dsEj0u1gqpGCaypN8aTFmsLuN7UgLTrL6dwpiRoc25JOc3qfrDXmVcL1m_2VdkzG3c6o3fNc2QRP8YCvvJjpWEe-asokYhkLpM-SJICmhGGR-CyV4PJ1KOGGp2GYcoUxYSNtxMqcAwYnpJzPcn1KKGOaxyn05rjtiBgoPNIRj1sBD-NENavEL-QllOMUx9IWL6IAjz0LELFAEQsr4iq5-Rwyt4QamzrzQgnix6wQYPA3DasVChNuSS4FxDFIngr707P_vfWKbPdGg77oPwyfzskOPrFIwBoprxav-gKik5W8NLPvA97X3gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enforcing+boundary+conditions+on+physical+fields+in+Bayesian+inversion&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Michel%C3%A9n%C2%A0Str%C3%B6fer%2C+Carlos+A.&rft.au=Zhang%2C+Xin-Lei&rft.au=Xiao%2C+Heng&rft.au=Coutier-Delgosha%2C+Olivier&rft.date=2020-08-01&rft.issn=0045-7825&rft.volume=367&rft.spage=113097&rft_id=info:doi/10.1016%2Fj.cma.2020.113097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2020_113097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |