PLGA implants for controlled drug release: Impact of the diameter
[Display omitted] The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion us...
Saved in:
Published in | European journal of pharmaceutics and biopharmaceutics Vol. 177; pp. 50 - 60 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2022
Elsevier |
Series | European Journal of Pharmaceutics and Biopharmaceutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants’ dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7–2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80–90% of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling. |
---|---|
AbstractList | The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants' dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7 to 2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80-90% of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling. [Display omitted] The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants’ dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7–2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80–90% of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling. The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH 7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants’ dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7–2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80–90 % of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling. |
Author | Bassand, C. Verin, J. Siepmann, J. Benabed, L. Freitag, J. Siepmann, F. |
Author_xml | – sequence: 1 givenname: C. surname: Bassand fullname: Bassand, C. – sequence: 2 givenname: J. surname: Freitag fullname: Freitag, J. – sequence: 3 givenname: L. surname: Benabed fullname: Benabed, L. – sequence: 4 givenname: J. surname: Verin fullname: Verin, J. – sequence: 5 givenname: F. surname: Siepmann fullname: Siepmann, F. – sequence: 6 givenname: J. surname: Siepmann fullname: Siepmann, J. email: juergen.siepmann@univ-lille.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35659920$$D View this record in MEDLINE/PubMed https://hal.univ-lille.fr/hal-04009128$$DView record in HAL |
BookMark | eNp9kE1r3DAQQEVJSTZp_kAPRcf2YHf0aav0soR8wUJ7aM9ClkeNFttyJW-g_75eNs2xp4HhzYN5l-RsShMS8p5BzYDpz_sa93NXc-C8BlUDhzdkw9pGVEJKdkY2YISptGTsglyWsgcA2aj2nFwIpZUxHDZk-313v6VxnAc3LYWGlKlP05LTMGBP-3z4RTMO6Ap-oY_j7PxCU6DLE9I-uhEXzO_I2-CGgtcv84r8vLv9cfNQ7b7dP95sd5WXQi5V66QM3itnJOO96phpRSvQyL6RnRQ8uJYZbpxyrhO867zmSvEmaN1qHrogrsink_fJDXbOcXT5j00u2oftzh53IAEM4-0zW9mPJ3bO6fcBy2LHWDwO65OYDsVy3QhlNDRiRfkJ9TmVkjG8uhnYY2a7t8fM9pjZgrJr5vXow4v_0I3Yv57867oCX08ArkWeI2ZbfMTJYx8z-sX2Kf7P_xd1RY1s |
CitedBy_id | crossref_primary_10_1016_j_xphs_2024_05_020 crossref_primary_10_1016_j_ijpharm_2022_122477 crossref_primary_10_1016_j_ijpx_2022_100131 crossref_primary_10_1016_j_jconrel_2022_11_052 crossref_primary_10_3390_jcs7090346 crossref_primary_10_1007_s40005_024_00681_y crossref_primary_10_1021_acs_jafc_3c02608 crossref_primary_10_3390_nano13050943 crossref_primary_10_1021_acs_molpharmaceut_3c00373 crossref_primary_10_1016_j_ijpharm_2023_123579 crossref_primary_10_1016_j_ejpb_2023_04_003 crossref_primary_10_1016_j_ijpharm_2023_123082 |
Cites_doi | 10.1021/acs.molpharmaceut.6b00896 10.1016/j.progpolymsci.2007.05.017 10.1016/j.jddst.2018.03.024 10.1016/j.jconrel.2015.06.039 10.1016/0168-3659(93)90217-S 10.1016/j.ejps.2019.104990 10.1016/j.ijpharm.2011.05.049 10.1016/j.ejpb.2021.11.007 10.1021/ja055287k 10.1016/j.jconrel.2019.05.039 10.1016/j.jconrel.2003.09.003 10.1016/j.ejpb.2019.03.016 10.1016/S0142-9612(02)00170-9 10.1021/bm100125b 10.1016/j.ejpb.2012.07.021 10.1016/j.jconrel.2016.03.011 10.1016/0168-3659(92)90171-M 10.1016/j.jconrel.2006.02.015 10.1016/j.ijpharm.2022.121504 10.1016/j.ijpharm.2021.121011 10.1016/j.ijpharm.2005.07.031 10.1016/j.addr.2012.09.004 10.1016/j.ijpharm.2020.119130 10.1016/j.jddst.2022.103432 10.1016/S0939-6411(03)00096-1 10.1016/j.ejpb.2020.08.020 10.1016/j.bprint.2018.e00038 10.1016/j.jconrel.2022.01.028 10.1016/j.joca.2017.10.003 10.1016/j.ijpharm.2020.119964 10.1021/bm050228k 10.1002/app.30813 10.1016/j.ejpb.2021.05.008 10.1016/j.ijpharm.2018.01.026 10.1016/j.jconrel.2008.01.004 10.1016/j.jddst.2021.102558 10.1016/j.jconrel.2006.02.004 10.1016/j.jconrel.2004.01.011 10.1016/j.ijpharm.2019.118819 10.1016/0142-9612(96)85755-3 10.1208/pt0802037 10.1016/j.jconrel.2004.07.031 10.1016/j.ijpharm.2011.06.047 10.1002/adem.201080088 10.1016/j.jconrel.2005.07.009 10.1016/S0939-6411(02)00061-9 10.1016/j.jconrel.2019.07.013 10.1016/S0378-5173(02)00431-3 10.1016/S0142-9612(00)00040-5 10.1016/j.ijpharm.2020.119601 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7X8 1XC VOOES |
DOI | 10.1016/j.ejpb.2022.05.020 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3441 |
EndPage | 60 |
ExternalDocumentID | oai_HAL_hal_04009128v1 10_1016_j_ejpb_2022_05_020 35659920 S0939641122001163 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSP SSU SSZ T5K TEORI UNMZH ~G- AAXKI AKRWK NPM AAYXX AFJKZ CITATION 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c434t-8a44fcc5a9412d5b198383e94d74b432fa81929a5aab32bbc625527f66862fbf3 |
IEDL.DBID | AIKHN |
ISSN | 0939-6411 |
IngestDate | Tue Oct 15 15:52:18 EDT 2024 Sat Oct 05 05:53:50 EDT 2024 Thu Sep 26 17:04:32 EDT 2024 Sat Sep 28 08:24:27 EDT 2024 Fri Feb 23 02:38:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Swelling PLGA implant Monolithic solution Ibuprofen Drug release mechanism monolithic solution ibuprofen swelling drug release mechanism |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-8a44fcc5a9412d5b198383e94d74b432fa81929a5aab32bbc625527f66862fbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hal.univ-lille.fr/hal-04009128 |
PMID | 35659920 |
PQID | 2673596073 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_04009128v1 proquest_miscellaneous_2673596073 crossref_primary_10_1016_j_ejpb_2022_05_020 pubmed_primary_35659920 elsevier_sciencedirect_doi_10_1016_j_ejpb_2022_05_020 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationSeriesTitle | European Journal of Pharmaceutics and Biopharmaceutics |
PublicationTitle | European journal of pharmaceutics and biopharmaceutics |
PublicationTitleAlternate | Eur J Pharm Biopharm |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fredenberg, Wahlgren, Reslow, Axelsson (b0135) 2011; 415 Siepmann, Elkharraz, Siepmann, Klose (b0235) 2005; 6 Siepmann, Faisant, Akiki, Richard, Benoit (b0220) 2004; 96 Schreiner, Detampel, Jirkof, Puchkov, Huwyler (b0035) 2021; 63 Goel, Leung, Famili, Chang, Nayak, Al-Sayah (b0085) 2021; 165 Blasi, D'Souza, Selmin, DeLuca (b0200) 2005; 108 Shah, Cha, Pitt (b0130) 1992; 18 Tamani, Bassand, Hamoudi, Danede, Willart, Siepmann, Siepmann (b0155) 2019; 572 Zolnik, Leary, Burgess (b0185) 2006; 112 Burkersroda, Schedl, Göpferich (b0145) 2002; 23 Dorta, Santoveña, Llabrés, Fariña (b0040) 2002; 248 Bode, Kranz, Fivez, Siepmann, Siepmann (b0160) 2019; 306 Antheunis, van der Meer, de Geus, Heise, Koning (b0195) 2010; 11 Gasmi, Danede, Siepmann, Siepmann (b0150) 2015; 213 Anderson, Shive (b0030) 2012; 64 Klose, Siepmann, Elkharraz, Krenzlin, Siepmann (b0240) 2006; 314 Xiao, Qi, Chen, Song, Wang, He, Tang, Wang (b0110) 2020; 591 Schliecker, Schmidt, Fuchs, Ehinger, Sandow, Kissel (b0010) 2004; 94 Chen, Palazzo, Hennink, Kok (b0225) 2017; 14 Lin, Yang, Su, Yang, Tang (b0230) 2018; 45 Bassand, Verin, Lamatsch, Siepmann, Siepmann (b0075) 2022; 343 Grizić, Lamprecht (b0100) 2020; 586 Thalhauser, Peterhoff, Wagner, Breunig (b0115) 2020; 156 Houchin, Topp (b0265) 2009; 114 Nair, Laurencin (b0020) 2007; 32 Gu, Sun, Papadimitrakopoulos, Burgess (b0165) 2016; 228 Kraus, Conaghan, Aazami, Mehra, Kivitz, Lufkin, Hauben, Johnson, Bodick (b0015) 2018; 26 Zolnik, Burgess (b0105) 2008; 127 Présumey, Salzano, Courties, Shires, Ponchel, Jorgensen, Apparailly, De Rosa (b0060) 2012; 82 Zlomke, Barth, Mäder (b0210) 2019; 139 Vay, Scheler, Frieß (b0095) 2011; 416 Dunne, Corrigan, Ramtoola (b0215) 2000; 21 Breitenbach (b0125) 2002; 54 Kim, Chung, Park (b0170) 2006; 112 Tipnis, Shen, Jackson, Leblanc, Burgess (b0180) 2020; 579 Maturavongsadit, Paravyan, Kovarova, Garcia, Benhabbour (b0250) 2021; 3 Ding, Shenderova, Schwendeman (b0190) 2006; 128 Andhariya, Jog, Shen, Choi, Wang, Zou, Burgess (b0090) 2019; 308 Blasi, Schoubben, Giovagnoli, Perioli, Ricci, Rossi (b0205) 2007; 8 van der Kooij, Steendam, Frijlink, Hinrichs (b0045) 2022; 170 Schwach, Oudry, Delhomme, Lück, Lindner, Gurny (b0055) 2003; 56 Takahashi, Onishi, Machida (b0065) 2004; 100 Bassand, Benabed, Verin, Danede, Lefol, Willart, Siepmann, Siepmann (b0260) 2022; 73 Guo, Lim, Noshin, Ringel, Fisher (b0070) 2018; 10 Wang, Xue, Wang, Yin, Han, Tang, Liang (b0175) 2019; 138 Duque, Körber, Bodmeier (b0080) 2018; 538 Lehner, Gündel, Liebau, Plontke, Mäder (b0120) 2019; 1 Göpferich (b0140) 1996; 17 Shah, Railkar, Chen, Tarantino, Kumar, Murjani, Palmer, Infeld, Malick (b0005) 1993; 27 Grund, Bauer, Fischer (b0025) 2011; 13 Stewart, Domínguez-Robles, Utomo, Picco, Corduas, Mancuso, Amir, Bahar, Sumarheni, Donnelly, Permana, Larrañeta (b0050) 2021; 607 Varela-Fernández, Bendicho-Lavilla, Martin-Pastor, Herrero Vanrell, Lema-Gesto, González-Barcia, Otero-Espinar (b0245) 2022; 616 Zhang, Yang, Wan, Bera, Cun, Rantanen, Yang (b0255) 2020; 585 Shah (10.1016/j.ejpb.2022.05.020_b0130) 1992; 18 Andhariya (10.1016/j.ejpb.2022.05.020_b0090) 2019; 308 Blasi (10.1016/j.ejpb.2022.05.020_b0200) 2005; 108 Thalhauser (10.1016/j.ejpb.2022.05.020_b0115) 2020; 156 Xiao (10.1016/j.ejpb.2022.05.020_b0110) 2020; 591 Schliecker (10.1016/j.ejpb.2022.05.020_b0010) 2004; 94 Antheunis (10.1016/j.ejpb.2022.05.020_b0195) 2010; 11 Tipnis (10.1016/j.ejpb.2022.05.020_b0180) 2020; 579 Kraus (10.1016/j.ejpb.2022.05.020_b0015) 2018; 26 Houchin (10.1016/j.ejpb.2022.05.020_b0265) 2009; 114 Burkersroda (10.1016/j.ejpb.2022.05.020_b0145) 2002; 23 Ding (10.1016/j.ejpb.2022.05.020_b0190) 2006; 128 Guo (10.1016/j.ejpb.2022.05.020_b0070) 2018; 10 Lin (10.1016/j.ejpb.2022.05.020_b0230) 2018; 45 Siepmann (10.1016/j.ejpb.2022.05.020_b0235) 2005; 6 Dunne (10.1016/j.ejpb.2022.05.020_b0215) 2000; 21 Lehner (10.1016/j.ejpb.2022.05.020_b0120) 2019; 1 Takahashi (10.1016/j.ejpb.2022.05.020_b0065) 2004; 100 Grund (10.1016/j.ejpb.2022.05.020_b0025) 2011; 13 Varela-Fernández (10.1016/j.ejpb.2022.05.020_b0245) 2022; 616 Nair (10.1016/j.ejpb.2022.05.020_b0020) 2007; 32 Zolnik (10.1016/j.ejpb.2022.05.020_b0105) 2008; 127 Blasi (10.1016/j.ejpb.2022.05.020_b0205) 2007; 8 Schwach (10.1016/j.ejpb.2022.05.020_b0055) 2003; 56 Goel (10.1016/j.ejpb.2022.05.020_b0085) 2021; 165 Bassand (10.1016/j.ejpb.2022.05.020_b0260) 2022; 73 Zolnik (10.1016/j.ejpb.2022.05.020_b0185) 2006; 112 van der Kooij (10.1016/j.ejpb.2022.05.020_b0045) 2022; 170 Bode (10.1016/j.ejpb.2022.05.020_b0160) 2019; 306 Gu (10.1016/j.ejpb.2022.05.020_b0165) 2016; 228 Kim (10.1016/j.ejpb.2022.05.020_b0170) 2006; 112 Dorta (10.1016/j.ejpb.2022.05.020_b0040) 2002; 248 Duque (10.1016/j.ejpb.2022.05.020_b0080) 2018; 538 Gasmi (10.1016/j.ejpb.2022.05.020_b0150) 2015; 213 Siepmann (10.1016/j.ejpb.2022.05.020_b0220) 2004; 96 Anderson (10.1016/j.ejpb.2022.05.020_b0030) 2012; 64 Fredenberg (10.1016/j.ejpb.2022.05.020_b0135) 2011; 415 Wang (10.1016/j.ejpb.2022.05.020_b0175) 2019; 138 Zhang (10.1016/j.ejpb.2022.05.020_b0255) 2020; 585 Göpferich (10.1016/j.ejpb.2022.05.020_b0140) 1996; 17 Tamani (10.1016/j.ejpb.2022.05.020_b0155) 2019; 572 Stewart (10.1016/j.ejpb.2022.05.020_b0050) 2021; 607 Schreiner (10.1016/j.ejpb.2022.05.020_b0035) 2021; 63 Zlomke (10.1016/j.ejpb.2022.05.020_b0210) 2019; 139 Maturavongsadit (10.1016/j.ejpb.2022.05.020_b0250) 2021; 3 Bassand (10.1016/j.ejpb.2022.05.020_b0075) 2022; 343 Chen (10.1016/j.ejpb.2022.05.020_b0225) 2017; 14 Breitenbach (10.1016/j.ejpb.2022.05.020_b0125) 2002; 54 Grizić (10.1016/j.ejpb.2022.05.020_b0100) 2020; 586 Klose (10.1016/j.ejpb.2022.05.020_b0240) 2006; 314 Présumey (10.1016/j.ejpb.2022.05.020_b0060) 2012; 82 Shah (10.1016/j.ejpb.2022.05.020_b0005) 1993; 27 Vay (10.1016/j.ejpb.2022.05.020_b0095) 2011; 416 |
References_xml | – volume: 3 start-page: 1 year: 2021 end-page: 16 ident: b0250 article-title: A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery publication-title: Int. J. Pharmaceut. X contributor: fullname: Benhabbour – volume: 6 start-page: 2312 year: 2005 end-page: 2319 ident: b0235 article-title: How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment publication-title: Biomacromolecules contributor: fullname: Klose – volume: 306 start-page: 97 year: 2019 end-page: 107 ident: b0160 article-title: Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants publication-title: J. Control. Release Off. J. Control. Release Soc. contributor: fullname: Siepmann – volume: 94 start-page: 25 year: 2004 end-page: 37 ident: b0010 article-title: In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis publication-title: J. Control. Release Off. J. Control. Release Soc. contributor: fullname: Kissel – volume: 10 start-page: e00038 year: 2018 ident: b0070 article-title: 3D printing bioactive PLGA scaffolds using DMSO as a removable solvent publication-title: Bioprinting. contributor: fullname: Fisher – volume: 343 start-page: 255 year: 2022 end-page: 266 ident: b0075 article-title: How agarose gels surrounding PLGA implants limit swelling and slow down drug release publication-title: J. Control. Release contributor: fullname: Siepmann – volume: 128 start-page: 5384 year: 2006 end-page: 5390 ident: b0190 article-title: Prediction of Microclimate pH in Poly(lactic-co-glycolic Acid) Films publication-title: J. Am. Chem. Soc. contributor: fullname: Schwendeman – volume: 56 start-page: 327 year: 2003 end-page: 336 ident: b0055 article-title: Biodegradable microparticles for sustained release of a new GnRH antagonist – part I: screening commercial PLGA and formulation technologies publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Gurny – volume: 64 start-page: 72 year: 2012 end-page: 82 ident: b0030 article-title: Biodegradation and biocompatibility of PLA and PLGA microspheres publication-title: Adv. Drug Deliv. Rev. contributor: fullname: Shive – volume: 308 start-page: 1 year: 2019 end-page: 13 ident: b0090 article-title: Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres publication-title: J. Control. Release Off. J. Control. Release Soc. contributor: fullname: Burgess – volume: 23 start-page: 4221 year: 2002 end-page: 4231 ident: b0145 article-title: Why degradable polymers undergo surface erosion or bulk erosion publication-title: Biomaterials. contributor: fullname: Göpferich – volume: 96 start-page: 123 year: 2004 end-page: 134 ident: b0220 article-title: Effect of the size of biodegradable microparticles on drug release: experiment and theory publication-title: J. Control. Release Off. J. Control. Release Soc. contributor: fullname: Benoit – volume: 63 start-page: 102558 year: 2021 ident: b0035 article-title: Buprenorphine loaded PLGA microparticles: Characterization of a sustained-release formulation publication-title: J. Drug Deliv. Sci. Technol. contributor: fullname: Huwyler – volume: 138 start-page: 104990 year: 2019 ident: b0175 article-title: Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends publication-title: Eur. J. Pharm. Sci. contributor: fullname: Liang – volume: 114 start-page: 2848 year: 2009 end-page: 2854 ident: b0265 article-title: Physical properties of PLGA films during polymer degradation publication-title: J. Appl. Polym. Sci. contributor: fullname: Topp – volume: 415 start-page: 34 year: 2011 end-page: 52 ident: b0135 article-title: The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review publication-title: Int. J. Pharm. contributor: fullname: Axelsson – volume: 18 start-page: 261 year: 1992 end-page: 270 ident: b0130 article-title: Poly (glycolic acid-co-dl-lactic acid): diffusion or degradation controlled drug delivery? publication-title: J. Controlled Release. contributor: fullname: Pitt – volume: 73 start-page: 103432 year: 2022 ident: b0260 article-title: Hot melt extruded PLGA implants loaded with ibuprofen: How heat exposure alters the physical drug state publication-title: J. Drug Deliv. Sci. Technol. contributor: fullname: Siepmann – volume: 228 start-page: 170 year: 2016 end-page: 178 ident: b0165 article-title: Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites publication-title: J. Controlled Release. contributor: fullname: Burgess – volume: 54 start-page: 107 year: 2002 end-page: 117 ident: b0125 article-title: Melt extrusion: from process to drug delivery technology publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Breitenbach – volume: 314 start-page: 198 year: 2006 end-page: 206 ident: b0240 article-title: How porosity and size affect the drug release mechanisms from PLGA-based microparticles publication-title: Int. J. Pharm. contributor: fullname: Siepmann – volume: 170 start-page: 24 year: 2022 end-page: 42 ident: b0045 article-title: An overview of the production methods for core–shell microspheres for parenteral controlled drug delivery publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Hinrichs – volume: 17 start-page: 103 year: 1996 end-page: 114 ident: b0140 article-title: Mechanisms of polymer degradation and erosion publication-title: Biomaterials. contributor: fullname: Göpferich – volume: 1 start-page: 100015 year: 2019 ident: b0120 article-title: Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions publication-title: Int. J. Pharm. X. contributor: fullname: Mäder – volume: 82 start-page: 457 year: 2012 end-page: 464 ident: b0060 article-title: PLGA microspheres encapsulating siRNA anti-TNFalpha: Efficient RNAi-mediated treatment of arthritic joints publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: De Rosa – volume: 579 start-page: 119130 year: 2020 ident: b0180 article-title: Flow-through cell-based in vitro release method for triamcinolone acetonide poly (lactic-co-glycolic) acid microspheres publication-title: Int. J. Pharm. contributor: fullname: Burgess – volume: 14 start-page: 459 year: 2017 end-page: 467 ident: b0225 article-title: Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres publication-title: Mol. Pharm. contributor: fullname: Kok – volume: 127 start-page: 137 year: 2008 end-page: 145 ident: b0105 article-title: Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres publication-title: J. Controlled Release. contributor: fullname: Burgess – volume: 165 start-page: 185 year: 2021 end-page: 192 ident: b0085 article-title: Accelerated in vitro release testing method for a long-acting peptide-PLGA formulation publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Al-Sayah – volume: 213 start-page: 120 year: 2015 end-page: 127 ident: b0150 article-title: Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies publication-title: J. Controlled Release. contributor: fullname: Siepmann – volume: 27 start-page: 139 year: 1993 end-page: 147 ident: b0005 article-title: A biodegradable injectable implant for delivering micro and macromolecules using poly (lactic-co-glycolic) acid (PLGA) copolymers publication-title: J. Controlled Release. contributor: fullname: Malick – volume: 26 start-page: 34 year: 2018 end-page: 42 ident: b0015 article-title: Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA) publication-title: Osteoarthritis Cartilage. contributor: fullname: Bodick – volume: 112 start-page: 293 year: 2006 end-page: 300 ident: b0185 article-title: Elevated temperature accelerated release testing of PLGA microspheres publication-title: J. Control. Release Off. J. Control. Release Soc. contributor: fullname: Burgess – volume: 586 start-page: 119601 year: 2020 ident: b0100 article-title: Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles publication-title: Int. J. Pharm. contributor: fullname: Lamprecht – volume: 32 start-page: 762 year: 2007 end-page: 798 ident: b0020 article-title: Biodegradable polymers as biomaterials publication-title: Prog. Polym. Sci. contributor: fullname: Laurencin – volume: 112 start-page: 167 year: 2006 end-page: 174 ident: b0170 article-title: Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone publication-title: J. Controlled Release. contributor: fullname: Park – volume: 108 start-page: 1 year: 2005 end-page: 9 ident: b0200 article-title: Plasticizing effect of water on poly(lactide-co-glycolide) publication-title: J. Controlled Release. contributor: fullname: DeLuca – volume: 607 start-page: 121011 year: 2021 ident: b0050 article-title: Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine publication-title: Int. J. Pharmaceut. contributor: fullname: Larrañeta – volume: 156 start-page: 1 year: 2020 end-page: 10 ident: b0115 article-title: Silica particles incorporated into PLGA-based in situ-forming implants exploit the dual advantage of sustained release and particulate delivery publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Breunig – volume: 248 start-page: 149 year: 2002 end-page: 156 ident: b0040 article-title: Potential applications of PLGA film-implants in modulating in vitro drugs release publication-title: Int. J. Pharm. contributor: fullname: Fariña – volume: 591 start-page: 119964 year: 2020 ident: b0110 article-title: The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres publication-title: Int. J. Pharm. contributor: fullname: Wang – volume: 100 start-page: 63 year: 2004 end-page: 74 ident: b0065 article-title: Development of implant tablet for a week-long sustained release publication-title: J. Controlled Release. contributor: fullname: Machida – volume: 13 start-page: B61 year: 2011 end-page: B87 ident: b0025 article-title: Polymers in Drug Delivery—State of the Art and Future Trends publication-title: Adv. Eng. Mater. contributor: fullname: Fischer – volume: 21 start-page: 1659 year: 2000 end-page: 1668 ident: b0215 article-title: Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles publication-title: Biomaterials. contributor: fullname: Ramtoola – volume: 538 start-page: 139 year: 2018 end-page: 146 ident: b0080 article-title: Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin publication-title: Int. J. Pharm. contributor: fullname: Bodmeier – volume: 8 start-page: E78 year: 2007 end-page: E85 ident: b0205 article-title: Ketoprofen poly(lactide-co-glycolide) physical interaction publication-title: AAPS PharmSciTech. contributor: fullname: Rossi – volume: 11 start-page: 1118 year: 2010 end-page: 1124 ident: b0195 article-title: Autocatalytic Equation Describing the Change in Molecular Weight during Hydrolytic Degradation of Aliphatic Polyesters publication-title: Biomacromolecules. contributor: fullname: Koning – volume: 585 start-page: 1 year: 2020 end-page: 19 ident: b0255 article-title: Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery publication-title: Int. J. Pharmaceut. contributor: fullname: Yang – volume: 139 start-page: 142 year: 2019 end-page: 152 ident: b0210 article-title: Polymer degradation induced drug precipitation in PLGA implants – Why less is sometimes more publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Mäder – volume: 45 start-page: 346 year: 2018 end-page: 356 ident: b0230 article-title: Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres publication-title: J. Drug Deliv. Sci. Technol. contributor: fullname: Tang – volume: 416 start-page: 202 year: 2011 end-page: 209 ident: b0095 article-title: Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres publication-title: Int. J. Pharm. contributor: fullname: Frieß – volume: 572 start-page: 118819 year: 2019 ident: b0155 article-title: Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions publication-title: Int. J. Pharm. contributor: fullname: Siepmann – volume: 616 start-page: 121504 year: 2022 ident: b0245 article-title: Design, optimization, and in vitro characterization of idebenone-loaded PLGA microspheres for LHON treatment publication-title: Int. J. Pharmaceut. contributor: fullname: Otero-Espinar – volume: 14 start-page: 459 issue: 2 year: 2017 ident: 10.1016/j.ejpb.2022.05.020_b0225 article-title: Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00896 contributor: fullname: Chen – volume: 32 start-page: 762 issue: 8-9 year: 2007 ident: 10.1016/j.ejpb.2022.05.020_b0020 article-title: Biodegradable polymers as biomaterials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.05.017 contributor: fullname: Nair – volume: 45 start-page: 346 year: 2018 ident: 10.1016/j.ejpb.2022.05.020_b0230 article-title: Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2018.03.024 contributor: fullname: Lin – volume: 213 start-page: 120 year: 2015 ident: 10.1016/j.ejpb.2022.05.020_b0150 article-title: Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2015.06.039 contributor: fullname: Gasmi – volume: 27 start-page: 139 issue: 2 year: 1993 ident: 10.1016/j.ejpb.2022.05.020_b0005 article-title: A biodegradable injectable implant for delivering micro and macromolecules using poly (lactic-co-glycolic) acid (PLGA) copolymers publication-title: J. Controlled Release. doi: 10.1016/0168-3659(93)90217-S contributor: fullname: Shah – volume: 138 start-page: 104990 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0175 article-title: Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2019.104990 contributor: fullname: Wang – volume: 415 start-page: 34 issue: 1-2 year: 2011 ident: 10.1016/j.ejpb.2022.05.020_b0135 article-title: The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.049 contributor: fullname: Fredenberg – volume: 170 start-page: 24 year: 2022 ident: 10.1016/j.ejpb.2022.05.020_b0045 article-title: An overview of the production methods for core–shell microspheres for parenteral controlled drug delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.11.007 contributor: fullname: van der Kooij – volume: 128 start-page: 5384 issue: 16 year: 2006 ident: 10.1016/j.ejpb.2022.05.020_b0190 article-title: Prediction of Microclimate pH in Poly(lactic-co-glycolic Acid) Films publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055287k contributor: fullname: Ding – volume: 306 start-page: 97 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0160 article-title: Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2019.05.039 contributor: fullname: Bode – volume: 94 start-page: 25 issue: 1 year: 2004 ident: 10.1016/j.ejpb.2022.05.020_b0010 article-title: In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2003.09.003 contributor: fullname: Schliecker – volume: 139 start-page: 142 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0210 article-title: Polymer degradation induced drug precipitation in PLGA implants – Why less is sometimes more publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2019.03.016 contributor: fullname: Zlomke – volume: 23 start-page: 4221 issue: 21 year: 2002 ident: 10.1016/j.ejpb.2022.05.020_b0145 article-title: Why degradable polymers undergo surface erosion or bulk erosion publication-title: Biomaterials. doi: 10.1016/S0142-9612(02)00170-9 contributor: fullname: Burkersroda – volume: 11 start-page: 1118 issue: 4 year: 2010 ident: 10.1016/j.ejpb.2022.05.020_b0195 article-title: Autocatalytic Equation Describing the Change in Molecular Weight during Hydrolytic Degradation of Aliphatic Polyesters publication-title: Biomacromolecules. doi: 10.1021/bm100125b contributor: fullname: Antheunis – volume: 82 start-page: 457 issue: 3 year: 2012 ident: 10.1016/j.ejpb.2022.05.020_b0060 article-title: PLGA microspheres encapsulating siRNA anti-TNFalpha: Efficient RNAi-mediated treatment of arthritic joints publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2012.07.021 contributor: fullname: Présumey – volume: 228 start-page: 170 year: 2016 ident: 10.1016/j.ejpb.2022.05.020_b0165 article-title: Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2016.03.011 contributor: fullname: Gu – volume: 18 start-page: 261 issue: 3 year: 1992 ident: 10.1016/j.ejpb.2022.05.020_b0130 article-title: Poly (glycolic acid-co-dl-lactic acid): diffusion or degradation controlled drug delivery? publication-title: J. Controlled Release. doi: 10.1016/0168-3659(92)90171-M contributor: fullname: Shah – volume: 112 start-page: 293 issue: 3 year: 2006 ident: 10.1016/j.ejpb.2022.05.020_b0185 article-title: Elevated temperature accelerated release testing of PLGA microspheres publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2006.02.015 contributor: fullname: Zolnik – volume: 616 start-page: 121504 year: 2022 ident: 10.1016/j.ejpb.2022.05.020_b0245 article-title: Design, optimization, and in vitro characterization of idebenone-loaded PLGA microspheres for LHON treatment publication-title: Int. J. Pharmaceut. doi: 10.1016/j.ijpharm.2022.121504 contributor: fullname: Varela-Fernández – volume: 585 start-page: 1 issue: 119441 year: 2020 ident: 10.1016/j.ejpb.2022.05.020_b0255 article-title: Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery publication-title: Int. J. Pharmaceut. contributor: fullname: Zhang – volume: 607 start-page: 121011 year: 2021 ident: 10.1016/j.ejpb.2022.05.020_b0050 article-title: Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine publication-title: Int. J. Pharmaceut. doi: 10.1016/j.ijpharm.2021.121011 contributor: fullname: Stewart – volume: 314 start-page: 198 issue: 2 year: 2006 ident: 10.1016/j.ejpb.2022.05.020_b0240 article-title: How porosity and size affect the drug release mechanisms from PLGA-based microparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.07.031 contributor: fullname: Klose – volume: 64 start-page: 72 year: 2012 ident: 10.1016/j.ejpb.2022.05.020_b0030 article-title: Biodegradation and biocompatibility of PLA and PLGA microspheres publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.004 contributor: fullname: Anderson – volume: 579 start-page: 119130 year: 2020 ident: 10.1016/j.ejpb.2022.05.020_b0180 article-title: Flow-through cell-based in vitro release method for triamcinolone acetonide poly (lactic-co-glycolic) acid microspheres publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119130 contributor: fullname: Tipnis – volume: 73 start-page: 103432 year: 2022 ident: 10.1016/j.ejpb.2022.05.020_b0260 article-title: Hot melt extruded PLGA implants loaded with ibuprofen: How heat exposure alters the physical drug state publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2022.103432 contributor: fullname: Bassand – volume: 56 start-page: 327 issue: 3 year: 2003 ident: 10.1016/j.ejpb.2022.05.020_b0055 article-title: Biodegradable microparticles for sustained release of a new GnRH antagonist – part I: screening commercial PLGA and formulation technologies publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(03)00096-1 contributor: fullname: Schwach – volume: 156 start-page: 1 year: 2020 ident: 10.1016/j.ejpb.2022.05.020_b0115 article-title: Silica particles incorporated into PLGA-based in situ-forming implants exploit the dual advantage of sustained release and particulate delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2020.08.020 contributor: fullname: Thalhauser – volume: 10 start-page: e00038 year: 2018 ident: 10.1016/j.ejpb.2022.05.020_b0070 article-title: 3D printing bioactive PLGA scaffolds using DMSO as a removable solvent publication-title: Bioprinting. doi: 10.1016/j.bprint.2018.e00038 contributor: fullname: Guo – volume: 343 start-page: 255 year: 2022 ident: 10.1016/j.ejpb.2022.05.020_b0075 article-title: How agarose gels surrounding PLGA implants limit swelling and slow down drug release publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.01.028 contributor: fullname: Bassand – volume: 26 start-page: 34 issue: 1 year: 2018 ident: 10.1016/j.ejpb.2022.05.020_b0015 article-title: Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA) publication-title: Osteoarthritis Cartilage. doi: 10.1016/j.joca.2017.10.003 contributor: fullname: Kraus – volume: 591 start-page: 119964 year: 2020 ident: 10.1016/j.ejpb.2022.05.020_b0110 article-title: The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119964 contributor: fullname: Xiao – volume: 6 start-page: 2312 year: 2005 ident: 10.1016/j.ejpb.2022.05.020_b0235 article-title: How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment publication-title: Biomacromolecules doi: 10.1021/bm050228k contributor: fullname: Siepmann – volume: 114 start-page: 2848 issue: 5 year: 2009 ident: 10.1016/j.ejpb.2022.05.020_b0265 article-title: Physical properties of PLGA films during polymer degradation publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.30813 contributor: fullname: Houchin – volume: 3 start-page: 1 issue: 100068 year: 2021 ident: 10.1016/j.ejpb.2022.05.020_b0250 article-title: A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery publication-title: Int. J. Pharmaceut. X contributor: fullname: Maturavongsadit – volume: 165 start-page: 185 year: 2021 ident: 10.1016/j.ejpb.2022.05.020_b0085 article-title: Accelerated in vitro release testing method for a long-acting peptide-PLGA formulation publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.05.008 contributor: fullname: Goel – volume: 538 start-page: 139 issue: 1-2 year: 2018 ident: 10.1016/j.ejpb.2022.05.020_b0080 article-title: Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.01.026 contributor: fullname: Duque – volume: 127 start-page: 137 issue: 2 year: 2008 ident: 10.1016/j.ejpb.2022.05.020_b0105 article-title: Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2008.01.004 contributor: fullname: Zolnik – volume: 63 start-page: 102558 year: 2021 ident: 10.1016/j.ejpb.2022.05.020_b0035 article-title: Buprenorphine loaded PLGA microparticles: Characterization of a sustained-release formulation publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102558 contributor: fullname: Schreiner – volume: 112 start-page: 167 issue: 2 year: 2006 ident: 10.1016/j.ejpb.2022.05.020_b0170 article-title: Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2006.02.004 contributor: fullname: Kim – volume: 96 start-page: 123 issue: 1 year: 2004 ident: 10.1016/j.ejpb.2022.05.020_b0220 article-title: Effect of the size of biodegradable microparticles on drug release: experiment and theory publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2004.01.011 contributor: fullname: Siepmann – volume: 572 start-page: 118819 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0155 article-title: Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118819 contributor: fullname: Tamani – volume: 17 start-page: 103 issue: 2 year: 1996 ident: 10.1016/j.ejpb.2022.05.020_b0140 article-title: Mechanisms of polymer degradation and erosion publication-title: Biomaterials. doi: 10.1016/0142-9612(96)85755-3 contributor: fullname: Göpferich – volume: 8 start-page: E78 issue: 2 year: 2007 ident: 10.1016/j.ejpb.2022.05.020_b0205 article-title: Ketoprofen poly(lactide-co-glycolide) physical interaction publication-title: AAPS PharmSciTech. doi: 10.1208/pt0802037 contributor: fullname: Blasi – volume: 100 start-page: 63 issue: 1 year: 2004 ident: 10.1016/j.ejpb.2022.05.020_b0065 article-title: Development of implant tablet for a week-long sustained release publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2004.07.031 contributor: fullname: Takahashi – volume: 416 start-page: 202 issue: 1 year: 2011 ident: 10.1016/j.ejpb.2022.05.020_b0095 article-title: Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.06.047 contributor: fullname: Vay – volume: 13 start-page: B61 year: 2011 ident: 10.1016/j.ejpb.2022.05.020_b0025 article-title: Polymers in Drug Delivery—State of the Art and Future Trends publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201080088 contributor: fullname: Grund – volume: 1 start-page: 100015 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0120 article-title: Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions publication-title: Int. J. Pharm. X. contributor: fullname: Lehner – volume: 108 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.ejpb.2022.05.020_b0200 article-title: Plasticizing effect of water on poly(lactide-co-glycolide) publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2005.07.009 contributor: fullname: Blasi – volume: 54 start-page: 107 issue: 2 year: 2002 ident: 10.1016/j.ejpb.2022.05.020_b0125 article-title: Melt extrusion: from process to drug delivery technology publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00061-9 contributor: fullname: Breitenbach – volume: 308 start-page: 1 year: 2019 ident: 10.1016/j.ejpb.2022.05.020_b0090 article-title: Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2019.07.013 contributor: fullname: Andhariya – volume: 248 start-page: 149 issue: 1-2 year: 2002 ident: 10.1016/j.ejpb.2022.05.020_b0040 article-title: Potential applications of PLGA film-implants in modulating in vitro drugs release publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00431-3 contributor: fullname: Dorta – volume: 21 start-page: 1659 issue: 16 year: 2000 ident: 10.1016/j.ejpb.2022.05.020_b0215 article-title: Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles publication-title: Biomaterials. doi: 10.1016/S0142-9612(00)00040-5 contributor: fullname: Dunne – volume: 586 start-page: 119601 year: 2020 ident: 10.1016/j.ejpb.2022.05.020_b0100 article-title: Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119601 contributor: fullname: Grizić |
SSID | ssj0004758 |
Score | 2.4996343 |
Snippet | [Display omitted]
The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on... The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in... |
SourceID | hal proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 50 |
SubjectTerms | Drug release mechanism Ibuprofen Life Sciences Monolithic solution PLGA implant Swelling |
Title | PLGA implants for controlled drug release: Impact of the diameter |
URI | https://dx.doi.org/10.1016/j.ejpb.2022.05.020 https://www.ncbi.nlm.nih.gov/pubmed/35659920 https://search.proquest.com/docview/2673596073 https://hal.univ-lille.fr/hal-04009128 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4Rcumlagu0aQtaEOJC3CT7sFluFmoIEKJIBSm31a69bhOFJIKkEpf-9s74QYTUcuDo1a5tzaxnvvF-MwNwKIWPtE2oe5nP_1apwLq2DJRQLkkRMWSW8p2vB2HvVl6O1GgDzqpcGKJVlra_sOm5tS5HWqU0W4vxuPUDY3EdSsQLPD9NEDWoozviuLXr8cVVb7BOj4zyNp00P6AFZe5MQfPyk4XDMJHzvIAntf3-t3-q_SKi5P9QaO6Nuu_gbQkjWVy86XvY8LMPcDQs6lA_NtnNOq3qocmO2HBdofpxC-Jh_zxm47vFlFgwDHErKynrU5-y9H71k1EvFXRwp-wiT6Nk84whVGS4m-6IQLMNt93vN2e9oOylECRSyGVwYqXMkkRZjSJKlevoE4xNvZZpJJ0UPLNUGU1bZa0T3LkE4yLFoyykDJLMZWIHNmfzmf8ELHWJClGhaSdMZeIi2xaSJoWRs6gA3YDjSoJmUZTMMBWXbGJI3obkbdrKoLwboCohm2eKN2jTX1x3gBp5egBVye7FfUNjZJc0-t3fnQbsVwoz-NnQWYid-fnqwfAwEgqjt0g04GOhyad7CQS5WvP251e-2hd4Q1cFTfArbC7vV34XocvS7UHt25_OXrlB_wIhUeo4 |
link.rule.ids | 230,315,783,787,888,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB615QCXivJqoMCCUC7UjbMPO9tbFFESSKNIJFJuq1173aZqHkoTpF7625nxIxEScOC6XturmfXMN95vZgA-SeFjbRPqXubzv1UqsC6UgRLKJSkihsxSvvPlIOqO5beJmuxBp8qFIVplafsLm55b63KkUUqzsZxOGz8wFteRRLzA89MEsQ-PJJUbx0199rDjecg4b9JJswOaXmbOFCQvf7N0GCRynpfvpKbff_ZO-9dEk_wbBs190cVTOCxBJGsX6zyCPT9_BvVhUYX6_pSNdklVd6eszoa7-tT3z6E97H9ts-lseUscGIaolZWE9VufsnS1uWLUSQXd2znr5UmUbJExBIoM99KM6DMvYHzxZdTpBmUnhSCRQq6DlpUySxJltWzyVLmmbmFk6rVMY-mk4JmlumjaKmud4M4lGBUpHmcR5Y9kLhMv4WC-mPtjYKlLVITqTJtRKhMX21BImhTFziIa0DX4XEnQLIuCGaZikt0YkrcheZtQGZR3DVQlZPOb2g1a9H_e9xE1sn0B1cjutvuGxsgqafS6P5s1-FApzOBHQychdu4XmzvDo1gojN1iUYNXhSa3zxIIcbXm4ev_XNp7eNwdXfZNvzf4_gae0JWCMHgCB-vVxr9FELN27_JN-gs60OsR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLGA+implants+for+controlled+drug+release%3A+Impact+of+the+diameter&rft.jtitle=European+journal+of+pharmaceutics+and+biopharmaceutics&rft.au=Bassand%2C+C&rft.au=Freitag%2C+J&rft.au=Benabed%2C+L&rft.au=Verin%2C+J&rft.date=2022-08-01&rft.eissn=1873-3441&rft_id=info:doi/10.1016%2Fj.ejpb.2022.05.020&rft_id=info%3Apmid%2F35659920&rft.externalDocID=35659920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-6411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-6411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-6411&client=summon |