Dynamic MRI interpolation in temporal direction using an unsupervised generative model
Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can per...
Saved in:
Published in | Computerized medical imaging and graphics Vol. 117; p. 102435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time.
In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment.
As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time.
The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.
•A subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI.•2D latent vectors are interpolated to input into the generative network to output frame-interpolated cine images.•Results show the proposed generative model effectively learns and performs high-quality cardiac cine interpolation. |
---|---|
AbstractList | Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time.PURPOSECardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time.In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment.METHODSIn this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment.As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time.RESULTSAs shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time.The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.CONCLUSIONThe proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. •A subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI.•2D latent vectors are interpolated to input into the generative network to output frame-interpolated cine images.•Results show the proposed generative model effectively learns and performs high-quality cardiac cine interpolation. Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. AbstractPurposeCardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. MethodsIn this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. ResultsAs shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. ConclusionThe proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. |
ArticleNumber | 102435 |
Author | Zou, Qing Maciel, Corbin |
Author_xml | – sequence: 1 givenname: Corbin surname: Maciel fullname: Maciel, Corbin organization: Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, USA – sequence: 2 givenname: Qing orcidid: 0000-0002-2729-2491 surname: Zou fullname: Zou, Qing email: Qing.Zou@UTSouthwestern.edu organization: Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39326176$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV-L1DAUxYOsuLOrX0Hqmy8dkzRNkxdhmVV3YUXw32tIk9shY5vUpB2Yb29qd0UEYV9yk8s5h9zfvUBnPnhA6BXBW4IJf3PYmjCMA1g36P2WYspyn7KqfoI2RDSyxE1DztAGC1mXnBByji5SOmCMKW7IM3ReyYpy0vAN-n598npwpvj4-bZwfoI4hl5PLvj8KiYYxhB1X1gXwfzuzsn5faHzxad5hHh0CWyxBw8x245QDMFC_xw97XSf4MV9vUTf3r_7ursp7z59uN1d3ZWGVWwqBTV1U2HRNC3wFgPhhrfC8k7bjhgmO0u1ZJQJZoAK1uLGgqZ1x-uWibbF1SV6veaOMfycIU1qcMlA32sPYU6qIgRXUgpJsvTlvXRuMzo1xkwvntQDiyyQq8DEkFKE7o-EYLVwVwf1F3e1cFcr9-zdrV7Iwx4dRJWMA29gBadscI9KeftPiumdd0b3P-AE6RDm6DNNRVSiCqsvy36X9VKGcT6XgKv_BzzyE78A80y84A |
Cites_doi | 10.1007/s10489-021-02500-5 10.1002/mrm.1910280214 10.1002/gamm.202100008 10.1148/radiology.195.2.7724769 10.1145/1531326.1531348 10.1002/nbm.1051 10.13104/imri.2021.25.4.252 10.1002/cyto.a.22020 10.1007/s10489-021-02631-9 10.1148/radiol.2342031990 10.1002/jmri.23639 10.1115/1.4053859 10.1109/TMI.2021.3065948 10.1002/mrm.28002 10.1016/j.procs.2022.03.063 10.1109/TPAMI.2019.2941941 10.1109/TMI.2022.3168559 10.3390/app13042281 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/jmri.27436 10.1002/mrm.10171 10.1007/s42979-022-01165-2 10.1109/ISCC50000.2020.9219587 10.1002/nbm.3234 10.1109/MSP.2007.914728 10.1109/CVPR.2018.00931 10.1186/s12968-021-00740-5 10.1007/s11263-020-01303-4 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.compmedimag.2024.102435 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0771 |
EndPage | 102435 |
ExternalDocumentID | 39326176 10_1016_j_compmedimag_2024_102435 S0895611124001125 1_s2_0_S0895611124001125 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEI HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LX9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c434t-82c5730877be6b0e16c6b8d6fadf1c49fd2a942484ce284b07dea25f65b48bb03 |
IEDL.DBID | .~1 |
ISSN | 0895-6111 1879-0771 |
IngestDate | Fri Jul 11 04:48:50 EDT 2025 Thu Apr 03 07:04:10 EDT 2025 Tue Jul 01 01:43:09 EDT 2025 Sat Oct 19 15:55:21 EDT 2024 Tue Feb 25 19:58:56 EST 2025 Tue Aug 26 16:44:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep generative model Cardiac cine MRI Interpolation in time Unsupervised learning |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-82c5730877be6b0e16c6b8d6fadf1c49fd2a942484ce284b07dea25f65b48bb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2729-2491 |
PMID | 39326176 |
PQID | 3110399891 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3110399891 pubmed_primary_39326176 crossref_primary_10_1016_j_compmedimag_2024_102435 elsevier_sciencedirect_doi_10_1016_j_compmedimag_2024_102435 elsevier_clinicalkeyesjournals_1_s2_0_S0895611124001125 elsevier_clinicalkey_doi_10_1016_j_compmedimag_2024_102435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computerized medical imaging and graphics |
PublicationTitleAlternate | Comput Med Imaging Graph |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Griswold, Jakob, Heidemann, Nittka, Jellus, Wang, Kiefer, Haase (bib11) 2002; 47 Zou, Ahmed, Dzelebdzic, Hussain (bib42) 2023; 13 Zou, Ahmed, Nagpal, Kruger, Jacob (bib43) 2021; 40 McVeigh, Atalar (bib21) 1992; 28 Radford, Metz, Chintala (bib27) 2016 Mahajan, Huang, Matusik, Ramamoorthi, Belhumeur (bib19) 2009; 28 A S, Gopalan (bib1) 2022; 201 Bao, Lai, Ma, Zhang, Gao, Yang (bib4) 2019 Ahmed, Zou, Nagpal, Jacob (bib2) 2022; 41 Meyer, Wang, Zimmer, Grosse, Sorkine-Hornung (bib22) 2015 Ulyanov, Vedaldi, Lempitsky (bib33) 2020; 128 Wendell, Judd (bib35) 2015 Wu, Zhou, Yu, Hu, Zhang, Hu, He (bib36) 2022; 22 Xu, Li, Du, Zhang, Liu (bib38) 2020 Zhang, L., Karani, N., Tanner, C., Konukoglu, E., 2018. Temporal Interpolation via Motion Field Prediction 1–10. Jing, Ding, Yang, Li, Bao (bib14) 2022; 52 Sun, D., Yang, X., Liu, M., Kautz, J., 2018. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. Proceedings of the IEEE conference on computer vision and pattern recognition. Page numbers: 8934–8943. Curtis, Cheng (bib7) 2022; 55 Niendorf, Sodickson (bib23) 2006; 19 Pezzotti, de Weerdt, Yousefi, Elmahdy, van Gemert, Schülke, Doneva, Nielsen, Kastryulin, Lelieveldt, van Osch, Staring (bib25) 2019 Yuan, Dai (bib39) 2022; 52 Slavin, Bluemke (bib30) 2005; 234 Mateos-Pérez, Redondo, Nava, Valdiviezo, Cristóbal, Escalante-Ramírez, Ruiz-Serrano, Pascau, Desco (bib20) 2012; 81 Liu, Yeh, Tang, Liu, Agarwala (bib17) 2017 Regenwetter, Nobari, Ahmed (bib28) 2022; 144 Joshi, Zaman, Katkoori (bib15) 2022; 3 Lustig, Donoho, Santos, Pauly (bib18) 2008; 25 Zhao, Haldar, Brinegar, Liang (bib41) 2010 Bao, Lai, Zhang, Gao, Yang (bib5) 2021; 43 Guo, Bi, Ahn, Feng, Wang, Kim (bib13) 2020 Backhaus, Metschies, Billing, Schmidt-Rimpler, Kowallick, Gertz, Lapinskas, Pieske-Kraigher, Pieske, Lotz, Bigalke, Kutty, Hasenfuß, Kelle, Schuster (bib3) 2021; 23 Deshmane, Gulani, Griswold, Seiberlich (bib8) 2012; 36 Gui, Wang, Chen, Tao (bib12) 2020 Ruthotto, Haber (bib29) 2021; 44 Wang, Uecker, Feng (bib34) 2021; 25 Xu, Li, Zhou (bib37) 2015; 32 Chan, Võ, Nguyen (bib6) 2010 Foo, Bernstein, Aisen, Hernandez, Collick, Bernstein (bib9) 1995 Niklaus, Liu (bib24) 2020 Sun, Yang, Cai, Salerno, Meyer, Weller, Epstein (bib31) 2020; 83 Krämer, Herrmann, Biermann, Freiburger, Schwarzer, Reichenbach (bib16) 2015; 28 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib10) 2019 Pruessmann, Weiger, Scheidegger, Boesiger (bib26) 1999; 42 Gui (10.1016/j.compmedimag.2024.102435_bib12) 2020 Ahmed (10.1016/j.compmedimag.2024.102435_bib2) 2022; 41 Xu (10.1016/j.compmedimag.2024.102435_bib38) 2020 Meyer (10.1016/j.compmedimag.2024.102435_bib22) 2015 Yuan (10.1016/j.compmedimag.2024.102435_bib39) 2022; 52 Bao (10.1016/j.compmedimag.2024.102435_bib5) 2021; 43 Niklaus (10.1016/j.compmedimag.2024.102435_bib24) 2020 Slavin (10.1016/j.compmedimag.2024.102435_bib30) 2005; 234 Griswold (10.1016/j.compmedimag.2024.102435_bib11) 2002; 47 Zhao (10.1016/j.compmedimag.2024.102435_bib41) 2010 Curtis (10.1016/j.compmedimag.2024.102435_bib7) 2022; 55 Krämer (10.1016/j.compmedimag.2024.102435_bib16) 2015; 28 Mateos-Pérez (10.1016/j.compmedimag.2024.102435_bib20) 2012; 81 Jing (10.1016/j.compmedimag.2024.102435_bib14) 2022; 52 Radford (10.1016/j.compmedimag.2024.102435_bib27) 2016 Ulyanov (10.1016/j.compmedimag.2024.102435_bib33) 2020; 128 Pruessmann (10.1016/j.compmedimag.2024.102435_bib26) 1999; 42 Wu (10.1016/j.compmedimag.2024.102435_bib36) 2022; 22 10.1016/j.compmedimag.2024.102435_bib32 Zou (10.1016/j.compmedimag.2024.102435_bib43) 2021; 40 Mahajan (10.1016/j.compmedimag.2024.102435_bib19) 2009; 28 Pezzotti (10.1016/j.compmedimag.2024.102435_bib25) 2019 Backhaus (10.1016/j.compmedimag.2024.102435_bib3) 2021; 23 A S (10.1016/j.compmedimag.2024.102435_bib1) 2022; 201 Goodfellow (10.1016/j.compmedimag.2024.102435_bib10) 2019 Bao (10.1016/j.compmedimag.2024.102435_bib4) 2019 Wang (10.1016/j.compmedimag.2024.102435_bib34) 2021; 25 Ruthotto (10.1016/j.compmedimag.2024.102435_bib29) 2021; 44 Joshi (10.1016/j.compmedimag.2024.102435_bib15) 2022; 3 Chan (10.1016/j.compmedimag.2024.102435_bib6) 2010 Guo (10.1016/j.compmedimag.2024.102435_bib13) 2020 Sun (10.1016/j.compmedimag.2024.102435_bib31) 2020; 83 Niendorf (10.1016/j.compmedimag.2024.102435_bib23) 2006; 19 Deshmane (10.1016/j.compmedimag.2024.102435_bib8) 2012; 36 Liu (10.1016/j.compmedimag.2024.102435_bib17) 2017 McVeigh (10.1016/j.compmedimag.2024.102435_bib21) 1992; 28 Foo (10.1016/j.compmedimag.2024.102435_bib9) 1995 Wendell (10.1016/j.compmedimag.2024.102435_bib35) 2015 Zou (10.1016/j.compmedimag.2024.102435_bib42) 2023; 13 Lustig (10.1016/j.compmedimag.2024.102435_bib18) 2008; 25 Regenwetter (10.1016/j.compmedimag.2024.102435_bib28) 2022; 144 10.1016/j.compmedimag.2024.102435_bib40 Xu (10.1016/j.compmedimag.2024.102435_bib37) 2015; 32 |
References_xml | – start-page: 1 year: 2016 end-page: 16 ident: bib27 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc. – reference: Zhang, L., Karani, N., Tanner, C., Konukoglu, E., 2018. Temporal Interpolation via Motion Field Prediction 1–10. – volume: 41 start-page: 2693 year: 2022 end-page: 2703 ident: bib2 article-title: Dynamic imaging using deep bi-linear unsupervised representation (DEBLUR) publication-title: IEEE Trans. Med. Imaging – volume: 23 start-page: 1 year: 2021 end-page: 12 ident: bib3 article-title: Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking publication-title: J. Cardiovasc. Magn. Reson. – volume: 40 start-page: 3102 year: 2021 end-page: 3112 ident: bib43 article-title: Dynamic imaging using a deep generative SToRM (Gen-SToRM) model publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: bib25 publication-title: Adapt. -CS-Net: FastMRI Adapt. Intell. – volume: 25 start-page: 252 year: 2021 end-page: 265 ident: bib34 article-title: Fast real-time cardiac mri: a review of current techniques and future directions publication-title: Investig. Magn. Reson. Imaging – volume: 83 start-page: 1235 year: 2020 end-page: 1249 ident: bib31 article-title: Non-Cartesian slice-GRAPPA and slice-SPIRiT reconstruction methods for multiband spiral cardiac MRI publication-title: Magn. Reson. Med. – volume: 234 start-page: 330 year: 2005 end-page: 338 ident: bib30 article-title: Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations publication-title: Radiology – start-page: 3698 year: 2019 end-page: 3707 ident: bib4 article-title: Depth-aware video frame interpolation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June – start-page: 4473 year: 2017 end-page: 4481 ident: bib17 article-title: Video frame synthesis using deep voxel flow. Proc publication-title: IEEE Int. Conf. Comput. Vis. 2017-Oct. – start-page: 996 year: 2010 end-page: 999 ident: bib41 article-title: Low rank matrix recovery for real-time cardiac MRI publication-title: 2010 7th IEEE Int. Symp. Biomed. Imaging Nano Macro, ISBI 2010 - Proc. – start-page: 722 year: 2010 end-page: 725 ident: bib6 article-title: Subpixel motion estimation without interpolation. ICASSP publication-title: IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. – volume: 28 start-page: 318 year: 1992 end-page: 327 ident: bib21 article-title: Cardiac tagging with breath-hold cine MRI publication-title: Magn. Reson. Med. – volume: 81 start-page: 213 year: 2012 end-page: 221 ident: bib20 article-title: Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis publication-title: Cytom. Part A – year: 2020 ident: bib38 article-title: Reluplex made more practical: Leaky ReLU publication-title: Proc. - IEEE Symp. Comput. Commun. 2020-July – volume: 13 year: 2023 ident: bib42 article-title: Free-breathing and ungated cardiac MRI reconstruction using a deep kernel representation publication-title: Appl. Sci. – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: bib26 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. – volume: 25 start-page: 72 year: 2008 end-page: 82 ident: bib18 article-title: Compressed sensing MRI: A look at how CS can improve on current imaging techniques publication-title: IEEE Signal Process. Mag. – start-page: 14001 year: 2020 end-page: 14010 ident: bib12 article-title: FeatureFlow: Robust video interpolation via structure-to-texture generation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – start-page: 5436 year: 2020 end-page: 5445 ident: bib24 article-title: Softmax splatting for video frame interpolation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 43 start-page: 933 year: 2021 end-page: 948 ident: bib5 article-title: MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 471 year: 1995 end-page: 478 ident: bib9 article-title: Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repitition time excitation with fast cardiac techniques publication-title: Radiology – volume: 28 start-page: 162 year: 2015 end-page: 167 ident: bib16 article-title: Self-gated cardiac Cine MRI of the rat on a clinical 3T MRI system. publication-title: NMR Biomed. – volume: 52 start-page: 5015 year: 2022 end-page: 5033 ident: bib39 article-title: A novel deep pixel restoration video prediction algorithm integrating attention mechanism publication-title: Appl. Intell. – volume: 19 start-page: 325 year: 2006 end-page: 341 ident: bib23 article-title: Parallel imaging in cardiovascular MRI: methods and applications publication-title: NMR Biomed. – volume: 3 year: 2022 ident: bib15 article-title: Fast sobel edge detection for iot edge devices publication-title: SN Comput. Sci. – reference: Sun, D., Yang, X., Liu, M., Kautz, J., 2018. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. Proceedings of the IEEE conference on computer vision and pattern recognition. Page numbers: 8934–8943. – volume: 36 start-page: 55 year: 2012 end-page: 72 ident: bib8 article-title: Parallel MR imaging publication-title: J. Magn. Reson. Imaging – volume: 32 start-page: 131 year: 2015 end-page: 139 ident: bib37 article-title: An overview of deep generative models publication-title: IETE Tech. Rev. (Institution Electron. Telecommun.) Eng. – start-page: 1 year: 2015 end-page: 338 ident: bib35 article-title: Basic principles of cardiovascular MRI: Physics and imaging technique publication-title: Basic Princ. Cardiovasc MRI Phys. Imaging Tech. – start-page: 4725 year: 2020 end-page: 4734 ident: bib13 article-title: A spatiotemporal volumetric interpolation network for 4D dynamic medical image publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 55 start-page: 373 year: 2022 end-page: 388 ident: bib7 article-title: Primer and historical review on rapid cardiac CINE MRI publication-title: J. Magn. Reson. Imaging – volume: 52 start-page: 3640 year: 2022 end-page: 3652 ident: bib14 article-title: Video prediction: a step-by-step improvement of a video synthesis network publication-title: Appl. Intell. – volume: 28 year: 2009 ident: bib19 article-title: Moving gradients: a path-based method for plausible image interpolation publication-title: ACM Trans. Graph. – volume: 44 start-page: 1 year: 2021 end-page: 24 ident: bib29 article-title: An introduction to deep generative modeling publication-title: GAMM Mitt. – volume: 144 year: 2022 ident: bib28 article-title: Deep generative models in engineering design: a review publication-title: J. Mech. Des. – volume: 201 start-page: 487 year: 2022 end-page: 494 ident: bib1 article-title: Comparative analysis of eight direction sobel edge detection algorithm for brain tumor MRI images publication-title: Procedia Comput. Sci. – volume: 47 start-page: 1202 year: 2002 end-page: 1210 ident: bib11 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn. Reson. Med. – start-page: 1410 year: 2015 end-page: 1418 ident: bib22 article-title: Phase-based frame interpolation for video publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June – volume: 22 year: 2022 ident: bib36 article-title: A method for medical microscopic images’ sharpness evaluation based on NSST and variance by combining time and frequency domains publication-title: Sensors – start-page: 3063 year: 2019 end-page: 3071 ident: bib10 article-title: Generative adversarial nets. proc. - 2019 publication-title: Int. Conf. Comput Vis. Work. ICCVW – volume: 128 start-page: 1867 year: 2020 end-page: 1888 ident: bib33 article-title: Deep image prior publication-title: Int. J. Comput. Vis. – volume: 52 start-page: 3640 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib14 article-title: Video prediction: a step-by-step improvement of a video synthesis network publication-title: Appl. Intell. doi: 10.1007/s10489-021-02500-5 – volume: 28 start-page: 318 year: 1992 ident: 10.1016/j.compmedimag.2024.102435_bib21 article-title: Cardiac tagging with breath-hold cine MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910280214 – volume: 44 start-page: 1 year: 2021 ident: 10.1016/j.compmedimag.2024.102435_bib29 article-title: An introduction to deep generative modeling publication-title: GAMM Mitt. doi: 10.1002/gamm.202100008 – start-page: 471 year: 1995 ident: 10.1016/j.compmedimag.2024.102435_bib9 article-title: Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repitition time excitation with fast cardiac techniques publication-title: Radiology doi: 10.1148/radiology.195.2.7724769 – volume: 28 year: 2009 ident: 10.1016/j.compmedimag.2024.102435_bib19 article-title: Moving gradients: a path-based method for plausible image interpolation publication-title: ACM Trans. Graph. doi: 10.1145/1531326.1531348 – volume: 19 start-page: 325 year: 2006 ident: 10.1016/j.compmedimag.2024.102435_bib23 article-title: Parallel imaging in cardiovascular MRI: methods and applications publication-title: NMR Biomed. doi: 10.1002/nbm.1051 – start-page: 3063 year: 2019 ident: 10.1016/j.compmedimag.2024.102435_bib10 article-title: Generative adversarial nets. proc. - 2019 publication-title: Int. Conf. Comput Vis. Work. ICCVW – start-page: 4725 year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib13 article-title: A spatiotemporal volumetric interpolation network for 4D dynamic medical image publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 25 start-page: 252 year: 2021 ident: 10.1016/j.compmedimag.2024.102435_bib34 article-title: Fast real-time cardiac mri: a review of current techniques and future directions publication-title: Investig. Magn. Reson. Imaging doi: 10.13104/imri.2021.25.4.252 – volume: 81 start-page: 213 year: 2012 ident: 10.1016/j.compmedimag.2024.102435_bib20 article-title: Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis publication-title: Cytom. Part A doi: 10.1002/cyto.a.22020 – start-page: 4473 year: 2017 ident: 10.1016/j.compmedimag.2024.102435_bib17 article-title: Video frame synthesis using deep voxel flow. Proc publication-title: IEEE Int. Conf. Comput. Vis. 2017-Oct. – volume: 52 start-page: 5015 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib39 article-title: A novel deep pixel restoration video prediction algorithm integrating attention mechanism publication-title: Appl. Intell. doi: 10.1007/s10489-021-02631-9 – volume: 234 start-page: 330 year: 2005 ident: 10.1016/j.compmedimag.2024.102435_bib30 article-title: Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations publication-title: Radiology doi: 10.1148/radiol.2342031990 – volume: 36 start-page: 55 year: 2012 ident: 10.1016/j.compmedimag.2024.102435_bib8 article-title: Parallel MR imaging publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23639 – volume: 144 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib28 article-title: Deep generative models in engineering design: a review publication-title: J. Mech. Des. doi: 10.1115/1.4053859 – ident: 10.1016/j.compmedimag.2024.102435_bib40 – volume: 40 start-page: 3102 year: 2021 ident: 10.1016/j.compmedimag.2024.102435_bib43 article-title: Dynamic imaging using a deep generative SToRM (Gen-SToRM) model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3065948 – volume: 83 start-page: 1235 year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib31 article-title: Non-Cartesian slice-GRAPPA and slice-SPIRiT reconstruction methods for multiband spiral cardiac MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28002 – start-page: 14001 year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib12 article-title: FeatureFlow: Robust video interpolation via structure-to-texture generation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – start-page: 5436 year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib24 article-title: Softmax splatting for video frame interpolation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 201 start-page: 487 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib1 article-title: Comparative analysis of eight direction sobel edge detection algorithm for brain tumor MRI images publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.03.063 – volume: 43 start-page: 933 year: 2021 ident: 10.1016/j.compmedimag.2024.102435_bib5 article-title: MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2941941 – volume: 41 start-page: 2693 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib2 article-title: Dynamic imaging using deep bi-linear unsupervised representation (DEBLUR) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3168559 – volume: 13 year: 2023 ident: 10.1016/j.compmedimag.2024.102435_bib42 article-title: Free-breathing and ungated cardiac MRI reconstruction using a deep kernel representation publication-title: Appl. Sci. doi: 10.3390/app13042281 – volume: 42 start-page: 952 year: 1999 ident: 10.1016/j.compmedimag.2024.102435_bib26 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 55 start-page: 373 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib7 article-title: Primer and historical review on rapid cardiac CINE MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27436 – volume: 47 start-page: 1202 year: 2002 ident: 10.1016/j.compmedimag.2024.102435_bib11 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10171 – volume: 3 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib15 article-title: Fast sobel edge detection for iot edge devices publication-title: SN Comput. Sci. doi: 10.1007/s42979-022-01165-2 – start-page: 1410 year: 2015 ident: 10.1016/j.compmedimag.2024.102435_bib22 article-title: Phase-based frame interpolation for video publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June – start-page: 3698 year: 2019 ident: 10.1016/j.compmedimag.2024.102435_bib4 article-title: Depth-aware video frame interpolation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June – year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib38 article-title: Reluplex made more practical: Leaky ReLU publication-title: Proc. - IEEE Symp. Comput. Commun. 2020-July doi: 10.1109/ISCC50000.2020.9219587 – volume: 32 start-page: 131 year: 2015 ident: 10.1016/j.compmedimag.2024.102435_bib37 article-title: An overview of deep generative models publication-title: IETE Tech. Rev. (Institution Electron. Telecommun.) Eng. – volume: 28 start-page: 162 year: 2015 ident: 10.1016/j.compmedimag.2024.102435_bib16 article-title: Self-gated cardiac Cine MRI of the rat on a clinical 3T MRI system. publication-title: NMR Biomed. doi: 10.1002/nbm.3234 – volume: 25 start-page: 72 year: 2008 ident: 10.1016/j.compmedimag.2024.102435_bib18 article-title: Compressed sensing MRI: A look at how CS can improve on current imaging techniques publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.914728 – start-page: 1 year: 2015 ident: 10.1016/j.compmedimag.2024.102435_bib35 article-title: Basic principles of cardiovascular MRI: Physics and imaging technique publication-title: Basic Princ. Cardiovasc MRI Phys. Imaging Tech. – ident: 10.1016/j.compmedimag.2024.102435_bib32 doi: 10.1109/CVPR.2018.00931 – volume: 22 year: 2022 ident: 10.1016/j.compmedimag.2024.102435_bib36 article-title: A method for medical microscopic images’ sharpness evaluation based on NSST and variance by combining time and frequency domains publication-title: Sensors – volume: 23 start-page: 1 year: 2021 ident: 10.1016/j.compmedimag.2024.102435_bib3 article-title: Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-021-00740-5 – year: 2019 ident: 10.1016/j.compmedimag.2024.102435_bib25 publication-title: Adapt. -CS-Net: FastMRI Adapt. Intell. – start-page: 722 year: 2010 ident: 10.1016/j.compmedimag.2024.102435_bib6 article-title: Subpixel motion estimation without interpolation. ICASSP publication-title: IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. – start-page: 1 year: 2016 ident: 10.1016/j.compmedimag.2024.102435_bib27 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc. – volume: 128 start-page: 1867 year: 2020 ident: 10.1016/j.compmedimag.2024.102435_bib33 article-title: Deep image prior publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01303-4 – start-page: 996 year: 2010 ident: 10.1016/j.compmedimag.2024.102435_bib41 article-title: Low rank matrix recovery for real-time cardiac MRI publication-title: 2010 7th IEEE Int. Symp. Biomed. Imaging Nano Macro, ISBI 2010 - Proc. |
SSID | ssj0002071 |
Score | 2.3816924 |
Snippet | Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time... AbstractPurposeCardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 102435 |
SubjectTerms | Cardiac cine MRI Deep generative model Internal Medicine Interpolation in time Other Unsupervised learning |
Title | Dynamic MRI interpolation in temporal direction using an unsupervised generative model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895611124001125 https://www.clinicalkey.es/playcontent/1-s2.0-S0895611124001125 https://dx.doi.org/10.1016/j.compmedimag.2024.102435 https://www.ncbi.nlm.nih.gov/pubmed/39326176 https://www.proquest.com/docview/3110399891 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAqGXkvS5fQQFenVXlseyHHoJacOmJTm0TclNSLK8bGmdJd699rdHI9lJS1MI9GYJCVnDp9GI-WYG4E1eeR7s8CZrja0ytByz2vmA5VbWolQtoovZPs_k7Bw_XpQXG3A0xsIQrXLQ_UmnR2099EwHaU6Xi8X0C1cUlBnsBSS7RlCgOWJFKH_765bmIXh8dNHgjEZvw_4tx4to2-TD_mnm4akokBIZYKz8ducd9S8bNN5FxzvwcDAi2WH6z13Y8N0j2D4d3OSP4dv7VGeenX4-YYtUSStx3kKLDdmofrC0deol9vucmfDR9eslqY_eN2weU1KTPmSxYM4TOD_-8PVolg0FFDKHBa4yJVxZxZR_1kvLfS6dtKqRrWna3GHdNsLUKFCh8-GasrxqvBFlK0uLylpePIXN7rLzz4FZtKGjMbWkdDbcKS69K4va-FKoshETEKPI9DLlydAjgey7_k3OmuSsk5wncDAKV4-BoEF16aDN7zO5umuy74dD2Otc90Jz_RdQJvDuZuYfWLvvwvsjDnQ4i-RgMZ2_XPe6yMmxXqs6n8CzBJAbYRRkKOeVfPF_i7-EB9RKdMJXsLm6WvvXwSxa2b2I-z3YOjz5NDu7BrJMDXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NThq8IL4pn57Ea1THsR0H8TINppatfYAN7c2yHacqgqwi7f-PL3YKiCFN4i1xcnJyOv981t39DuBNXnoa_PA6a4wtM24pzyrngy03smJCNZy7nu1zIacX_OOluNyD46EWBtMqE_ZHTO_ROo1MkjYn69Vq8pkqLMoM_gJHv4aJW7CP7FRiBPtHs9PpYgfIjPbnLnw_Q4EDOPyV5oWZ2xjG_m6W4bTIOHIZ8L7527Xb1L_c0H47OrkHd5MfSY7ip96HPd8-gIN5ipQ_hC_vY6t5Mv80I6vYTCumvYU7kgipvpH49ziKCfBLYsJF223XiCCdr8myZ6VGSCR9z5xHcHHy4fx4mqUeCpnjBd9kijlR9qx_1ktLfS6dtKqWjamb3PGqqZmpOOOKOx92KkvL2hsmGiksV9bS4jGM2qvWPwViuQ0DtakkMtpQp6j0ThSV8YIpUbMxsEFleh2pMvSQQ_ZV_6ZnjXrWUc9jeDsoVw-1oAG9dAD0mwiX1wn7Lq3DTue6Y5rqv2xlDO92kn-Y200nPhzsQIfliDEW0_qrbaeLHGPrlaryMTyJBrJTRoG-cl7KZ_83-Wu4PT2fn-mz2eL0OdzBJzG78AWMNj-2_mXwkjb2VVoFPwHf6RAp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+MRI+interpolation+in+temporal+direction+using+an+unsupervised+generative+model&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Maciel%2C+Corbin&rft.au=Zou%2C+Qing&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0895-6111&rft.volume=117&rft_id=info:doi/10.1016%2Fj.compmedimag.2024.102435&rft.externalDocID=S0895611124001125 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611124X00063%2Fcov150h.gif |