Dynamic MRI interpolation in temporal direction using an unsupervised generative model

Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can per...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 117; p. 102435
Main Authors Maciel, Corbin, Zou, Qing
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. •A subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI.•2D latent vectors are interpolated to input into the generative network to output frame-interpolated cine images.•Results show the proposed generative model effectively learns and performs high-quality cardiac cine interpolation.
AbstractList Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time.PURPOSECardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time.In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment.METHODSIn this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment.As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time.RESULTSAs shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time.The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.CONCLUSIONThe proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.
Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time. •A subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI.•2D latent vectors are interpolated to input into the generative network to output frame-interpolated cine images.•Results show the proposed generative model effectively learns and performs high-quality cardiac cine interpolation.
Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. In this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. As shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. The proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.
AbstractPurposeCardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time and long breath holds, which presents difficulties. The aim of this study is to propose an unsupervised neural network framework that can perform cardiac cine interpolation in time, so that we can increase the temporal resolution of cardiac cine without increasing acquisition time. MethodsIn this study, a subject-specific unsupervised generative neural network is designed to perform temporal interpolation for cardiac cine MRI. The network takes in a 2D latent vector in which each element corresponds to one cardiac phase in the cardiac cycle and then the network outputs the cardiac cine images which are acquired on the scanner. After the training of the generative network, we can interpolate the 2D latent vector and input the interpolated latent vector into the network and the network will output the frame-interpolated cine images. The results of the proposed cine interpolation neural network (CINN) framework are compared quantitatively and qualitatively with other state-of-the-art methods, the ground truth training cine frames, and the ground truth frames removed from the original acquisition. Signal-to-noise ratio (SNR), structural similarity index measures (SSIM), peak signal-to-noise ratio (PSNR), strain analysis, as well as the sharpness calculated using the Tenengrad algorithm were used for image quality assessment. ResultsAs shown quantitatively and qualitatively, the proposed framework learns the generative task well and hence performs the temporal interpolation task well. Furthermore, both quantitative and qualitative comparison studies show the effectiveness of the proposed framework in cardiac cine interpolation in time. ConclusionThe proposed generative model can effectively learn the generative task and perform high quality cardiac cine interpolation in time.
ArticleNumber 102435
Author Zou, Qing
Maciel, Corbin
Author_xml – sequence: 1
  givenname: Corbin
  surname: Maciel
  fullname: Maciel, Corbin
  organization: Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, USA
– sequence: 2
  givenname: Qing
  orcidid: 0000-0002-2729-2491
  surname: Zou
  fullname: Zou, Qing
  email: Qing.Zou@UTSouthwestern.edu
  organization: Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39326176$$D View this record in MEDLINE/PubMed
BookMark eNqNkV-L1DAUxYOsuLOrX0Hqmy8dkzRNkxdhmVV3YUXw32tIk9shY5vUpB2Yb29qd0UEYV9yk8s5h9zfvUBnPnhA6BXBW4IJf3PYmjCMA1g36P2WYspyn7KqfoI2RDSyxE1DztAGC1mXnBByji5SOmCMKW7IM3ReyYpy0vAN-n598npwpvj4-bZwfoI4hl5PLvj8KiYYxhB1X1gXwfzuzsn5faHzxad5hHh0CWyxBw8x245QDMFC_xw97XSf4MV9vUTf3r_7ursp7z59uN1d3ZWGVWwqBTV1U2HRNC3wFgPhhrfC8k7bjhgmO0u1ZJQJZoAK1uLGgqZ1x-uWibbF1SV6veaOMfycIU1qcMlA32sPYU6qIgRXUgpJsvTlvXRuMzo1xkwvntQDiyyQq8DEkFKE7o-EYLVwVwf1F3e1cFcr9-zdrV7Iwx4dRJWMA29gBadscI9KeftPiumdd0b3P-AE6RDm6DNNRVSiCqsvy36X9VKGcT6XgKv_BzzyE78A80y84A
Cites_doi 10.1007/s10489-021-02500-5
10.1002/mrm.1910280214
10.1002/gamm.202100008
10.1148/radiology.195.2.7724769
10.1145/1531326.1531348
10.1002/nbm.1051
10.13104/imri.2021.25.4.252
10.1002/cyto.a.22020
10.1007/s10489-021-02631-9
10.1148/radiol.2342031990
10.1002/jmri.23639
10.1115/1.4053859
10.1109/TMI.2021.3065948
10.1002/mrm.28002
10.1016/j.procs.2022.03.063
10.1109/TPAMI.2019.2941941
10.1109/TMI.2022.3168559
10.3390/app13042281
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/jmri.27436
10.1002/mrm.10171
10.1007/s42979-022-01165-2
10.1109/ISCC50000.2020.9219587
10.1002/nbm.3234
10.1109/MSP.2007.914728
10.1109/CVPR.2018.00931
10.1186/s12968-021-00740-5
10.1007/s11263-020-01303-4
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.compmedimag.2024.102435
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 102435
ExternalDocumentID 39326176
10_1016_j_compmedimag_2024_102435
S0895611124001125
1_s2_0_S0895611124001125
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c434t-82c5730877be6b0e16c6b8d6fadf1c49fd2a942484ce284b07dea25f65b48bb03
IEDL.DBID .~1
ISSN 0895-6111
1879-0771
IngestDate Fri Jul 11 04:48:50 EDT 2025
Thu Apr 03 07:04:10 EDT 2025
Tue Jul 01 01:43:09 EDT 2025
Sat Oct 19 15:55:21 EDT 2024
Tue Feb 25 19:58:56 EST 2025
Tue Aug 26 16:44:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep generative model
Cardiac cine MRI
Interpolation in time
Unsupervised learning
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-82c5730877be6b0e16c6b8d6fadf1c49fd2a942484ce284b07dea25f65b48bb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2729-2491
PMID 39326176
PQID 3110399891
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3110399891
pubmed_primary_39326176
crossref_primary_10_1016_j_compmedimag_2024_102435
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2024_102435
elsevier_clinicalkeyesjournals_1_s2_0_S0895611124001125
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2024_102435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Griswold, Jakob, Heidemann, Nittka, Jellus, Wang, Kiefer, Haase (bib11) 2002; 47
Zou, Ahmed, Dzelebdzic, Hussain (bib42) 2023; 13
Zou, Ahmed, Nagpal, Kruger, Jacob (bib43) 2021; 40
McVeigh, Atalar (bib21) 1992; 28
Radford, Metz, Chintala (bib27) 2016
Mahajan, Huang, Matusik, Ramamoorthi, Belhumeur (bib19) 2009; 28
A S, Gopalan (bib1) 2022; 201
Bao, Lai, Ma, Zhang, Gao, Yang (bib4) 2019
Ahmed, Zou, Nagpal, Jacob (bib2) 2022; 41
Meyer, Wang, Zimmer, Grosse, Sorkine-Hornung (bib22) 2015
Ulyanov, Vedaldi, Lempitsky (bib33) 2020; 128
Wendell, Judd (bib35) 2015
Wu, Zhou, Yu, Hu, Zhang, Hu, He (bib36) 2022; 22
Xu, Li, Du, Zhang, Liu (bib38) 2020
Zhang, L., Karani, N., Tanner, C., Konukoglu, E., 2018. Temporal Interpolation via Motion Field Prediction 1–10.
Jing, Ding, Yang, Li, Bao (bib14) 2022; 52
Sun, D., Yang, X., Liu, M., Kautz, J., 2018. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. Proceedings of the IEEE conference on computer vision and pattern recognition. Page numbers: 8934–8943.
Curtis, Cheng (bib7) 2022; 55
Niendorf, Sodickson (bib23) 2006; 19
Pezzotti, de Weerdt, Yousefi, Elmahdy, van Gemert, Schülke, Doneva, Nielsen, Kastryulin, Lelieveldt, van Osch, Staring (bib25) 2019
Yuan, Dai (bib39) 2022; 52
Slavin, Bluemke (bib30) 2005; 234
Mateos-Pérez, Redondo, Nava, Valdiviezo, Cristóbal, Escalante-Ramírez, Ruiz-Serrano, Pascau, Desco (bib20) 2012; 81
Liu, Yeh, Tang, Liu, Agarwala (bib17) 2017
Regenwetter, Nobari, Ahmed (bib28) 2022; 144
Joshi, Zaman, Katkoori (bib15) 2022; 3
Lustig, Donoho, Santos, Pauly (bib18) 2008; 25
Zhao, Haldar, Brinegar, Liang (bib41) 2010
Bao, Lai, Zhang, Gao, Yang (bib5) 2021; 43
Guo, Bi, Ahn, Feng, Wang, Kim (bib13) 2020
Backhaus, Metschies, Billing, Schmidt-Rimpler, Kowallick, Gertz, Lapinskas, Pieske-Kraigher, Pieske, Lotz, Bigalke, Kutty, Hasenfuß, Kelle, Schuster (bib3) 2021; 23
Deshmane, Gulani, Griswold, Seiberlich (bib8) 2012; 36
Gui, Wang, Chen, Tao (bib12) 2020
Ruthotto, Haber (bib29) 2021; 44
Wang, Uecker, Feng (bib34) 2021; 25
Xu, Li, Zhou (bib37) 2015; 32
Chan, Võ, Nguyen (bib6) 2010
Foo, Bernstein, Aisen, Hernandez, Collick, Bernstein (bib9) 1995
Niklaus, Liu (bib24) 2020
Sun, Yang, Cai, Salerno, Meyer, Weller, Epstein (bib31) 2020; 83
Krämer, Herrmann, Biermann, Freiburger, Schwarzer, Reichenbach (bib16) 2015; 28
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib10) 2019
Pruessmann, Weiger, Scheidegger, Boesiger (bib26) 1999; 42
Gui (10.1016/j.compmedimag.2024.102435_bib12) 2020
Ahmed (10.1016/j.compmedimag.2024.102435_bib2) 2022; 41
Xu (10.1016/j.compmedimag.2024.102435_bib38) 2020
Meyer (10.1016/j.compmedimag.2024.102435_bib22) 2015
Yuan (10.1016/j.compmedimag.2024.102435_bib39) 2022; 52
Bao (10.1016/j.compmedimag.2024.102435_bib5) 2021; 43
Niklaus (10.1016/j.compmedimag.2024.102435_bib24) 2020
Slavin (10.1016/j.compmedimag.2024.102435_bib30) 2005; 234
Griswold (10.1016/j.compmedimag.2024.102435_bib11) 2002; 47
Zhao (10.1016/j.compmedimag.2024.102435_bib41) 2010
Curtis (10.1016/j.compmedimag.2024.102435_bib7) 2022; 55
Krämer (10.1016/j.compmedimag.2024.102435_bib16) 2015; 28
Mateos-Pérez (10.1016/j.compmedimag.2024.102435_bib20) 2012; 81
Jing (10.1016/j.compmedimag.2024.102435_bib14) 2022; 52
Radford (10.1016/j.compmedimag.2024.102435_bib27) 2016
Ulyanov (10.1016/j.compmedimag.2024.102435_bib33) 2020; 128
Pruessmann (10.1016/j.compmedimag.2024.102435_bib26) 1999; 42
Wu (10.1016/j.compmedimag.2024.102435_bib36) 2022; 22
10.1016/j.compmedimag.2024.102435_bib32
Zou (10.1016/j.compmedimag.2024.102435_bib43) 2021; 40
Mahajan (10.1016/j.compmedimag.2024.102435_bib19) 2009; 28
Pezzotti (10.1016/j.compmedimag.2024.102435_bib25) 2019
Backhaus (10.1016/j.compmedimag.2024.102435_bib3) 2021; 23
A S (10.1016/j.compmedimag.2024.102435_bib1) 2022; 201
Goodfellow (10.1016/j.compmedimag.2024.102435_bib10) 2019
Bao (10.1016/j.compmedimag.2024.102435_bib4) 2019
Wang (10.1016/j.compmedimag.2024.102435_bib34) 2021; 25
Ruthotto (10.1016/j.compmedimag.2024.102435_bib29) 2021; 44
Joshi (10.1016/j.compmedimag.2024.102435_bib15) 2022; 3
Chan (10.1016/j.compmedimag.2024.102435_bib6) 2010
Guo (10.1016/j.compmedimag.2024.102435_bib13) 2020
Sun (10.1016/j.compmedimag.2024.102435_bib31) 2020; 83
Niendorf (10.1016/j.compmedimag.2024.102435_bib23) 2006; 19
Deshmane (10.1016/j.compmedimag.2024.102435_bib8) 2012; 36
Liu (10.1016/j.compmedimag.2024.102435_bib17) 2017
McVeigh (10.1016/j.compmedimag.2024.102435_bib21) 1992; 28
Foo (10.1016/j.compmedimag.2024.102435_bib9) 1995
Wendell (10.1016/j.compmedimag.2024.102435_bib35) 2015
Zou (10.1016/j.compmedimag.2024.102435_bib42) 2023; 13
Lustig (10.1016/j.compmedimag.2024.102435_bib18) 2008; 25
Regenwetter (10.1016/j.compmedimag.2024.102435_bib28) 2022; 144
10.1016/j.compmedimag.2024.102435_bib40
Xu (10.1016/j.compmedimag.2024.102435_bib37) 2015; 32
References_xml – start-page: 1
  year: 2016
  end-page: 16
  ident: bib27
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc.
– reference: Zhang, L., Karani, N., Tanner, C., Konukoglu, E., 2018. Temporal Interpolation via Motion Field Prediction 1–10.
– volume: 41
  start-page: 2693
  year: 2022
  end-page: 2703
  ident: bib2
  article-title: Dynamic imaging using deep bi-linear unsupervised representation (DEBLUR)
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib3
  article-title: Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 40
  start-page: 3102
  year: 2021
  end-page: 3112
  ident: bib43
  article-title: Dynamic imaging using a deep generative SToRM (Gen-SToRM) model
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: bib25
  publication-title: Adapt. -CS-Net: FastMRI Adapt. Intell.
– volume: 25
  start-page: 252
  year: 2021
  end-page: 265
  ident: bib34
  article-title: Fast real-time cardiac mri: a review of current techniques and future directions
  publication-title: Investig. Magn. Reson. Imaging
– volume: 83
  start-page: 1235
  year: 2020
  end-page: 1249
  ident: bib31
  article-title: Non-Cartesian slice-GRAPPA and slice-SPIRiT reconstruction methods for multiband spiral cardiac MRI
  publication-title: Magn. Reson. Med.
– volume: 234
  start-page: 330
  year: 2005
  end-page: 338
  ident: bib30
  article-title: Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations
  publication-title: Radiology
– start-page: 3698
  year: 2019
  end-page: 3707
  ident: bib4
  article-title: Depth-aware video frame interpolation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June
– start-page: 4473
  year: 2017
  end-page: 4481
  ident: bib17
  article-title: Video frame synthesis using deep voxel flow. Proc
  publication-title: IEEE Int. Conf. Comput. Vis. 2017-Oct.
– start-page: 996
  year: 2010
  end-page: 999
  ident: bib41
  article-title: Low rank matrix recovery for real-time cardiac MRI
  publication-title: 2010 7th IEEE Int. Symp. Biomed. Imaging Nano Macro, ISBI 2010 - Proc.
– start-page: 722
  year: 2010
  end-page: 725
  ident: bib6
  article-title: Subpixel motion estimation without interpolation. ICASSP
  publication-title: IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.
– volume: 28
  start-page: 318
  year: 1992
  end-page: 327
  ident: bib21
  article-title: Cardiac tagging with breath-hold cine MRI
  publication-title: Magn. Reson. Med.
– volume: 81
  start-page: 213
  year: 2012
  end-page: 221
  ident: bib20
  article-title: Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis
  publication-title: Cytom. Part A
– year: 2020
  ident: bib38
  article-title: Reluplex made more practical: Leaky ReLU
  publication-title: Proc. - IEEE Symp. Comput. Commun. 2020-July
– volume: 13
  year: 2023
  ident: bib42
  article-title: Free-breathing and ungated cardiac MRI reconstruction using a deep kernel representation
  publication-title: Appl. Sci.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: bib26
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  ident: bib18
  article-title: Compressed sensing MRI: A look at how CS can improve on current imaging techniques
  publication-title: IEEE Signal Process. Mag.
– start-page: 14001
  year: 2020
  end-page: 14010
  ident: bib12
  article-title: FeatureFlow: Robust video interpolation via structure-to-texture generation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– start-page: 5436
  year: 2020
  end-page: 5445
  ident: bib24
  article-title: Softmax splatting for video frame interpolation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 43
  start-page: 933
  year: 2021
  end-page: 948
  ident: bib5
  article-title: MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 471
  year: 1995
  end-page: 478
  ident: bib9
  article-title: Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repitition time excitation with fast cardiac techniques
  publication-title: Radiology
– volume: 28
  start-page: 162
  year: 2015
  end-page: 167
  ident: bib16
  article-title: Self-gated cardiac Cine MRI of the rat on a clinical 3T MRI system.
  publication-title: NMR Biomed.
– volume: 52
  start-page: 5015
  year: 2022
  end-page: 5033
  ident: bib39
  article-title: A novel deep pixel restoration video prediction algorithm integrating attention mechanism
  publication-title: Appl. Intell.
– volume: 19
  start-page: 325
  year: 2006
  end-page: 341
  ident: bib23
  article-title: Parallel imaging in cardiovascular MRI: methods and applications
  publication-title: NMR Biomed.
– volume: 3
  year: 2022
  ident: bib15
  article-title: Fast sobel edge detection for iot edge devices
  publication-title: SN Comput. Sci.
– reference: Sun, D., Yang, X., Liu, M., Kautz, J., 2018. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. Proceedings of the IEEE conference on computer vision and pattern recognition. Page numbers: 8934–8943.
– volume: 36
  start-page: 55
  year: 2012
  end-page: 72
  ident: bib8
  article-title: Parallel MR imaging
  publication-title: J. Magn. Reson. Imaging
– volume: 32
  start-page: 131
  year: 2015
  end-page: 139
  ident: bib37
  article-title: An overview of deep generative models
  publication-title: IETE Tech. Rev. (Institution Electron. Telecommun.) Eng.
– start-page: 1
  year: 2015
  end-page: 338
  ident: bib35
  article-title: Basic principles of cardiovascular MRI: Physics and imaging technique
  publication-title: Basic Princ. Cardiovasc MRI Phys. Imaging Tech.
– start-page: 4725
  year: 2020
  end-page: 4734
  ident: bib13
  article-title: A spatiotemporal volumetric interpolation network for 4D dynamic medical image
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 55
  start-page: 373
  year: 2022
  end-page: 388
  ident: bib7
  article-title: Primer and historical review on rapid cardiac CINE MRI
  publication-title: J. Magn. Reson. Imaging
– volume: 52
  start-page: 3640
  year: 2022
  end-page: 3652
  ident: bib14
  article-title: Video prediction: a step-by-step improvement of a video synthesis network
  publication-title: Appl. Intell.
– volume: 28
  year: 2009
  ident: bib19
  article-title: Moving gradients: a path-based method for plausible image interpolation
  publication-title: ACM Trans. Graph.
– volume: 44
  start-page: 1
  year: 2021
  end-page: 24
  ident: bib29
  article-title: An introduction to deep generative modeling
  publication-title: GAMM Mitt.
– volume: 144
  year: 2022
  ident: bib28
  article-title: Deep generative models in engineering design: a review
  publication-title: J. Mech. Des.
– volume: 201
  start-page: 487
  year: 2022
  end-page: 494
  ident: bib1
  article-title: Comparative analysis of eight direction sobel edge detection algorithm for brain tumor MRI images
  publication-title: Procedia Comput. Sci.
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: bib11
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn. Reson. Med.
– start-page: 1410
  year: 2015
  end-page: 1418
  ident: bib22
  article-title: Phase-based frame interpolation for video
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June
– volume: 22
  year: 2022
  ident: bib36
  article-title: A method for medical microscopic images’ sharpness evaluation based on NSST and variance by combining time and frequency domains
  publication-title: Sensors
– start-page: 3063
  year: 2019
  end-page: 3071
  ident: bib10
  article-title: Generative adversarial nets. proc. - 2019
  publication-title: Int. Conf. Comput Vis. Work. ICCVW
– volume: 128
  start-page: 1867
  year: 2020
  end-page: 1888
  ident: bib33
  article-title: Deep image prior
  publication-title: Int. J. Comput. Vis.
– volume: 52
  start-page: 3640
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib14
  article-title: Video prediction: a step-by-step improvement of a video synthesis network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02500-5
– volume: 28
  start-page: 318
  year: 1992
  ident: 10.1016/j.compmedimag.2024.102435_bib21
  article-title: Cardiac tagging with breath-hold cine MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910280214
– volume: 44
  start-page: 1
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102435_bib29
  article-title: An introduction to deep generative modeling
  publication-title: GAMM Mitt.
  doi: 10.1002/gamm.202100008
– start-page: 471
  year: 1995
  ident: 10.1016/j.compmedimag.2024.102435_bib9
  article-title: Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repitition time excitation with fast cardiac techniques
  publication-title: Radiology
  doi: 10.1148/radiology.195.2.7724769
– volume: 28
  year: 2009
  ident: 10.1016/j.compmedimag.2024.102435_bib19
  article-title: Moving gradients: a path-based method for plausible image interpolation
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1531326.1531348
– volume: 19
  start-page: 325
  year: 2006
  ident: 10.1016/j.compmedimag.2024.102435_bib23
  article-title: Parallel imaging in cardiovascular MRI: methods and applications
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1051
– start-page: 3063
  year: 2019
  ident: 10.1016/j.compmedimag.2024.102435_bib10
  article-title: Generative adversarial nets. proc. - 2019
  publication-title: Int. Conf. Comput Vis. Work. ICCVW
– start-page: 4725
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib13
  article-title: A spatiotemporal volumetric interpolation network for 4D dynamic medical image
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 25
  start-page: 252
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102435_bib34
  article-title: Fast real-time cardiac mri: a review of current techniques and future directions
  publication-title: Investig. Magn. Reson. Imaging
  doi: 10.13104/imri.2021.25.4.252
– volume: 81
  start-page: 213
  year: 2012
  ident: 10.1016/j.compmedimag.2024.102435_bib20
  article-title: Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.22020
– start-page: 4473
  year: 2017
  ident: 10.1016/j.compmedimag.2024.102435_bib17
  article-title: Video frame synthesis using deep voxel flow. Proc
  publication-title: IEEE Int. Conf. Comput. Vis. 2017-Oct.
– volume: 52
  start-page: 5015
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib39
  article-title: A novel deep pixel restoration video prediction algorithm integrating attention mechanism
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02631-9
– volume: 234
  start-page: 330
  year: 2005
  ident: 10.1016/j.compmedimag.2024.102435_bib30
  article-title: Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations
  publication-title: Radiology
  doi: 10.1148/radiol.2342031990
– volume: 36
  start-page: 55
  year: 2012
  ident: 10.1016/j.compmedimag.2024.102435_bib8
  article-title: Parallel MR imaging
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23639
– volume: 144
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib28
  article-title: Deep generative models in engineering design: a review
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4053859
– ident: 10.1016/j.compmedimag.2024.102435_bib40
– volume: 40
  start-page: 3102
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102435_bib43
  article-title: Dynamic imaging using a deep generative SToRM (Gen-SToRM) model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3065948
– volume: 83
  start-page: 1235
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib31
  article-title: Non-Cartesian slice-GRAPPA and slice-SPIRiT reconstruction methods for multiband spiral cardiac MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28002
– start-page: 14001
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib12
  article-title: FeatureFlow: Robust video interpolation via structure-to-texture generation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– start-page: 5436
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib24
  article-title: Softmax splatting for video frame interpolation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 201
  start-page: 487
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib1
  article-title: Comparative analysis of eight direction sobel edge detection algorithm for brain tumor MRI images
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.03.063
– volume: 43
  start-page: 933
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102435_bib5
  article-title: MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2941941
– volume: 41
  start-page: 2693
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib2
  article-title: Dynamic imaging using deep bi-linear unsupervised representation (DEBLUR)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3168559
– volume: 13
  year: 2023
  ident: 10.1016/j.compmedimag.2024.102435_bib42
  article-title: Free-breathing and ungated cardiac MRI reconstruction using a deep kernel representation
  publication-title: Appl. Sci.
  doi: 10.3390/app13042281
– volume: 42
  start-page: 952
  year: 1999
  ident: 10.1016/j.compmedimag.2024.102435_bib26
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 55
  start-page: 373
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib7
  article-title: Primer and historical review on rapid cardiac CINE MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27436
– volume: 47
  start-page: 1202
  year: 2002
  ident: 10.1016/j.compmedimag.2024.102435_bib11
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10171
– volume: 3
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib15
  article-title: Fast sobel edge detection for iot edge devices
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-022-01165-2
– start-page: 1410
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102435_bib22
  article-title: Phase-based frame interpolation for video
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 07-12-June
– start-page: 3698
  year: 2019
  ident: 10.1016/j.compmedimag.2024.102435_bib4
  article-title: Depth-aware video frame interpolation
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June
– year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib38
  article-title: Reluplex made more practical: Leaky ReLU
  publication-title: Proc. - IEEE Symp. Comput. Commun. 2020-July
  doi: 10.1109/ISCC50000.2020.9219587
– volume: 32
  start-page: 131
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102435_bib37
  article-title: An overview of deep generative models
  publication-title: IETE Tech. Rev. (Institution Electron. Telecommun.) Eng.
– volume: 28
  start-page: 162
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102435_bib16
  article-title: Self-gated cardiac Cine MRI of the rat on a clinical 3T MRI system.
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3234
– volume: 25
  start-page: 72
  year: 2008
  ident: 10.1016/j.compmedimag.2024.102435_bib18
  article-title: Compressed sensing MRI: A look at how CS can improve on current imaging techniques
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914728
– start-page: 1
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102435_bib35
  article-title: Basic principles of cardiovascular MRI: Physics and imaging technique
  publication-title: Basic Princ. Cardiovasc MRI Phys. Imaging Tech.
– ident: 10.1016/j.compmedimag.2024.102435_bib32
  doi: 10.1109/CVPR.2018.00931
– volume: 22
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102435_bib36
  article-title: A method for medical microscopic images’ sharpness evaluation based on NSST and variance by combining time and frequency domains
  publication-title: Sensors
– volume: 23
  start-page: 1
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102435_bib3
  article-title: Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-021-00740-5
– year: 2019
  ident: 10.1016/j.compmedimag.2024.102435_bib25
  publication-title: Adapt. -CS-Net: FastMRI Adapt. Intell.
– start-page: 722
  year: 2010
  ident: 10.1016/j.compmedimag.2024.102435_bib6
  article-title: Subpixel motion estimation without interpolation. ICASSP
  publication-title: IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.
– start-page: 1
  year: 2016
  ident: 10.1016/j.compmedimag.2024.102435_bib27
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc.
– volume: 128
  start-page: 1867
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102435_bib33
  article-title: Deep image prior
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01303-4
– start-page: 996
  year: 2010
  ident: 10.1016/j.compmedimag.2024.102435_bib41
  article-title: Low rank matrix recovery for real-time cardiac MRI
  publication-title: 2010 7th IEEE Int. Symp. Biomed. Imaging Nano Macro, ISBI 2010 - Proc.
SSID ssj0002071
Score 2.3816924
Snippet Cardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long acquisition time...
AbstractPurposeCardiac cine magnetic resonance imaging (MRI) is an important tool in assessing dynamic heart function. However, this technique requires long...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 102435
SubjectTerms Cardiac cine MRI
Deep generative model
Internal Medicine
Interpolation in time
Other
Unsupervised learning
Title Dynamic MRI interpolation in temporal direction using an unsupervised generative model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611124001125
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611124001125
https://dx.doi.org/10.1016/j.compmedimag.2024.102435
https://www.ncbi.nlm.nih.gov/pubmed/39326176
https://www.proquest.com/docview/3110399891
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAqGXkvS5fQQFenVXlseyHHoJacOmJTm0TclNSLK8bGmdJd699rdHI9lJS1MI9GYJCVnDp9GI-WYG4E1eeR7s8CZrja0ytByz2vmA5VbWolQtoovZPs_k7Bw_XpQXG3A0xsIQrXLQ_UmnR2099EwHaU6Xi8X0C1cUlBnsBSS7RlCgOWJFKH_765bmIXh8dNHgjEZvw_4tx4to2-TD_mnm4akokBIZYKz8ducd9S8bNN5FxzvwcDAi2WH6z13Y8N0j2D4d3OSP4dv7VGeenX4-YYtUSStx3kKLDdmofrC0deol9vucmfDR9eslqY_eN2weU1KTPmSxYM4TOD_-8PVolg0FFDKHBa4yJVxZxZR_1kvLfS6dtKqRrWna3GHdNsLUKFCh8-GasrxqvBFlK0uLylpePIXN7rLzz4FZtKGjMbWkdDbcKS69K4va-FKoshETEKPI9DLlydAjgey7_k3OmuSsk5wncDAKV4-BoEF16aDN7zO5umuy74dD2Otc90Jz_RdQJvDuZuYfWLvvwvsjDnQ4i-RgMZ2_XPe6yMmxXqs6n8CzBJAbYRRkKOeVfPF_i7-EB9RKdMJXsLm6WvvXwSxa2b2I-z3YOjz5NDu7BrJMDXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NThq8IL4pn57Ea1THsR0H8TINppatfYAN7c2yHacqgqwi7f-PL3YKiCFN4i1xcnJyOv981t39DuBNXnoa_PA6a4wtM24pzyrngy03smJCNZy7nu1zIacX_OOluNyD46EWBtMqE_ZHTO_ROo1MkjYn69Vq8pkqLMoM_gJHv4aJW7CP7FRiBPtHs9PpYgfIjPbnLnw_Q4EDOPyV5oWZ2xjG_m6W4bTIOHIZ8L7527Xb1L_c0H47OrkHd5MfSY7ip96HPd8-gIN5ipQ_hC_vY6t5Mv80I6vYTCumvYU7kgipvpH49ziKCfBLYsJF223XiCCdr8myZ6VGSCR9z5xHcHHy4fx4mqUeCpnjBd9kijlR9qx_1ktLfS6dtKqWjamb3PGqqZmpOOOKOx92KkvL2hsmGiksV9bS4jGM2qvWPwViuQ0DtakkMtpQp6j0ThSV8YIpUbMxsEFleh2pMvSQQ_ZV_6ZnjXrWUc9jeDsoVw-1oAG9dAD0mwiX1wn7Lq3DTue6Y5rqv2xlDO92kn-Y200nPhzsQIfliDEW0_qrbaeLHGPrlaryMTyJBrJTRoG-cl7KZ_83-Wu4PT2fn-mz2eL0OdzBJzG78AWMNj-2_mXwkjb2VVoFPwHf6RAp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+MRI+interpolation+in+temporal+direction+using+an+unsupervised+generative+model&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Maciel%2C+Corbin&rft.au=Zou%2C+Qing&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0895-6111&rft.volume=117&rft_id=info:doi/10.1016%2Fj.compmedimag.2024.102435&rft.externalDocID=S0895611124001125
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611124X00063%2Fcov150h.gif