Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects
Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial....
Saved in:
Published in | Experimental biology and medicine (Maywood, N.J.) Vol. 246; no. 2; pp. 163 - 176 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1535-3702 1535-3699 1535-3699 |
DOI | 10.1177/1535370220962708 |
Cover
Loading…
Abstract | Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes. |
---|---|
AbstractList | Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes. Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels ( P < 0.05), systolic blood pressure ( P < 0.05), diastolic blood pressure ( P < 0.05), and serum kisspeptin levels ( P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 ( UCP1 ) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes. Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes. Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels ( < 0.05), systolic blood pressure ( < 0.05), diastolic blood pressure ( < 0.05), and serum kisspeptin levels ( < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance ( ) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes. |
Author | Maikaew, Pailin Sripong, Chanakarn Sitticharoon, Chantacha Chatree, Saimai Sririwichitchai, Rungnapa Tapechum, Sompol Keadkraichaiwat, Issarawan Churintaraphan, Malika Pongwattanapakin, Kitchaya |
Author_xml | – sequence: 1 givenname: Saimai surname: Chatree fullname: Chatree, Saimai organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 2 givenname: Chantacha orcidid: 0000-0001-8790-1300 surname: Sitticharoon fullname: Sitticharoon, Chantacha organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 3 givenname: Pailin surname: Maikaew fullname: Maikaew, Pailin organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 4 givenname: Kitchaya surname: Pongwattanapakin fullname: Pongwattanapakin, Kitchaya organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 5 givenname: Issarawan surname: Keadkraichaiwat fullname: Keadkraichaiwat, Issarawan organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 6 givenname: Malika surname: Churintaraphan fullname: Churintaraphan, Malika organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 7 givenname: Chanakarn surname: Sripong fullname: Sripong, Chanakarn organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 8 givenname: Rungnapa surname: Sririwichitchai fullname: Sririwichitchai, Rungnapa organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand – sequence: 9 givenname: Sompol surname: Tapechum fullname: Tapechum, Sompol organization: Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33045853$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uc2L1TAQD7Lifujdk-TowWrSJE17EWRZP2DBi55Dkk7fy7NtaiZd2P_elLdPdEEhkPnN_D5g5pKczXEGQl5y9pZzrd9xJZTQrK5Z19SatU_IxdaqRNN1Z6e6zM_JJeKBMa503Twj50IwqVolLki-WcLOjmP0NoPfh5luqNS0B5_AIiBdRouTpTmF3XjvIYUe3lA3xtjTJQHimgq2c08R0jrRHwFxgSUXr_KiAwS6Xyc7U1zdAXzG5-TpYEeEFw__Ffn-8ebb9efq9uunL9cfbisvhcxVy7xwwLTygxiAgQPhO9c1VjlnLYeG6aHn7SC066SUTiun-Qbauhda9uKKvD_6LquboPcw52RHs6Qw2XRvog3m78kc9mYX74xuNee8LgavHwxS_LkCZjMF9FAWNENc0dRSsUa2molCffVn1u-Q06oLoTkSfIqICQbjQ7Y5xC06jIYzs93UPL5pEbJHwpP3fyTVUYJ2B-YQ1zSXPf-b_ws9h7KL |
CitedBy_id | crossref_primary_10_1016_j_jep_2024_117855 crossref_primary_10_3389_fendo_2022_1000739 crossref_primary_10_20473_amnt_v8i3_2024_468_479 crossref_primary_10_3390_antiox10091390 crossref_primary_10_3389_fnut_2023_1202378 crossref_primary_10_1016_j_exer_2023_109689 crossref_primary_10_3390_foods12203730 crossref_primary_10_3390_ph17101354 crossref_primary_10_1007_s11064_022_03707_9 crossref_primary_10_3389_fcvm_2024_1372055 crossref_primary_10_3390_nu15010037 crossref_primary_10_1080_10408398_2022_2104805 crossref_primary_10_1016_j_bioorg_2023_106999 crossref_primary_10_3390_ijms24119228 crossref_primary_10_3390_biom14121497 crossref_primary_10_1155_2022_4714914 crossref_primary_10_1186_s12944_024_02300_z crossref_primary_10_3390_nu14235171 crossref_primary_10_1016_j_phymed_2024_155563 crossref_primary_10_1007_s11130_022_00978_z crossref_primary_10_1038_s41598_021_81606_9 crossref_primary_10_3390_ijms26030915 crossref_primary_10_1038_s41598_023_41275_2 crossref_primary_10_1186_s12903_024_04567_1 crossref_primary_10_1016_j_afres_2025_100738 crossref_primary_10_1016_j_heliyon_2023_e21228 crossref_primary_10_3390_compounds4030029 crossref_primary_10_1016_j_fbio_2024_104322 crossref_primary_10_3390_antiox11081573 crossref_primary_10_3390_nu14102039 crossref_primary_10_3390_molecules29245955 crossref_primary_10_3390_ijms24010340 crossref_primary_10_3390_ijms25052671 crossref_primary_10_3390_molecules30030654 crossref_primary_10_3390_antiox12051063 crossref_primary_10_3390_nu15173797 crossref_primary_10_20914_2310_1202_2023_1_54_63 crossref_primary_10_3390_molecules28135246 crossref_primary_10_1016_j_phyplu_2024_100526 crossref_primary_10_1038_s41598_024_72269_3 crossref_primary_10_3390_nu14153194 crossref_primary_10_3390_biomedicines11112888 crossref_primary_10_3390_ijms23158344 crossref_primary_10_1002_ptr_8276 crossref_primary_10_1007_s12013_024_01537_w crossref_primary_10_1080_10408398_2023_2286475 crossref_primary_10_1016_j_gendis_2024_101284 crossref_primary_10_3390_nu15133022 crossref_primary_10_1080_09637486_2022_2150152 |
Cites_doi | 10.1590/S0004-27302012000400001 10.1002/jcb.1164 10.1158/1940-6207.CAPR-17-0160 10.1016/j.phrs.2017.05.013 10.1177/2048004016633371 10.1016/j.bbrc.2015.03.158 10.1080/07315724.2010.10719814 10.1016/j.jhep.2016.01.025 10.1248/jhs.52.672 10.1002/ptr.3296 10.1111/cob.12231 10.1055/s-2001-17911 10.1055/s-2005-871738 10.1002/mnfr.201000641 10.1016/j.cell.2012.09.010 10.2337/diacare.28.3.694 10.1210/en.2006-0818 10.1111/dom.13460 10.1152/ajpcell.2000.279.3.C670 10.1016/j.phytochem.2006.06.020 10.1016/j.celrep.2017.12.067 10.1155/2016/6790794 10.1021/jf404872y 10.2174/187152907780830905 10.1073/pnas.1109065108 10.1038/sj.ijo.0802784 10.1016/j.foodchem.2005.03.015 10.1016/j.cell.2014.10.058 10.3945/ajcn.116.137075 10.1016/j.ejim.2017.10.020 10.1371/journal.pone.0179834 10.1080/07315724.2007.10719628 10.1371/journal.pone.0014671 10.1007/s12291-011-0119-1 10.3109/07435801003769995 10.1093/jn/135.2.155 10.1177/1087057107306502 10.1007/s42000-018-0051-3 10.4252/wjsc.v6.i1.33 10.1097/01.mol.0000169354.20395.1c 10.1017/S0007114513003784 10.1074/jbc.M109.053942 10.1007/978-3-319-48382-5_1 10.3746/pnf.2018.23.3.214 10.1016/j.nutres.2012.05.007 10.1152/ajpendo.00698.2006 10.3390/ijms17010124 10.1126/science.7624777 10.1071/RD16282 10.3945/jn.108.098293 10.1089/dia.2015.0007 10.1093/jnci/88.23.1731 10.1002/mnfr.201300503 10.1016/j.physbeh.2007.10.009 10.1002/ptr.2737 10.3390/nu9070680 10.1159/000321319 10.1056/NEJMoa1614362 10.1001/jama.285.19.2486 10.3390/nu5041218 10.1016/j.repbio.2020.03.004 10.4161/adip.20690 10.1002/ptr.1580 10.1210/endo.140.3.6604 10.1210/jcem.85.7.6661 10.3389/fphar.2018.01366 10.1016/j.amjhyper.2007.08.006 10.1016/j.plipres.2009.05.001 10.1021/jf2053788 10.1016/j.neuropharm.2011.12.010 10.3389/fendo.2018.00473 10.1111/j.1365-2125.2010.03746.x 10.1023/A:1007012403691 10.1046/j.1467-789X.2001.00042.x 10.2147/COPD.S141295 10.1194/jlr.M500424-JLR200 10.1038/sj.ijo.0800432 10.1016/j.ejcb.2013.06.001 10.1038/oby.2005.142 |
ContentType | Journal Article |
Copyright | 2020 by the Society for Experimental Biology and Medicine 2020 by the Society for Experimental Biology and Medicine 2020 The Society for Experimental Biology and Medicine |
Copyright_xml | – notice: 2020 by the Society for Experimental Biology and Medicine – notice: 2020 by the Society for Experimental Biology and Medicine 2020 The Society for Experimental Biology and Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1177/1535370220962708 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Biology |
EISSN | 1535-3699 |
EndPage | 176 |
ExternalDocumentID | PMC7871112 33045853 10_1177_1535370220962708 10.1177_1535370220962708 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the Siriraj Graduate Scholarship type II – fundername: the Faculty of Medicine Siriraj Hospital Research Fund grantid: (IO) R015932003; (IO) R0159333013 ; (IO) R016132012 – fundername: the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program grantid: Grant No. PHD/0089/2558 – fundername: ; – fundername: ; grantid: (IO) R015932003; (IO) R0159333013 ; (IO) R016132012 – fundername: ; grantid: Grant No. PHD/0089/2558 |
GroupedDBID | --- -~X .55 .GJ 2WC 35A 3O- 4.4 53G 5GY 5I- 5I. 9T4 AACMV AAFWJ ABWRX ACARO ACFIC ACGFS ACNCT ADBBV ADEBD ADWAY AEMJX AENEX AEWDL AEWLI AFIEG AFKRG AFNTS AFOSN AGCDD AGPXR AHOKE AI. AIIQI AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV AYAKG C1A C45 CS3 DC. DU5 EBS EJD EMOBN F5P GROUPED_DOAJ H13 HYE HZ~ H~9 J8X L7B MV1 MVM O9- OK1 OVD P.B P.C RPM RSE SAUOL SCNPE SFC TEORI TRM UPT VH1 W8F WOQ X7M XOL YKV ZCA ZGI ~KM AAYXX CITATION CGR CUY CVF ECM EIF M4V NPM 7X8 5PM |
ID | FETCH-LOGICAL-c434t-80c3be075cf3fe0ebe3c9b96a5bbaa1e607fd18f37b9444b75b7137b982d374d3 |
ISSN | 1535-3702 1535-3699 |
IngestDate | Thu Aug 21 14:13:37 EDT 2025 Fri Jul 11 00:48:35 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Tue Jul 01 05:13:18 EDT 2025 Tue Jun 17 22:28:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Obesity blood pressure human adipocytes epigallocatechin gallate plasma triglyceride kisspeptin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-80c3be075cf3fe0ebe3c9b96a5bbaa1e607fd18f37b9444b75b7137b982d374d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-8790-1300 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7871112 |
PMID | 33045853 |
PQID | 2450648703 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7871112 proquest_miscellaneous_2450648703 pubmed_primary_33045853 crossref_citationtrail_10_1177_1535370220962708 crossref_primary_10_1177_1535370220962708 sage_journals_10_1177_1535370220962708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Switzerland – name: Sage UK: London, England |
PublicationTitle | Experimental biology and medicine (Maywood, N.J.) |
PublicationTitleAlternate | Exp Biol Med (Maywood) |
PublicationYear | 2021 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Misra 2015; 17 Brown, Randhawa, Canning, Fung, Jiandani, Wharton, Kuk 2018; 8 Ueda, Ashida 2012; 60 Klop, Elte, Cabezas 2013; 5 Petrella, Lattanzio, Demeray, Varallo, Blore 2005; 28 Han, Lean 2016; 5 Seravalle, Grassi 2017; 122 Zafar, Khaliq, Ahmad, Manzoor, Lone 2018; 17 Auvichayapat, Prapochanung, Tunkamnerdthai, Sripanidkulchai, Auvichayapat, Thinkhamrop, Kunhasura, Wongpratoom, Sinawat, Hongprapas 2008; 93 Moseti, Regassa, Kim 2016; 17 Mochizuki, Hasegawa 2004; 18 Hodgson, Randell, Mahabir-Jagessar, Lotito, Mulder, Mela, Jeukendrup, Jacobs 2014; 62 Hausman, DiGirolamo, Bartness, Hausman, Martin 2001; 2 Himms-Hagen, Melnyk, Zingaretti, Ceresi, Barbatelli, Cinti 2000; 279 Brondani, Assmann, Duarte, Gross, Canani, Crispim 2012; 56 Lasar, Rosenwald, Kiehlmann, Balaz, Tall, Opitz, Lidell, Zamboni, Krznar, Sun, Varga, Stefanicka, Ukropec, Nuutila, Virtanen, Amri, Enerback, Wahli, Wolfrum 2018; 22 Andreozzi, Mannino, Mancuso, Spiga, Perticone, Sesti 2017; 12 Maki, Reeves, Farmer, Yasunaga, Matsuo, Katsuragi, Komikado, Tokimitsu, Wilder, Jones, Blumberg, Cartwright 2009; 139 Dragunow, Cameron, Narayan, O'Carroll 2007; 12 Xicota, Rodriguez, Langohr, Fito, Dierssen, de la Torre 2019; 8 Engin 2017; 960 Sitticharoon, Boonpuan, Mitrpant, Churintaraphan 2017; 65 Scheja, Heeren 2016; 64 Izzi-Engbeaya, Comninos, Clarke, Jomard, Yang, Jones, Abbara, Narayanaswamy, Eng, Papadopoulou, Prague, Bech, Godsland, Bassett, Sands, Camuzeaux, Gomez-Romero, Pearce, Lewis, Holmes, Nicholson, Tan, Ratnasabapathy, Hu, Carrat, Piemonti, Bugliani, Marchetti, Johnson, Hughes, James Shapiro, Rutter, Dhillo 2018; 20 Samavat, Newman, Wang, Yuan, Wu, Kurzer 2016; 104 Ten, Gu, Niu, An, Yan, He 2010; 35 Lafontan, Langin 2009; 48 Fedorenko, Lishko, Kirichok 2012; 151 Henry, Goding, Alexander, Tilbrook, Canny, Dunshea, Rao, Mansell, Clarke 1999; 140 Fors, Matsuoka, Bosaeus, Rosberg, Wikland, Bjarnason 1999; 84 Nagle, Ferreira, Zhou 2006; 67 Shi, Ye, Leonard, Ding, Vallyathan, Castranova, Rojanasakul, Dong 2000; 206 Lee, Kim, Kim, Kim 2009; 23 Hassan, Bakar, Aziz, Basah, Singh 2020; 20 Harwood 2012; 63 Simonds, Pryor, Ravussin, Greenway, Dileone, Allen, Bassi, Elmquist, Keogh, Henning, Myers, Licinio, Brown, Enriori, O'Rahilly, Sternson, Grove, Spanswick, Farooqi, Cowley 2014; 159 Antonello, Montemurro, Bolognesi, Di Pascoli, Piva, Grego, Sticchi, Giuliani, Garbisa, Rossi 2007; 20 Coffey, Steiner, Baker, Allison 2004; 28 Zheng, Sayama, Okubo, Juneja, Oguni 2004; 18 Perva-Uzunalić, Škerget, Knez, Weinreich, Otto, Grüner 2006; 96 Katz, Nambi, Mather, Baron, Follmann, Sullivan, Quon 2000; 85 Han, Kim, Lim, Kim, Kim, Yun, Hong, Oh 2011; 58 Zeydabadi Nejad, Ramezani Tehrani, Zadeh-Vakili 2017; 15 Bogdanski, Suliburska, Szulinska, Stepien, Pupek-Musialik, Jablecka 2012; 32 Chen, Osaki, Shimotoyodome 2015; 461 Kavanagh, Hafer, Kim, Mann, Sherr, Rogers, Sonenshein 2001; 82 Forester, Lambert 2011; 55 Park, Kim, Bae 2014; 6 2001; 285 Pan, Yeh 2008; 17 Potenza, Marasciulo, Tarquinio, Tiravanti, Colantuono, Federici, Kim, Quon, Montagnani 2007; 292 Petrovic, Walden, Shabalina, Timmons, Cannon, Nedergaard 2010; 285 Simonds, Cowley, Enriori 2012; 1 Li, Stillemark-Billton, Beck, Boström, Andersson, Rutberg, Ericsson, Magnusson, Marchesan, Ljungberg, Borén, Olofsson 2006; 47 Tipoe, Leung, Hung, Fung 2007; 7 Sitticharoon, Sukharomana, Likitmaskul, Churintaraphan, Maikaew 2017; 29 Saely, Geiger, Drexel 2012; 58 Mead, Maguire, Kuc, Davenport 2007; 148 Westerterp-Plantenga, Lejeune, Kovacs 2005; 13 Lim, Lee, Kim, Hwang, Kim, Lim, Yoo, Jung, Kim, Rhee 2017; 12 Ma, Wang, Zhao, Xu 2018; 9 Mielgo-Ayuso, Barrenechea, Alcorta, Larrarte, Margareto, Labayen 2014; 111 Afshin, Forouzanfar, Reitsma, Sur, Estep, Lee, Marczak, Mokdad, Moradi-Lakeh, Naghavi, Salama, Vos, Abate, Abbafati, Ahmed, Al-Aly, Alkerwi, Al-Raddadi, Amare, Amberbir, Amegah, Amini, Amrock, Anjana, Arnlov, Asayesh, Banerjee, Barac, Baye, Bennett, Beyene, Biadgilign, Biryukov, Bjertness, Boneya, Campos-Nonato, Carrero, Cecilio, Cercy, Ciobanu, Cornaby, Damtew, Dandona, Dandona, Dharmaratne, Duncan, Eshrati, Esteghamati, Feigin, Fernandes, Furst, Gebrehiwot, Gold, Gona, Goto, Habtewold, Hadush, Hafezi-Nejad, Hay, Horino, Islami, Kamal, Kasaeian, Katikireddi, Kengne, Kesavachandran, Khader, Khang, Khubchandani, Kim, Kim, Kinfu, Kosen, Ku, Defo, Kumar, Larson, Leinsalu, Liang, Lim, Liu, Lopez, Lozano, Majeed, Malekzadeh, Malta, Mazidi, McAlinden, McGarvey, Mengistu, Mensah, Mensink, Mezgebe, Mirrakhimov, Mueller, Noubiap, Obermeyer, Ogbo, Owolabi, Patton, Pourmalek, Qorbani, Rafay, Rai, Ranabhat, Reinig, Safiri, Salomon, Sanabria, Santos, Sartorius, Sawhney, Schmidhuber, Schutte, Schmidt, Sepanlou, Shamsizadeh, Sheikhbahaei, Shin, Shiri, Shiue, Roba, Silva, Silverberg, Singh, Stranges, Swaminathan, Tabares-Seisdedos, Tadese, Tedla, Tegegne, Terkawi, Thakur, Tonelli, Topor-Madry, Tyrovolas, Ukwaja, Uthman, Vaezghasemi, Vasankari, Vlassov, Vollset, Weiderpass, Werdecker, Wesana, Westerman, Yano, Yonemoto, Yonga, Zaidi, Zenebe, Zipkin, Murray 2017; 377 TRaX 2019; 6 Rohde, Jacobsen, Kromann-Andersen 2011; 173 Ghorbani, Himms-Hagen 1997; 21 Vecchie, Dallegri, Carbone, Bonaventura, Liberale, Portincasa, Fruhbeck, Montecucco 2018; 48 Tominaga, Mae, Kitano, Sakamoto, Ikematsu, Nakagawa 2006; 52 Zhu, Li, Pan, Li, Zhang, Wang, Yang, Wu, Gong 2016; 2016 Basu, Sanchez, Leyva, Wu, Betts, Aston, Lyons 2010; 29 Sergeev, Song 2014; 58 Considine 2005; 5 Ikeda, Tsuda, Suzuki, Kobayashi, Unno, Tomoyori, Goto, Kawata, Imaizumi, Nozawa, Kakuda 2005; 135 Zechner, Strauss, Haemmerle, Lass, Zimmermann 2005; 16 Lee, Miele, Hicks, Phillips, Trent, Weissman, Welch 1996; 88 Lu, Zhu, Shen, Gao 2012; 7 Li, Gao, Yan, Zhang, Wang, Hu, Wu, Wang, Sheng 2018; 9 Yadav, Jyoti, Jain, Bhattacharjee 2011; 26 Nijher, Chaudhri, Ramachandran, Murphy, Zac-Varghese, Fowler, Chinthapalli, Patterson, Thompson, Williamson, Kumar, Ghatei, Bloom, Dhillo 2010; 70 Gorzelniak, Janke, Engeli, Sharma 2001; 33 Hill, Coates, Buckley, Ross, Thielecke, Howe 2007; 26 Sawyer, Smillie, Bodkin, Fernandes, O'Byrne, Brain 2011; 6 Yang, Yu, Graham, Hsu, Lloyd, Havel, Liu 2011; 108 Ogasawara, Kitadate, Nishioka, Fujii, Sakurai, Kizaki, Izawa, Ishida, Ohno 2011; 25 Liu, Peng, Yue, Shen, Park 2018; 23 Kim, Kwon, Akindehin, Jeong, Lee 2017; 9 Ali, Hochfeld, Myburgh, Pepper 2013; 92 Halaas, Gajiwala, Maffei, Cohen, Chait, Rabinowitz, Lallone, Burley, Friedman 1995; 269 Yu, Samavat, Dostal, Wang, Torkelson, Yang, Butler, Kensler, Wu, Kurzer, Yuan 2017; 10 Bacopoulou, Lambrou, Rodanaki, Stergioti, Efthymiou, Deligeoroglou, Markantonis 2017; 16 bibr7-1535370220962708 bibr37-1535370220962708 World Health Organization (bibr55-1535370220962708) 2008 bibr62-1535370220962708 bibr70-1535370220962708 bibr45-1535370220962708 bibr88-1535370220962708 bibr28-1535370220962708 bibr11-1535370220962708 bibr6-1535370220962708 bibr54-1535370220962708 bibr44-1535370220962708 bibr87-1535370220962708 bibr36-1535370220962708 bibr71-1535370220962708 bibr27-1535370220962708 bibr9-1535370220962708 bibr79-1535370220962708 bibr5-1535370220962708 bibr10-1535370220962708 bibr53-1535370220962708 bibr18-1535370220962708 bibr13-1535370220962708 Zeydabadi Nejad S (bibr40-1535370220962708) 2017; 15 bibr73-1535370220962708 bibr78-1535370220962708 bibr65-1535370220962708 Lu C (bibr23-1535370220962708) 2012; 7 bibr26-1535370220962708 bibr52-1535370220962708 bibr39-1535370220962708 bibr8-1535370220962708 bibr63-1535370220962708 bibr76-1535370220962708 bibr89-1535370220962708 bibr60-1535370220962708 bibr16-1535370220962708 bibr21-1535370220962708 bibr42-1535370220962708 bibr29-1535370220962708 Sitticharoon C (bibr38-1535370220962708) 2017; 65 bibr81-1535370220962708 bibr68-1535370220962708 bibr2-1535370220962708 Bacopoulou F (bibr43-1535370220962708) 2017; 16 Fors H (bibr34-1535370220962708) 1999; 84 bibr32-1535370220962708 bibr15-1535370220962708 bibr41-1535370220962708 bibr58-1535370220962708 bibr84-1535370220962708 bibr91-1535370220962708 bibr67-1535370220962708 bibr24-1535370220962708 bibr49-1535370220962708 bibr1-1535370220962708 bibr57-1535370220962708 Xicota L (bibr61-1535370220962708) 2019; 8 Ogasawara J (bibr47-1535370220962708) 2011; 25 bibr31-1535370220962708 bibr74-1535370220962708 bibr66-1535370220962708 bibr92-1535370220962708 bibr14-1535370220962708 bibr83-1535370220962708 Pan WH (bibr50-1535370220962708) 2008; 17 bibr56-1535370220962708 bibr30-1535370220962708 bibr48-1535370220962708 bibr22-1535370220962708 bibr35-1535370220962708 bibr69-1535370220962708 bibr4-1535370220962708 bibr80-1535370220962708 bibr12-1535370220962708 bibr82-1535370220962708 bibr20-1535370220962708 bibr90-1535370220962708 bibr17-1535370220962708 bibr33-1535370220962708 Rohde J (bibr85-1535370220962708) 2011; 173 bibr46-1535370220962708 bibr59-1535370220962708 bibr72-1535370220962708 bibr77-1535370220962708 Zheng G (bibr19-1535370220962708) 2004; 18 bibr64-1535370220962708 TRaX TD. (bibr86-1535370220962708) 2019; 6 bibr51-1535370220962708 bibr25-1535370220962708 Han JY (bibr75-1535370220962708) 2011; 58 38726354 - Exp Biol Med (Maywood). 2024 Apr 25;249:10179 |
References_xml | – volume: 206 start-page: 125 year: 2000 end-page: 32 article-title: Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-kappaB activation publication-title: Mol Cell Biochem – volume: 285 start-page: 2486 year: 2001 end-page: 97 article-title: Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III publication-title: JAMA – volume: 9 start-page: 1366 year: 2018 article-title: EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice publication-title: Front Pharmacol – volume: 29 start-page: 31 year: 2010 end-page: 40 article-title: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome publication-title: J Am Coll Nutr – volume: 58 start-page: 446 year: 2011 end-page: 9 article-title: Increases in blood pressure and heart rate induced by caffeine are inhibited by (-)-epigallocatechin-3-O-gallate: involvement of catecholamines publication-title: J Cardiovasc Pharmacol – volume: 5 start-page: 2048004016633371 year: 2016 article-title: A clinical perspective of obesity, metabolic syndrome and cardiovascular disease publication-title: JRSM Cardiovasc Dis – volume: 104 start-page: 1671 year: 2016 end-page: 82 article-title: Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial publication-title: Am J Clin Nutr – volume: 48 start-page: 6 year: 2018 end-page: 17 article-title: Obesity phenotypes and their paradoxical association with cardiovascular diseases publication-title: Eur J Intern Med – volume: 64 start-page: 1176 year: 2016 end-page: 86 article-title: Metabolic interplay between white, beige, brown adipocytes and the liver publication-title: J Hepatol – volume: 22 start-page: 760 year: 2018 end-page: 73 article-title: Peroxisome proliferator activated receptor gamma controls mature brown adipocyte inducibility through glycerol kinase publication-title: Cell Rep – volume: 18 start-page: 945 year: 2004 end-page: 6 article-title: Effects of green tea catechin-induced lipolysis on cytosol glycerol content in differentiated 3T3-L1 cells publication-title: Phytother Res – volume: 2016 start-page: 6790794 year: 2016 article-title: The changes of serum leptin and kisspeptin levels in Chinese children and adolescents in different pubertal stages publication-title: Int J Endocrinol – volume: 960 start-page: 1 year: 2017 end-page: 17 article-title: The definition and prevalence of obesity and metabolic syndrome publication-title: Adv Exp Med Biol – volume: 23 start-page: 214 year: 2018 end-page: 19 article-title: Epigallocatechin-3-Gallate reduces fat accumulation in Caenorhabditis elegans publication-title: Prev Nutr Food Sci – volume: 159 start-page: 1404 year: 2014 end-page: 16 article-title: Leptin mediates the increase in blood pressure associated with obesity publication-title: Cell – volume: 92 start-page: 229 year: 2013 end-page: 36 article-title: Adipocyte and adipogenesis publication-title: Eur J Cell Biol – volume: 12 start-page: 2465 year: 2017 end-page: 75 article-title: Comparison of world health organization and Asia-Pacific body mass index classifications in COPD patients publication-title: Int J Chron Obstruct Pulmon Dis – volume: 20 start-page: 1321 year: 2007 end-page: 8 article-title: Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts publication-title: Am J Hypertens – volume: 20 start-page: 2800 year: 2018 end-page: 10 article-title: The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans publication-title: Diabetes Obes Metab – volume: 12 start-page: e0179834 year: 2017 article-title: Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals publication-title: PLoS One – volume: 111 start-page: 1263 year: 2014 end-page: 71 article-title: Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial publication-title: Br J Nutr – volume: 108 start-page: 18696 year: 2011 end-page: 701 article-title: Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 8 year: 2012 article-title: Green tea polyphenols reduce body weight in rats by modulating obesity-related genes publication-title: PLoS One – volume: 17 start-page: 299 year: 2018 end-page: 313 article-title: Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links publication-title: Hormones (Athens) – volume: 67 start-page: 1849 year: 2006 end-page: 55 article-title: Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives publication-title: Phytochemistry – volume: 6 start-page: 0014671 year: 2011 article-title: The vasoactive potential of kisspeptin-10 in the peripheral vasculature publication-title: PLoS One – volume: 85 start-page: 2402 year: 2000 end-page: 10 article-title: Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans publication-title: J Clin Endocrinol Metab – volume: 63 start-page: 57 year: 2012 end-page: 75 article-title: The adipocyte as an endocrine organ in the regulation of metabolic homeostasis publication-title: Neuropharmacology – volume: 461 start-page: 1 year: 2015 end-page: 7 article-title: Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes publication-title: Biochem Biophys Res Commun – volume: 292 start-page: E1378 year: 2007 end-page: E87 article-title: EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR publication-title: Am J Physiol Endocrinol Metab – volume: 23 start-page: 1088 year: 2009 end-page: 91 article-title: Inhibitory effects of green tea catechin on the lipid accumulation in 3T3-L1 adipocytes publication-title: Phytother Res – volume: 13 start-page: 1195 year: 2005 end-page: 204 article-title: Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation publication-title: Obes Res – volume: 269 start-page: 543 year: 1995 end-page: 6 article-title: Weight-reducing effects of the plasma protein encoded by the obese gene publication-title: Science – volume: 17 start-page: 667 year: 2015 end-page: 71 article-title: Ethnic-specific criteria for classification of body mass index: a perspective for Asian Indians and American diabetes association position statement publication-title: Diabetes Technol Ther – volume: 58 start-page: 15 year: 2012 end-page: 23 article-title: Brown versus white adipose tissue: a mini-review publication-title: Gerontology – volume: 285 start-page: 7153 year: 2010 end-page: 64 article-title: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes publication-title: J Biol Chem – volume: 17 start-page: 370 year: 2008 end-page: 4 article-title: How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: an extension of Asian-Pacific recommendations publication-title: Asia Pac J Clin Nutr – volume: 65 start-page: 112 year: 2017 end-page: 16 article-title: Determination of KISS1, KISS1R and kisspeptin in fat tissue of normal weight and obese humans and correlations between serum kisspeptin and leptin publication-title: Siriraj Med J – volume: 48 start-page: 275 year: 2009 end-page: 97 article-title: Lipolysis and lipid mobilization in human adipose tissue publication-title: Prog Lipid Res – volume: 2 start-page: 239 year: 2001 end-page: 54 article-title: The biology of white adipocyte proliferation publication-title: Obes Rev – volume: 18 start-page: 55 year: 2004 end-page: 62 article-title: Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice publication-title: In Vivo – volume: 28 start-page: 1411 year: 2004 end-page: 9 article-title: Randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment publication-title: Int J Obes Relat Obes – volume: 84 start-page: 3586 year: 1999 end-page: 90 article-title: Serum leptin levels correlate with growth hormone secretion and body fat in children publication-title: J Clin Endocrinol Metab – volume: 88 start-page: 1731 year: 1996 end-page: 7 article-title: KiSS-1, a novel human malignant melanoma metastasis-suppressor gene publication-title: J Natl Cancer Inst – volume: 148 start-page: 140 year: 2007 end-page: 7 article-title: Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels publication-title: Endocrinology – volume: 139 start-page: 264 year: 2009 end-page: 70 article-title: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults publication-title: J Nutr – volume: 279 start-page: C670 year: 2000 end-page: 81 article-title: Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. publication-title: Am J Physiol Cell Physiol – volume: 6 start-page: 1 year: 2019 end-page: 16 article-title: Suspected herb induced liver injury by green tea extracts: critical review and case analysis applying RUCAM for causality assessment publication-title: Jpn J Gastroenterol Hepatol – volume: 70 start-page: 674 year: 2010 end-page: 81 article-title: The effects of kisspeptin-54 on blood pressure in humans and plasma kisspeptin concentrations in hypertensive diseases of pregnancy publication-title: Br J Clin Pharmacol – volume: 1 start-page: 177 year: 2012 end-page: 81 article-title: Leptin increasing sympathetic nerve outflow in obesity: a cure for obesity or a potential contributor to metabolic syndrome? publication-title: Adipocyte – volume: 16 start-page: 333 year: 2005 end-page: 40 article-title: Lipolysis: pathway under construction publication-title: Curr Opin Lipidol – volume: 21 start-page: 465 year: 1997 end-page: 75 article-title: Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats publication-title: Int J Obes Relat Metab Disord – volume: 62 start-page: 1198 year: 2014 end-page: 208 article-title: Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma publication-title: J Agric Food Chem – volume: 7 start-page: 135 year: 2007 end-page: 44 article-title: Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection publication-title: Cardiovasc Hematol Disord Drug Targets – volume: 16 start-page: 33 year: 2017 end-page: 41 article-title: Serum kisspeptin concentrations are negatively correlated with body mass index in adolescents with anorexia nervosa and amenorrhea publication-title: Hormones (Athens) – volume: 135 start-page: 155 year: 2005 end-page: 9 article-title: Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats publication-title: J Nutr – volume: 5 start-page: 1218 year: 2013 end-page: 40 article-title: Dyslipidemia in obesity: mechanisms and potential targets publication-title: Nutrients – volume: 47 start-page: 67 year: 2006 end-page: 77 article-title: Epigallocatechin gallate increases the formation of cytosolic lipid droplets and decreases the secretion of apoB-100 VLDL publication-title: J Lipid Res – volume: 25 start-page: 467 year: 2011 end-page: 71 article-title: Comparison of the effect of oligonol, a new lychee fruit-derived low molecular form of polyphenol, and epigallocatechin-3-gallate on lipolysis in rat primary adipocytes publication-title: Phytother Res – volume: 55 start-page: 844 year: 2011 end-page: 54 article-title: The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention publication-title: Mol Nutr Food Res – volume: 12 start-page: 999 year: 2007 end-page: 1005 article-title: Image-based high-throughput quantification of cellular fat accumulation publication-title: J Biomol Screen – volume: 60 start-page: 8917 year: 2012 end-page: 23 article-title: Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice publication-title: J Agric Food Chem – volume: 82 start-page: 387 year: 2001 end-page: 98 article-title: Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture publication-title: J Cell Biochem – volume: 8 start-page: 21 year: 2018 end-page: 29 article-title: Waist circumference at five common measurement sites in normal weight and overweight adults: which site is most optimal? publication-title: Clin Obes – volume: 122 start-page: 1 year: 2017 end-page: 7 article-title: Obesity and hypertension publication-title: Pharmacol Res – volume: 5 start-page: 15 year: 2005 end-page: 24 article-title: Human leptin: an adipocyte hormone with weight-regulatory and endocrine functions publication-title: Semin Vasc Med – volume: 17 year: 2016 article-title: Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules publication-title: Int J Mol Sci – volume: 29 start-page: 2466 year: 2017 end-page: 78 article-title: Increased high molecular weight adiponectin, but decreased total adiponectin and kisspeptin, in Central precocious puberty compared with aged-matched prepubertal girls publication-title: Reprod Fertil Dev – volume: 56 start-page: 215 year: 2012 end-page: 25 article-title: The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus publication-title: Arq Bras Endocrinol Metabol – volume: 52 start-page: 672 year: 2006 end-page: 83 article-title: Licorice flavonoid oil effects body weight loss by reduction of body fat mass in overweight subjects publication-title: J Health Sci – volume: 9 year: 2017 article-title: Effects of epigallocatechin-3-Gallate on autophagic lipolysis in adipocytes publication-title: Nutrients – volume: 32 start-page: 421 year: 2012 end-page: 7 article-title: Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients publication-title: Nutr Res – volume: 173 start-page: 205 year: 2011 end-page: 6 article-title: [Toxic hepatitis triggered by green tea] publication-title: Ugeskr Laeg – volume: 6 start-page: 33 year: 2014 end-page: 42 article-title: Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells publication-title: World J Stem Cells – volume: 151 start-page: 400 year: 2012 end-page: 13 article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria publication-title: Cell – volume: 96 start-page: 597 year: 2006 end-page: 605 article-title: Extraction of active ingredients from green tea (camellia sinensis): extraction efficiency of major catechins and caffeine publication-title: Food Chemistry – volume: 26 start-page: 193 year: 2011 end-page: 96 article-title: Correlation of adiponectin and leptin with insulin resistance: a pilot study in healthy North Indian population publication-title: Indian J Clin Biochem – volume: 8 start-page: 30255 year: 2019 end-page: 9 article-title: Effect of epigallocatechin gallate on the body composition and lipid profile of Down syndrome individuals: implications for clinical management publication-title: Clin Nutr – volume: 35 start-page: 128 year: 2010 end-page: 36 article-title: Central administration of kisspeptin-10 inhibits water and sodium excretion of anesthetized male rats and the involvement of arginine vasopressin publication-title: Endocr Res – volume: 9 start-page: 473 year: 2018 article-title: Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex publication-title: Front Endocrinol (Lausanne) – volume: 377 start-page: 13 year: 2017 end-page: 27 article-title: Health effects of overweight and obesity in 195 countries over 25 years publication-title: N Engl J Med – volume: 33 start-page: 625 year: 2001 end-page: 7 article-title: Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes publication-title: Horm Metab Res – volume: 140 start-page: 1175 year: 1999 end-page: 82 article-title: Central administration of leptin to ovariectomized ewes inhibits food intake without affecting the secretion of hormones from the pituitary gland: evidence for a dissociation of effects on appetite and neuroendocrine function publication-title: Endocrinology – volume: 28 start-page: 694 year: 2005 end-page: 701 article-title: Can adoption of regular exercise later in life prevent metabolic risk for cardiovascular disease? publication-title: Diabetes Care – volume: 10 start-page: 571 year: 2017 end-page: 79 article-title: Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States publication-title: Cancer Prev Res (Res – volume: 58 start-page: 1342 year: 2014 end-page: 8 article-title: High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis publication-title: Mol Nutr Food Res – volume: 93 start-page: 486 year: 2008 end-page: 91 article-title: Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial publication-title: Physiol Behav – volume: 15 start-page: e44337 year: 2017 article-title: The role of kisspeptin in female reproduction publication-title: Int J Endocrinol Metab – volume: 26 start-page: 396S year: 2007 end-page: 402S article-title: Can EGCG reduce abdominal fat in obese subjects? publication-title: J Am Coll Nutr – volume: 20 start-page: 184 year: 2020 end-page: 90 article-title: Leptin-induced increase in blood pressure and markers of endothelial activation during pregnancy in Sprague Dawley rats is prevented by resibufogenin, a marinobufagenin antagonist publication-title: Reprod Biol – ident: bibr18-1535370220962708 doi: 10.1590/S0004-27302012000400001 – ident: bibr21-1535370220962708 doi: 10.1002/jcb.1164 – ident: bibr84-1535370220962708 doi: 10.1158/1940-6207.CAPR-17-0160 – ident: bibr1-1535370220962708 doi: 10.1016/j.phrs.2017.05.013 – ident: bibr6-1535370220962708 doi: 10.1177/2048004016633371 – ident: bibr88-1535370220962708 doi: 10.1016/j.bbrc.2015.03.158 – ident: bibr62-1535370220962708 doi: 10.1080/07315724.2010.10719814 – ident: bibr11-1535370220962708 doi: 10.1016/j.jhep.2016.01.025 – volume: 15 start-page: e44337 year: 2017 ident: bibr40-1535370220962708 publication-title: Int J Endocrinol Metab – ident: bibr65-1535370220962708 doi: 10.1248/jhs.52.672 – volume: 25 start-page: 467 year: 2011 ident: bibr47-1535370220962708 publication-title: Phytother Res doi: 10.1002/ptr.3296 – ident: bibr54-1535370220962708 doi: 10.1111/cob.12231 – ident: bibr60-1535370220962708 doi: 10.1055/s-2001-17911 – ident: bibr29-1535370220962708 doi: 10.1055/s-2005-871738 – volume: 8 start-page: 30255 year: 2019 ident: bibr61-1535370220962708 publication-title: Clin Nutr – ident: bibr77-1535370220962708 doi: 10.1002/mnfr.201000641 – ident: bibr90-1535370220962708 doi: 10.1016/j.cell.2012.09.010 – ident: bibr53-1535370220962708 doi: 10.2337/diacare.28.3.694 – ident: bibr44-1535370220962708 doi: 10.1210/en.2006-0818 – ident: bibr42-1535370220962708 doi: 10.1111/dom.13460 – ident: bibr16-1535370220962708 doi: 10.1152/ajpcell.2000.279.3.C670 – volume: 6 start-page: 1 year: 2019 ident: bibr86-1535370220962708 publication-title: Jpn J Gastroenterol Hepatol – ident: bibr26-1535370220962708 doi: 10.1016/j.phytochem.2006.06.020 – ident: bibr91-1535370220962708 doi: 10.1016/j.celrep.2017.12.067 – ident: bibr41-1535370220962708 doi: 10.1155/2016/6790794 – volume: 16 start-page: 33 year: 2017 ident: bibr43-1535370220962708 publication-title: Hormones (Athens) – ident: bibr69-1535370220962708 doi: 10.1021/jf404872y – ident: bibr22-1535370220962708 doi: 10.2174/187152907780830905 – volume: 7 start-page: 8 year: 2012 ident: bibr23-1535370220962708 publication-title: PLoS One – ident: bibr9-1535370220962708 doi: 10.1073/pnas.1109065108 – ident: bibr63-1535370220962708 doi: 10.1038/sj.ijo.0802784 – volume: 173 start-page: 205 year: 2011 ident: bibr85-1535370220962708 publication-title: Ugeskr Laeg – ident: bibr25-1535370220962708 doi: 10.1016/j.foodchem.2005.03.015 – ident: bibr37-1535370220962708 doi: 10.1016/j.cell.2014.10.058 – ident: bibr70-1535370220962708 doi: 10.3945/ajcn.116.137075 – ident: bibr2-1535370220962708 doi: 10.1016/j.ejim.2017.10.020 – ident: bibr81-1535370220962708 doi: 10.1371/journal.pone.0179834 – ident: bibr27-1535370220962708 doi: 10.1080/07315724.2007.10719628 – ident: bibr46-1535370220962708 doi: 10.1371/journal.pone.0014671 – volume: 58 start-page: 446 year: 2011 ident: bibr75-1535370220962708 publication-title: J Cardiovasc Pharmacol – ident: bibr33-1535370220962708 doi: 10.1007/s12291-011-0119-1 – ident: bibr79-1535370220962708 doi: 10.3109/07435801003769995 – ident: bibr71-1535370220962708 doi: 10.1093/jn/135.2.155 – ident: bibr59-1535370220962708 doi: 10.1177/1087057107306502 – ident: bibr83-1535370220962708 doi: 10.1007/s42000-018-0051-3 – ident: bibr13-1535370220962708 doi: 10.4252/wjsc.v6.i1.33 – ident: bibr12-1535370220962708 doi: 10.1097/01.mol.0000169354.20395.1c – ident: bibr28-1535370220962708 doi: 10.1017/S0007114513003784 – ident: bibr17-1535370220962708 doi: 10.1074/jbc.M109.053942 – ident: bibr7-1535370220962708 doi: 10.1007/978-3-319-48382-5_1 – ident: bibr68-1535370220962708 doi: 10.3746/pnf.2018.23.3.214 – volume: 18 start-page: 55 year: 2004 ident: bibr19-1535370220962708 publication-title: In Vivo – ident: bibr73-1535370220962708 doi: 10.1016/j.nutres.2012.05.007 – ident: bibr74-1535370220962708 doi: 10.1152/ajpendo.00698.2006 – ident: bibr58-1535370220962708 doi: 10.3390/ijms17010124 – ident: bibr32-1535370220962708 doi: 10.1126/science.7624777 – ident: bibr45-1535370220962708 doi: 10.1071/RD16282 – volume: 17 start-page: 370 year: 2008 ident: bibr50-1535370220962708 publication-title: Asia Pac J Clin Nutr – ident: bibr66-1535370220962708 doi: 10.3945/jn.108.098293 – ident: bibr52-1535370220962708 doi: 10.1089/dia.2015.0007 – ident: bibr39-1535370220962708 doi: 10.1093/jnci/88.23.1731 – ident: bibr10-1535370220962708 doi: 10.1002/mnfr.201300503 – ident: bibr24-1535370220962708 doi: 10.1016/j.physbeh.2007.10.009 – volume: 65 start-page: 112 year: 2017 ident: bibr38-1535370220962708 publication-title: Siriraj Med J – ident: bibr48-1535370220962708 doi: 10.1002/ptr.2737 – ident: bibr49-1535370220962708 doi: 10.3390/nu9070680 – ident: bibr14-1535370220962708 doi: 10.1159/000321319 – ident: bibr5-1535370220962708 doi: 10.1056/NEJMoa1614362 – ident: bibr82-1535370220962708 doi: 10.1001/jama.285.19.2486 – ident: bibr4-1535370220962708 doi: 10.3390/nu5041218 – ident: bibr36-1535370220962708 doi: 10.1016/j.repbio.2020.03.004 – ident: bibr35-1535370220962708 doi: 10.4161/adip.20690 – ident: bibr87-1535370220962708 doi: 10.1002/ptr.1580 – ident: bibr31-1535370220962708 doi: 10.1210/endo.140.3.6604 – volume: 84 start-page: 3586 year: 1999 ident: bibr34-1535370220962708 publication-title: J Clin Endocrinol Metab – ident: bibr56-1535370220962708 doi: 10.1210/jcem.85.7.6661 – ident: bibr67-1535370220962708 doi: 10.3389/fphar.2018.01366 – ident: bibr78-1535370220962708 doi: 10.1016/j.amjhyper.2007.08.006 – volume-title: Waist Circumference and waist–hip ratio: report of a WHO expert consultation year: 2008 ident: bibr55-1535370220962708 – ident: bibr89-1535370220962708 doi: 10.1016/j.plipres.2009.05.001 – ident: bibr20-1535370220962708 doi: 10.1021/jf2053788 – ident: bibr30-1535370220962708 doi: 10.1016/j.neuropharm.2011.12.010 – ident: bibr92-1535370220962708 doi: 10.3389/fendo.2018.00473 – ident: bibr80-1535370220962708 doi: 10.1111/j.1365-2125.2010.03746.x – ident: bibr76-1535370220962708 doi: 10.1023/A:1007012403691 – ident: bibr8-1535370220962708 doi: 10.1046/j.1467-789X.2001.00042.x – ident: bibr51-1535370220962708 doi: 10.2147/COPD.S141295 – ident: bibr72-1535370220962708 doi: 10.1194/jlr.M500424-JLR200 – ident: bibr15-1535370220962708 doi: 10.1038/sj.ijo.0800432 – ident: bibr57-1535370220962708 doi: 10.1016/j.ejcb.2013.06.001 – ident: bibr64-1535370220962708 doi: 10.1038/oby.2005.142 – reference: 38726354 - Exp Biol Med (Maywood). 2024 Apr 25;249:10179 |
SSID | ssj0015726 |
Score | 2.5270593 |
Snippet | Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 163 |
SubjectTerms | Adipocytes, Brown - drug effects Adipocytes, Brown - metabolism Adipocytes, White - drug effects Adipocytes, White - metabolism Adiponectin - blood Adult Blood Glucose - metabolism Blood Pressure - drug effects Catechin - analogs & derivatives Catechin - pharmacology Humans Kidney - drug effects Kidney - physiopathology Kisspeptins - blood Leptin - blood Lipolysis Liver - drug effects Liver - physiopathology Middle Aged Obesity - blood Obesity - genetics Obesity - physiopathology Original Research RNA, Messenger - genetics RNA, Messenger - metabolism Triglycerides - blood Uncoupling Protein 1 - genetics Uncoupling Protein 1 - metabolism |
Title | Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects |
URI | https://journals.sagepub.com/doi/full/10.1177/1535370220962708 https://www.ncbi.nlm.nih.gov/pubmed/33045853 https://www.proquest.com/docview/2450648703 https://pubmed.ncbi.nlm.nih.gov/PMC7871112 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZZx0q_jK3dS_aGBqMwUqexJdvxx650lI6WfWih34LkKKtZYofapmQ_bL9vd5LlKMk6tkEwfpVM7vHpdHd6jpAPkokwlDyELy1JPC4490QSRF4oATFhqpCEDrMtLqLTK352HV53Oj-drKW6kv30x2_XlfyPVOEcyBVXyf6DZNtG4QTsg3xhCxKG7V_J-GSe6cA5ZjVhTmQPj2C_N9bGYKlKrBJdzkSvgkn4dJHCSxmaXZ2v3tNJsLXxQmsHurqtZz0wKcs5JrvoJMhCKqQl1r7-spbotilX3PluiQCX0slG7dGGPRcLm9tz0T_rO-6H4xuBcXHjnM5mImtdPhg7wTVhRZsXAF3AiaUPPfsu1J0xg7Np1qL8a5F_uxMVWL1gCDTVxr5kgE6xEK6TI_AdJ4eyijn0WGSKKVnNHTTey8yZQRs97ButuTk-6Ag1NsZiXGOMpYc0r0TlwGU-03hhOohsqIzXOLntpQfkYQDTk8B6iZroVRgHTkj8cL27HbJtG1i1hjamOJuZuk66obaALp-Qx83UhR4ZHD4lHZXvkr2jXFTFbEH3qU4m1vLfJY8-2b3t8wYHe6Raxytt8EpbvFKDV-ri9YBqtFKL1gMK8KIaq3SJVQo_jVWqsUotVp-Rq88nl8enXlP1w0s54xWYTCmTCizZdMImagBKhqWJTCIRSimEr6JBPBn7wwmLZcI5l3EoYx8PhsGYxXzMnpOtvMjVS0KZEvAcTBCiSPE0lnDHIIjlIIFWh8No3CWH9t8fpQ0lPlZmmY78hgV_XXRd8rF9Ym7oYP5w73sr0BHobAzEiVwVdTkKONJEwkjJuuSFEXDbmkVGl8Qrom9vQD741St5dqN54WHsBcsl6JJ9BMmoUVTlvS_46t7OX5Od5Vf4hmxVt7V6C8Z3Jd9ppP8C4EvZbA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigallocatechin+gallate+decreases+plasma+triglyceride%2C+blood+pressure%2C+and+serum+kisspeptin+in+obese+human+subjects&rft.jtitle=Experimental+biology+and+medicine+%28Maywood%2C+N.J.%29&rft.au=Chatree%2C+Saimai&rft.au=Sitticharoon%2C+Chantacha&rft.au=Maikaew%2C+Pailin&rft.au=Pongwattanapakin%2C+Kitchaya&rft.date=2021-01-01&rft.eissn=1535-3699&rft.volume=246&rft.issue=2&rft.spage=163&rft_id=info:doi/10.1177%2F1535370220962708&rft_id=info%3Apmid%2F33045853&rft.externalDocID=33045853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3702&client=summon |